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2LAMSADE, Université Paris Dauphine - PSL, France

3University of New South Wales, Australia
4National University of Singapore, Singapore

5University of Oxford, UK

Abstract

We study a portioning setting in which a public resource such as time or money is to be divided
among a given set of candidates, and each agent proposes a division of the resource. We consider
two families of aggregation rules for this setting—those based on coordinate-wise aggregation and
those that optimize some notion of welfare—as well as the recently proposed independent markets
rule. We provide a detailed analysis of these rules from an axiomatic perspective, both for classic
axioms, such as strategyproofness and Pareto optimality, and for novel axioms, some of which aim
to capture proportionality in this setting. Our results indicate that a simple rule that computes the
average of the proposals satisfies many of our axioms and fares better than all other considered rules
in terms of fairness properties. We complement these results by presenting two characterizations of
the average rule.

1 Introduction

A town council has just received its annual funding from the government, and it needs to determine
how to split the budget among constructing new facilities, maintaining clean streets, and ensuring public
safety. The mayor is in favor of making decisions democratically, so she asks each resident of the town
to propose a division of the budget. After collecting the proposals, how should the council aggregate
them into an actual allocation?

In the problem of portioning, the aim is to divide a homogeneous resource among a given set of
candidates. Besides dividing money, another important application of portioning is the division of
time—for example, a conference needs to distribute its time among research talks, panels, and social
gatherings. Several prior works on portioning assumed that each agent submits her preferences in the
form of either an approval ballot [Bogomolnaia et al., 2005, Duddy, 2015, Aziz et al., 2020] or an ordi-
nal ranking [Airiau et al., 2023]. However, in many portioning scenarios, these preference formats are
not expressive enough to fully describe agents’ intentions. For instance, if a citizen wants the budget to
be used both for constructing new facilities and for cleaning the streets, but with twice as much money
spent on the former than the latter, her preference cannot be captured by a ranking or an approval set.
Likewise, a conference attendee who would like 75% of the time to be spent on research talks, 15% on

*A preliminary version of this paper appeared in Proceedings of the 26th European Conference on Artificial Intelligence
[Elkind et al., 2023]. This version is substantially enhanced: it fills in all missing results (Table 1) and improves the organization
of the results, strengthens the case for using the average rule by providing characterizations of the rule (Section 7), analyzes
additional moving phantoms rules (Appendix B), expands the discussion of related work (Section 1.2), and includes all proofs
omitted from the conference version.
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panels, and 10% on social gatherings ranks these activities in the same way as another attendee who
prefers a 40%–35%–25% split, but the actual preferences of these two attendees are quite different.

In an important recent work, Freeman et al. [2021] studied portioning with cardinal preferences,
where every agent is asked to propose a division of the resource. This input format allows each agent to
specify what she views as the ideal portioning outcome, and is therefore much more descriptive than the
two formats discussed earlier. Assuming that an agent’s disutility is given by the ℓ1 distance between
her ideal distribution and the actual outcome,1 Freeman et al. observed that even though the rule that
maximizes the utilitarian social welfare is known to be strategyproof (for a specific tie-breaking conven-
tion) [Lindner et al., 2008, Goel et al., 2019], it tends to put too much weight on majority preferences. In
light of this observation, they introduced the independent markets (IM) rule, which is strategyproof and,
in some sense, more proportional. Their work inspired a number of follow-up papers in this fundamen-
tal social choice setting, mostly focusing on strategyproofness [Caragiannis et al., 2024, de Berg et al.,
2024, Freeman and Schmidt-Kraepelin, 2024, Brandt et al., 2026].2 However, while strategyproofness
is an important consideration, there may be scenarios where other features of aggregation rules are just
as—if not more—desirable. Thus, to help decision-makers identify suitable aggregation rules for their
applications, it would be useful to (i) build catalogues of axioms and popular aggregation rules for the
portioning setting, (ii) determine which of these axioms are satisfied by each of the aggregation rules,
and (iii) characterize some of the most important rules in terms of these axioms.

1.1 Overview of Contributions

We consider a diverse set of axioms for portioning with cardinal preferences. Besides classic axioms
such as strategyproofness and Pareto optimality, we put forward new axioms including score-unanimity
and score-representation (see Section 2 for definitions). Several of our axioms do not depend on the
underlying utility functions; for those where the utility functions matter, following most prior works in
this domain, we assume ℓ1 utilities. We then conduct a systematic study of aggregation rules with respect
to these axioms. We focus on two families of portioning rules—those that are based on coordinate-
wise aggregation and those that optimize some notion of welfare—as well as the recently proposed IM
rule [Freeman et al., 2021]. We also include observations regarding relationships between the axioms.
Table 1 summarizes our results.

Our findings offer several insights on portioning rules. As shown in Table 1, the most promising
rules with respect to the axioms that we study are the average rule (AVG), which simply returns the
average of all the proposals, and the utilitarian welfare-maximizing rule (UTIL), with the trade-off be-
ing that AVG fails strategyproofness and Pareto optimality whereas UTIL fails fairness and consistency
notions such as single-minded proportionality,3 score-representation, and independence. While IM sat-
isfies both strategyproofness and single-minded proportionality, it fails other intuitive properties such as
score-unanimity and score-representation; these failures can lead to highly counterintuitive outcomes.
The axiomatic properties of various rules can be used to inform decision-making in a wide range of
settings. For instance, consider again the scenario where a conference organizer needs to divide time
among different activities at a conference. In this case, it is likely difficult for an attendee to accurately
predict what other attendees’ preferences are, making strategyproofness arguably less relevant as a con-
sideration. On the other hand, strategyproofness could be more important in smaller-scale settings where
agents know each other well, e.g., portioning within a family or a small organization. Moreover, intu-
itive properties such as score-unanimity and range-respect may be essential in settings where votes are

1Freeman et al. [2021] noted that ℓ1 preferences arise naturally when agents are endowed with separable uniform utilities
over candidates together with a funding cap.

2For an overview of this and other related lines of work, we refer to the survey by Suksompong and Teh [2026].
3This property was simply called “proportionality” by Freeman et al. [2021]. However, the property only applies to in-

stances in which all agents are “single-minded”, thereby making it rather weak compared to proportionality notions in other
settings (e.g., fair division [Procaccia, 2016]). Hence, in this paper we call this property “single-minded proportionality”.
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Coordinate-wise Welfare-based Other

F AVG MAX MIN MED GEO UTIL EGAL IM

Pareto Optimality X‡ X† X† X‡ X† ✓ ✓ X†

Range-respect ✓ X† X† X‡ X† ✓ ✓ X†

Score-unanimity ✓ X† X† X‡ X† ✓ ✓ X†

Score-representation ✓ X X X∗ X X X∗ X†

Single-minded Proportionality ✓ X∗ X X∗ X X∗ X∗ ✓

Independence ✓ X† X† X‡ X† X† X‡ X†

Score-monotonicity ✓ ✓ ✓ ✓ ✓ ✓ X‡ ✓

Reinforcement ✓ ✓ ✓ X ✓ ✓ ✓ ✓

Strategyproofness X X X X X ✓ X ✓

Participation ✓ ✓ ✓ X ✓ ✓ ✓ ✓

Table 1: Summary of our results. The asterisk symbol (∗) means that the axiom is satisfied for n = 2, but may
fail when n ≥ 3 (even if m = 2). The dagger symbol (†) indicates that the axiom is satisfied for m = 2, but
may fail when m ≥ 3 (even if n = 2). The double dagger symbol (‡) indicates that the axiom is satisfied when
min(n,m) = 2. The results on single-minded proportionality, score-monotonicity, reinforcement, strategyproof-
ness, and participation for UTIL and IM were obtained by Freeman et al. [2021]. All results on GEO and on
independence, as well as reinforcement and participation for MED and score-monotonicity for EGAL, are new
compared to the conference version of this paper [Elkind et al., 2023]. In Appendix B, we consider two moving
phantoms rules that have been proposed more recently—the piecewise uniform rule [Caragiannis et al., 2024] and
the ladder rule [Freeman and Schmidt-Kraepelin, 2024]—and show that their axiomatic behavior is similar to that
exhibited by IM.

revealed: for example, if all agents allocate 80% of the budget to a certain activity, but the rule allocates
60% to it, this may well lead to dissatisfaction among agents regarding the use of that rule.

In addition to fulfilling several axioms, the average rule is intuitive and easy to explain to laypeople.
We further strengthen the case for using this rule by providing two characterizations of it. Specifically,
we show that the average rule is the only aggregation rule satisfying score-unanimity (i.e., if all agents
allocate a γ fraction of the resource to a candidate, then the rule also assigns a γ fraction of the resource
to it), independence (i.e., the fraction allocated to a candidate only depends on the fractions that the
agents allocate to this candidate), and a mild fairness condition called anonymity, when there are at least
three candidates. We also prove that, within the class of coordinate-wise rules, the average rule is the
unique rule that satisfies score-unanimity, anonymity, and continuity whenever the number of candidates
is at least four.

1.2 Further Related Work

Portioning can be viewed as a variant of participatory budgeting, a framework that allows citizens to
democratically decide how the public budget should be spent. Participatory budgeting has been used
in over 7,000 cities around the world [Participatory Budgeting Project, 2025] and received much recent
interest in computational social choice—see, for example, the surveys by Aziz and Shah [2021] and
Rey et al. [2025]. Nevertheless, most of the participatory budgeting literature focuses on the discrete
setting, where each project is either implemented in full or not implemented at all, and projects may
have varying costs (see, however, the recent work of Goyal et al. [2023]). This makes the nature of the
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problem quite different from that of portioning.
As mentioned earlier, Freeman et al. [2021] investigated portioning with cardinal preferences and

introduced IM, which is strategyproof and single-minded proportional under ℓ1 utilities. In fact, IM
belongs to a class of moving phantoms mechanisms, all of which are strategyproof.4 Caragiannis et al.
[2024] followed up on their work by examining the deviation of moving phantoms mechanisms from
the average rule according to the ℓ1 distance, while Freeman and Schmidt-Kraepelin [2024] explored
a similar question using the ℓ∞ distance. Brandt et al. [2026] showed that no rule can simultaneously
be strategyproof, single-minded proportional, and Pareto optimal under ℓ1 or ℓ∞ utilities, but such a
rule exists for an alternative utility model. Schmidt-Kraepelin et al. [2025] studied a discrete version of
portioning in which only integral amounts can be assigned to candidates.

Portioning also bears similarities to the domain of probabilistic social choice, where the output is
likewise a fractional allocation. However, unlike in portioning, in probabilistic social choice the fraction
allocated to each candidate is interpreted as the probability of eventually choosing this candidate as the
unique winner. As a consequence, it is usually desirable for a rule to minimize the use of randomness,
with fairness and proportionality being relatively less important. Moreover, much of the work in proba-
bilistic social choice assumes that agents’ preferences are given as ordinal rankings (see, e.g., the survey
by Brandt [2017]). A notable exception is the work of Intriligator [1973], which postulates that each
agent has an ideal distribution over the candidates, but does not consider utility functions of agents.
Intriligator gave a characterization of the average rule, which was later identified as incorrect and fixed
by Rice [1977]. In particular, Intriligator’s (and Rice’s) characterization relies on two axioms: (i) loser-
unanimity, which requires that a candidate receiving a score of 0 from all agents should also receive 0
from the actual distribution, and (ii) strict and equal sensitivity to individual preferences, which requires
that if an agent has more “power” and allocates that power to a particular candidate, then the outcome
should only change for this candidate, and this change should only depend on the absolute magnitude of
the change in the agent’s preference. While loser-unanimity is weaker than score-unanimity, which we
use for our characterizations, strict and equal sensitivity to individual preferences is an extremely strong
condition—for example, it is violated even by a dictatorial or a constant aggregation rule.

Finally, another related topic is probabilistic opinion pooling, where the aim is to aggregate prob-
abilistic beliefs representing, for example, weather forecasts [Genest and Zidek, 1986, Clemen, 1989].
The focus of probabilistic opinion pooling is mainly to preserve epistemic and stochastic properties,
which again leads to different axioms being considered.

2 Preliminaries

We present the model of portioning with cardinal preferences, and introduce the rules and axioms that
we will study.

2.1 Model

Let [t] := {1, . . . , t} for any positive integer t. Assume that there is a set of n ≥ 2 agents, N = [n], who
report their preferences as ideal distributions of a homogeneous resource among a set C = {c1, . . . , cm}
of m ≥ 2 candidates. Specifically, letting ∆m := {x ∈ Rm

≥0 :
∑

j∈[m] xj = 1} denote the set of
probability distributions over C, we assume that each agent i ∈ N reports her preferences as a dis-
tribution si ∈ ∆m. We typically refer to si as agent i’s score vector, and write si = (si,1, . . . , si,m)
to specify this vector. An instance I of our problem is the collection of the preferences of all agents,
i.e., I = (s1, . . . , sn). For each vector x = (x1, . . . , xm), agent i’s disutility is defined as di(x) :=∑

j∈[m] |si,j − xj |, which is the ℓ1 distance between the agent’s score vector si and x. Given an in-

4However, not all strategyproof rules are moving phantoms mechanisms [de Berg et al., 2024].
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stance I, we aim to find a vector x ∈ ∆m that reflects the agents’ collective preferences. To this end,
we use aggregation rules, which are defined as follows.

Definition 2.1 (Aggregation rule). An aggregation rule F is a function F : ∆m×n → ∆m that maps
every instance I ∈ ∆m×n to an outcome vector x ∈ ∆m.

We will frequently use the notation F (I)j to denote the probability that the aggregation rule F
assigns to candidate cj on instance I.

2.2 Aggregation Rules

In this paper, we will focus on two natural classes of aggregation rules, namely, coordinate-wise rules
and welfare-optimizing rules. In addition, we will also consider the independent markets rule of Freeman
et al. [2021].

2.2.1 Coordinate-wise Aggregation Rules

We first introduce the class of coordinate-wise aggregation rules. The idea behind these rules is to
aggregate the reported scores for each candidate individually and then normalize the aggregated scores
so that they sum up to 1.

Definition 2.2. An aggregation rule F is coordinate-wise if, for each n and each j ∈ [m], there exist

coordinate-aggregation functions fn
j : (R≥0)

n → R≥0 such that F (I)j =
fn
j (s1,j ,...,sn,j)∑

k∈[m] f
n
k (s1,k,...,sn,k)

for all
instances I.

We extend Definition 2.2 to allow for the possibility that, for certain instances, fn
j (s1,j , . . . , sn,j) =

0 for all j ∈ [m]: in this case, we assign each candidate the same probability 1
m . We remark that our

negative results do not depend on this tie-breaking convention. When fn
j is the same for all j ∈ [m], we

omit the subscript j and write fn. Furthermore, we may omit the superscript n when it is clear from the
context, and simply write fj or f .

We will focus on five natural coordinate-wise aggregation rules, where f is the average, maximum,
minimum, median (if the number of agents is even, we take the average of the two middle scores),5 or
geometric mean function. For brevity, we refer to these rules as AVG, MAX, MIN, MED, and GEO, re-
spectively. The advantage of these rules is that they are intuitive and easily computable. The proposition
below identifies two special cases where the normalization factor

∑
k∈[m] f

n
k (s1,k, . . . , sn,k) is equal

to 1 and hence normalization is not required.

Proposition 2.3. Consider an instance I, and let x and y be the outputs of AVG and MED on I,
respectively.

(a) For each j ∈ [m], it holds that xj = 1
n ·
∑

i∈N si,j .

(b) If m = 2, then for j ∈ [2], it holds that yj = med(s1,j , . . . , sn,j).

Proof. For part (a), it suffices to note that

∑
j∈[m]

1

n

(∑
i∈N

si,j

)
=

1

n

∑
i∈N

∑
j∈[m]

si,j =
1

n

∑
i∈N

1 = 1.

For part (b), assume without loss of generality that s1,1 ≥ s2,1 ≥ · · · ≥ sn,1. As si,1 = 1−si,2 for all i ∈
N , we have s1,2 ≤ s2,2 ≤ · · · ≤ sn,2. Consequently, if n is odd, we have med(s1,1, . . . , sn,1) = sn+1

2
,1

5This is the most commonly used definition of the median in practice. However, even when m = 2, this definition does not
lead to a strategyproof rule, whereas other definitions do (e.g., taking the smaller of the two middle scores) [Moulin, 1980].
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and med(s1,2, . . . , sn,2) = sn+1
2

,2, while if n is even, we have med(s1,1, . . . , sn,1) = (sn
2
,1 + sn+2

2
,1)/2

and med(s1,2, . . . , sn,2) = (sn
2
,2 + sn+2

2
,2)/2. In both cases, since si,1 + si,2 = 1 for all i ∈ N , it holds

that med(s1,1, . . . , sn,1) + med(s1,2, . . . , sn,2) = 1.

2.2.2 Welfare-based Aggregation Rules

For our second class, we consider rules that are based on welfare optimization. In particular, we fo-
cus on two popular welfare criteria:6 the utilitarian welfare −

∑
i∈N di(x) and the egalitarian wel-

fare mini∈N (−di(x)). The minus sign ensures that these definitions indeed capture the welfare, as di
measures the disutility (rather than the utility) of agent i. The utilitarian rule (UTIL) and the egali-
tarian rule (EGAL) then return an outcome that maximizes the utilitarian and egalitarian welfare, re-
spectively. More formally, for each instance I, UTIL chooses an outcome xUTIL such that xUTIL ∈
argmaxx(−

∑
i∈N di(x)), while EGAL returns xEGAL such that xEGAL ∈ argmaxxmini∈N (−di(x)).

For both of these rules, tie-breaking is important. Following Freeman et al. [2021], we consider the
variant of UTIL that breaks ties in favor of the maximum-entropy division. Specifically, we assume that
UTIL outputs the utilitarian welfare-maximizing outcome x that minimizes the quantity

∑
j∈[m](xj −

1
m)2, i.e., the ℓ2 distance to the uniform distribution xu = ( 1

m , . . . , 1
m). This tie-breaking choice is

neutral for candidates and ensures strategyproofness [Lindner et al., 2008].
For EGAL, if there are multiple outcomes that maximize the egalitarian welfare, then we break ties

in a “leximin” manner. Formally, given two vectors v, v′ ∈ Rt for some t ∈ N, we write v >lex v′ if
there is an integer k such that vℓ = v′ℓ for all ℓ ∈ [k − 1] and vk > v′k. Given an outcome x for an
n-agent instance I, let v(x) be the list of all agents’ disutilities from x (as non-negative numbers), sorted
in non-increasing order. We require that, if EGAL outputs x on I, then for each outcome x′ it holds that
either v(x) = v(x′) or v(x′) >lex v(x). This type of leximin tie-breaking is standard when dealing with
egalitarian welfare [e.g., Bogomolnaia and Moulin, 2004, Kurokawa et al., 2018]. However, even after
this tie-breaking process, there may still be multiple EGAL outcomes. We show next that if n = 2, AVG

always returns an EGAL outcome, so we assume that the EGAL rule coincides with AVG in this case.
By contrast, our results for n ≥ 3 will not depend on this latter tie-breaking rule, and we allow EGAL to
break such ties in any consistent manner (i.e., if x and x′ are both EGAL outcomes for two instances I
and I ′, then we assume that if EGAL chooses x for I, it does not choose x′ for I ′).

Proposition 2.4. When n = 2, the output of AVG is an EGAL outcome.

Proof. Let x be the output of AVG for the case n = 2. Then xj =
s1,j+s2,j

2 for each j ∈ [m], so
d1(x) = d2(x) =

1
2

∑
j∈[m] |s1,j − s2,j |. On the other hand, for every x′, we have d1(x

′) + d2(x
′) ≥∑

j∈[m] |s1,j − s2,j | and therefore max{d1(x′), d2(x
′)} ≥ 1

2

∑
j∈[m] |s1,j − s2,j |. It follows that x is an

EGAL outcome.

We also note that both UTIL and EGAL (with the given tie-breaking conventions) can be computed
in polynomial time. For UTIL, this follows from the results of Freeman et al. [2021], and for EGAL, we
prove this claim in the appendix (see Proposition A.1).

2.2.3 Independent Markets Rule

The last aggregation rule that we will study is the independent markets (IM) rule of Freeman et al.
[2021], which belongs to the class of moving phantoms rules. For each candidate, these rules take the
median of the agents’ reports and n + 1 phantom values. When there are two candidates, one may

6There is a third popular welfare criterion called Nash welfare, which is defined based on the product of utilities. However,
this welfare notion is not well-defined in our setting, as we are considering disutilities. For example, it has been observed that
there is no natural equivalent of Nash welfare in the fair allocation of chores [Freeman et al., 2020, Ebadian et al., 2022].
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fix these phantom values in advance—the resulting “phantom median rules” correspond to all strate-
gyproof rules [Moulin, 1980]. However, with more than two candidates, this approach may lead to an
unnormalized score vector. Because the final scores of all candidates must sum up to 1, the phantom
values therefore cannot be constant. Instead, Freeman et al. [2021] proposed using n + 1 phantom
functions f0, . . . , fn : [0, 1] → [0, 1] that are continuous, weakly increasing, and satisfy fk(0) = 0
and fσ(k)(1) ≥ k/n for all k ∈ {0, . . . , n} and some permutation σ of {0, . . . , n}.7 Then, a moving
phantoms rule determines a value t∗ such that

∑
j∈[m] med(s1,j , . . . , sn,j , f0(t∗), . . . , fn(t∗)) = 1, and

returns the vector x given by xj = med(s1,j , . . . , sn,j , f0(t∗), . . . , fn(t∗)) for each j ∈ [m]. Freeman et
al. showed that if multiple values of t∗ exist, then the returned vector is the same for all such t∗. The IM
rule belongs to this class of rules,8 and is defined by setting f IM

k (t) = min(kt, 1) for all k ∈ {0, . . . , n}
and all 0 ≤ t ≤ 1.

Before proceeding further, let us present a simple example which demonstrates how the different
aggregation rules work.

Example 2.5. Consider an instance with n = 2 agents and m = 3 candidates. The first agent has a
preferred distribution s1 = (45 ,

1
5 , 0) and the second agent has a preferred distribution s2 = (45 , 0,

1
5).

It is immediate that AVG and MED output (45 ,
1
10 ,

1
10), MIN and GEO output (1, 0, 0), and MAX

outputs (23 ,
1
6 ,

1
6). For UTIL, the distribution (45 , x,

1
5−x) maximizes the utilitarian welfare for every x ∈

[0, 15 ]; among these distributions, x = (45 ,
1
10 ,

1
10) minimizes the ℓ2 distance to the uniform distribution

(13 ,
1
3 ,

1
3), so UTIL returns x. Moreover, EGAL returns x as well. It remains to consider IM. We have

f IM
0 (t) = 0, f IM

1 (t) = t, and f IM
2 (t) = min(2t, 1) for 0 ≤ t ≤ 1. Accordingly, we need to find the

smallest t∗ such that x1(t∗) + x2(t
∗) + x3(t

∗) = 1, where

x1(t) = med
(
4

5
,
4

5
, 0, t,min(2t, 1)

)
,

x2(t) = med
(
1

5
, 0, 0, t,min(2t, 1)

)
,

x3(t) = med
(
0,

1

5
, 0, t,min(2t, 1)

)
.

As x2(t), x3(t) ≤ 1
5 for all t ∈ [0, 1], we must have x1(t) ≥ 3

5 . The smallest value of t that guarantees
this is t∗ = 3

10 , and the resulting distribution is (35 ,
1
5 ,

1
5).

2.3 Axioms

We next introduce the axioms that we will use to evaluate our aggregation rules. We group the axioms
into four rough categories: efficiency properties, fairness properties, consistency properties, and incen-
tive properties. However, we note that the boundaries between these categories are fluid, particularly
when considering weak axioms.

2.3.1 Efficiency Properties

We start by introducing efficiency properties. Intuitively, efficiency requires that no outcome is preferred
to the chosen outcome by all agents. Perhaps the most prominent efficiency property is Pareto optimality,
which postulates that it should not be possible to make one agent better off without making another agent
worse off.

7The original definition of Freeman et al. [2021] requires fk(1) = 1 for all k. However, in their Proposition 3 (and the
remarks thereafter), Freeman et al. showed that this weaker condition is sufficient.

8In Appendix B, we study two additional rules in this class: the piecewise uniform rule [Caragiannis et al., 2024] and the
ladder rule [Freeman and Schmidt-Kraepelin, 2024].
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Definition 2.6 (Pareto optimality). An outcome x is Pareto optimal in an instance I if there is no other
outcome x′ such that di(x′) ≤ di(x) for all agents i ∈ N and di(x

′) < di(x) for some agent i ∈ N . An
aggregation rule F is Pareto optimal if F (I) is Pareto optimal for every instance I.

As it will turn out, Pareto optimality is a rather restrictive property in our setting: among the rules
we consider, it is only satisfied by UTIL and EGAL. We therefore introduce two further axioms based
on the agents’ scores, which only exclude obvious and easily identifiable efficiency violations. The first
axiom is range-respect, previously studied by Freeman et al. [2021]. This axiom states that the score
assigned to a candidate should always lie between the minimum and the maximum scores that agents
assign to this candidate.

Definition 2.7 (Range-respect). An outcome x is range-respecting in an instance I if mini∈N si,j ≤
xj ≤ maxi∈N si,j for all j ∈ [m]. An aggregation rule F is range-respecting if F (I) is range-respecting
for every instance I.

Next, we introduce a new property which we call score-unanimity. This property demands that if all
agents report the same score for some candidate, then this candidate should receive exactly that score.
Score-unanimity is inspired by a property called unanimity in single-winner voting, which states that
if all agents agree on a favorite candidate, this candidate should be chosen. In single-winner voting,
this property appears almost indispensable, and we believe that much of its appeal carries over to score-
unanimity. Specifically, like in voting, it seems difficult to justify not assigning a score of x to a candidate
when all voters report an ideal score of x for the candidate. Moreover, as we show in Proposition 2.9, a
violation of score-unanimity constitutes a straightforward violation of Pareto optimality, which provides
further motivation for this axiom.

Definition 2.8 (Score-unanimity). An outcome x is score-unanimous in an instance I if, for every
j ∈ [m] such that there exists γ ∈ [0, 1] satisfying si,j = γ for all i ∈ N , it holds that xj = γ. An
aggregation rule F is score-unanimous if F (I) is score-unanimous for every instance I.

We show that our three efficiency notions are logically related.

Proposition 2.9. The following claims hold.

(1) Pareto optimality implies range-respect.

(2) Range-respect implies Pareto optimality if and only if m = 2 or n = 2.

(3) Range-respect implies score-unanimity.

Proof. We prove each of the claims separately.

Claim 1: Suppose for contradiction that there is an outcome x that is Pareto optimal but not range-
respecting for an instance I. Without loss of generality, this means that there exists some j ∈ [m]
such that xj > maxi∈N si,j (the case xj < mini∈N si,j allows for a symmetric argument). Since∑

k∈[m] xk =
∑

k∈[m] s1,k = 1, there exists an index ℓ ∈ [m] such that xℓ < s1,ℓ. Define ε =

min(xj −maxi∈N si,j , s1,ℓ − xℓ), and note that ε > 0. Consider the outcome x′ given by x′j = xj − ε,
x′ℓ = xℓ + ε, and x′k = xk for all k ∈ [m] \ {j, ℓ}. Since xj − ε ≥ si,j for all i ∈ N , it holds that
|(xj − ε)− si,j | = |xj − si,j | − ε. By combining this observation with the triangle inequality, for every
agent i ∈ N \ {1} we obtain

di(x
′) = |(xj − ε)− si,j |+ |(xℓ + ε)− si,ℓ|+

∑
k∈[m]\{j,ℓ}

|xk − si,k|

≤ |xj − si,j | − ε+ |xℓ − si,ℓ|+ ε+
∑

k∈[m]\{j,ℓ}

|xk − si,k| = di(x).
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Moreover, for agent 1, it additionally holds that s1,ℓ ≥ xℓ+ε, so we have |(xℓ+ε)−s1,ℓ| = |xℓ−s1,ℓ|−ε.
Thus, repeating the calculation above for i = 1, we obtain d1(x

′) = d1(x) − 2ε < d1(x). This means
that x is not Pareto optimal, a contradiction. It follows that Pareto optimality implies range-respect.

Claim 2: For our second claim, we show that range-respect implies Pareto optimality if and only if
m = 2 or n = 2. First, we consider the case n = 2, and let s1 and s2 denote the preferences of the
agents. If x is range-respecting—i.e., min(s1,j , s2,j) ≤ xj ≤ max(s1,j , s2,j) for all j ∈ [m]—it follows
that |s1,j−xj |+|s2,j−xj | = |s1,j−s2,j | for all j ∈ [m] and hence d1(x)+d2(x) =

∑
j∈[m] |s1,j−s2,j |.

Now, suppose that some outcome x′ Pareto dominates x. Then x′ would need to have strictly less total
disutility than x. However, by the triangle inequality we have d1(x′) + d2(x

′) ≥
∑

j∈[m] |s1,j − s2,j | =
d1(x) + d2(x), a contradiction.

Next, consider the case m = 2, and let x be a range-respecting outcome for an instance I. Fur-
thermore, let x′ be a different outcome, and assume without loss of generality that x1 > x′1. Since
m = 2, this means that x2 < x′2. Let i be an agent such that si,1 ≥ x1, which implies that si,2 ≤ x2;
such an agent exists since x is range-respecting. Observe that di(x) = (si,1 − x1) + (x2 − si,2) <
(si,1 − x′1) + (x′2 − si,2) = di(x

′). Consequently, agent i strictly prefers x to every outcome x′ with
x1 > x′1. Since a similar argument applies if x1 < x′1, we infer that x is Pareto optimal.

We now show that range-respect does not imply Pareto optimality if m ≥ 3 and n ≥ 3. We provide
a counterexample for m = 3; to extend it to larger m, it suffices to have all agents assign score 0
to additional candidates. Consider the following instance I and the outcome x = (16 ,

1
3 ,

1
2), which is

range-respecting for I. However, x is Pareto dominated by x′ = (0, 12 ,
1
2), which is strictly better for

agent 2 and no worse for the other agents.

I si,1 si,2 si,3

1 0 0 1

2 0 1
2

1
2

i ∈ {3, . . . , n} 1
2

1
2 0

Claim 3: It remains to show that range-respect implies score-unanimity. To this end, consider an in-
stance (s1, . . . , sn), an index j ∈ [m], and a value γ ∈ [0, 1] such that si,j = γ for all i ∈ N . If an
outcome x satisfies range-respect, it must hold that γ = mini∈N si,j ≤ xj ≤ maxi∈N si,j = γ, so
xj = γ and score-unanimity is satisfied.

2.3.2 Fairness Properties

We now turn to fairness concepts, which intuitively demand that every group of agents with similar
preferences is proportionally represented by the outcome. A rather mild axiom based on this idea has
been formulated by Freeman et al. [2021]. Specifically, these authors call an agent single-minded if
she assigns score 1 to some candidate. Their proportionality notion then requires that, if all agents are
single-minded, each candidate should be allocated a probability proportional to the number of agents
that assign score 1 to it. To formalize this concept (as well as the more demanding concept of fairness to
be introduced later), we define N (I, cj , γ) := |{i ∈ N : si,j ≥ γ}| as the number of agents who assign
a score of at least γ to candidate cj in the instance I.

Definition 2.10 (Single-minded Proportionality). An aggregation rule F satisfies single-minded propor-
tionality if, for every instance I in which all agents are single-minded and for all j ∈ [m], it holds that
F (I)j = N (I,cj ,1)

n .

However, there are many applications of portioning where agents are unlikely to be single-minded
(such as dividing time among different activities at a conference), so we need an appropriate notion of
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proportionality for general preferences. To this end, we formulate the axiom of score-representation.
The idea behind this notion is that if a k

n fraction of the agents assign a score of at least γ to a candidate,
then this candidate should receive a probability of at least γ · k

n .

Definition 2.11 (Score-representation). An aggregation rule F satisfies score-representation if, for all
instances I, all j ∈ [m], and all γ ∈ [0, 1], it holds that F (I)j ≥ γ · N (I,cj ,γ)

n .

It follows directly from the definitions that score-representation is strictly stronger than single-
minded proportionality.

2.3.3 Consistency Properties

As the third type of axioms, we consider consistency properties, which aim to ensure that voting rules
behave, in some sense, consistently across instances. The first such axiom that we examine is inde-
pendence, which has previously been studied by Intriligator [1973]. The idea of this axiom is that the
score assigned to a candidate by an aggregation rule should only depend on the scores that the agents
assign to this candidate, and should therefore be independent of the scores assigned to other candidates.
We remark that this axiom is conceptually similar but formally unrelated to Arrow’s “independence of
irrelevant alternatives” [Arrow, 1951], as it postulates that we can compute the outcome for a candidate
without taking into account the remaining candidates.

Definition 2.12 (Independence). An aggregation rule F satisfies independence if, for all instances I and
I ′ that have the same set of agents N and the same set of m candidates, and for all j ∈ [m] such that
si,j = s′i,j for all i ∈ N , it holds that F (I)j = F (I ′)j .

Independence is a demanding axiom. In particular, every rule that satisfies it must be coordinate-
wise, because we can define the j-th coordinate-aggregation function by fn

j (s1,j , . . . , sn,j) = F (I)j .
Nevertheless, we believe that this axiom is appealing in practice, as it is intuitive and greatly simplifies
the task of aggregating the agents’ score vectors. Moreover, a violation of independence can lead to
complaints from candidates that receive a smaller portion of the resource when agents change their
preferences over other candidates, even if their own scores from all agents remain the same.

Next, we introduce score-monotonicity. This axiom requires that, if an agent increases the score
of some candidate, then the aggregated score of this candidate should weakly increase as well. Score-
monotonicity was previously studied by Freeman et al. [2021],9 and similar monotonicity notions are
omnipresent in social choice theory.

Definition 2.13 (Score-monotonicity). An aggregation rule F is score-monotone if F (I)j ≤ F (I ′)j
for all instances I, I ′ that have the same set of agents N and the same set of m candidates, and for all
j ∈ [m] for which there exists an agent i ∈ N such that (i) sℓ = s′ℓ for all ℓ ∈ N \ {i}, (ii) si,j < s′i,j ,
and (iii) si,k ≥ s′i,k for all k ∈ [m] \ {j}.

The final consistency notion that we study is reinforcement, which demands that if an aggregation
rule chooses the same outcome for two instances with disjoint sets of agents, then it also chooses that
outcome when combining the two instances. Variants of this axiom feature prominently in numerous
results in social choice theory [e.g., Young, 1975, Fishburn, 1978, Young and Levenglick, 1978, Brandl
et al., 2016].

Definition 2.14 (Reinforcement). An aggregation rule F satisfies reinforcement if, for all instances I =
(s1, . . . , sn) and I ′ = (s′1, . . . , s

′
n′) that have the same set of m candidates and satisfy F (I) = F (I ′),

it holds that F (s1, . . . , sn, s
′
1, . . . , s

′
n′) = F (I).

9Freeman et al. [2021] simply called this notion “monotonicity”.
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Independence, score-monotonicity, and reinforcement are logically unrelated, as they formalize
rather different notions of consistency. However, we emphasize that variants of these three axioms
are well-established in the literature and we therefore believe that it is important to study all of them.

2.3.4 Incentive Properties

Our last category of axioms is concerned with the incentives of agents: aggregation rules should incen-
tivize agents to participate and to report their preferences truthfully. These ideas lead to the well-known
notions of participation and strategyproofness. We start by defining strategyproofness, which stipulates
that agents should not be able to benefit from lying about their true preferences.

Definition 2.15 (Strategyproofness). An aggregation rule F is strategyproof if, for all instances I and
I ′ that have the same set of agents N and the same set of m candidates, and for each agent i ∈ N such
that si′ = s′i′ for all i′ ∈ N \ {i}, it holds that

∑
j∈[m] |si,j − F (I)j | ≤

∑
j∈[m] |si,j − F (I ′)j |.

While it is known that IM and UTIL satisfy strategyproofness [Goel et al., 2019, Freeman et al.,
2021], this property is in general rather demanding, as demonstrated by the impossibility theorem of
Brandt et al. [2026] stating that no aggregation rule simultaneously satisfies strategyproofness, Pareto
optimality, and single-minded proportionality.

Participation is a property closely related to strategyproofness. It dictates that agents should not be
able to profit by abstaining. Put differently, participation ensures that it is always weakly better for every
agent to express her preference.

Definition 2.16 (Participation). An aggregation rule F satisfies participation if, for all instances I and I ′

such that I ′ is obtained from I by removing agent i, it holds that
∑

j∈[m] |si,j−F (I)j | ≤
∑

j∈[m] |si,j−
F (I ′)j |.

We note that participation and strategyproofness are logically independent in general. However,
when imposing reinforcement and the very mild condition that F (x) = x (i.e., if there is a single agent,
we choose her ideal distribution), it can be shown that strategyproofness implies participation.

3 Efficiency Properties

We now analyze our aggregation rules with respect to the axioms defined in Section 2.3. In this section,
we study the three efficiency properties and show that, while UTIL and EGAL satisfy Pareto optimality,
all other rules except AVG fail even score-unanimity. Recall from Proposition 2.9 that Pareto optimal-
ity implies range-respect which in turn implies score-unanimity, and that range-respect implies Pareto
optimality if m = 2 or n = 2.

Theorem 3.1. The following claims hold.

(1) UTIL and EGAL are Pareto optimal (and thus range-respecting and score-unanimous).

(2) AVG is range-respecting (and thus Pareto optimal when m = 2 or n = 2, and score-unanimous
for all m,n ≥ 2), but fails Pareto optimality for all m ≥ 3 and n ≥ 3.

(3) MED is range-respecting when m ≤ 3 or n = 2 (and thus Pareto optimal when m = 2 or n = 2).
If m = 3, it is Pareto optimal if n ≥ 3 is odd, but fails Pareto optimality if n ≥ 4 is even. It fails
score-unanimity for all m ≥ 4 and n ≥ 3.

(4) MAX, MIN, GEO, and IM are Pareto optimal when m = 2, but fail score-unanimity for all m ≥ 3
and n ≥ 2.
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Proof. We prove each of the claims separately.

Claim 1: The claim follows directly from the definitions of UTIL and EGAL, since a Pareto improvement
would also give rise to an improvement with respect to the welfare measure. In more detail, for EGAL,
we use the fact that its definition lexicographically minimizes the maximum disutility of the agents. In
particular, if an outcome x returned by EGAL was Pareto dominated by another outcome x′, then x′

would have been selected over x by the leximin optimization procedure, which contradicts the definition
of EGAL. By Proposition 2.9, both rules are range-respecting and score-unanimous as well.

Claim 2: Consider an instance I. For each j ∈ [m] it holds that mini∈N si,j ≤ 1
n

∑
i∈N si,j ≤

maxi∈N si,j , which shows that AVG is range-respecting. By Claim 2 of Proposition 2.9, this also means
that AVG is Pareto optimal if m = 2 or n = 2.

To show that AVG fails Pareto optimality when m ≥ 3 and n ≥ 3, consider the following instance
I1, where all candidates in C \ {c1, c2, c3} receive score 0 from all agents and can thus be ignored. For
this instance, AVG outputs the vector ( 1

2n ,
2
2n , 1 − 3

2n). However, the outcome x′ = (0, 3
2n , 1 − 3

2n)
decreases the disutility of agent 1 without increasing the disutility of the other agents, so AVG is not
Pareto optimal.

I1 si,1 si,2 si,3

1 0 1
2

1
2

2 1
2

1
2 0

i ∈ {3, . . . , n} 0 0 1

Claim 3: Since MED is equivalent to AVG when n = 2, it is range-respecting for n = 2 by Claim 2, and
also Pareto optimal by Claim 2 of Proposition 2.9. For the case m = 2, it follows from Proposition 2.3
that if MED outputs (x1, x2) on an instance I, then xj = med(s1,j , . . . , sn,j) for j ∈ [2]. This implies
that MED is range-respecting for m = 2, and Claim 2 of Proposition 2.9 entails that it is also Pareto
optimal.

Now, when m = 3, suppose for contradiction that there exists an instance I such that the outcome x
chosen by MED fails range-respect. Without loss of generality, we assume that x1 < mini∈N si,1 (the
choice of the candidate does not matter, and if x1 > maxi∈N si,1, we can reverse all inequalities in
the proof). Moreover, let m1, m2, m3 denote the medians (before normalization) for the candidates
c1, c2, c3, respectively, and let M = m1 + m2 + m3. This means that x =

(
m1
M , m2

M , m3
M

)
. Since

m1 ≥ mini∈N si,1, we infer from x1 < mini∈N si,1 that M > 1.
Let γ = mini∈N si,1; we will next show that m2 + m3 ≤ 1 − γ. To this end, we note that each

median by itself is monotone (i.e., if we increase some value si,j , then mj does not decrease). Recall
that by our choice of γ, we have si,2 + si,3 ≤ 1 − γ for all i ∈ N . Consider modified values ŝi,2 and
ŝi,3 that satisfy ŝi,2 ≥ si,2, ŝi,3 ≥ si,3, and ŝi,2 + ŝi,3 = 1 − γ for all i ∈ N . By the monotonicity of
the medians, it follows that the corresponding medians m̂2 and m̂3 satisfy m̂2 ≥ m2 and m̂3 ≥ m3.
Moreover, it holds that ŝi,2 = 1 − γ − ŝi,3. This means that, for all agents i and ℓ, we have ŝi,2 ≤ ŝℓ,2
if and only if ŝi,3 ≥ ŝℓ,3. Consequently, in the modified instance the median agent(s) for c2 are also the
median agent(s) for c3, which implies that m̂2 + m̂3 = 1− γ and hence m2 +m3 ≤ 1− γ.

We can now derive a contradiction. Since M > 1, it follows that x2 = m2
M < m2 and x3 = m3

M <
m3. This means that x1 + x2 + x3 < x1 +m2 +m3 < γ + (1− γ) = 1, a contradiction with x being
an outcome for I.

Next, we prove that MED satisfies Pareto optimality for m = 3 and every odd n ≥ 3. Let m1, m2,
m3 again denote the medians (before normalization) for the candidates c1, c2, c3, respectively, and set
M = m1 +m2 +m3. Assume that M ≤ 1; we will explain how to modify the argument for M > 1
toward the end of the proof. We show that for each j ∈ [3], there is a non-empty set of agents Tj
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such that all agents in Tj prefer x = (m1
M , m2

M , m3
M ) to every outcome x′ with x′j < xj . Thus, for an

outcome x′ to Pareto dominate x, it would have to be the case that x′j ≥ xj for all j ∈ {1, 2, 3}; as
x′1 + x′2 + x′3 = x1 + x2 + x3, this implies x′ = x.

Specifically, for j ∈ [3], let Tj ⊆ N be the set of agents i such that si,j ≥ mj and si,k ≤ mk for all
other k ̸= j. We first show that all agents in Tj prefer x to every outcome x′ with x′j < xj ; then, we
will argue that Tj is non-empty for all j ∈ [3]. By symmetry, without loss of generality we can focus on
the case j = 1.

Consider an agent i ∈ T1. Since M ≤ 1, for k ∈ {2, 3} we have xk = mk
M ≥ mk ≥ si,k.

Moreover, as si,1 + si,2 + si,3 = x1 + x2 + x3 = 1, it follows that si,1 ≥ x1. Thus, di(x) =
(si,1 − x1) + (x2 − si,2) + (x3 − si,3). Now, consider an outcome x′ with x′1 < x1, and note that this
implies x′2 + x′3 > x2 + x3. We then have

di(x
′) = |si,1 − x′1|+ |si,2 − x′2|+ |si,3 − x′3|
≥ (si,1 − x′1) + (x′2 − si,2) + (x′3 − si,3)

= (si,1 − x′1) + (x′2 + x′3)− si,2 − si,3 > (si,1 − x1) + (x2 + x3)− si,2 − si,3 = di(x),

i.e., agent i strictly prefers x to x′.
It remains to show that T1 ̸= ∅. To this end, let N1 = {i ∈ N : si,1 ≥ m1}. Suppose for

contradiction that T1 = ∅. This implies that for every agent i ∈ N1, there exists k ̸= 1 with si,k > mk.
Now, consider an agent i ∈ N \N1; we have si,1 < m1. We claim that for this agent, too, there exists
some k ̸= 1 with si,k > mk—indeed, otherwise si,1+si,2+si,3 < m1+m2+m3 ≤ 1, a contradiction.
Thus, for each agent i ∈ N , there exists k ̸= 1 with si,k > mk. However, by definition of the median, it
holds that

∑
k∈{2,3} |{i ∈ N : si,k > mk}| ≤ n−1

2 + n−1
2 = n− 1, a contradiction. Hence, T1 ̸= ∅.

As the same argument works for all j ∈ [3], it follows that x is Pareto optimal. The argument for
the case M > 1 is symmetric: it suffices to reverse the signs (including in the definition of Tj).

On the other hand, we show that MED fails Pareto optimality for m = 3 and any even n ≥ 4. To
this end, consider the following instance I2 for an even number of agents n.

I2 si,1 si,2 si,3

1 3
10

7
20

7
20

2 6
10 0 4

10

i ∈ {3, . . . , n2 + 1} 7
10

1
4

1
20

i ∈ {n
2 + 2, . . . , n} 1

4
7
20

4
10

In this instance, it holds that medi∈Nsi,1 =
9
20 , medi∈Nsi,2 =

3
10 , and medi∈Nsi,3 =

3
8 , so MED returns

the outcome x =
(
2
5 ,

4
15 ,

1
3

)
. However, the outcome

(
2
5 ,

5
20 ,

7
20

)
strictly benefits agent 2 and does not

hurt the other agents, so x is not Pareto optimal.

Finally, we show that MED fails score-unanimity when m ≥ 4 and n ≥ 3. To this end, consider the
following instance I3 for an odd number of agents n, where all candidates cj with 5 ≤ j ≤ m receive
score 0 from all agents.

I3 si,1 si,2 si,3 si,4

1 3
10

5
10 0 2

10

i ∈ {2, . . . , n+1
2 } 3

10
1
10

6
10 0

i ∈ {n+3
2 , . . . , n} 3

10
7
10 0 0

In this instance, we have medi∈Nsi,1 = 3
10 , medi∈Nsi,2 = 5

10 , and medi∈Nsi,3 = medi∈Nsi,4 = 0, so
MED assigns probability 3

8 to c1. To obtain a counterexample for even n, it suffices to duplicate agent 1.
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For n ≥ 6, all medians remain the same as for odd n, and for n = 4 the fourth median medi∈Nsi,4
changes to 1

10 while all other medians remain the same. In either case, MED assigns probability different
from 3

10 to candidate c1.

Claim 4: We first present an example showing that GEO, MAX, and MIN fail score-unanimity when
m ≥ 3 and n ≥ 2. To this end, consider the following instance I4.

I4 si,1 si,2 si,3

1 1
4

1
2

1
4

i ∈ {2, . . . , n} 1
4

1
4

1
2

It is immediate that on this instance MAX outputs (15 ,
2
5 ,

2
5) and MIN outputs (13 ,

1
3 ,

1
3); both out-

comes fail score-unanimity with respect to c1. Furthermore, GEO outputs the vector

x =

(
1

1 + 2
1
n + 2

n−1
n

,
2

1
n

1 + 2
1
n + 2

n−1
n

,
2

n−1
n

1 + 2
1
n + 2

n−1
n

)
.

For every n ≥ 2 it holds that (2
n−1
n −1)(2

1
n −1) > 0; expanding, we obtain 2

1
n +2

n−1
n < 1+2

n−1
n

+ 1
n =

3, and hence x1 > 1
4 . This implies that x fails score-unanimity. To extend the counterexample to

larger m, one can add candidates that receive a score of 0 from all agents.
Next, we will show that GEO, MAX, and MIN are range-respecting (and hence Pareto optimal) for

m = 2. Finally, we will consider IM and show that it satisfies range-respect for m = 2 but fails
score-unanimity for m ≥ 3 and all n ≥ 2.

GEO: To show that GEO is range-respecting for m = 2, fix some instance I and let x be the outcome
returned by GEO. Without loss of generality, we focus on c1 and show that mini∈N si,1 ≤ x1 ≤
maxi∈N si,1. For j ∈ [2], let yj = n

√∏
i∈N si,j and observe that mini∈N si,j ≤ yj ≤ maxi∈N si,j .

Multiplying these inequalities for y1 by (1−maxi∈N si,1) and (1−mini∈N si,1), we obtain

y1 · (1−max
i∈N

si,1) ≤ max
i∈N

si,1 · (1−max
i∈N

si,1);

y1 · (1−min
i∈N

si,1) ≥ min
i∈N

si,1 · (1−min
i∈N

si,1).

Rearranging the terms yields

y1
y1 + 1−maxi∈N si,1

≤ max
i∈N

si,1 and
y1

y1 + 1−mini∈N si,1
≥ min

i∈N
si,1.

Since m = 2, it holds that 1−mini∈N si,1 = maxi∈N si,2 and 1−maxi∈N si,1 = mini∈N si,2. Hence,
we derive that

min
i∈N

si,1 ≤
y1

y1 +maxi∈N si,2
≤ y1

y1 + y2
≤ y1

y1 +mini∈N si,2
≤ max

i∈N
si,1.

As x1 = y1
y1+y2

, this shows that GEO is range-respecting if m = 2.

MAX: To show that MAX is range-respecting if m = 2, we fix an instance I and focus on candi-
date c1. Observe that maxi∈N si,1 +maxi∈N si,2 ≥ 1, which implies that

x1 =
maxi∈N si,1

maxi∈N si,1 +maxi∈N si,2
≤ max

i∈N
si,1.

We will now argue that x1 ≥ mini∈N si,1. For m = 2, it holds that maxi∈N si,2 = 1−mini∈N si,1, so
we have

x1 =
maxi∈N si,1

maxi∈N si,1 +maxi∈N si,2
=

maxi∈N si,1
maxi∈N si,1 + 1−mini∈N si,1

.
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Thus, it suffices to show that

min
i∈N

si,1(1 + max
i∈N

si,1 −min
i∈N

si,1) ≤ max
i∈N

si,1.

To see this, observe that mini∈N si,1 ≤ 1, and therefore

min
i∈N

si,1(1 + max
i∈N

si,1 −min
i∈N

si,1) = min
i∈N

si,1 +min
i∈N

si,1(max
i∈N

si,1 −min
i∈N

si,1)

≤ min
i∈N

si,1 + (max
i∈N

si,1 −min
i∈N

si,1) = max
i∈N

si,1,

as required. Hence, MAX is range-respecting if m = 2.

MIN: To show that MIN is range-respecting if m = 2, we consider an instance I and focus again on
candidate c1. The argument is symmetric to that for MAX. Specifically, we observe that mini∈N si,1 +

mini∈N si,2 ≤ 1, so mini∈N si,1 ≤ mini∈N si,1
mini∈N si,1+mini∈N si,2

= x1. To see that x1 ≤ maxi∈N si,1, we note
that mini∈N si,1 ≤ maxi∈N si,1 ≤ 1, and therefore

max
i∈N

si,1(1 + min
i∈N

si,1 −max
i∈N

si,1) = max
i∈N

si,1 −max
i∈N

si,1(max
i∈N

si,1 −min
i∈N

si,1)

≥ max
i∈N

si,1 − (max
i∈N

si,1 −min
i∈N

si,1) = min
i∈N

si,1.

Using that mini∈N si,2 = 1−maxi∈N si,1, we thus have

max
i∈N

si,1 ≥
mini∈N si,1

mini∈N si,1 +mini∈N si,2
= x1.

This completes the proof that MIN is range-respecting.

IM: The last rule we consider is IM. We first show that it is range-respecting (and therefore Pareto
optimal) when m = 2. Consider an instance I, and let x be the output of IM. Note that xj ≤
maxi∈N si,j for j ∈ [2], as one phantom is always at 0. Moreover, since si,j = 1 − si,3−j for all
i ∈ N and xj = 1− x3−j , our previous observation implies that

xj = 1− x3−j ≥ 1−max
i∈N

si,3−j = 1−max
i∈N

(1− si,j) = 1− 1 + min
i∈N

si,j = min
i∈N

si,j .

Hence, IM is range-respecting when m = 2.
To show that IM fails score-unanimity when m ≥ 3 and n ≥ 2, we consider the instance I5 shown

below, where all candidates cj with j ≥ 4 receive a score of 0 from all agents.

I5 si,1 si,2 si,3

1 n+1
n+2

1
n+2 0

i ∈ {2, . . . , n} n+1
n+2 0 1

n+2

For this instance, score-unanimity requires that x1 = n+1
n+2 . However, we claim that IM assigns proba-

bility n
n+2 to c1. Indeed, for t∗ = 1

n+2 we have x1(t∗) = n
n+2 (with f IM

n (t∗) selected as the median) and
x2(t

∗) = x3(t
∗) = 1

n+2 , so that x1(t∗) + x2(t
∗) + x3(t

∗) = 1. On the other hand, for t < t∗ we have
x1(t) ≤ x1(t

∗) and x3(t) ≤ x3(t
∗) (by monotonicity of the median), and x2(t) = f IM

1 (t) = t < x2(t
∗),

so x1(t) + x2(t) + x3(t) < 1. It follows that IM violates score-unanimity.

Remark 3.2. Freeman et al. [2021, p. 22] suggested a variant of IM where the last moving phantom is
fixed to 1, i.e., f IM′

n (t) = 1. This modified rule satisfies range-respect, single-minded proportionality,
and strategyproofness. However, it is unclear whether it inherits other desirable properties of IM such
as reinforcement.
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Remark 3.3. In some settings, it is computationally challenging to determine whether an outcome is
efficient [e.g., Aziz et al., 2019]. This is not the case in our context: it is straightforward to check whether
an outcome satisfies score-unanimity and range-respect, and we give a linear programming formulation
for deciding whether an outcome is Pareto optimal in the appendix (see Proposition A.2).

4 Fairness Properties

We next turn to fairness properties, and study our rules with respect to single-minded proportionality and
the more demanding notion of score-representation. In particular, we will show that, among the rules
we consider, the only one to satisfy score-representation is AVG, thus making a strong case for this rule.
Note that some of our results follow from the work of Freeman et al. [2021], who have shown that IM
satisfies single-minded proportionality, while UTIL fails this property (without specifying the ranges of
n and m for which this is the case).

Theorem 4.1. The following claims hold.

(1) AVG satisfies score-representation (and therefore single-minded proportionality).

(2) IM satisfies score-representation when m = 2 and single-minded proportionality for all m ≥ 2,
but fails score-representation for all n ≥ 2 and m ≥ 3.

(3) MAX and UTIL satisfy score-representation when n = m = 2 and single-minded proportionality
when n = 2. Both rules fail score-representation for all m ≥ 3 and n ≥ 2, and single-minded
proportionality for all m ≥ 2 and n ≥ 3.

(4) MED and EGAL satisfy score-representation when n = 2, but fail single-minded proportionality
for all m ≥ 2 and n ≥ 3.

(5) MIN and GEO satisfy single-minded proportionality when n = m = 2, but fail to do so for all
n ≥ 3 or m ≥ 3. Both rules fail score-representation for all m ≥ 2 and n ≥ 2.

Proof. We prove each of the claims separately.

Claim 1: Consider an instance I, and fix a candidate cj and a value γ ∈ [0, 1]. We need to show
that the vector x chosen by AVG satisfies xj ≥ γ · N (I,cj ,γ)

n . For this, let S := {i ∈ N : si,j ≥ γ}
denote the set of agents that report a score of at least γ for cj , so that |S| = N (I, cj , γ). It holds that
xj =

1
n

∑
i∈N si,j ≥ 1

n

∑
i∈S si,j ≥ γ · N (I,cj ,γ)

n , which shows that AVG satisfies score-representation.

Claim 2: First, it was shown by Freeman et al. [2021] that IM satisfies single-minded proportionality.
Next, we show that IM also satisfies score-representation if m = 2. To this end, consider an instance I
and assume for contradiction that the outcome x of IM fails score-representation. Without loss of
generality, suppose that there exists γ ∈ [0, 1] such that x1 < γ · N (I,c1,γ)

n . Clearly, this means that
γ > x1. Now, consider the instance I ′ such that each agent i with si,1 > x1 reports s′i,1 = 1 and
s′i,2 = 0 while all other agents submit the same scores as in I, and let x′ be the output of IM on I ′.
We then have x′1 = x1, because increasing the score of c1 for agents who already assign to it a score
above the median does not change the position of the median. Since γ > x1, we have N (I, c1, γ) ≤
N (I ′, c1, 1) and hence x1 < γ · N (I,c1,γ)

n ≤ N (I′,c1,1)
n . Next, let I ′′ denote the instance derived from

I ′ by setting s′′i,1 = 0 and s′′i,2 = 1 for all agents i ∈ N with si,1 ≤ x1, and let x′′ be the output of
IM on this instance. Since IM is known to be score-monotone [see Freeman et al., 2021, Thm. 3], it
follows that x′′1 ≤ x′1. Moreover, it holds that N (I ′, c1, 1) = N (I ′′, c1, 1), so we can again infer that
x′′1 < N (I′′,c1,1)

n . However, in I ′′, all agents are single-minded, so x′′1 = N (I′′,c1,1)
n because IM satisfies

single-minded proportionality. This yields the desired contradiction, which means that IM satisfies
score-representation for m = 2.
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Finally, to show that IM fails score-representation for all m ≥ 3 and n ≥ 2, it suffices to consider
the instance I5 in the proof of Theorem 3.1. In this instance, all agents assign score n+1

n+2 to c1, but IM
only assigns a score of n

n+2 to this candidate, so score-representation is violated.

Claim 3: We will first argue that both MAX and UTIL satisfy single-minded proportionality for n = 2,
but fail it if n ≥ 3 and m ≥ 2.

Suppose first that n = 2. Let I denote a 2-agent instance where both agents are single-minded. If
both agents assign score 1 to the same candidate (and hence 0 to all other candidates), then both MAX

and UTIL assign score 1 to this candidate as well. Now, suppose that the two agents assign score 1 to
different candidates, say cj and ck. We claim that both of these candidates receive a probability of 1

2
under both MAX and UTIL. For MAX, this is immediate from the definition of the rule. For UTIL, every
outcome that assigns probability 0 to candidates in C \ {cj , ck} maximizes the utilitarian welfare, so
UTIL assigns probability 1

2 to each of cj and ck due to the maximum-entropy tie-breaking. In either
case, both MAX and UTIL satisfy single-minded proportionality.

To show that MAX and UTIL fail single-minded proportionality if n ≥ 3 and m ≥ 2, consider the
following instance I6 (where si,j = 0 for all j ≥ 3 and i ∈ N ).

I6 si,1 si,2

1 1 0

i ∈ {2, . . . , n} 0 1

In this instance, MAX assigns probability 1
2 to both c1 and c2, but single-minded proportionality re-

quires that x2 = n−1
n > 1

2 . On the other hand, UTIL assigns probability 1 to c2, but single-minded
proportionality requires that x1 = 1

n > 0.
To establish our results regarding score-representation, we consider MAX and UTIL separately.

MAX: We first prove that MAX satisfies score-representation when n = m = 2. Consider an
instance I with n = m = 2, and assume without loss of generality that s1,1 ≥ s2,1 and s2,2 ≥ s1,2.
Then, score-representation is equivalent to the following set of constraints: (i) x1 ≥ s1,1

2 and x2 ≥ s2,2
2 ,

and (ii) x1 ≥ s2,1 and x2 ≥ s1,2. Property (ii) follows from the fact that MAX is range-respecting when
m = 2 (see Theorem 3.1). On the other hand, x1 =

s1,1
s1,1+s2,2

≥ s1,1
2 and x2 =

s2,2
s1,1+s2,2

≥ s2,2
2 since

si,j ≤ 1 for all i ∈ N , j ∈ [m]. This demonstrates that (i) also holds.
To show that MAX fails score-representation when n ≥ 2 and m ≥ 3, it is sufficient to consider

instance I4 in the proof of Theorem 3.1, which shows that it violates score-unanimity. In this instance,
all agents assign score 1

4 to candidate c1, but MAX only assigns probability 1
5 to this candidate.

UTIL: We first show that UTIL satisfies score-representation when n = m = 2. Just as for MAX,
we consider an instance I with n = m = 2, assume that s1,1 ≥ s2,1 and s2,2 ≥ s1,2, and prove that
(i) x1 ≥ s1,1

2 and x2 ≥ s2,2
2 , and (ii) x1 ≥ s2,1 and x2 ≥ s1,2. Property (ii) follows immediately,

as UTIL is Pareto optimal and therefore also range-respecting. As for (i), observe that any outcome
(x1, x2) with s2,1 ≤ x1 ≤ s1,1 and s1,2 ≤ x2 ≤ s2,2 maximizes the utilitarian welfare, so UTIL picks
a maximum-entropy outcome in this range. In particular, if s1,1 ≥ 1

2 ≥ s1,2 and s2,2 ≥ 1
2 ≥ s2,1, it

outputs (12 ,
1
2), and we have 1

2 ≥ s1,1
2 and 1

2 ≥ s2,2
2 . Otherwise, s1,1 < 1

2 or s2,2 < 1
2 ; assume without

loss of generality that s1,1 < 1
2 . In this case we also have s2,1 < 1

2 since s2,1 ≤ s1,1, and moreover,
s2,2 = 1 − s2,1 ≥ 1 − s1,1 = s1,2 > 1

2 . Hence, maximum-entropy tie-breaking forces UTIL to choose
the outcome (s1,1, s1,2), and we have s1,1 ≥ s1,1

2 and s1,2 = 1− s1,1 ≥ 1
2 ≥ s2,2

2 .
Finally, to show that UTIL fails score-representation when n = 2 and m ≥ 3, we consider the

following instance I7, where UTIL chooses the outcome (13 ,
1
3 ,

1
3) due to the maximum-entropy tie-

breaking. This outcome fails score-representation since the axiom requires x1 to be at least 1
2 . As

before, the counterexample can be extended to larger m by adding candidates that receive score 0 from
all agents.
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I7 si,1 si,2 si,3

1 1 0 0

2 1
3

1
3

1
3

Claim 4: If n = 2, then MED and EGAL coincide with AVG: for MED this is true by definition, and
for EGAL this was shown in Proposition 2.4. Thus, both of these rules satisfy score-representation for
n = 2 due to Claim 1. By contrast, if n ≥ 3, we consider the instance I6 used to show that MAX and
UTIL fail single-minded proportionality. For this instance, MED returns the outcome x = (0, 1) while
EGAL returns the outcome x = (12 ,

1
2). Both of these outcomes violate single-minded proportionality.

Claim 5: We first prove that MIN and GEO satisfy single-minded proportionality when n = m = 2.
There are two cases to consider. If both agents give a score of 1 to the same candidate, it will be assigned
a score of 1 by both rules. On the other hand, if both agents give a score of 1 to different candidates,
then both rules return x = (12 ,

1
2), which also satisfies single-minded proportionality.

To see that MIN and GEO fail single-minded proportionality for the case where n ≥ 3 or m ≥ 3,
we again consider the instance I6 used to show that MAX and UTIL fail single-minded proportionality
(recall that all candidates cj with j ≥ 3 receive score 0 from all agents). In this instance, both rules
assign probability 1

m to all candidates, which violates single-minded proportionality unless m = n = 2.
Finally, to see that these rules also fail score-representation for the case n = m = 2, consider the

instance with s1 = (1, 0) and s2 = (12 ,
1
2). Then, score-representation mandates that x2 ≥ 1

4 , but both
rules return x = (1, 0).

Remark 4.2. In the instance I6 used to show that MIN and GEO fail single-minded proportionality, it
holds that mini∈N si,j = 0 for all j ∈ [m]. Indeed, whenever si,j ∈ {0, 1} for all i ∈ N , j ∈ [m], either
there is a unique j ∈ [m] with si,j = 1 for all i ∈ N , or mini∈N si,j = 0 for all j ∈ [m]. Because
mini∈N si,j = 0 for all j ∈ [m], both rules assign a probability of 1

m to every candidate, as discussed
in the paragraph after Definition 2.2. However, our results do not depend on this specific convention:
for each pair (m,n) where m ≥ 3 or n ≥ 3, if we fix an outcome (x1, . . . , xm) to be returned by
our rule whenever all m coordinate-aggregation functions return 0, it is possible to construct an m-
candidate instance with n single-minded agents for which all coordinate-aggregation functions return 0
but (x1, . . . , xm) is not the proportional outcome.

5 Consistency Properties

In this section, we analyze our aggregation rules with respect to various consistency axioms. In partic-
ular, we will show that score-monotonicity and reinforcement are satisfied by almost all of our rules,
whereas AVG is the only one that fulfills independence. We note that Freeman et al. [2021] have already
shown that IM and UTIL satisfy reinforcement and score-monotonicity.

Theorem 5.1. The following claims hold.

(1) AVG satisfies independence. MED and EGAL satisfy independence when m = 2 or n = 2 but fail
this condition for all m ≥ 3 and n ≥ 3. MAX, MIN, GEO, UTIL, and IM satisfy independence
when m = 2, but fail to do so for all m ≥ 3 and n ≥ 2.

(2) All five coordinate-wise aggregation rules, UTIL, and IM satisfy score-monotonicity. EGAL sat-
isfies score-monotonicity when m = 2 or n = 2, but fails to do so for all m ≥ 4 and n ≥ 4.

(3) AVG, MIN, MAX, and GEO as well as UTIL, EGAL, and IM satisfy reinforcement. MED satisfies
reinforcement when m = 2, but fails to do so for all m ≥ 3.
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We remark that while the bounds on m and n are tight for almost all results in our paper, it remains
open whether EGAL satisfies score-monotonicity when m = 3 or n = 3.

Proof. We prove each of the claims separately.

Claim 1: We first note that all aggregation rules satisfy independence when m = 2: indeed, if si,j = s′i,j
for some candidate cj and all i ∈ N , then I = I ′. Moreover, if n = 2, then MED and EGAL coincide
with AVG: for MED this is true by definition, and for EGAL this was shown in Proposition 2.4. Hence,
to show that MED and EGAL satisfy independence for n = 2, it suffices to show that AVG satisfies
independence. We prove this next, and then provide examples that establish the remaining parts of the
claim.

AVG: Consider two instances I and I ′ and a candidate cj∗ such that si,j∗ = s′i,j∗ for all i ∈ N .
We have 1

n

∑
i∈N si,j∗ = 1

n

∑
i∈N s′i,j∗ . It follows from Proposition 2.3 that AVG assigns the same

probability to cj in I and I ′.

MAX, MIN, GEO, and IM: We first observe that all these rules (as well as all other rules we consider)
are unanimous, i.e., if every agent reports the same score vector s = (s1, . . . , sm), the rule outputs s.
This is immediate for all coordinate-wise rules and both welfare-based rules. For IM, observe that since
f IM
0 ≡ 0, the vector x output by IM on our instance satisfies xj ≤ sj for all j ∈ [m]; together with
x1 + · · ·+ xm = s1 + · · ·+ sm = 1, this implies that IM is unanimous as well.

Now, consider the instances I4 and I5 used to show that MAX, MIN, GEO, and IM fail score-
unanimity. In each of these instances, there is a candidate cj receiving the same score (say, γ) from each
agent, yet the rule under consideration fails to allocate γ to cj . Modify these instances so that cj still
receives score γ from each agent, while every other candidate receives score 1−γ

m−1 from each agent. The
resulting instances are unanimous, so the rule allocates γ to cj . This shows that all these rules violate
independence.

UTIL: First, if m ≥ 3 and n ≥ 3 is odd, consider the following instances I and I ′: in I, the first
agent assigns score 1 to c3, the next n−1

2 agents assign score 1 to c1, and the remaining n−1
2 agents

assign score 1 to c2. In I ′, the first agent assigns score 1 to c2, while all other agents have the same
preferences as in I. Let x and x′ be the outputs of UTIL on I and I ′, respectively. If n = 3, then
x = (13 ,

1
3 ,

1
3), while if n ≥ 5, then x = (12 ,

1
2 , 0) (due to the maximum-entropy tie-breaking). On the

other hand, x′ = (0, 1, 0), thus showing that independence is violated for c1.
If m ≥ 3 and n ≥ 4 is even, consider the same instances I and I ′, but with the last agent removed.

That is, in I, the first agent assigns score 1 to c3, n
2 agents assign score 1 to c1, and n

2 − 1 agents assign
score 1 to c2, and I ′ is obtained from I by changing the preference of the first agent to (0, 1, 0). Then
UTIL outputs (1, 0, 0) on I, but its output on I ′ is (12 ,

1
2 , 0) (due to the maximum-entropy tie-breaking),

so independence is violated for c1.
Finally, if m ≥ 3 and n = 2, we consider the following instances I and I ′: in I agent 1 reports

(1, 0, 0) and agent 2 reports (0, 1, 0), while in I ′ agent 1 reports (1, 0, 0) and agent 2 reports (0, 12 ,
1
2).

UTIL outputs (12 ,
1
2 , 0) on I and (13 ,

1
3 ,

1
3) on I ′ due to the maximum-entropy tie-breaking. Hence,

independence is violated for c1.

EGAL: To show that EGAL fails independence for all m ≥ 3 and n ≥ 3, we consider the instances
I and I ′ defined as follows. In I, agent 1 assigns score 1 to c1, agent 2 assigns score 1 to c2, and every
other agent assigns score 1 to c3. By contrast, in I ′, agent 1 assigns score 1 to c1 and every other agent
assigns score 1 to c2. On I, EGAL outputs x with x1 = x2 = x3 = 1

3 , whereas on I ′, it outputs x′ with
x′1 = x′2 =

1
2 . Thus, independence is violated for c1.

MED: For MED we consider the following instances I8 and I9, where all agents assign score 0
to all cj with j ≥ 4. For all n ≥ 3 we have medi∈Ns8i,1 = 1

2 and medi∈Ns8i,3 = 1
2 ; moreover,

medi∈Ns8i,2 =
1
2 if n is odd and medi∈Ns8i,2 =

1
4 if n is even. This means that MED assigns a probability
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of less than 1
2 to c1 in I8. By contrast, in I9, the medians are medi∈Ns9i,1 = 1

2 , medi∈Ns9i,2 = 0, and
medi∈Ns9i,3 = 1

2 . Hence, MED assigns a probability of 1
2 to c1 in this instance, and independence is

violated.

I8 si,1 si,2 si,3

1 1
2

1
2 0

i ∈ {2, . . . , ⌈n+1
2 ⌉} 1

2 0 1
2

i ∈ {⌈n+1
2 ⌉+ 1, . . . , n} 0 1

2
1
2

I9 si,1 si,2 si,3

1 1
2 0 1

2

i ∈ {2, . . . , ⌈n+1
2 ⌉} 1

2 0 1
2

i ∈ {⌈n+1
2 ⌉+ 1, . . . , n} 0 1

2
1
2

Claim 2: Theorem 3 of Freeman et al. [2021] shows that IM and UTIL are score-monotone. We first
deal with coordinate-wise aggregation rules, and then consider EGAL.

Coordinate-wise aggregation rules: Recall that a function f : Rn → R is monotone if, for every pair
of vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) with xi ≥ yi for all i ∈ [n], it holds that f(x) ≥ f(y).
Observe that for each of our coordinate-wise aggregation rules, it holds that their coordinate-aggregation
functions are monotone. Our claim is now implied by the following lemma.

Lemma 5.2. Suppose that a coordinate-wise aggregation rule has the property that all of its coordinate-
aggregation functions are monotone. Then this rule is score-monotone.

Proof. Consider two instances I and I ′, an agent i ∈ N , and a candidate cj such that sℓ = s′ℓ for all
ℓ ∈ N \ {i}, si,j > s′i,j , and si,k ≤ s′i,k for all ck ∈ C \ {cj}. For ease of presentation, we will slightly
abuse notation and write fk(I) to mean fk(s1,k, . . . , sn,k). We consider four cases.

Case 1: fk(I) = fk(I ′) = 0 for all k ∈ [m]. Then F (I)j = F (I ′)j = 1
m by definition, and

score-monotonicity holds.

Case 2: fk(I) = 0 for all k ∈ [m], but there is some k∗ with fk∗(I ′) > 0. By definition of F ,
this means that F (I ′)k = 0 for all k with fk(I ′) = 0. Further, we have si,j > s′i,j and sℓ,j = s′ℓ,j
for ℓ ∈ N \ {i}, so monotonicity of fj implies that fj(I ′) ≤ fj(I) = 0. Hence, as argued above,
F (I ′)j = 0. On the other hand, we have F (I)j = 1

m > 0, so score-monotonicity holds.

Case 3: fk(I ′) = 0 for all k ∈ [m], but there is some k∗ with fk∗(I) > 0. By monotonicity, we have
fk(I) ≤ fk(I ′) for all k ∈ [m] \ {j}, so it must be the case that j = k∗, i.e., fj(I) > 0 and fk(I) = 0
for all k ∈ [m]\{j}. This implies that F (I)j = 1 > 1

m = F (I ′)j , and score-monotonicity holds again.

Case 4: Neither fk(I) = 0 for all k ∈ [m] nor fk(I ′) = 0 for all k ∈ [m]. By monotonicity,
fj(I) ≥ fj(I ′) and fk(I) ≤ fk(I ′) for all k ∈ [m]\{j}. As the function g(x) = x

x+λ is monotonically
increasing for x, λ > 0, it follows that

F (I)j =
fj(I)∑

k∈[m] fk(I)
≥ fj(I ′)

fj(I ′) +
∑

k∈[m]\{j} fk(I)
≥ fj(I ′)∑

k∈[m] fk(I ′)
= F (I ′)j .

This completes the proof of the lemma (and therefore our claim regarding coordinate-wise aggrega-
tion rules). ◁

EGAL: When n = 2, EGAL is equivalent to AVG (by Proposition 2.4), and we have just shown that
AVG satisfies score-monotonicity. Thus, we only consider the case m = 2. Let I and I ′ denote two
instances such that si,1 < s′i,1 and si,2 > s′i,2 for some agent i ∈ N , whereas all other agents have the
same preferences in both instances. Let x and x′ be the outcome vectors returned by EGAL on I and I ′,
respectively. Then,

x1 =
maxℓ∈N sℓ,1 +minℓ∈N sℓ,1

2
≤

maxℓ∈N s′ℓ,1 +minℓ∈N s′ℓ,1
2

= x′1,
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which means that score-monotonicity is satisfied.
Next, we prove that EGAL fails score-monotonicity when m ≥ 4 and n ≥ 4. As usual, we will

provide a counterexample for m = 4 candidates; it can be extended to m > 4 by adding candidates that
receive score 0 from all agents. Moreover, we focus on the case n = 4; the example can be extended to
n > 4 by duplicating agents.

Consider the following two instances I10 and I11, and let x10 and x11 denote the outputs of EGAL

on I10 and I11, respectively.

I10 si,1 si,2 si,3 si,4

1 1 0 0 0

2 1
2

1
4

1
4 0

3 0 1
2 0 1

2

4 0 0 1
2

1
2

I11 si,1 si,2 si,3 si,4

1 1
2 0 0 1

2

2 1
2

1
4

1
4 0

3 0 1
2 0 1

2

4 0 0 1
2

1
2

We claim that

x10 =

(
1

2
, 0, 0,

1

2

)
, x11 =

(
1

5
,
1

5
,
1

5
,
2

5

)
.

Indeed, in I10, all agents get disutility 1 from (12 , 0, 0,
1
2). Thus, to show that EGAL returns this vector,

it suffices to prove that any other outcome would increase the disutility of at least one agent. To this end,
consider an outcome vector y = (y1, y2, y3, y4). If y1 < 1

2 , we have d1(y) > 1. Similarly, if y4 < 1
2 ,

we have d3(y) > 1 or d4(y) > 1. Thus, (12 , 0, 0,
1
2) is indeed the outcome returned by EGAL on I10.

Similarly, in I11 all agents get disutility 4
5 from (15 ,

1
5 ,

1
5 ,

2
5). Consider an outcome vector y =

(y1, y2, y3, y4). If y1 + y4 < 3
5 then d1(y) > 4

5 . Similarly, if y2 + y4 < 3
5 then d3(y) > 4

5 , and if
y3 + y4 <

3
5 then d4(y) >

4
5 . Thus, for maxi∈N di(y) ≤ 4

5 to hold, it has to be the case that

y1 + y4 ≥
3

5
, y2 + y4 ≥

3

5
, y3 + y4 ≥

3

5
; (1)

as y1 + y2 + y3 + y4 = 1, this implies y4 ≥ 2
5 . Moreover, if y4 > 2

5 , we have d2(y) > 4
5 . It follows that

EGAL assigns probability 2
5 to c4. Substituting y4 =

2
5 into each inequality in (1) and using the fact that

y1 + y2 + y3 =
3
5 , we conclude that EGAL indeed outputs (15 ,

1
5 ,

1
5 ,

2
5) on I11.

It remains to observe that x104 = 1
2 > 2

5 = x114 despite the fact that s101,4 < s111,4, so score-monotonicity
is violated.

Claim 3: We next show that among all the rules considered in this paper, only MED fails reinforcement.
For this, we first note that Freeman et al. [2021, Thms. 9 and 13] have shown that IM and UTIL satisfy re-
inforcement. We hence focus on the remaining rules and consider three instances I = (s1, . . . , sn) (de-
fined for electorate N ), I ′ = (s′1, . . . , s

′
n′) (defined for electorate N ′), and I ′′ = (s1, . . . , sn, s

′
1, . . . , s

′
n′)

(defined for electorate N ∪N ′; we assume N ∩N ′ = ∅).
We consider each rule separately.

AVG: Let x, x′, and x′′ be the outcomes chosen by AVG for I, I ′, and I ′′, respectively, and suppose
that x = x′. By Proposition 2.3, for each j ∈ [m], we have xj = 1

|N |
∑

i∈N si,j =
1

|N ′|
∑

i∈N ′ s′i,j = x′j .
Consequently,

x′′j =
1

|N ∪N ′|
∑

i∈N∪N ′

s′′i,j =
|N |

|N ∪N ′|
· 1

|N |
∑
i∈N

si,j +
|N ′|

|N ∪N ′|
· 1

|N ′|
∑
i∈N ′

s′i,j = xj ,

which shows that reinforcement is satisfied.
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MAX: Let x, x′, and x′′ be the outcomes chosen by MAX for I, I ′, and I ′′, respectively, and

suppose that x = x′. Let α =
∑

j∈[m] maxi∈N si,j∑
j∈[m] maxi∈N′ s′i,j

. Then, maxi∈N si,j = α ·maxi∈N ′ s′i,j for all j ∈ [m].

We assume without loss of generality that α ≥ 1, as otherwise we can exchange the roles of x and x′.
Consequently, maxi∈N∪N ′ s′′i,j = maxi∈N si,j for all j ∈ [m], which shows that x′′ = x.

MIN: Let x, x′, and x′′ be the outcomes chosen by MIN for I, I ′, and I ′′, respectively, and suppose
that x = x′. First, if mini∈N si,j = 0 for all j ∈ [m], then mini∈N∪N ′ s′′i,j = 0 for all j ∈ [m] and
x′′j = 1

m = xj = x′j for all j ∈ [m]. A similar argument applies if mini∈N ′ s′i,j = 0 for all j ∈ [m].
Next, assume that mini∈N si,ℓ > 0 and mini∈N ′ s′i,ℓ′ > 0 for some ℓ, ℓ′ ∈ [m]. For this case, the

analysis is similar to that for MAX. Namely, let α =
∑

j∈[m] mini∈N si,j∑
j∈[m] mini∈N′ s′i,j

. Then, x = x′ implies that

mini∈N si,j = α · mini∈N ′ s′i,j for all j ∈ [m]. We assume without loss of generality that α ≤ 1, as
otherwise we can exchange the roles of x and x′ in our argument. Consequently, mini∈N∪N ′ s′′i,j =
mini∈N si,j for all j ∈ [m], which shows that x′′ = x.

GEO: Let x, x′, and x′′ be the outcomes chosen by GEO for I, I ′, and I ′′, respectively, and sup-
pose that x = x′. If mini∈N si,j = 0 for all j ∈ [m] or mini∈N ′ s′i,j = 0 for all j ∈ [m], then
mini∈N∪N ′ s′′i,j = 0 for all j ∈ [m] and hence x′′j = 1

m = xj = x′j for all j ∈ [m].
On the other hand, suppose that there are indices ℓ, ℓ′ ∈ [m] such that mini∈N si,ℓ > 0 and

mini∈N s′i,ℓ′ > 0. Define ξ(I) =
∑

j∈[m](
∏

i∈N si,j)
1/|N | and ξ(I ′) =

∑
j∈[m](

∏
i∈N ′ s′i,j)

1/|N ′|.
For each j ∈ [m], we have( ∏

i∈N∪N ′

s′′i,j

) 1
|N|+|N′|

=

(∏
i∈N

si,j ·
∏
i∈N ′

s′i,j

) 1
|N|+|N′|

=
(
(xj · ξ(I))|N | · (x′j · ξ(I ′))|N

′|
) 1

|N|+|N′|

= xj ·
(
ξ(I)|N | · ξ(I ′)|N

′|
) 1

|N|+|N′|
.

Since this holds for all j ∈ [m], GEO satisfies reinforcement, because

x′′j =
xj ·

(
ξ(I)|N | · ξ(I ′)|N

′|
) 1

|N|+|N′|

∑
k∈[m]

(
xk ·

(
ξ(I)|N | · ξ(I ′)|N ′|

) 1
|N|+|N′|

) = xj .

EGAL: Let x, x′, and x′′ denote the outcomes chosen by EGAL for I, I ′, and I ′′, respectively.
Assume for contradiction that x = x′ but x′′ ̸= x. For a set of agents T , we define vT (y) as the vector
that lists the disutilities of all agents in T for the outcome y in non-increasing order. Since x = x′ is
chosen for I and I ′, we get (i) vN (x) <lex vN (x′′) or vN (x) = vN (x′′), and (ii) vN ′(x) <lex vN ′(x′′)
or vN ′(x) = vN ′(x′′). On the other hand, vN∪N ′(x) >lex vN∪N ′(x′′) or vN∪N ′(x) = vN∪N ′(x′′), as
x′′ is chosen for I ′′. It is easy to see that these conditions can only be satisfied if vN (x) = vN (x′′) and
vN∪N ′(x) = vN∪N ′(x′′). However, consistent tie-breaking requires that if EGAL returns x for I, then
it does not return x′′ for I ′′, which contradicts our assumptions.

MED: Finally, we show that MED satisfies reinforcement if m = 2 but fails this property when
m ≥ 3. First, assume that m = 2, and let x, x′, and x′′ denote the outcomes chosen by MED on I, I ′,
and I ′′, respectively. As usual, we assume that x = x′. Since x′′2 = 1− x′′1 and x2 = 1− x1, it suffices
to show that x′′1 = x1. By Proposition 2.3, we have medi∈Nsi,1 = x1 = x′1 = medi∈N ′s′i,1. Hence, our
claim for m = 2 is implied by the following lemma, whose proof is relegated to Appendix A.

Lemma 5.3. Consider two multisets of real numbers A and B such that med(A) = med(B) = z. Then
med(A ∪B) = z as well.
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Now, for the case m ≥ 3, consider the following instances I12 (defined for an odd number of agents
n ≥ 5) and I13 (defined for a single agent n+ 1).

I12 si,1 si,2 si,3

i ∈ {1, . . . , n−1
2 } 2

3
1
3 0

i ∈ {n+1
2 , . . . , n− 1} 0 1

3
2
3

n 1
2 0 1

2

I13 si,1 si,2 si,3

n+ 1 3
8

2
8

3
8

All candidates other than c1, c2, and c3 receive score 0 from all agents and can be ignored. It holds that
medi∈Ns12i,1 = 1

2 , medi∈Ns12i,2 = 1
3 , and medi∈Ns12i,3 = 1

2 , so MED returns the outcome x = (38 ,
2
8 ,

3
8)

for I12. Moreover, I13 consists of a single agent with preference (38 ,
2
8 ,

3
8), so MED returns x on I13

as well. However, for the combined instance, the medians are medi∈N∪{n+1}si,1 = 1
2 · (12 + 3

8) =
7
16 ,

medi∈N∪{n+1}si,2 = 1
3 , and medi∈N∪{n+1}si,3 = 1

2 · (12 + 3
8) = 7

16 . This means that for the new
outcome x′ we have x′1 =

21
58 ̸= 3

8 , and reinforcement is violated.

Remark 5.4. We do not specify the boundary on n for which MED satisfies reinforcement. The reason
for this is that reinforcement is a variable-electorate property that is usually studied under the assumption
that there is an infinite set of possible agents. The same reasoning applies to participation (Section 6).

6 Incentive Properties

The last group of evaluation criteria that we consider for our rules is their incentive properties. For this,
Freeman et al. [2021] have shown that both IM and UTIL satisfy strategyproofness and participation.
By contrast, we show that all other rules we consider are not strategyproof, but on the positive side, all
except MED satisfy participation.

Theorem 6.1. The following claims hold.

(1) IM and UTIL satisfy strategyproofness and participation.

(2) AVG, MAX, MIN, GEO, and EGAL fail strategyproofness for all n ≥ 2 and m ≥ 2 but satisfy
participation.

(3) MED satisfies strategyproofness when m = 2 and n is odd, but fails this property when m = 2
and n is even, or when m ≥ 3. Moreover, MED satisfies participation if m = 2 but fails it for all
m ≥ 3.

Proof. Claim 1 follows directly from the work of Freeman et al. [2021, Thms. 2, 8, and 12], so we only
prove Claims 2 and 3 here.

Claim 2: We first consider participation, and then show that all considered rules fail strategyproofness
by giving a common counterexample.

Participation: We consider two instances I and I ′ such that I ′ is derived from I by adding an
agent i with preference si. Given an aggregation rule F , let x and x′ denote the outcomes chosen by F
on I and I ′, respectively. To show that AVG, MIN, MAX, and GEO satisfy participation, we first prove
an auxiliary lemma; the proof for EGAL will not rely on this lemma.

Lemma 6.2. Define X+ = {j ∈ [m] : x′j > xj} and X− = {j ∈ [m] : x′j < xj}. For an agent i such
that (a) si,j ≥ x′j for all j ∈ X+ or (b) si,j ≤ x′j for all j ∈ X−, it holds that i weakly prefers x′ to x.
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Proof. We will prove the lemma only for case (a), as case (b) is symmetric. In case (a), for all j ∈ X+

it holds that

|si,j − x′j | − |si,j − xj | = (si,j − x′j)− (si,j − xj) = xj − x′j .

On the other hand, we observe that∑
j∈[m]\X+

(
|si,j − x′j | − |si,j − xj |

)
≤

∑
j∈[m]\X+

|xj − x′j | =
∑

j∈[m]\X+

(xj − x′j),

where the first transition follows from the triangle inequality and the second transition uses the definition
of X+. Based on these observations, we conclude that i weakly prefers x′ to x, since

di(x
′)− di(x) =

∑
j∈[m]

|si,j − x′j | −
∑
j∈[m]

|si,j − xj |

=
∑
j∈X+

(
|si,j − x′j | − |si,j − xj |

)
+

∑
j∈[m]\X+

(
|si,j − x′j | − |si,j − xj |

)
≤
∑
j∈X+

(xj − x′j) +
∑

j∈[m]\X+

(xj − x′j)

=
∑
j∈[m]

xj −
∑
j∈[m]

x′j

= 0.

This completes the proof of the lemma. ◁

Thus, to show that our rules satisfy participation, it suffices to prove that they satisfy si,j ≥ x′j for
all j ∈ X+ or si,j ≤ x′j for all j ∈ X−. For this, we consider each rule individually.

AVG: For AVG, for each j ∈ X+ we have

x′j =
1

n+ 1

∑
ℓ∈N∪{i}

sℓ,j =
si,j
n+ 1

+
n

n+ 1
· 1
n

∑
ℓ∈N

sℓ,j =
1

n+ 1
(si,j + nxj) ≤

1

n+ 1
(si,j + nx′j).

Multiplying both sides by n + 1 and rearranging the terms, we conclude that si,j ≥ x′j for all j ∈ X+,
so condition (a) of Lemma 6.2 is satisfied.

MAX: Note that maxℓ∈N∪{i} sℓ,j = max{si,j ,maxℓ∈N sℓ,j} for all j ∈ [m]. We claim that
maxℓ∈N∪{i} sℓ,j = si,j for all j ∈ X+, because otherwise maxℓ∈N∪{i} sℓ,j = maxℓ∈N sℓ,j and hence

x′j =
maxℓ∈N∪{i} sℓ,j∑

k∈[m]maxℓ∈N∪{i} sℓ,k
≤

maxℓ∈N sℓ,j∑
k∈[m]maxℓ∈N sℓ,k

= xj .

Further, since
∑

k∈[m]maxℓ∈N∪{i} sℓ,k ≥
∑

k∈[m] si,k = 1, we have si,j ≥ si,j∑
k∈[m] maxℓ∈N∪{i} sℓ,k

= x′j

for all j ∈ X+. By Lemma 6.2, this proves that MAX satisfies participation.

MIN: For MIN, we first consider the case where minℓ∈N∪{i} sℓ,j = 0 for all j ∈ [m]. Define

Z = {j ∈ [m] : min
ℓ∈N

sℓ,j > 0}, Z ′ = {j ∈ [m] : si,j > 0};

note that Z ′ ̸= ∅ because
∑

j∈[m] si,j = 1. Now, if Z = ∅, then we have minℓ∈N sℓ,j = 0 for all j ∈ [m],
and x = x′ = ( 1

m , . . . , 1
m), so participation is satisfied in this case. On the other hand, suppose that
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Z ̸= ∅, and observe that Z ∩Z ′ = ∅ because for every j ∈ Z ∩Z ′ we would have minℓ∈N∪{i} sℓ,j > 0.
Further, xj > 0 if and only if j ∈ Z, so

∑
j∈Z xj = 1; similarly,

∑
j∈Z′ si,j = 1. Thus, we can write

di(x) =
∑
j∈Z

|si,j − xj |+
∑
j∈Z′

|si,j − xj |+
∑

j∈[m]\(Z∪Z′)

|si,j − xj | ≥
∑
j∈Z

xj +
∑
j∈Z′

si,j = 2.

As we have di(y) ≤ 2 for all possible outcomes y, it follows that di(x′) ≤ di(x), so participation is
satisfied again.

Next, consider the case where there is a candidate cj∗ such that minℓ∈N∪{i} sℓ,j∗ > 0. We claim
that si,j ≤ x′j for all j ∈ X−. The argument is similar to that for MAX. Specifically, we have
minℓ∈N∪{i} sℓ,j = min{si,j ,minℓ∈N sℓ,j} for all j ∈ [m]. Observe that minℓ∈N∪{i} sℓ,j = si,j for
all j ∈ X−, because otherwise minℓ∈N∪{i} sℓ,j = minℓ∈N sℓ,j and hence

x′j =
minℓ∈N∪{i} sℓ,j∑

k∈[m]minℓ∈N∪{i} sℓ,k
≥

minℓ∈N sℓ,j∑
k∈[m]minℓ∈N sℓ,k

= xj .

Further, since
∑

k∈[m]minℓ∈N∪{i} sℓ,k ≤
∑

k∈[m] si,k = 1, we have si,j ≤ si,j∑
k∈[m] minℓ∈N∪{i} sℓ,k

= x′j

for all j ∈ X−. By Lemma 6.2, this proves that MIN satisfies participation.

GEO: To show that GEO satisfies participation if
∏

ℓ∈N∪{i} sℓ,j = 0 for all j ∈ [m], we use the
same argument as for MIN. Hence, from now on we assume that there is a candidate cj∗ such that
n+1

√∏
ℓ∈N∪{i} sℓ,j∗ > 0. Let ξ(I) =

∑
j∈[m]

n
√∏

ℓ∈N sℓ,j and ξ(I ′) =
∑

j∈[m]
n+1

√∏
ℓ∈N∪{i} sℓ,j ,

and note that ξ(I ′) > 0. By the definition of xj , for each j ∈ [m] we have∏
ℓ∈N

sℓ,j = (xj · ξ(I))n.

Consequently, for all j ∈ [m] it holds that

x′j =
(si,j)

1/(n+1) · (xj · ξ(I))n/(n+1)

ξ(I ′)
= (si,j)

1/(n+1) · (xj)n/(n+1) · ξ(I)
n/(n+1)

ξ(I ′)
.

We consider two cases.

Case 1: ξ(I)n/(n+1) ≥ ξ(I ′). In this case, for each j ∈ X− we have

x′j ≥ (si,j)
1/(n+1) · (xj)n/(n+1) ≥ (si,j)

1/(n+1) · (x′j)n/(n+1).

By raising both sides to the power of n+ 1 and rearranging the terms, we obtain x′j ≥ si,j .

Case 2: ξ(I)n/(n+1) < ξ(I ′). In this case, for all j ∈ X+ we have

x′j ≤ (si,j)
1/(n+1) · (xj)n/(n+1) ≤ (si,j)

1/(n+1) · (x′j)n/(n+1).

By raising both sides to the power of n+ 1 and rearranging the terms, we obtain x′j ≤ si,j .

We can thus conclude that GEO satisfies participation based on Lemma 6.2.

EGAL: To show that EGAL satisfies participation, we will provide a direct argument instead of
relying on Lemma 6.2. Assume for the sake of contradiction that di(x) < di(x

′). For a set of agents T ,
let vT (y) be a vector that contains the disutilities of all agents in T for a given score vector y in non-
increasing order. Since EGAL chooses x for I, it holds that either vN (x) = vN (x′) or vN (x′) >lex

vN (x). In either case, di(x) < di(x
′) would imply vN∪{i}(x

′) >lex vN∪{i}(x), a contradiction with
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EGAL choosing x′ for I ′. Hence, it must be the case that di(x) ≥ di(x
′), which means that EGAL

satisfies participation.

Strategyproofness: To prove the claim regarding strategyproofness, we consider the following in-
stances I14 and I15. All candidates cj with j ≥ 3 receive score 0 from all agents and are ignored for
the rest of the proof.

I14 si,1 si,2

1 4
5

1
5

i ∈ {2, . . . , n} 1
5

4
5

I15 si,1 si,2

1 1 0

i ∈ {2, . . . , n} 1
5

4
5

Here, AVG chooses the vector x = (15 + 3
5n ,

4
5 − 3

5n) for I14 and x′ = (15 + 4
5n ,

4
5 − 4

5n) for I15,
MAX respectively chooses x = (12 ,

1
2) and x′ = (59 ,

4
9), MIN chooses x = (12 ,

1
2) and x′ = (1, 0), GEO

chooses x = (
n√16

4+ n√16
, 4
4+ n√16

) and x′ = (1, 0), and EGAL chooses x = (12 ,
1
2) and x′ = (35 ,

2
5). In

each case, it can be checked that agent 1 benefits by deviating from I14 to I15, so strategyproofness is
violated.

Claim 3: Finally, we turn to MED and again consider participation and strategyproofness separately.

Participation: First, we show that MED satisfies participation when m = 2. Consider two instances
I and I ′ with m = 2 such that I ′ is derived from I by adding an agent i with preference si. Let x
and x′ denote the outputs of MED on I and I ′, respectively. If x = x′, our claim is trivially true, so
assume without loss of generality that x′1 > x1. We will show that this implies si,1 ≥ x′1. Recall that
by Proposition 2.3, we have x1 = medℓ∈Nsℓ,1 and x′1 = medℓ∈N∪{i}sℓ,1. Assume for contradiction that
si,1 < x′1. Since x′1 > x1 and there are at least ⌈n2 ⌉ agents ℓ ∈ N with x1 ≥ sℓ,1, there are at least
⌈n2 ⌉ + 1 agents ℓ in N ∪ {i} with x′1 > sℓ,1. This means that medℓ∈N∪{i}sℓ,1 < x′1, a contradiction.
Thus, we conclude that si,1 ≥ x′1 > x1. Moreover, x1+x2 = x′1+x′2 = 1 implies x′2 < x2. Therefore,
we can now use Lemma 6.2 with X+ = {1} and X− = {2} to conclude that MED satisfies participation
when m = 2.

To see that MED fails participation when m ≥ 3, we consider the instances I12 and I13 in the proof
of Theorem 5.1 that were used to show that MED fails reinforcement. In this example, I13 consists of
a single agent whose ideal distribution coincides with the outcome of MED for I12. However, in the
combined instance, the outcome changes, which means that participation is violated for this agent.

Strategyproofness: We now focus on strategyproofness. First, we show that if m = 2 and n is odd,
MED is strategyproof. To this end, we note that MED simply returns the distribution of the agent who
assigns the (n+1

2 )-th highest score to c1. Further, for all ℓ ∈ N , we have sℓ,1 + sℓ,2 = x1 + x2 = 1
and hence dℓ(x) = |sℓ,1 − x1|+ |sℓ,2 − x2| = |sℓ,1 − x1|+ |(1− sℓ,1)− (1− x1)| = 2|sℓ,1 − x1|, so
strategyproofness follows directly from the well-known result of Moulin [1980]. On the other hand, if
m = 2 and n is even, MED returns the average between the scores of two agents, which allows agents to
benefit by misreporting. For instance, if one agent reports (23 ,

1
3),

n
2 −1 agents report (1, 0), and n

2 agents
report (0, 1), MED chooses the outcome (13 ,

2
3). However, if the first agent reports (1, 0), MED returns

(12 ,
1
2), which constitutes a beneficial manipulation for this agent. This example can be generalized to

m ≥ 3 by adding candidates that receive a score of 0 from every agent.
It remains to address the case m ≥ 3 and odd n ≥ 3. In this case, consider the instance I16 below.

One can check that MED chooses x = (13 ,
1
3 ,

1
3) on I16. This means that dn(x) = (25−

1
3)+(35−

1
3)+

1
3 =

2
3 . Next, suppose that agent n reports the distribution ( 8

15 ,
7
15 , 0). It can be verified that MED now picks

the distribution (25 ,
3
10 ,

3
10), which means that dn(x′) = 3

5 < 2
3 . Hence, MED is indeed manipulable if

m ≥ 3 and n ≥ 3 is odd.
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I16 si,1 si,2 si,3

i ∈ {1, . . . , n−1
2 } 0 2

5
3
5

i ∈ {n+1
2 , . . . , n− 1} 3

5 0 2
5

n 2
5

3
5 0

I17 si,1 si,2 si,3

i ∈ {1, . . . , n−1
2 } 0 2

5
3
5

i ∈ {n+1
2 , . . . , n− 1} 3

5 0 2
5

n 8
15

7
15 0

This completes the proof.

7 Characterizations of the Average Rule

Thus far, we have conducted an extensive analysis of specific natural rules with respect to a number of
desirable axioms. In this section, we complement those findings by presenting two characterizations of
the AVG rule. These results highlight the strong appeal of AVG by showing that it is the only rule within
large classes of rules that, for example, satisfies score-unanimity and independence.

To state these results, we will introduce two further axioms. First, we say that an aggregation rule F
is anonymous if the identities of the agents do not matter, i.e., F (I) = F (π(I)) for all instances I and
permutations π : N → N , where I ′ = π(I) is the instance defined by s′π(i) = si for all i ∈ N . Second,
we say that an aggregation rule F is continuous if it is a continuous function, i.e., for every n,m ∈ N
and every sequence of n-agent, m-candidate instances I1, I2, . . . such that limt→∞ It exists, it holds
that F (limt→∞ It) = limt→∞ F (It). We remark that both of these conditions are very weak: all of the
rules considered in this paper are anonymous, and all except MIN and GEO are continuous.10

Theorem 7.1. The following claims hold for each n ≥ 2.

(1) AVG is the only aggregation rule that satisfies anonymity, score-unanimity, and independence if
m ≥ 3.

(2) AVG is the only coordinate-wise aggregation rule that satisfies anonymity, continuity, and score-
unanimity if m ≥ 4.

Proof. It is easy to verify that AVG satisfies anonymity and continuity, and we have argued that it satisfies
score-unanimity (Theorem 3.1) and independence (Theorem 5.1). Thus, we focus on showing that the
given sets of axioms indeed characterize AVG. We will establish the two claims separately.

Claim 1: Let F be an aggregation rule that satisfies anonymity, score-unanimity, and independence. In
particular, this means that F (I)j = γ whenever si,j = γ for all i ∈ N . We establish the result in three
steps. First, we will show that for every γ ∈ (0, 1], there is a constant Cγ such that for all n-agent
instances I satisfying si,j = γ and si′,j = 0 for some j ∈ [m], i ∈ N and all i′ ∈ N \ {i}, it holds that
F (I)j = Cγ . In the second step, we will prove that Cγ = γ

n . Based on this insight, in the last step we
will derive that F coincides with AVG.

Step 1: To prove our first claim, fix n ≥ 2, m ≥ 3 and consider two n-agent m-candidate instances
I1 and I2 for which there exist two candidates cj1 and cj2 and two agents i1 and i2 such that (i) s1i1,j1 = γ

and s1i′,j1 = 0 for all i′ ∈ N \ {i1}, and (ii) s2i2,j2 = γ and s2i′,j2 = 0 for all i′ ∈ N \ {i2}. We will show
that F (I1)j1 = F (I2)j2 . Since I1 and I2 are chosen arbitrarily, this implies that there exists a constant
Cγ such that F (I)j = Cγ for all n-agent m-candidate instances in which a single agent assigns score γ
to candidate cj , while all other agents assign score 0 to that candidate.

To prove that F (I1)j1 = F (I2)j2 , let Î2 denote the instance derived from I2 by exchanging the
preferences of agents i2 and i1. We then have ŝ2i1,j2 = γ and ŝ2i′,j2 = 0 for all other agents i′ ∈ N \{i1}.

10MIN and GEO fail continuity because they return the distribution ( 1
m
, . . . , 1

m
) when mini∈N si,j = 0 for all j ∈ [m].

Apart from this corner case, these rules are also continuous.
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Ĩ1 si,j1 si,j2 si,j3 si,j for j ∈ [m] \ {j1, j2, j3}

i1 γ 1− γ 0 0

i′ ∈ N \ {i1} 0 1− γ γ 0

Ĩ2 si,j1 si,j2 si,j3 si,j for j ∈ [m] \ {j1, j2, j3}

i1 1− γ γ 0 0

i′ ∈ N \ {i1} 1− γ 0 γ 0

Table 2: Instances Ĩ1 and Ĩ2 in the proof of Theorem 7.1.

Clearly, anonymity requires that F (Î2) = F (I2), as we derive Î2 by renaming the agents in I2. Now,
if j1 = j2, it holds that ŝ2i,j1 = s1i,j1 for all i ∈ N , so independence implies that F (I1)j1 = F (Î2)j2 in
this case. Hence, if j1 = j2, it follows that F (I1)j1 = F (I2)j2 .

Next, assume that j1 ̸= j2. In this case, we let cj3 denote an arbitrary candidate in C \ {cj1 , cj2} and
consider the instances Ĩ1 and Ĩ2 described in Table 2. We infer from score-unanimity that F (Ĩ1)j2 =
F (Ĩ2)j1 = 1 − γ and F (Ĩ1)j = F (Ĩ2)j = 0 for all j ∈ [m] \ {j1, j2, j3}. We therefore have
F (Ĩ1)j1 = γ−F (Ĩ1)j3 and F (Ĩ2)j2 = γ−F (Ĩ2)j3 . Moreover, independence implies that F (Ĩ1)j3 =
F (Ĩ2)j3 . Hence, F (Ĩ1)j1 = F (Ĩ2)j2 . On the other hand, we have s1i,j1 = s̃1i,j1 and ŝ2i,j2 = s̃2i,j2 for
all i ∈ N , so by independence, F (I1)j1 = F (Ĩ1)j1 and F (Î2)j2 = F (Ĩ2)j2 . Hence, we conclude that
F (I1)j1 = F (Î2)j2 = F (I2)j2 .

Step 2: For our second step, we fix a value γ ∈ (0, 1] and let Cγ denote the constant derived in
Step 1. The goal of this step is to show that Cγ = γ

n . To prove this claim, let cj1 , cj2 , and cj3 denote
three distinct candidates. We will prove by induction that for the instances Ik shown below, it holds that
F (Ik)j1 = k · Cγ .

Ik si,j1 si,j2 si,j3 si,j for j ∈ [m] \ {j1, j2, j3}

i ∈ {1, . . . , k} γ 0 1− γ 0

i ∈ {k + 1, . . . , n} 0 γ 1− γ 0

In particular, this means that F (In−1)j1 = (n − 1) · Cγ . Moreover, we infer from Step 1 that
F (In−1)j2 = Cγ , and score-unanimity implies F (In−1)j = 0 for all j ∈ [m] \ {j1, j2, j3} and
F (In−1)j3 = 1− γ. Since

∑
j∈[m] F (In−1)j = 1, it follows that Cγ = γ

n .
For the proof that F (Ik)j1 = k · Cγ for all k ∈ {1, . . . , n− 1}, we first note that F (I1)j1 = Cγ by

Step 1. Next, we inductively assume that F (Ik)j1 = k · Cγ for some k ∈ {1, . . . , n − 2} and aim to
show that F (Ik+1)j1 = (k + 1) · Cγ . To this end, we consider the instances Îk and Ĩk shown below.

Îk si,j1 si,j2 si,j3 si,j for j ∈ [m] \ {j1, j2, j3}

i ∈ {1, . . . , k} γ 0 1− γ 0

k + 1 0 γ 1− γ 0

i ∈ {k + 2, . . . , n} 0 0 1 0

Ĩk si,j1 si,j2 si,j3 si,j for j ∈ [m] \ {j1, j2, j3}

i ∈ {1, . . . , k + 1} γ 0 1− γ 0

i ∈ {k + 2, . . . , n} 0 0 1 0
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By independence and the induction hypothesis, we have F (Îk)j1 = F (Ik)j1 = k · Cγ . Moreover,
Step 1 shows that F (Îk)j2 = Cγ and score-unanimity requires that F (Îk)j = 0 for all j ∈ [m] \
{j1, j2, j3}. Hence, we derive F (Îk)j3 = 1 − (k + 1) · Cγ . Next, we turn to the instance Ĩk. By
score-unanimity, we have F (Ĩk)j = 0 for all j ∈ [m] \ {j1, j3}, and hence F (Ĩk)1 + F (Ĩk)3 = 1.
On the other hand, independence implies F (Ĩk)j3 = F (Îk)j3 = 1 − (k + 1) · Cγ . It follows that
F (Ĩk)j1 = (k + 1) · Cγ . Finally, independence implies F (Ik+1)j1 = F (Ĩk)j1 = (k + 1) · Cγ , which
completes the induction step.

Step 3: For our last step, we will show that F corresponds to AVG. Fix n ≥ 2, m ≥ 3, and
consider an n-agent, m-candidate instance I and an arbitrary candidate cj1 . Our goal is to show that
F (I)j1 = 1

n

∑
i∈N si,j1 . To prove this claim, we take a candidate cj2 ̸= cj1 , and consider the following

family of instances Ik for k ∈ [n]:

(i) ski,j1 = si,j1 and ski,j2 = 1− si,j1 for all i ∈ {1, . . . , k},

(ii) ski,j1 = 0 and ski,j2 = 1 for all i ∈ {k + 1, . . . , n}, and

(iii) ski,j = 0 for all i ∈ N and j ∈ [m] \ {j1, j2}.

By independence, it holds that F (I)j1 = F (In)j1 , so our goal is to show that F (In)j1 = 1
n

∑
i∈N si,j1 .

We will prove by induction on k ∈ [n] that F (Ik)j1 = 1
n

∑k
i=1 si,j1 . For the base case k = 1,

we observe that F (I1)j1 =
s11,j1
n = 1

n

∑1
i=1 si,j1 due to Step 2 (if s1,j1 > 0) or score-unanimity (if

s1,j1 = 0). Next, we inductively assume that F (Ik)j1 = 1
n

∑k
i=1 si,j1 for some k ∈ {1, . . . , n− 1}, and

aim to show the same for k + 1.
If sk+1, j1 = 0, this follows by independence, as F (Ik+1)j1 = F (Ik)j1 = 1

n

∑k+1
i=1 si,j1 . Thus,

assume that sk+1, j1 > 0 and consider the instance Īk derived from Ik by setting s̄kk+1, j3
= sk+1, j1

for some arbitrary j3 ∈ [m] \ {j1, j2} and s̄kk+1, j2
= 1 − sk+1, j1 . By independence, it holds that

F (Īk)j1 = F (Ik)j1 = 1
n

∑k
i=1 si,j1 . Furthermore, F (Īk)j3 =

sk+1, j1
n by Step 2. Since F (Īk)j = 0 for

all j ∈ [m] \ {j1, j2, j3} due to score-unanimity, we infer that F (Īk)j2 = 1 − F (Īk)j1 − F (Īk)j3 =

1− 1
n

∑k+1
i=1 si,j1 .

Next, consider the instances Īk and Ik+1, and candidate j2. By independence, F (Ik+1)j2 =

F (Īk)j2 = 1 − 1
n

∑k+1
i=1 si,j1 . Moreover, by score-unanimity it holds that F (Ik+1)j = 0 for all

j ∈ [m] \ {j1, j2}, and hence F (Ik+1)j1 = 1
n

∑k+1
i=1 si,j1 . This completes the induction step. It follows

that F (I)j1 = F (In)j1 = 1
n

∑
i∈N si,j1 , and we conclude that F coincides with AVG.

Claim 2: Let F be a coordinate-wise aggregation rule that satisfies anonymity, continuity, and score-
unanimity. For each j ∈ [m], let fj denote the coordinate-aggregation function of F for the j-th co-
ordinate. In a slight abuse of notation, we will write fj(I) to mean fj(s1,j , . . . , sn,j). Since F is
scale-invariant, in the sense that its output does not change if we multiply all functions fj by a constant,
we can assume without loss of generality that f1(0.5, . . . , 0.5) = 0.5.

In the remainder of the proof, we will show that for each n ≥ 2, m ≥ 4 and each n-agent m-
candidate instance I, it holds that fj(I) = 1

n

∑
i∈N si,j for each j ∈ [m]. To this end, we first prove

this claim for the case where cj receives the same score γ ∈ [0, 1) from all agents. In the second step,
we then use our first characterization of AVG to show that fj(I) = 1

n

∑
i∈N si,j for all instances I

and candidates cj with maxi∈N si,j < 1. Finally, in the last step we use continuity to infer that F
corresponds to AVG.

Step 1: As the first step, we show that fj(γ, . . . , γ) = γ for all j ∈ [m] and γ ∈ [0, 1). The general
outline of our argument is as follows. Consider an instance I where si,j = γ for all i ∈ N . By score-
unanimity we have F (I)j = γ and, furthermore, F (I)j =

fj(I)∑
j′∈[m] fj′ (I)

. Thus, we need to establish

that
∑

j′∈[m] fj′(I) = 1. To this end, it suffices to show that F (I)k = fk(I) for some k ∈ [m].
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To start, observe that fj(0, . . . , 0) = 0 for all j ∈ [m] because of score-unanimity. Next, we will
argue that fj(0.5, . . . , 0.5) = 0.5 for all j ∈ [m]. To this end, fix some candidate cj ̸= c1 and consider
the instance I1 where for each i ∈ N it holds that s1i,1 = s1i,j = 0.5 and si,j′ = 0 for all j′ ∈ [m]\{1, j}.
By score-unanimity, we have F (I1)1 = F (I1)j = 0.5. Since we assume that f1(0.5, . . . , 0.5) = 0.5,
we obtain f1(I1) = F (I1)1. As argued in the previous paragraph, this implies fj(I1) = F (I1)j = 0.5,
and therefore fj(0.5, . . . , 0.5) = 0.5 for all j ∈ [m].

Next, we show that fj(γ, . . . , γ) = γ for all γ ∈ (0, 0.5) and j ∈ [m]. To this end, we fix three
distinct candidates cj , ck, and cℓ, and consider the instance I2 such that s2i,j = γ, s2i,k = 0.5, and
s2i,ℓ = 0.5 − γ for all i ∈ N . All other candidates receive score 0 from all agents. By score-unanimity
we obtain F (I2)j = γ and F (I2)k = 0.5, and by the analysis in the previous paragraph we have
fk(I2) = 0.5 = F (I2)k. As argued at the start of the proof, this implies fj(I2) = F (I2)j , so we
conclude that fj(γ, . . . , γ) = γ.

Finally, we consider the case γ ∈ (0.5, 1). Fix two candidates cj and ck, and consider the instance I3

where s3i,j = γ and s3i,k = 1− γ for all i ∈ N . All other candidates again obtain score 0 from all agents.
By score-unanimity, we have F (I3)j = γ and F (I3)k = 1 − γ. Moreover, since 1 − γ < 0.5, the
argument in the previous paragraph implies that fk(I3) = 1 − γ = F (I3)k. As argued at the start of
the proof, this implies fj(I3) = F (I3)j , so we infer that fj(γ, . . . , γ) = γ. This completes the proof
for Step 1.

Step 2: Next, we prove that fj(I) = 1
n

∑
i∈N si,j for all instances I and candidates cj with

maxi∈N si,j < 1. Fix an arbitrary instance I∗ and a candidate cj that satisfy our requirements. More-
over, define ε = 1−maxi∈N s∗i,j , and note that ε > 0 by our choice of j. If ε = 1, then in I∗ all agents
assign score 0 to cj , and score-unanimity immediately implies that fj(I∗) = 0 = 1

n

∑
i∈N s∗i,j .

Hence, we assume that ε < 1, and consider three other candidates ck, cℓ, ct. Furthermore, we define
another aggregation rule G for the candidates {cj , ck, cℓ} ⊊ C as follows: Given an instance I on these
three candidates, we construct an extended instance IE on C with the same set of agents N by setting,
for each i ∈ N ,

sEi,j′ =


(1− ε)si,j′ for j′ ∈ {j, k, ℓ},
ε for j′ = t,

0 for j′ ∈ [m] \ {j, k, ℓ, t}.

Then, G(I)j′ = 1
1−ε · F (IE)j′ for all j′ ∈ {j, k, ℓ}.

Our goal is to show that G coincides with AVG. Before we prove this, let us show why this implies
that fj(I∗) = 1

n

∑
i∈N s∗i,j . Indeed, if G is equal to AVG, for each instance I on {cj , ck, cℓ} we have

F (IE)j = (1− ε)G(I)j = (1− ε) · 1
n

∑
i∈N

si,j =
1

n

∑
i∈N

sEi,j .

Furthermore, by score-unanimity and Step 1, we have F (IE)t = ε = ft(IE), which implies that∑
j′∈[m] fj′(IE) = 1. In turn, this means that F (IE)j′ = fj′(IE) for all j′ ∈ [m], so it follows that

fj(IE) = 1
n

∑
i∈N sEi,j for all instances I on {cj , ck, cℓ}. Now, consider an instance I on {cj , ck, cℓ}

such that for each i ∈ N we have si,j =
s∗i,j
1−ε and si,k = si,ℓ =

1−si,j
2 ; note that s∗i,j ≤ 1 − ε

and hence si,j ≤ 1, so I is well-defined. We have s∗i,j = sEi,j for all i ∈ N , so we conclude that
fj(I∗) = 1

n

∑
i∈N s∗i,j .

It remains to show that G is indeed AVG. To this end, we aim to employ our first characteri-
zation and show that G is a well-defined aggregation rule that satisfies anonymity, score-unanimity,
and independence. First, it is easy to verify that G is well-defined. Indeed, for each instance I it
holds that F (IE)j′ ≥ 0 for all j′ ∈ {j, k, ℓ}, and hence G(I)j′ ≥ 0 for all j′ ∈ {j, k, ℓ}. More-
over, score-unanimity implies that F (IE)t = ε and F (IE)j′ = 0 for all j′ ∈ [m] \ {j, k, ℓ, t}, so
F (IE)j +F (IE)k +F (IE)ℓ = 1− ε. It follows that G(I)j +G(I)k +G(I)ℓ = 1 for all instances I.
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Next, we show that G is anonymous. Consider two instances I and Î such that Î is derived from I
by permuting the agents. Consequently, the instances IE and ÎE can be derived from each other by
permuting the agents, so the anonymity of F implies that F (IE) = F (ÎE). This also means that
G(I) = G(Î), and so G is anonymous.

To show that G is score-unanimous, we consider an instance I such that all agents i ∈ N assign the
same score γ to some candidate cj′ where j′ ∈ {j, k, ℓ}. Hence, all agents assign score (1 − ε)γ to cj′

in the extended instance IE . Score-unanimity of F then implies that F (IE)j′ = (1−ε)γ, which entails
that G(I)j′ = 1

1−ε · F (IE)j′ = γ. It follows that G satisfies this axiom, too.
Finally, we show that G satisfies independence. To this end, consider two instances I, Î on

{cj , ck, cℓ}, and j′ ∈ {j, k, ℓ} such that si,j′ = ŝi,j′ for all i ∈ N . This means that sEi,j′ = ŝEi,j′ for
all i ∈ N , so fj′(IE) = fj′(ÎE). Moreover, by score-unanimity and Step 1, it holds that F (IE)t =

ε = ft(IE) and F (ÎE)t = ε = ft(ÎE). We hence infer that
∑

t∈[m] ft(IE) =
∑

t∈[m] ft(ÎE) = 1.

This means that F (IE)j′ = fj′(IE) = fj′(ÎE) = F (ÎE)j′ , so G satisfies independence because
G(I)j′ = 1

1−ε · F (IE)j′ =
1

1−ε · F (ÎE)j′ = G(Î)j′ .
Since the rule G satisfies all axioms of Claim 1, we conclude that it coincides with AVG, which

completes the proof for this step.

Step 3: By the insights of Step 2, we obtain fj(I) = 1
n

∑
i∈N si,j for all n-agent instances I and

candidates cj such that maxi∈N si,j < 1. This means that F is equal to AVG for all instances I with
maxi∈N, j∈[m] si,j < 1. In order to extend the result to instances where some agents assign score 1 to
some candidate, we use the continuity of F . Specifically, consider an instance I∗ such that s∗i,j = 1

for some i ∈ N, j ∈ [m]. Let I denote the instance where every agent assigns score 1
m to every

candidate. We can now consider the sequence of instances Ik defined by ski,j = 1
2k
si,j + (1 − 1

2k
)s∗i,j

for all i ∈ N , j ∈ [m]. Clearly, this sequence converges to I∗. Moreover, for every instance Ik and
all j ∈ [m], it holds that F (Ik)j = 1

n

∑
i∈N ski,j due to Step 2. Hence, we can infer by continuity that

F (I∗)j = limk→∞ F (Ik)j =
1
n

∑
i∈N s∗i,j . This shows that F coincides with AVG, as desired.

Remark 7.2. For both of our characterizations, all axioms are necessary. Every dictatorial aggregation
rule (i.e., a rule that always returns the score vector of a specific agent) satisfies all given axioms except
anonymity. Every constant aggregation rule satisfies all given axioms except score-unanimity. UTIL

satisfies all given axioms except independence and coordinate-wiseness. Furthermore, the coordinate-
wise rule defined by the coordinate-aggregation function fj(I) = 1 if there is an agent i with si,j = 1
and fj(I) = 1

n

∑
i∈N si,j otherwise satisfies all axioms except independence and continuity. Finally,

the condition that m ≥ 3 is necessary for our first characterization, as otherwise independence becomes
trivial and, e.g., UTIL satisfies all given axioms (anonymity is immediate, and for score-unanimity and
independence, see Theorem 3.1 and Theorem 5.1, respectively). Similarly, the condition that m ≥ 4 is
necessary for the second characterization because MED satisfies all conditions if m ≤ 3 (anonymity and
continuity are immediate, and for score-unanimity this is shown in Theorem 3.1).

Remark 7.3. One can check that, in our first characterization, it is possible to replace score-unanimity
and anonymity with score-representation. That is, AVG is the only aggregation rule that satisfies score-
representation and independence. To see this, note that for instances of the form Ĩ1 (see Table 2),
score-representation implies that candidate cj1 receives probability at least γ

n , candidate cj2 receives
probability at least 1− γ, and candidate cj3 receives probability at least (n−1)γ

n . Since the probabilities
must sum up to 1, this is only possible if all of these bounds are tight. By independence and the fact
that this argument does not depend on the identities of agents or candidates, this immediately completes
the proof of Steps 1 and 2. For Step 3, we used score-unanimity to conclude that every candidate that
receives score 0 from all agents is assigned probability 0; this also follows from score-representation in
conjunction with independence.
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Perhaps surprisingly, this claim does not hold for our second characterization. Indeed, consider the
coordinate-wise rule G whose coordinate-aggregation functions gj assign to each candidate the min-
imum probability that meets the requirements imposed by score-representation. Note that since AVG

satisfies score-representation, for every instance I and all j ∈ [m] we have gj(I) ≤ AVG(I)j , and
hence

∑
j∈[m] gj(I) ≤

∑
j∈[m] AVG(I)j = 1, which implies that G(I)j ≥ gj(I) for each j ∈ [m].

Therefore, G satisfies score-representation, anonymity, and continuity.

Remark 7.4. Another natural way to characterize AVG is to rely on convexity. Specifically, we say
that an aggregation rule F is weakly convex if F (I ′′) = F (I) for all instances I, I ′, and I ′′ such that
F (I) = F (I ′) and there exists λ ∈ (0, 1) with s′′i,j = λsi,j + (1 − λ)s′i,j for all i ∈ N , j ∈ [m].
Then, one can show that AVG is the only aggregation rule that satisfies weak convexity, anonymity,
and score-unanimity. The idea is that, given an instance I, we can consider all possible permutations
π : N → N , apply each of them to I, and then take the average of all permuted instances. This results
in an instance I∗ where for each j ∈ [m] it holds that all agents assign score 1

n

∑
i∈N si,j to cj . Hence,

score-unanimity requires F (I∗)j =
1
n

∑
i∈N si,j for each j ∈ [m], and weak convexity and anonymity

imply that the same holds for I.

Remark 7.5. All coordinate-wise (and anonymous) rules from Table 1 violate Pareto optimality. Intu-
itively, this does not come as a surprise, as coordinate-wise rules are unable to take into account correla-
tions between scores and Pareto improvements. Formally, the first two steps in the proof of Claim 2 of
Theorem 7.1 show that any coordinate-wise, anonymous, and score-unanimous (which is necessary for
Pareto optimality) rule has to coincide with AVG on all instances with si,j ̸= 1 for all i ∈ N , j ∈ [m]. It
is not difficult to see—e.g., by adapting the instance I1 in the proof of Theorem 3.1—that no such rule
satisfies Pareto optimality. Since independence implies coordinate-wiseness, this shows that any Pareto
optimal and anonymous rule necessarily fails independence.

8 Conclusion

In this paper, we have analyzed aggregation rules for portioning with cardinal preferences from an ax-
iomatic perspective. Specifically, we considered a natural model in which each agent reports her ideal
distribution of a homogeneous resource over a set of candidates, and her disutility for a distribution cor-
responds to the ℓ1 distance from her ideal distribution. We investigated rules based on coordinate-wise
aggregation or welfare aggregation as well as the independent markets rule of Freeman et al. [2021] with
respect to efficiency, fairness, consistency, and incentive properties. Our results, which are summarized
in Table 1, show that the rule that simply returns the average of the agents’ reports satisfies most of the
studied axioms. In particular, even though this rule violates strategyproofness and Pareto optimality,11 it
is the only rule among the ones we consider that fulfills the strong fairness notion of score-representation
as well as the strong consistency property of independence. To further strengthen this point, we provided
two characterizations demonstrating that the average rule is the only rule within large classes of rules
that satisfies, for example, independence and score-unanimity at the same time.

We believe that our paper can serve as a basis for extensive future research in the domain of cardi-
nal portioning. For instance, it could be worthwhile to derive additional characterizations of the average
rule, and the insights that our findings offer may also be helpful toward characterizations of further rules.
One could verify whether rules that “approximate” the average rule preserve approximate versions of
the properties that the average rule satisfies. It would also be interesting to examine additional axioms,
especially those concerning fairness, which is important but arguably not yet well-understood in this

11Note also that rules that satisfy strategyproofness under ℓ1 utilities may fail to do so under different utility models—see,
e.g., Endnote 1 in the work of Brandt et al. [2026]. Moreover, the average rule satisfies Pareto optimality under ℓ2 utilities, as
it minimizes the sum of squared ℓ2 disutilities [Dodge and Rousson, 1999, p. 129].
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setting. One such axiom is membership in the core, which intuitively means that no subset of agents can
guarantee a better outcome (in the sense of Pareto improvement) for themselves by using their propor-
tional share of the resource. The core strengthens both Pareto optimality (since the latter only imposes
this requirement on the set of all agents) and single-minded proportionality, so Table 1 immediately im-
plies that none of the rules we consider always returns an outcome in the core. Whether any such rule
exists is therefore an intriguing question, which we leave for future work.
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additive and responsive preferences. Theoretical Computer Science, 790:1–15, 2019.
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A Omitted Proofs

In this appendix, we prove two claims regarding computational aspects that were made in the body of
the paper, as well as a technical lemma regarding medians of two sets.

First, we show that EGAL (with leximin tie-breaking) can be computed in polynomial time.

Proposition A.1. EGAL can be computed in polynomial time.

Proof. Similarly to Airiau et al. [2023, Alg. 1], we formulate a series of linear programs (LP) for finding
an EGAL outcome. Let the objective function be

minimize ξ

subject to the following constraints:

(1)
∑

j∈[m] xj = 1;

(2) xj ≥ 0 for each j ∈ [m];

(3) zi,j ≥ si,j − xj and zi,j ≥ xj − si,j for each i ∈ N , j ∈ [m];

(4)
∑

j∈[m] zi,j ≤ ξ for each i ∈ N .

Note that zi,j is an upper bound on i’s disutility for candidate cj , so in an optimal solution it holds that
zi,j = |si,j − xj | for all i ∈ N , j ∈ [m].

This allows us to minimize the largest disutility ξ. There is an agent i that has disutility ξ in every
leximin outcome: indeed, if for every i ∈ N there is an outcome in which i incurs disutility less than
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ξ and every other agent incurs disutility at most ξ, then by averaging these outcomes across all i ∈ N ,
we obtain an outcome in which every agent’s disutility is less than ξ, contradicting the choice of ξ. To
find such an agent i∗, for each i ∈ N we formulate an LP that computes the maximum δi such that
there exists an outcome in which agent i incurs disutility at most ξ − δi while every other agent incurs
disutility at most ξ; for i∗ we have δi∗ = 0. We fix the disutility of i∗ to ξ, and continue by finding the
second largest disutility, and so on. At each iteration we fix the disutility of one agent by solving O(n)
LPs, so the total number of LPs is O(n2).

Next, we prove that we can check in polynomial time whether an outcome is Pareto optimal.

Proposition A.2. Determining whether an outcome x′ is Pareto optimal can be done in polynomial time.

Proof. Suppose we are given an outcome x′ for an instance I = (s1, . . . , sn) and we want to determine
whether x′ is Pareto optimal. For each i ∈ N and j ∈ [m], let z′i,j = |x′j − si,j |. The quantities z′i,j can
be computed from the input, and will appear in the constraints of the linear program below.

We formulate a linear program as follows.

minimize
∑
i∈N

∑
j∈[m]

zi,j ,

subject to the following constraints:

(1)
∑

j∈[m] xj = 1;

(2) xj ≥ 0 for each j ∈ [m];

(3) zi,j ≥ si,j − xj and zi,j ≥ xj − si,j for each i ∈ N , j ∈ [m];

(4)
∑

j∈[m] zi,j ≤
∑

j∈[m] z
′
i,j for each i ∈ N .

Just as in the proof of Proposition A.1, in an optimal solution it holds that zi,j = |si,j − xj | for
all i ∈ N , j ∈ [m]. Thus, condition (4) can be interpreted as requiring that di(x) ≤ di(x

′) for all
i ∈ N , i.e., optimal solutions to our LP correspond to outcomes that are at least as good as x′ for all
agents. It follows that a solution that Pareto dominates x′ corresponds to an outcome for which the
value of the objective function is strictly less than

∑
i∈N

∑
j∈[m] z

′
i,j . Therefore, to check whether x′ is

Pareto dominated by some other outcome, it suffices to solve our LP and compare the optimal value to∑
i∈N

∑
j∈[m] z

′
i,j .

Finally, we present the proof of Lemma 5.3.

Lemma 5.3. Consider two multisets of real numbers A and B such that med(A) = med(B) = z. Then
med(A ∪B) = z as well.

Proof. Let p = |A| and q = |B|.
If p is odd, there exists some a ∈ A with med(A) = a, and two disjoint multisets A−, A+ ⊆ A\{a}

such that |A−| = |A+| = p−1
2 , a′ ≤ a for all a′ ∈ A−, and a′′ ≥ a for all a′′ ∈ A+.

If p is even, there exist a−, a+ ∈ A with a− ≤ a+ and med(A) = (a− + a+)/2, and two disjoint
multisets A−, A+ ⊆ A\{a−, a+} such that |A−| = |A+| = p−2

2 , a′ ≤ a− for all a′ ∈ A−, and a′′ ≥ a+

for all a′′ ∈ A+.
Similarly, we can represent B as B = B−∪{b}∪B+ (if q is odd) or B = B−∪{b−, b+}∪B+ (if q

is even). This representation has the property that |B−| = |B+| and furthermore, b′ ≤ b for all b′ ∈ B−

and b′′ ≥ b for all b′′ ∈ B+ (if q is odd), and b′ ≤ b− for all b′ ∈ B− and b′′ ≥ b+ for all b′′ ∈ B+ (if q
is even). We consider the following cases.

Case 1: p and q are both odd. Then a = b = z, and we have c ≤ z for each c ∈ A− ∪B− and c ≥ z
for each c ∈ A+ ∪B+. Thus, the median of A ∪B is (a+ b)/2 = z.
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Case 2: p is odd and q is even. Then a = (b− + b+)/2 = z, and hence b− ≤ a ≤ b+. For each
c ∈ A− ∪B− ∪ {b−} we have c ≤ a, and for each c ∈ A+ ∪B+ ∪ {b+} we have c ≥ a. It follows that
the median of A ∪B is a = z.

Case 3: p is even and q is odd. In this case, the median is b = z; the argument is the same as in the
previous case with the roles of A and B reversed.

Case 4: p and q are both even. Then (a− + a+)/2 = (b− + b+)/2 = z. Assume without loss of
generality that b− ≤ a−, so b+ ≥ a+. For each c ∈ A− ∪ B− ∪ {b−} we have c ≤ a−, and for each
c ∈ A+ ∪B+ ∪ {b+} we have c ≥ a+. It follows that the median of A ∪B is (a− + a+)/2 = z.

This completes the proof of the lemma.

B Moving Phantoms Rules

In this appendix, we consider two additional moving phantoms rules, namely, the LADDER rule of Free-
man and Schmidt-Kraepelin [2024] and the piecewise uniform (PU) rule of Caragiannis et al. [2024].
The moving phantoms of these rules are defined as follows:

fLADDER
k (t) = max

(
t− k

n
, 0

)
for all k ∈ {0, . . . , n} and all t ∈ [0, 1]

and

f PU
k (t) =


0 if t < 1

2 and k
n < 1

2
4tk
n − 2t if t < 1

2 and k
n ≥ 1

2
k(2t−1)

n if t ≥ 1
2 and k

n < 1
2

k(3−2t)
n − 2 + 2t if t ≥ 1

2 and k
n ≥ 1

2

for all k ∈ {0, . . . , n} and all t ∈ [0, 1].

Freeman et al. [2021, Thms. 2 and 3] have shown that every moving phantoms rule is strate-
gyproof and score-monotone, so both LADDER and PU satisfy these axioms. Furthermore, Freeman
and Schmidt-Kraepelin [2024, p. 9709] and Caragiannis et al. [2024, Thm. 3] proved that both rules
satisfy single-minded proportionality. We shall therefore investigate these rules with respect to our re-
maining axioms. As it turns out, these rules exhibit similar behavior to IM—a noteworthy exception is
that PU fails reinforcement while IM and LADDER satisfy this property.

To begin with, we show that IM, LADDER, and PU all reduce to the uniform phantom rule of
Caragiannis et al. [2016] when there are only m = 2 candidates. Consequently, the three rules coincide
and exhibit the same properties in this case.

Proposition B.1. IM, LADDER, and PU coincide when m = 2.

Proof. To prove this claim, we recall Proposition 1 of Freeman et al. [2021], which states that the
uniform phantom rule is the only aggregation rule for m = 2 that satisfies anonymity, continuity, single-
minded proportionality, and strategyproofness. Moreover, these authors observed that, in addition to
satisfying strategyproofness, every moving phantoms rule is anonymous and continuous [Freeman et al.,
2021, p. 10]. Finally, as we mentioned earlier, IM, LADDER, and PU all satisfy single-minded pro-
portionality. It follows that when m = 2, all three rules coincide with the uniform phantom rule, and
therefore with one another.

We now analyze LADDER and PU separately, starting with LADDER.

Theorem B.2. The following claims hold.
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(1) LADDER satisfies range-respect (and therefore Pareto optimality and score-unanimity) when m =
2, but fails score-unanimity (and therefore range-respect and Pareto optimality) when m ≥ 3 and
n ≥ 2.

(2) LADDER satisfies score-representation when m = 2, but fails to do so for all m ≥ 3 and n ≥ 2.

(3) LADDER satisfies independence when m = 2, but fails to do so for all m ≥ 3 and n ≥ 2.

(4) LADDER satisfies reinforcement.

(5) LADDER satisfies participation.

Proof. We prove each of the claims separately. Moreover, we omit the proofs for the case m = 2, as all
corresponding claims follow from Proposition B.1 together with the analysis of IM.

Claim 1: We only need to show that LADDER fails score-unanimity when m ≥ 3 and n ≥ 2. To this end,
consider the instance I5 from the proof of Theorem 3.1, which we reproduce below for convenience.
All candidates cj with j ≥ 4 receive a score of 0 from all agents and can thus be ignored.

I5 si,1 si,2 si,3

1 n+1
n+2

1
n+2 0

i ∈ {2, . . . , n} n+1
n+2 0 1

n+2

For this instance, score-unanimity requires that x1 = n+1
n+2 .

If n = 2, we claim that LADDER assigns a probability of 2
3 to c1. Indeed, for t∗ = 2

3 , we have
fLADDER
0 (t∗) = 2

3 , fLADDER
1 (t∗) = 1

6 , and fLADDER
2 (t∗) = 0. Hence, the medians for candidates c1, c2,

c3 are 2
3 , 1

6 , 1
6 , respectively. Since the medians sum up to 1, this means that LADDER returns (23 ,

1
6 ,

1
6),

which violates score-unanimity.

If n ≥ 3, we claim that LADDER assigns a probability of n2+n−1
n(n+2) =

n+1− 1
n

n+2 to c1. Indeed, for

t∗ = n2+n−1
n(n+2) , it holds for all k ∈ {0, . . . , n} that fLADDER

k (t∗) ≤ fLADDER
0 (t∗) = n2+n−1

n(n+2) < n+1
n+2 , so the

median for c1 is n2+n−1
n(n+2) . Next, for c2, we observe that

fLADDER
n−1 (t∗) =

n2 + n− 1

n(n+ 2)
− n− 1

n
=

n2 + n− 1− (n− 1)(n+ 2)

n(n+ 2)
=

1

n(n+ 2)
<

1

n+ 2
.

Since n − 1 agents assign a score of 0 to c2, this means that the median for this candidate is 1
n(n+2) .

Finally, for c3, we note that fLADDER
n−2 (t∗) = 1

n(n+2) +
1
n > 1

n+2 , so the median for this candidate is
1

n+2 . Since the three medians sum up to 1, LADDER returns (n
2+n−1
n(n+2) ,

1
n(n+2) ,

1
n+2), which violates

score-unanimity.

Claim 2: We only need to show that LADDER fails score-representation for all m ≥ 3 and n ≥ 2. To
this end, consider again the instance I5 in the proof of Claim 1. In this instance, all agents assign score
n+1
n+2 to c1, but LADDER assigns a score strictly less than n+1

n+2 to this candidate, so score-representation
is violated.

Claim 3: To see that LADDER fails independence for m ≥ 3 and n ≥ 2, observe that LADDER is
unanimous, i.e., if every agent reports the same score vector s = (s1, . . . , sm), the rule outputs s (see
the proof of Claim 1 of Theorem 5.1). On the other hand, we have shown in Claim 1 that LADDER fails
score-unanimity for all m ≥ 3 and n ≥ 2. These two observations together suffice to conclude that
LADDER fails independence.

Claim 4: We next show that LADDER satisfies reinforcement. Assume for contradiction that this is not
true. This means that there exist two instances I1 and I2 with disjoint electorates N1 and N2 such
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that LADDER outputs a vector x for both I1 and I2 but a different vector y for the profile I3 which
concatenates I1 and I2. Let n1 = |N1|, n2 = |N2|, n3 = |N1 ∪N2| = n1 + n2, and for j ∈ [3] and
i ∈ {0, . . . , nj}, let pji denote the position of the i-th lowest phantom at the time when x (for j ∈ [2])
or y (for j = 3) is returned for Ij . In particular, this means that LADDER chooses for each instance
Ij and each candidate ck the median of the multiset {sji,k : i ∈ N j} ∪ {pji : i ∈ {0, . . . , nj}}. For any

z ∈ [0, 1] and j ∈ [3], let pj(z) := |{i ∈ {0, . . . , nj} : pji ≤ z}| be the number of phantoms that are at
most z for profile Ij , and for any k ∈ [m], let qjk(z) := |{i ∈ N j : sji,k ≤ z}| be the number of agents
who report a score of at most z for candidate ck. Since I3 is a concatenation of I1 and I2, we have
q3k(z) = q1k(z) + q2k(z) for all k ∈ [m] and z ∈ [0, 1].

Since x ̸= y and each of these vectors sums up to 1, there must exist an index k ∈ [m] such that
yk < xk. Because LADDER returns x for I1 and I2, this means that pj(xk) + qjk(xk) ≥ nj + 1 and
pj(yk) + qjk(yk) ≤ nj for j ∈ {1, 2}. Moreover, it holds that p3(yk) + q3k(yk) ≥ n3 +1 = n1 + n2 +1.
Since q3k(yk) = q1k(yk) + q2k(yk), we infer that

p3(yk) ≥ n1 + n2 + 1− q1k(yk)− q2k(yk) ≥ p1(yk) + p2(yk) + 1.

We will next show that

p3(z) ≥ p1(z) + p2(z)− 1 (2)

for all z ∈ [0, 1]. To this end, let z∗ ∈ [0, 1] be such that p3(z∗) = p3(yk) and p3(z∗ − ε) < p3(yk)
for all ε > 0, which means that z∗ ≤ yk. Since pj(z∗) ≤ pj(yk) for j ∈ [2], we have p3(z∗) ≥
p1(z∗) + p2(z∗) + 1. Furthermore, by definition of z∗, there must be a phantom at z∗ for I3.

Fix any z ∈ [0, 1]. Since we have shown that (2) holds for z = z∗, we may assume that z ̸= z∗. We
consider two cases.

Case 1: z < z∗. By definition of LADDER, we have p3(z) = p3(z∗) − ⌈(z∗ − z)n3⌉. On the other
hand, it holds that pj(z) ≤ pj(z∗) − ⌊(z∗ − z)nj⌋ for j ∈ [2], as there is at least one phantom in each
interval of the form [r, r+ 1

nj
] for any r. Combining these with the fact that p3(z∗) ≥ p1(z∗)+p2(z∗)+1,

we get

p3(z) = p3(z∗)− ⌈(z∗ − z)n3⌉
≥ p1(z∗) + p2(z∗) + 1− ⌈(z∗ − z)n3⌉
≥ p1(z) + p2(z) + 1 + ⌊(z∗ − z)n1⌋+ ⌊(z∗ − z)n2⌋ − ⌈(z∗ − z)n3⌉.

Hence, in order to establish (2), it suffices to show that ⌊(z∗−z)n1⌋+⌊(z∗−z)n2⌋−⌈(z∗−z)n3⌉ ≥
−2. To this end, we first recall that n3 = n1 + n2, so we need to show that ⌊(z∗ − z)n1⌋ + ⌊(z∗ −
z)n2⌋ − ⌈(z∗ − z)(n1 + n2)⌉ ≥ −2. If (z∗ − z)(n1 + n2) is an integer, we can simply drop the ceiling
function and infer that ⌊(z∗ − z)n1⌋ − (z∗ − z)n1 + ⌊(z∗ − z)n2⌋ − (z∗ − z)n2 ≥ −2. Suppose now
that (z∗ − z)(n1 + n2) is not an integer, so we have ⌈(z∗ − z)(n1 + n2)⌉ = ⌊(z∗ − z)(n1 + n2)⌋+ 1.
Thus, it remains to prove that ⌊(z∗ − z)n1⌋ + ⌊(z∗ − z)n2⌋ − ⌊(z∗ − z)(n1 + n2)⌋ ≥ −1. Letting
ε = (z∗ − z)(n1 + n2)− ⌊(z∗ − z)(n1 + n2)⌋ > 0, we have

⌊(z∗ − z)n1⌋+ ⌊(z∗ − z)n2⌋ − ⌊(z∗ − z)(n1 + n2)⌋
≥ (z∗ − z)n1 − 1 + (z∗ − z)n2 − 1− (z∗ − z)(n1 + n2) + ε > −2.

Since all terms in the first expression are integers, it holds that ⌊(z∗ − z)n1⌋ + ⌊(z∗ − z)n2⌋ − ⌊(z∗ −
z)(n1 + n2)⌋ ≥ −1, as desired.

Case 2: z > z∗. First, if p3(z) = n3 + 1 (i.e., all phantoms in I3 are at most z), then p3(z) ≥
p1(z)+ p2(z)− 1 holds because n3 = n1+n2, p1(z) ≤ n1+1, and p2(z) ≤ n2+1. Assume therefore
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that p3(z) < n3 + 1, which means that at least one phantom is above z. By definition of LADDER, we
have p3(z) = p3(z∗) + ⌊(z − z∗)n3⌋. On the other hand, it holds that pj(z) ≤ pj(z∗) + ⌈(z − z∗)nj⌉
for j ∈ [2]. Combining these with the fact that p3(z∗) ≥ p1(z∗) + p2(z∗) + 1, we get

p3(z) = p3(z∗) + ⌊(z − z∗)n3⌋
≥ p1(z∗) + p2(z∗) + 1 + ⌊(z − z∗)n3⌋
≥ p1(z) + p2(z) + 1− ⌈(z − z∗)n1⌉ − ⌈(z − z∗)n2⌉+ ⌊(z − z∗)n3⌋.

Hence, in order to establish (2), it suffices to show that −⌈(z−z∗)n1⌉−⌈(z−z∗)n2⌉+⌊(z−z∗)n3⌋ ≥
−2. To this end, we recall that n3 = n1+n2. If (z− z∗)(n1+n2) is an integer, we can simply drop the
floor function and infer that −⌈(z− z∗)n1⌉+ (z− z∗)n1 −⌈(z− z∗)n2⌉+ (z− z∗)n2 ≥ −2. Suppose
now that (z−z∗)(n1+n2) is not an integer, so we have ⌊(z−z∗)(n1+n2)⌋ = ⌈(z−z∗)(n1+n2)⌉−1.
Thus, it remains to prove that −⌈(z − z∗)n1⌉ − ⌈(z − z∗)n2⌉ + ⌈(z − z∗)(n1 + n2)⌉ ≥ −1. Letting
ε = ⌈(z − z∗)(n1 + n2)⌉ − (z − z∗)(n1 + n2) > 0, we have

−⌈(z − z∗)n1⌉ − ⌈(z − z∗)n2⌉+ ⌈(z − z∗)(n1 + n2)⌉
≥ −(z − z∗)n1 − 1− (z − z∗)n2 − 1 + (z − z∗)(n1 + n2) + ε > −2.

Since all terms in the first expression are integers, it holds that −⌈(z − z∗)n1⌉ − ⌈(z − z∗)n2⌉+ ⌈(z −
z∗)(n1 + n2)⌉ ≥ −1, as desired.

It follows that (2) holds for both Cases 1 and 2.

We will now derive a contradiction by showing that yℓ ≤ xℓ for all ℓ ∈ [m]. Indeed, since yk < xk
by assumption, this implies that

∑
ℓ∈[m] yℓ <

∑
ℓ∈[m] xℓ, so one of our two output vectors is not a

feasible score vector, thereby yielding a contradiction. Fix an index ℓ ∈ [m]. Since LADDER returns the
score xℓ for candidate cℓ in I1 and I2, we have p1(xℓ)+q1ℓ (xℓ) ≥ n1+1 and p2(xℓ)+q2ℓ (xℓ) ≥ n2+1.
As q3ℓ (xℓ) = q1ℓ (xℓ) + q2ℓ (xℓ) and p3(xℓ) ≥ p1(xℓ) + p2(xℓ)− 1, we conclude that

p3(xℓ) + q3ℓ (xℓ) ≥ p1(xℓ) + q1ℓ (xℓ) + p2(xℓ) + q2ℓ (xℓ)− 1 ≥ n1 + n2 + 1 = n3 + 1.

Since yℓ is the smallest value y in the multiset {s3i,k : i ∈ N3} ∪ {p3i : i ∈ {0, . . . , n3}} such that
p3(y) + q3ℓ (y) ≥ n3 + 1, it follows that yℓ ≤ xℓ, as desired.

Claim 5: Finally, we show that LADDER satisfies participation. Assume for contradiction that this is
not true. Thus, there exist two instances I and I ′ with corresponding outcomes x and x′ such that I ′

can be obtained from I by adding a single agent i and di(x) < di(x
′). Let I ′′ be the instance derived

from I ′ by letting agent i report x. By reinforcement (Claim 4), LADDER returns x for I ′′. However,
this means that agent i can manipulate in I ′ by reporting x, thereby contradicting the strategyproofness
of LADDER.

Lastly, we proceed to the analysis of PU.

Theorem B.3. The following claims hold.

(1) PU satisfies range-respect (and therefore score-unanimity) if m ≤ 3 or n = 2 or (m,n) = (4, 4),
but fails score-unanimity (and therefore range-respect) if m ≥ 4 and n ≥ 3 and (m,n) ̸= (4, 4).
It satisfies Pareto optimality when m = 2 or n = 2, but fails to do so for all m ≥ 3 and n ≥ 3.

(2) PU satisfies score-representation when m = 2, but fails to do so for all m ≥ 3 and n ≥ 2.

(3) PU satisfies independence when m = 2, but fails to do so for all m ≥ 3 and n ≥ 2.

(4) PU satisfies reinforcement when m = 2, but fails to do so for all m ≥ 3.

(5) PU satisfies participation.
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Proof. We prove each of the claims separately. Further, just as for LADDER, we omit the proofs for
m = 2, as all corresponding claims follow from Proposition B.1 and the analysis of IM.

Claim 1: First, observe that if n = 2, one phantom of PU reaches 1 before the remaining two phantoms
move away from 0. When the first phantom reaches 1 (at time t = 1/2), the medians for the m candidates
are min(s1,1, s2,1),min(s1,2, s2,2), . . . ,min(s1,m, s2,m), which sum to at most

∑
j∈[m] s1,j = 1. Hence,

we may assume that normalization occurs at time t∗ ≥ 1/2. At time t∗, one phantom is at 1 while
another phantom is at 0, so for every j ∈ [m], we have min(s1,j , s2,j) ≤ xj ≤ max(s1,j , s2,j). Thus,
range-respect is satisfied. By Proposition 2.9, this further means that PU is Pareto optimal when n = 2.

Next, consider the case m = 3. Since there is always a phantom at 0, it holds that xj ≤ maxi∈N si,j
for all j ∈ [3]. If normalization occurs at time t∗ ≥ 1/2, then one phantom is at 1 and xj ≥ mini∈N si,j
for all j ∈ [3], so range-respect is satisfied. Thus, assume that normalization occurs at time t∗ < 1/2, and
suppose for contradiction that xj < mini∈N si,j for some j ∈ [3]. Without loss of generality, let j = 1.
Note that ⌊n2 ⌋+1 phantoms remain at 0 for t∗ < 1/2, and recall that for each j ∈ [3], xj is the (n+1)-th
smallest value among the n+ 1 phantoms and the n agents’ scores for cj . Since (n+ 1)− (⌊n2 ⌋+ 1) =
⌈n2 ⌉, we have that xj is at most the ⌈n2 ⌉-th smallest value among s1,j , . . . , sn,j . This implies for each
j ∈ {2, 3} that at most ⌈n2 ⌉−1 agents i ∈ [n] satisfy si,j < xj . Since n−2(⌈n2 ⌉−1) = 2+n−2⌈n2 ⌉ ≥ 1,
there exists an index i∗ ∈ [n] such that x2 ≤ si∗,2 and x3 ≤ si∗,3. Moreover, since x1 < mini∈N si,1,
it holds that x1 < si∗,1. Putting these together yields x1 + x2 + x3 < si∗,1 + si∗,2 + si∗,3 = 1, a
contradiction. Hence, PU satisfies range-respect when m = 3.

The proof that PU satisfies range-respect when (m,n) = (4, 4) is similar. We assume that nor-
malization occurs at time t∗ < 1/2 and x1 < mini∈N si,1. For each j ∈ {2, 3, 4}, at most one index
i ∈ [4] has the property that si,j < xj . In particular, when t∗ < 1

2 , three phantoms are at 0, so there
exists an index i∗ ∈ [4] such that xj ≤ si∗,j for all j ∈ {2, 3, 4}. Since x1 < si∗,1, it follows that∑

j∈[4] xj <
∑

j∈[4] si∗,j = 1, a contradiction.
We now turn to score-unanimity and first show that PU fails this property whenever m ≥ 4, n ≥ 3,

and n ̸= 4. Consider the following instance I18, where all candidates cj with j ≥ 5 receive score 0
from all agents and can be ignored.

I18 si,1 si,2 si,3 si,4

i ∈ {1, . . . , ⌈n3 ⌉}
n−1
n

1
2n

1
2n 0

i ∈ {⌈n3 ⌉+ 1, . . . , ⌈2n3 ⌉} n−1
n

1
2n 0 1

2n

i ∈ {⌈2n3 ⌉+ 1, . . . , n} n−1
n 0 1

2n
1
2n

We claim that PU returns the vector (1− 3
2n ,

1
2n ,

1
2n ,

1
2n) for this instance, which violates score-unanimity

for c1. To see this, let t∗ = 1
2−

3
4n . First, it holds that f PU

k (t∗) ≤ f PU
n (t∗) = 1− 3

2n for all k ∈ {0, . . . , n},
so the median of the multiset {f PU

0 (t∗), . . . , f PU
n (t∗), s1,1, . . . , sn,1} is 1 − 3

2n . Next, because t∗ < 1
2 ,

there are ⌈n+1
2 ⌉ phantoms at 0. Moreover, for each j ∈ {2, 3, 4}, there are at most ⌈n3 ⌉ agents i with

si,j = 0. One can check that ⌈n+1
2 ⌉ + ⌈n3 ⌉ ≤ n for all n ≥ 3 with n ̸= 4. Now, observe that if k > n

2 ,
then k ≥ n

2 + 1
2 and consequently f PU

k (t∗) = 4t∗k
n − 2t∗ ≥ 4t∗(n/2+1/2)

n − 2t∗ = 2t∗

n . By definition
of t∗, we have 2t∗

n = 1
n − 3

2n2 ≥ 1
n − 1

2n = 1
2n . Hence, all phantoms f PU

k (t∗) with k > n
2 are at or above

the values submitted by the agents. It follows that xj = 1
2n for all j ∈ {2, 3, 4}.

Next, we show that PU also fails score-unanimity when m ≥ 5 and n = 4. Consider the following
instance I19, where all candidates cj with j ≥ 6 receive score 0 from all agents and can be ignored.
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I19 si,1 si,2 si,3 si,4 si,5

1 7
10

1
10

1
10

1
10 0

2 7
10

1
10

1
10 0 1

10

3 7
10

1
10 0 1

10
1
10

4 7
10 0 1

10
1
10

1
10

For this instance, score-unanimity requires that x1 = 7
10 . However, it can be verified that PU returns the

vector (35 ,
1
10 ,

1
10 ,

1
10 ,

1
10) at time t∗ = 3

10 .
Finally, since Pareto optimality is equivalent to range respect if n = 2 (Proposition 2.9), it remains

to show that PU fails Pareto optimality when m ≥ 3 and n ≥ 3. Consider the instance I1, which was
used in Theorem 3.1 to show that AVG fails Pareto optimality. Additional candidates receive score 0
from every agent.

I1 si,1 si,2 si,3

1 0 1
2

1
2

2 1
2

1
2 0

i ∈ {3, . . . , n} 0 0 1

We distinguish between the following three cases.

Case 1: n = 3. In this case, PU returns x = (19 ,
4
9 ,

4
9) at time t∗ = 2

3 . However, x is not Pareto
optimal, as every agent weakly prefers the vector y = ( 1

18 ,
1
2 ,

4
9) and agent 1 strictly prefers y to x.

Case 2: n = 4. In this case, PU returns x = (16 ,
1
3 ,

1
2) at time t∗ = 5

6 . However, x is not Pareto
optimal, as every agent weakly prefers the vector y = (0, 12 ,

1
2) and agent 1 strictly prefers y to x.

Case 3: n ≥ 5. We claim that PU returns x = ( 1n ·
4
5 ,

2
n ·

4
5 , 1−

3
n ·

4
5) at time t∗ = 9

10 . First, the median
for candidate c1 is f PU

1 (t∗) = 1
n · (2 · 9

10 − 1) = 1
n · 4

5 , because n− 1 agents report 0, f PU
0 (t∗) = 0, and

f PU
1 (t∗) < 1

2 . Next, for c2, the median is f PU
2 (t∗) = 2

n ·(2 ·
9
10−1) = 2

n ·
4
5 , because n−2 agents report 0

and f PU
2 (t∗) < 1

2 . Finally, for c3, the median is f PU
n−2(t

∗) = n−2
n · (3− 2 · 9

10)− 2 + 2 · 9
10 = 1− 3

n · 4
5 ,

because n− 2 agents report 1, f PU
n−2(t

∗) < f PU
n−1(t

∗) < f PU
n (t∗), and f PU

n−2(t
∗) > 1

2 . Since the medians
sum up to 1, it follows that PU indeed returns x. However, x is not Pareto optimal, as every agent
weakly prefers y = (0, 3

n · 4
5 , 1−

3
n · 4

5) and agent 1 strictly prefers y to x.

This completes the proof of Claim 1.

Claim 2: Next, we show that PU fails score-representation for all m ≥ 3 and n ≥ 2. Consider the
following instance I20, where all candidates cj with j ≥ 4 receive score 0 from all agents and can be
ignored.

I20 si,1 si,2 si,3

1 0 1
2

1
2

i ∈ {2, . . . , n} 1 0 0

We claim that PU returns x = (1− 4
3n ,

2
3n ,

2
3n). To see this, let t∗ = 5

6 . Because n− 1 agents report 1
for candidate c1, the median for this candidate is f PU

n−1(t
∗) = n−1

n · (3 − 2 · 5
6) − 2 + 2 · 5

6 = 1 − 4
3n .

Next, for both c2 and c3, because n− 1 agents report 0, the median is f1(t∗) = 1
n(2 ·

5
6 − 1) = 2

3n ; note
that f1(t∗) < 0.5 as n ≥ 2. Since the medians sum up to 1, it follows that PU indeed returns x. Now,
because 1− 4

3n < n−1
n = 1 · N (I20,c1,1)

n , score-representation is violated for c1.

42



Claim 3: For our third claim, we turn to independence. When m = 3, PU satisfies score-unanimity
(Claim 1) and anonymity [Freeman et al., 2021] for all n ≥ 2. Hence, it must fail independence in these
cases, as the average rule is the only rule that satisfies anonymity, score-unanimity, and independence
when m ≥ 3 and n ≥ 2 (Claim 1 of Theorem 7.1), and the average rule is different from PU in these
cases.12 Moreover, we can extend this conclusion to any m ≥ 4 by noting that PU is invariant under
adding candidates that receive score 0 from all agents.

Claim 4: We now show that PU fails reinforcement when m ≥ 3. Consider the following instances I21

and I22. As usual, all candidates cj with j ≥ 4 obtain score 0 from all agents and can thus be ignored.

I21 si,1 si,2 si,3

1 1 0 0

2 1 0 0

3 0 1 0

4 0 0 1

5 0 0 1

I22 si,1 si,2 si,3

1 1 0 0

2 0 1 0

3 1
2 0 1

2

4 1
2 0 1

2

5 0 1
2

1
2

Note that PU returns x = (25 ,
1
5 ,

2
5) for I21 due to single-minded proportionality. We claim that

PU also returns x for I22. To see this, let t∗ = 3
4 , which implies that the phantom locations are

{0, 1
10 ,

1
5 ,

2
5 ,

7
10 , 1}. Hence, the medians can be computed as follows:{

0, 0, 0,
1

10
,
1

5
,
2

5
,
1

2
,
1

2
,
7

10
, 1, 1

}
,{

0, 0, 0, 0,
1

10
,
1

5
,
2

5
,
1

2
,
7

10
, 1, 1

}
,{

0, 0, 0,
1

10
,
1

5
,
2

5
,
1

2
,
1

2
,
1

2
,
7

10
, 1

}
.

This shows that PU indeed returns x for I22.
Now, consider the instance I∗ that concatenates I21 and I22. Let t∗ = 23

26 , which implies that the
k-th phantom is at k

10 ·
10
13 = k

13 if k < 5 and k
10(3−

23
13)−2+ 23

13 = k
10 ·

16
13−

3
13 if k ≥ 5. More explicitly,

this means that the phantoms are at {0, 1
13 ,

2
13 ,

3
13 ,

4
13 ,

5
13 ,

66
130 ,

82
130 ,

98
130 ,

114
130 , 1}. Hence, PU returns the

outcome y = ( 5
13 ,

3
13 ,

5
13) for I∗, as witnessed by the following computation of the medians, where the

values reported by agents are gray and the phantom values are black:{
0, 0, 0, 0, 0, 0,

1

13
,
2

13
,
3

13
,
4

13
,
5

13
,
1

2
,
1

2
,
66

130
,
82

130
,
98

130
,
114

130
, 1, 1, 1, 1

}
,{

0, 0, 0, 0, 0, 0, 0, 0,
1

13
,
2

13
,
3

13
,
4

13
,
5

13
,
1

2
,
66

130
,
82

130
,
98

130
,
114

130
, 1, 1, 1

}
,{

0, 0, 0, 0, 0, 0,
1

13
,
2

13
,
3

13
,
4

13
,
5

13
,
1

2
,
1

2
,
1

2
,
66

130
,
82

130
,
98

130
,
114

130
, 1, 1, 1

}
.

Since y ̸= x, it follows that PU fails reinforcement.

Claim 5: Finally, to show that PU satisfies participation, we will make use of the following general
statement. For a moving phantoms rule F , we denote by fF

k,n(t) the position of the k-th phantom at
time t when there are n agents.

12For example, the average rule fails strategyproofness for all n ≥ 2 and m ≥ 2 (Claim 2 of Theorem 6.1), while PU
satisfies strategyproofness for all n,m [Freeman et al., 2021].
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Lemma B.4. Suppose that F is a moving phantoms rule such that fF
k−1,n(t) ≤ fF

k−1,n−1(t) ≤ fF
k,n(t)

for all n ≥ 2, k ∈ [n], and t ∈ [0, 1]. Then, F satisfies participation.

Proof. Consider any instance I with n−1 agents for some n ≥ 2, and let F (I) = x. We will show that
if we add an agent i′ who reports x to obtain an instance I ′, then F (I ′) = x as well. This suffices to
establish the participation of F . Indeed, if agent i′ instead reports some other vector y and the outcome
changes in such a way that di′(x) < di′(F (I ′)), then agent i′ can manipulate by reporting x in I ′, which
contradicts the fact that F is strategyproof [Freeman et al., 2021].

Next, let t be the time when x is returned for I. We claim that at the same time t, the outcome x is
also returned for I ′. Consider any r ∈ [m]. In the instance I, at time t, the number of phantoms that
are at most xr and the number of agents who report a score of at most xr for candidate cr sum up to at
least n. Now, at the same time t in I ′, the number of phantoms that are at most xr does not decrease
because fF

k−1,n(t) ≤ fF
k−1,n−1(t) for all k ∈ [n], and the number of agents who report a score of at

most xr increases by 1 due to agent i′. This means that the two quantities sum up to at least n+1 for I ′.
By similar arguments using the fact that fF

k−1,n−1(t) ≤ fF
k,n(t) for all k ∈ [n], the number of phantoms

that are at least xr and the number of agents who report a score of at least xr sum up to at least n + 1
for I ′. Hence, the median for candidate cr at time t remains xr, and therefore F (I ′) = x. ◁

It remains to show that PU satisfies the condition of Lemma B.4. We divide our analysis into two
cases depending on the value of t.

Case 1: t < 1
2 . First, if k−1

n−1 < 1
2 , then f PU

k−1,n−1(t) = 0 ≤ f PU
k,n(t) by the definition of PU. Since

k−1
n ≤ k−1

n−1 < 1
2 , it further follows that f PU

k−1,n(t) = 0 = f PU
k−1,n−1(t), so our desired inequality holds.

Next, assume that k−1
n−1 ≥ 1

2 , so f PU
k−1,n−1(t) = 4t(k−1)

n−1 − 2t. Since k
n ≥ k−1

n−1 ≥ 1
2 , we have

f PU
k,n(t) =

4tk
n −2t ≥ 4t(k−1)

n−1 −2t = f PU
k−1,n−1(t). Next, if k−1

n ≥ 1
2 , it holds that f PU

k−1,n(t) =
4t(k−1)

n −
2t ≤ 4t(k−1)

n−1 − 2t = f PU
k−1,n−1(t). On the other hand, if k−1

n < 1
2 , then f PU

k−1,n(t) = 0 ≤ f PU
k−1,n−1(t).

Case 2: t ≥ 1
2 . Assume first that k−1

n−1 < 1
2 , which means that f PU

k−1,n−1(t) = (k−1)(2t−1)
n−1 . Since

k−1
n ≤ k−1

n−1 < 1
2 , we have f PU

k−1,n(t) = (k−1)(2t−1)
n ≤ (k−1)(2t−1)

n−1 = f PU
k−1,n−1(t). Next, if k

n < 1
2 , it

holds that f PU
k,n(t) = k(2t−1)

n ≥ (k−1)(2t−1)
n−1 = f PU

k−1,n−1(t). On the other hand, if k
n ≥ 1

2 , then since
k−1
n−1 < 1

2 , it must be that k
n = 1

2 . Hence, we have f PU
k,n(t) = t− 1

2 ≥ (k−1)(2t−1)
n−1 = f PU

k−1,n−1(t).

Assume now that k−1
n−1 ≥ 1

2 , so f PU
k−1,n−1(t) =

(k−1)(3−2t)
n−1 − 2 + 2t. Since k

n ≥ k−1
n−1 ≥ 1

2 , we have

f PU
k,n(t) = k(3−2t)

n − 2 + 2t ≥ (k−1)(3−2t)
n−1 − 2 + 2t = f PU

k−1,n−1(t). Next, if k−1
n ≥ 1

2 , it holds that

f PU
k−1,n(t) =

(k−1)(3−2t)
n −2+2t ≤ (k−1)(3−2t)

n−1 −2+2t = f PU
k−1,n−1(t). On the other hand, if k−1

n < 1
2 ,

then since k−1
n−1 ≥ 1

2 , it must be that k−1
n−1 = 1

2 . Hence, we have f PU
k−1,n−1(t) = t − 1

2 ≥ (k−1)(2t−1)
n =

f PU
k−1,n(t).

In both cases, it holds that f PU
k−1,n(t) ≤ f PU

k−1,n−1(t) ≤ f PU
k,n(t), as desired.
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