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The metric distortion of a randomized social choice function (RSCF) quantifies its worst-case
approximation ratio to the optimal social cost when the voters’ costs for alternatives are given by
distances in a metric space. This notion has recently attracted significant attention as numerous
RSCFs that aim to minimize the metric distortion have been suggested. Since such tailored voting
rules have, however, little normative appeal other than their low metric distortion, we will study
the metric distortion of well-established RSCFs. Specifically, we first show that C1 maximal
lottery rules, a well-known class of RSCFs, have a metric distortion of 4, which is optimal within
the class of majoritarian RSCFs. Secondly, we conduct extensive computer experiments on
the metric distortion of RSCFs to obtain insights into their average-case performance. These
computer experiments are based on a new linear program for computing the metric distortion of
a lottery and reveal that the average-case metric distortion of some classical RSCFs is often only
slightly worse than that of RSCFs tailored to minimize the metric distortion. Finally, we also
analytically study the expected metric distortion of RSCFs for the impartial culture distribution.
Specifically, we show that, under this distribution, every reasonable RSCF has an expected
metric distortion close to 2 when the number of voters is large.

1. Introduction

An important challenge in multi-agent systems is collective decision-making: given the possibly conflicting
preferences of a group of agents over some alternatives, a joint decision has to be made. To address this
problem, researchers in the field of social choice theory try to identify desirable mechanisms to aggregate
the agents’ preferences. In more detail, social choice theory is mainly concerned with social choice functions
(SCFs) and randomized social choice functions (RSCFs), which formalize deterministic and randomized
voting rules: an SCF maps the voters’ preferences (expressed as linear rankings of the alternatives) to a
single winner, and an RSCF returns a probability distribution over the alternatives from which the final
winner will eventually be chosen (Arrow et al., 2011; Brandt et al., 2016).

In an attempt to quantitatively measure the quality of SCFs and RSCFs, Procaccia and Rosenschein
(2006) introduced the distortion of voting rules. The idea of this notion is that voters have latent cardinal
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utilities over the alternatives and that voting rules should try to select alternatives with high social welfare.
However, (R)SCFs do not have access to the voters’ utilities, and the distortion of a voting rule thus
quantifies the worst-case ratio between the (expected) social welfare of the selected alternative and that
of the optimal alternative. A prominent variant of this problem has been suggested by Anshelevich et al.
(2015): in the metric distortion setting, voters and alternatives are located in a metric space and the distance
between a voter and an alternative specifies the cost incurred to a voter when an alternative is elected.
Voting rules should then try to select an alternative with low social cost but, since voters only report ordinal
preferences, they can only approximate the optimal social cost. The metric distortion of an SCF (resp.
RSCF) is hence the worst-case ratio between the (expected) social cost of the selected alternative and of
the optimal alternative, where the worst-case is taken over all preference profiles and all metric spaces that
are consistent with the given profile.

The metric distortion of SCFs and RSCFs has recently attained significant attention (see, e.g., Anshelevich
et al., 2021). In particular, after Anshelevich et al. (2015) and Anshelevich and Postl (2017) have shown
that no SCF (resp. RSCF) has a metric distortion of less than 3 (resp. 2), numerous authors tried to find
voting rules with minimal metric distortion (e.g., Anshelevich et al., 2018; Kempe, 2020; Kizilkaya and
Kempe, 2022, 2023; Charikar et al., 2024). However, many of the suggested voting rules are specifically
tailored to minimize the metric distortion and have otherwise little normative appeal. For example, the
recently proposed Plurality-Veto rule (Kizilkaya and Kempe, 2022) is not even anonymous and its latest
variant called Simultaneous-Veto (Kizilkaya and Kempe, 2023) fails Pareto-optimality. We thus find it
noteworthy that some well-established RSCFs also have a low metric distortion. For instance, the uniform
random dictatorship and C2 maximal lottery (C2ML) rules, two of the most prominent RSCFs in the
literature, both have a metric distortion of 3 (Feldman et al., 2016; Anshelevich and Postl, 2017; Charikar
et al., 2024). Since such established RSCFs satisfy numerous desirable properties, we will study their metric
distortion in more detail, even though voting rules with lower metric distortion are known.

Our Contribution. The goal of this paper is to enhance the understanding of the metric distortion of
established RSCFs. We will contribute to this end in three ways. Firstly, we investigate the metric distortion
of C1 maximal lottery (C1ML) rules, a class of RSCFs that is well-known for being robust to small changes
in the voters’ preferences (Laffond et al., 1993; Hoang, 2017; Brandl et al., 2022). C1ML rules intuitively
choose randomized Condorcet winners: these rules return a lottery p such that, for every lottery q, it is
at least as likely that a majority of the voters prefers an outcome drawn from p to an outcome drawn
from q than vice versa. As our first result, we show that every C1ML rule has a metric distortion of at
most 4 and give a lower bound on the metric distortion of all majoritarian RSCFs (which only depend on
the majority relation) that converges to 4 as the number of alternatives increases. Since C1ML rules are
majoritarian, this proves that they minimize the metric distortion within the class of majoritarian RSCFs
when the number of alternatives is unbounded.

Secondly, we conduct extensive computer experiments on the metric distortion of five RSCFs: the uniform
random dictatorship, C1 and C2 maximal lottery rules, a randomized variant of the Plurality-Veto rule
(Kizilkaya and Kempe, 2022), and the CRWW rules suggested by Charikar et al. (2024), which have the best
currently known metric distortion. In more detail, we sample preference profiles from numerous distributions,
compute the lotteries chosen by our RSCFs, and then compute the worst-case metric distortion for the
given lotteries and profiles. Moreover, we conduct an analogous experiment also with real-world data taken
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Table 1: Overview of the best known upper and lower bounds on the metric distortion in various classes of
voting rules. Each row together with the labels “RSCF” and “SCF” determines a class of voting
rules. The columns labeled “LB” and “UB” show the best known lower and upper bounds for the
metric distortion of rules within the given class when there is an unbounded number of alternatives.
The bold numbers are proven in this paper.

RSCF SCF
LB UB LB UB

All 2.112 2.753 3 3

Tops-only 3 3 ∞ ∞
Pairwise 3 3 3 2 +

√
5

Majoritarian 4 4 5 5

from PrefLib (Mattei and Walsh, 2013). Our simulations show that the average metric distortion of all
RSCFs is rather similar and significantly better than their worst-case guarantees. In particular, for many
“structured” distributions C1ML and C2ML rules are only slightly worse than CRWW rules, which typically
have the best metric distortion in our experiments. In light of their normative appeal, this gives a strong
argument for using a C1ML or C2ML rule instead of an RSCF designed to minimize the metric distortion.

Our computer experiments rely on a new linear program for computing the metric distortion of a lottery
for a given profile, which we believe to be of independent interest. Specifically, our LP has only O(nm2)
constraints, where n is the number of voters and m the number of alternatives, and thus allows us to
compute the metric distortion of a lottery even for large profiles.

Finally, we complement our simulations with an analytical study of the expected metric distortion of
RSCFs when preference profiles are sampled from the impartial culture distribution. For this setting, we
show that the expected metric distortion of every reasonable RSCF converges to a value between 2 and
2 + 1

m−1 (where m is the number of alternatives) when the number of voters goes to infinity. This result
aligns with our simulations for the impartial culture model and shows that, at least under the simplistic
impartial culture distribution, the choice of the voting rule has surprisingly little effect on the expected
metric distortion.

Related Work. We will next review the most relevant results on the metric distortion of voting rules
and refer to the survey by Anshelevich et al. (2021) for more details. An overview of the upper and lower
bounds for the metric distortion of various classes of voting rules is given in Table 1. The study of the
metric distortion of deterministic SCFs was initiated by Anshelevich et al. (2015) who have, e.g., shown
that no SCF has a metric distortion of less than 3. Inspired by this work, numerous researchers tried to find
voting rules with a metric distortion of 3 (Goel et al., 2017; Skowron and Elkind, 2017; Anshelevich et al.,
2018; Anagnostides et al., 2022), but it was only in a recent line of work that such SCFs have been designed
(Munagala and Wang, 2019; Kempe, 2020; Gkatzelis et al., 2020; Kizilkaya and Kempe, 2022, 2023). In
particular, these works culminated in the Plurality-Veto rule, a simple SCF with a metric distortion of 3
(Kizilkaya and Kempe, 2022). Interestingly, Kizilkaya and Kempe (2023) recently also aimed to design a
normatively more appealing SCF with optimal metric distortion.
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As an alternative approach to minimize the metric distortion, researchers also studied RSCFs. In
particular, Anshelevich and Postl (2017) have shown that no RSCF has a metric distortion of less than 2
and that the uniform random dictatorship has a metric distortion of 3. Moreover, Gross et al. (2017) have
proven that all tops-only RSCFs (i.e., RSCFs that can only access the voters’ favorite alternatives) have a
metric distortion of at least 3− 2

m when there are m alternatives. Similarly, Charikar et al. (2024) have
shown that C2 maximal lottery rules have a metric distortion of 3 and it is known that all pairwise RSCFs
(i.e., RSCFs that only depend on the numbers of voters that prefer x to y for all alternatives x, y) have a
metric distortion of at least 3− 2

m (Goel et al., 2017). Thus, when the number of alternatives is unbounded,
the uniform random dictatorship minimizes the metric distortion within the class of tops-only RSCFs and
C2 maximal lottery rules within the class of pairwise RSCFs. Moreover, several RSCFs have been designed
with the goal to minimize the metric distortion (Gross et al., 2017; Fain et al., 2019; Gkatzelis et al., 2020),
but none of them guarantees a metric distortion of less than 3. It was hence only recently that both the
upper and lower bound of the metric distortion of RSCFs has been improved: Charikar and Ramakrishnan
(2022) have shown that every RSCF has a metric distortion of at least 2.112 and Charikar et al. (2024)
designed the CRWW rules with a metric distortion of at most 2.753.

Finally, our work is related to several papers (Cheng et al., 2017, 2018; Gonczarowski et al., 2023;
Caragiannis and Fehers, 2024) that analyze the expected distortion of voting rules when the voters’ utilities
are drawn from a distribution. By contrast, we study the expected metric distortion of voting rules for
the worst-case metrics of randomly drawn profiles, i.e., we consider realistic profiles without imposing any
additional structure on the voters’ utilities. Furthermore, we note that Ebadian et al. (2024) suggested an
improved linear program for computing the non-metric distortion of voting rules, which can be seen as a
mathematically unrelated analog of our new linear program for computing the metric distortion of RSCFs.

2. Model

Let Vn = {v1, . . . , vn} denote a finite set of n ≥ 1 voters and Xm = {x1, . . . , xm} a finite set of m ≥ 1
alternatives. We suppose that every voter v ∈ Vn reports a preference relation ≻v, which is formally a
complete, transitive, and anti-symmetric binary relation over Xm. The set of all preference relations over
Xm is denoted by R(Xm). A preference profile R is the collection of the preference relations of all voters
in Vn and the set of all preference profiles over an electorate Vn and a set of alternatives Xm is given by
R(Xm)Vn . In this paper, we will allow for both varying sets of voters and alternatives. The set of all
preference profiles is hence given by R∗ =

⋃
n,m∈NR(Xm)Vn . Moreover, R∗

m is the set of all profiles on m

alternatives, i.e., R∗
m =

⋃
n∈NR(Xm)Vn . Given a profile R, we will denote by VR and XR the sets of voters

and alternatives that are present in the profile R, and by nR and mR the sizes of these sets.
Next, we introduce additional notation for preference profiles. In particular, we define tR(x) = |{v ∈

NR : ∀y ∈ XR \ {x} : x ≻v y}| as the number of voters that top-rank alternative x in the profile R.
Furthermore, we let the support nxy(R) = |{v ∈ VR : x ≻v y}| for x against y denote the number of voters
who prefer x to y in R. Finally, the majority relation ≿R of a profile R is defined by x ≿R y if and only
if nxy(R) ≥ nyx(R). That is, x ≿R y if at least as many voters prefer x to y than vice versa. Following
the literature, ≻R denotes the strict part of ≿R (i.e., x ≻R y iff x ≿R y and not y ≿R x) and ∼R the
indifference part (i.e., x ∼R y iff x ≿R y and y ≿R x).
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2.1. Randomized Social Choice Functions

The study objects of this paper are randomized social choice functions which are voting rules that may
use chance to determine the winner of the election. To formalize this, we define lotteries as probability
distributions over the set of alternatives XR: a lottery is a function p : XR → [0, 1] such that

∑
x∈XR

p(x) = 1.
We furthermore denote by ∆(XR) the set of all lotteries over XR. A randomized social choice function
(RSCF) f is then a function that maps every preference profile R ∈ R∗ to a lottery p ∈ ∆(XR). We denote
by f(R, x) the probability that f assigns to alternative x in the profile R and next introduce five (classes
of) RSCFs:

Uniform random dictatorship. The uniform random dictatorship fRD picks a voter v ∈ VR uniformly at
random and implements his favorite alternative as the winner of the election. More formally, the probability
that an alternative x is selected in a profile R by the uniform random dictatorship is fRD(R, x) = tR(x)

nR
.

Randomized Plurality-Veto. Kizilkaya and Kempe (2023) suggested the Plurality-Veto rule as a deter-
ministic SCF with the optimal metric distortion of 3. For this rule, we first fix a sequence of the voters
(v1, . . . , vn) and assign a score s(x) to each alternative that is initially equal to tR(x). Then, we iterate
through the voters according to the given sequence, ask each voter for his worst alternative with positive
score, and reduce the score of this alternative by 1. Finally, the winner of this rule is the last alternative
with positive score. Since the winner of Plurality-Veto rule depends on the order over the voters, we denote
by PV (R) the set of alternatives that can be chosen for some order. Furthermore, we define the randomized
Plurality-Veto rule fRPV as the RSCF that picks an alternative from PV (R) uniformly at random. The set
PV (R) and hence fRPV can be efficiently computed by solving m matching problems Kizilkaya and Kempe
(2022, 2023).

C2ML rules. C2 maximal lottery (C2ML) rules, which have been suggested by Fishburn (1984) and
recently promoted by, e.g., Brandl et al. (2016), compute a randomized Condorcet winner: these rules select
a lottery p such that, for all lotteries q, the expected number of voters that prefer the outcome chosen
from p to the outcome chosen from q is at least as large as the expected number of voters that prefer the
outcome chosen from q to the outcome chosen from p. To formalize this, we extend the support nxy(R) to
lotteries p, q by defining npq(R) =

∑
x,y∈A p(x)q(y)nxy(R). Then, the set of C2 maximal lotteries is given

by C2ML(R) = {p ∈ ∆(XR) : ∀q ∈ ∆(XR) : npq(R) ≥ nqp(R)}. The set of C2 maximal lotteries is always
non-empty by the minimax theorem and almost always a singleton (Laffond et al., 1997; Le Breton, 2005).
Finally, an RSCF is a C2ML rule if f(R) ∈ C2ML(R) for every profile R ∈ R∗.

C1ML rules. C1 maximal lottery (C1ML) rules, which go back to Fishburn (1984), also choose a randomized
Condorcet winner but in a different sense: C1ML rules select a lottery p such that, for all lotteries q, it is
at least as likely that a majority of the voters prefers the outcome chosen from p to the outcome chosen
from q than vice versa. To formalize this, we extend the majority relation to lotteries p, q by defining that
p ≿R q if and only if

∑
x,y∈A : x≻Ry p(x)q(y) ≥

∑
x,y∈A : x≻Ry p(y)q(x). The set of C1 maximal lotteries is

then C1ML(R) = {p ∈ ∆(XR) : ∀q ∈ ∆(XR) : p ≿R q}. Just as for C2 maximal lotteries, this set is always
non-empty and almost always a singleton. In particular, if the number of voters is odd, there are unique C1
and C2 maximal lotteries. An RSCF is a C1ML rule if f(R) ∈ C1ML(R) for all profiles R ∈ R∗.
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CRWW rules. Finally, we introduce the RSCFs suggested by Charikar et al. (2024), which we refer to as
CRWW rules. As a subroutine, these rules rely on another RSCF called fβ−radius . To define this RSCF, we
say x β-covers y in a profile R for some β ∈ [0, 1] if nxy(R) ≥ βnR and nzx(R) ≥ βnR implies nzy(R) ≥ βnR

for all z ∈ XR. Moreover, we define Uβ(R) as the set of alternatives that are not β-covered in R and R|Uβ(R)

as the profile that arises from R by removing all alternatives not in Uβ(R). Then, fβ−radius computes
the uniform random dictatorship on R|Uβ(R), i.e., fβ−radius(R) = fRD(R|Uβ(R)). Based on this subroutine,
constants B = 0.876353, p = 1

1+
∫B
0.5

1
1−x2

dx
≈ 0.552327, and the distribution ρ(β) = p

(1−p)(1−β2)
on the

interval (12 , B), CRWW rules are defined as follows: with probability p, we execute a C2ML rule and with
probability 1− p, we sample a value β ∈ (0.5, B) from the distribution ρ(β) and return fβ−radius(R). Hence,
an RSCF f is a CRWW rule if there is a C2ML rule f ′ such that

f(R) = pf ′(R) + (1− p)

∫ B

0.5
ρ(β)fβ−radius(R)dβ.

The uniform random dictatorship fRD , C2ML rules, and C1ML rules are well-established in the literature.
For example, fRD is known to be strategyproof (Gibbard, 1977), whereas both C2ML rules and C1ML rules
satisfy, e.g., Condorcet-consistency and composition-consistency (Brandl et al., 2016). By contrast, the
randomized Plurality-Veto rule and the CRWW rules are designed to minimize the metric distortion and
only known to satisfy basic further axioms. Moreover, we note that the uniform random dictatorship fRD ,
C2ML rules, and C1ML rules belong to important classes of RSCFs: fRD is a tops-only RSCF as it only
accesses the voters’ favorite alternatives, C2ML rules are pairwise as they only access the supports nxy(R)
for all x, y ∈ XR, and C1ML rules are majoritarian as they only depend on the majority relation ≿R. In
more detail, an RSCF f is majoritarian if f(R) = f(R′) for all profiles R,R′ ∈ R∗ with ≿R = ≿R′ .

2.2. Metric Distortion

In order to assess the quality of RSCFs, we analyze their metric distortion. The idea of this approach is
that voters and alternatives are embedded in a metric space and that the distance between a voter v and
an alternative x specifies the cost that v experiences when x is selected. Following the utilitarian approach,
the optimal alternative is then the one that minimizes the total distance to all voters. However, since voters
only report ordinal preferences over the alternatives instead of their cardinal costs, we cannot determine the
best alternative. The goal of metric distortion is hence to select a lottery that approximates the optimal
social cost well for every metric space that is consistent with the voters’ preferences.

To formalize this, we call a function d : (VR ∪XR)
2 → R≥0 a metric if it satisfies for all x, y, z ∈ VR ∪XR

that i) d(x, x) = 0, ii) d(x, y) = d(y, x), and iii) d(x, z) ≤ d(x, y) + d(y, z). We note that some definitions
of metrics also require that d(x, y) > 0 if x ̸= y, but the literature on metric distortion typically omits this
condition since it does not affect the results. The distance d(v, x) states the cost incurred to voter v when
alternative x is selected. The social cost of an alternative x is thus sc(x, d) =

∑
v∈VR

d(v, x) and the social
cost of lottery p is sc(p, d) =

∑
x∈XR

p(x)sc(x, d). Finally, a metric d is consistent with a profile R if x ≻v y
implies d(v, x) ≤ d(v, y) for all voters v ∈ VR and alternatives x, y ∈ XR. We denote by D(R) the set of
metrics that are consistent with R.

Given a profile R, the goal of metric distortion is to find a lottery whose social cost is close to the optimal
social cost for all metrics that are consistent with R. We thus define the metric distortion of a lottery p

6



in a profile R as dist(p,R) = supd∈D(R)
sc(p,d)

minx∈XR
sc(x,d) . Note that minx∈XR

sc(x, d) might be 0; we hence

define 0
0 = 1 and z

0 = ∞ for z > 0. For the ease of presentation, we will use in our results that ∞ > x for
all x ∈ R and y+ z ·∞ = ∞ for all y ∈ R, z ∈ R>0. Next, the metric distortion dist(f) of an RSCF f is its
worst-case metric distortion over all possible profiles, i.e., dist(f) = supR∈R∗ dist(f(R), R). To allow for a
more fine-grained analysis, we further define distm(f) = supR∈R∗

m
dist(f(R), R) as the metric distortion of

f when only profiles on m alternatives are considered. We note that dist(f) = ∞ and distm(f) = ∞ if the
respective suprema are unbounded.

We recall here that the uniform random dictatorship fRD , the randomized Plurality-Veto rule fRPV ,
C2ML rules fC2ML, and CRWW rules fCRWW have a metric distortion of dist(fRD) = 3, dist(fRPV ) = 3,
dist(fC2ML) = 3, and dist(fCRWW ) ≤ 2.753, respectively. By contrast, the metric distortion of C1ML rules
is unknown.

3. Analysis of C1ML Rules

As our first contribution, we will show that C1ML rules have a metric distortion of 4 and that no other
majoritarian RSCF has a lower metric distortion when the number of alternatives is unbounded. Thus, our
results show that C1ML rules minimize the metric distortion among majoritarian RSCFs. Our analysis of the
C1ML rule is further motivated by the fact that maximal lottery rules have been repeatedly recommended
for practical usage (Brandl et al., 2016, 2022). All missing proofs can be found in the appendix.

To prove our results, we first show a strong relation between the metric distortion of majoritarian RSCFs
and distances in the majority relation. To this end, we define the majority distance md(x, y,≿R) as the
length of the shortest path from x to y in the majority relation ≿R. In particular, md(x, x,≿R) = 0,
md(x, y,≿R) = 1 if x ≿R y, and md(x, y,≿R) = ∞ if there is no path from x to y in ≿R. We extend this
notion also to lotteries p by defining md(p, y,≿R) =

∑
x∈XR

p(x)md(x, y,≿R) and note that md(p, y,≿R) =
∞ if and only if there is an alternative x with p(x) > 0 and md(x, y,≿R) = ∞.

Proposition 1. It holds for all majoritarian RSCFs f and preference profiles R on m ≥ 3 alternatives that

(1) dist(f(R), R) ≤ 1 + 2maxx∈XR
md(f(R), x,≿R).

(2) distm(f) ≥ 1 + 2maxx∈XR
md(f(R), x,≿R).

Proof sketch. For Claim (1), we first note that there is nothing to show if maxx∈XR
md(f(R), x,≿R) = ∞

and we hence suppose that md(f(R), x,≿R) < ∞ for all x ∈ XR. We then prove that sc(x, d) ≤
(1+2md(x, y,≿R))sc(y, d) for all x, y ∈ XR and d ∈ D(R) by an induction on the majority distance between

x and y. This insight implies Claim (1) as dist(f(R), R) = supd∈D(R)

∑
x∈XR

f(R,x)sc(x,d)

miny∈XR
sc(y,d) . For Claim (2), we

show that there is for every ϵ > 0 a preference profile Rϵ and a metric space d ∈ D(Rϵ) such that ≿Rϵ = ≿R

and sc(f(R),d)
miny∈XR

sc(y,d) ≥ 1+ 2maxx∈XR
md(f(R), x,≿R)− ϵ. Since f(Rϵ) = f(R) as f is majoritarian, we then

infer Claim (2) by letting ϵ go to 0.

Claims related to Proposition 1 have been shown by Anshelevich et al. (2018, Lemma 6) and Kempe
(2020, Corollary 5.1), but these results lack the lower bound given in (2). Based on our proposition, we will
next compute the metric distortion of C1ML rules. In particular, our subsequent theorem shows that C1ML
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rules have a metric distortion of at most 4 and that no majoritarian RSCF has a lower metric distortion if
the number of alternatives m is unbounded.

Theorem 1. The following claims are true:

(1) It holds for all C1ML rules f and m ≥ 3 that distm(f) ≤ 4 and distm(f) ≥ 4− (13)
⌊m−3

2
⌋.

(2) It holds for all majoritarian RSCFs f that distm(f) ≥ 4− 3
m if m ≥ 3 is odd and distm(f) ≥ 4− 3

m−1
if m ≥ 3 is even.

Proof. We will only prove Claim (1) here and give a proof sketch for Claim (2). The full proof of Claim (2)
is deferred to the appendix.

Claim (1), upper bound: Let f denote a C1ML rule, let R denote a profile, and define p = f(R).
It follows from a result by Dutta and Laslier (1999) that p(x) > 0 implies md(x, y,≿R) ≤ 2 for all
x, y ∈ XR. Based on this insight, we will show that md(p, z,≿R) ≤ 3

2 for all z ∈ XR as Claim (1) of
Proposition 1 then proves that dist(p,R) ≤ 4. We thus fix an alternative z ∈ XR and let q denote the
lottery with q(z) = 1. Further, we define X+ = {x ∈ XR : x ≻R z} and X− = {x ∈ XR : z ≻R x}.
By the definition of C1ML rules, it holds that p ≿R q, which implies that

∑
x∈X+ p(x) ≥ ∑

x∈X− p(x).
This means that

∑
x∈X− p(x) ≤ 1

2 . Next, it holds for all x ∈ XR with p(x) > 0 that md(x, z,≿R) = 1
if x ≿R z and md(x, z,≿R) = 2 if z ≻R x due to our previous observation. Hence, we infer that
md(p, z,≿R) ≤ ∑

x∈XR : x≿Rz p(x) + 2
∑

x∈XR : z≻Rx p(x) = 1 +
∑

x∈X− p(x) ≤ 3
2 . Finally, Claim (1) of

Proposition 1 shows that dist(p,R) ≤ 4.

Claim (1), lower bound: For proving our lower bound, we recall that C1ML rules are majoritarian and
that |C1ML(R)| = 1 if the majority relation of R is strict (Laffond et al., 1997). Moreover, by McGarvey’s
construction (McGarvey, 1953), there is for every complete binary relation ≿ on Xm a profile R with ≿R = ≿.
Due to Claim (2) of Proposition 1, we can hence show the lower bound by constructing a complete and anti-
symmetric binary relation ≿∗ for every Xm with m ≥ 3 such that maxx∈XR

md(p, x,≿∗) = 3
2 − 1

2 · (13)⌊
m−3

2
⌋,

where p is the unique C1 maximal lottery of a profile R with ≿R = ≿∗. We first suppose that m ≥ 3
is odd and consider the following relation ≿∗ on Xm: for all odd k < m and all j with k + 2 ≤ j ≤ m,
it holds that xk+1 ≻∗ xk, xk ≻∗ xj , and xj ≻∗ xk+1. It can be checked that the unique C1 maximal
lottery p for this relation is defined by p(xk) = p(xk+1) = (13)

k+1
2 for all odd k < m and p(xm) = (13)

m−1
2 .

This means that
∑

x∈Xo p(x) =
∑

x∈Xe p(xk) = 1
2 − 1

2p(xm) for the sets Xo = {x1, x3, . . . , xm−2} and
Xe = {x2, x4, . . . , xm−1}. Next, by definition of ≿∗, it holds for all odd k < m that md(xk, xm,≿∗) = 1
and md(xk+1, xm,≿∗) = 2. Hence, md(p, xm,≿∗) =

∑
x∈Xo p(x) + 2

∑
x∈Xe p(x) = 3

(
1
2 − 1

2p(xm)
)
=

3
2 − 1

2 · (13)
m−3

2 . Proposition 1 then shows that distm(f) ≥ 4 − (13)
m−3

2 . Finally, to extend this result to
even m, we add a new alternative to ≿∗ that loses all majority comparisons. Every C1ML rule will assign
probability 0 to this alternative and it does hence not affect our analysis.

Claim (2): In this proof sketch, we assume that m ≥ 3 is odd. To prove the theorem in this case, we will
again use Claim (2) of Proposition 1 and hence construct a profile R such that maxx∈XR

md(p, x,≿R) ≥
3
2 − 3

2m for every lottery p. Next, McGarvey’s theorem (McGarvey, 1953) allows us to focus on complete
binary relations on Xm. The theorem then follows by proving that maxx∈XR

md(p, x,≿) ≥ 3
2 − 3

2m for all
lotteries p and the “cyclic” relation ≿ given by xi ≻ xi+mk for all i∈{1, . . . ,m}, k∈{1, . . . , m−1

2 } (where
i+m k = i+ k if i+ k ≤ m and i+m k = i+ k −m else).
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Remark 1. The upper bound in Claim (1) of Theorem 1 is tight as there are C1ML rules f with dist(f) = 4.
To see this, consider the lottery p given by p(a) = p(c) = 1

2 and a profile R with XR = {a, b, c}, a ≻R b,
b ≻R c, and c ∼R a. Since p is C1 maximal in R and md(p, b,≿R) =

3
2 , Proposition 1 shows that dist(f) = 4

for all C1ML rules f with f(R) = p. By contrast, the lower bound for C1ML rules is not tight. It can be
shown that every C1ML rule has a metric distortion of at least 4− 3γm, where γm denotes the minimal
non-zero probability that a C1ML rule assigns to an alternative in a profile with m alternatives and an odd
number of voters. However, the probabilities γm are not well-understood (Fisher and Ryan, 1995), so we
cannot use them to improve our lower bound for C1ML rules.

Remark 2. Proposition 1 allows us to identify the majoritarian RSCF that minimizes distm(f) for a
fixed number of alternatives m: this RSCF f∗ chooses for each profile R a lottery p that minimizes
maxx∈XR

md(p, x,≿R). Based on a computer-aided approach, we have shown that distm(f∗) = 4− 3
m for

all odd m ≤ 9, which proves that Claim (2) of Theorem 1 is tight in these cases.

Remark 3. Proposition 1 recovers known bounds on the metric distortion of majoritarian SCFs. For
instance, this proposition implies that every alternative in the uncovered set has a metric distortion of 5
because the uncovered set is the set of alternatives that can reach every other alternative in at most two
steps. This result has been first shown by Anshelevich et al. (2018).

4. Simulations

As our second contribution, we conduct extensive computer experiments to gain insights into the average-case
metric distortion of the RSCFs in Section 2.1. To this end, we first derive a linear program that efficiently
computes the metric distortion of a lottery for a profile (Section 4.1), and then explain the setup and results
of our experiments (Sections 4.2 and 4.3). The code for our experiments is publicly available on Zenodo
(Frank and Lederer, 2025).

4.1. Computing the Metric Distortion

The main challenge for our experiments is to compute the metric distortion dist(p,R) for a given lottery p

and profile R. To this end, we note that it suffices to compute the term dist(p,R, x) = supd∈D(R)
sc(p,d)
sc(x,d)

for all alternatives x ∈ XR because dist(p,R) = maxx∈XR
dist(p,R, x). Moreover, we can assume that

sc(x, d) = 1 since the term sc(p,d)
sc(x,d) is invariant under scaling d. Hence, we only need to find for every

alternative x the metric dx that maximizes sc(p, dx) subject to dx ∈ D(R) and sc(x, dx) = 1. While this
can be done by linear programs that use the distances d(x, v) as variables and encode that d ∈ D(R)
and sc(x, d) = 1, this straightforward approach is too slow for our experiments as we need O((n+m)3)
constraints to formalize the triangle inequalities for metrics.

To derive a more efficient method to compute dist(p,R, x), we will use that the metric distortion of
a lottery p for a profile R can be computed by only considering the biased metrics of Charikar and
Ramakrishnan (2022). To define these metrics, we let ⪰v denote the relation given by x ⪰v y if and only if
x ≻v y or x = y for all x, y ∈ XR. Then, a metric d is biased for a profile R if there is an alternative x∗ ∈ XR

and a function t : XR → R≥0 such that (i) t(x∗) = 0, (ii) d(x∗, v) = 1
2 maxx,y∈XR : x⪰vy t(x)− t(y) for all
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v ∈ VR, and (iii) d(x, v) = d(x∗, v)+miny∈XR : x⪰vy t(y) for all v ∈ VR and all x ∈ XR \{x∗}. Unfortunately,
due to the maxima and minima in the definition of these metrics, we cannot directly use them to compute
dist(p,R). We thus adapt the idea of biased metrics to construct a linear program that efficiently computes
this value. In more detail, we will show that the following LP (called LP 1), which uses variables d(x, v)
and t(x) for x ∈ XR and v ∈ VR, computes dist(p,R, x∗) for every lottery p, profile R, and alternative x∗.

max
∑

x∈XR

p(x)
∑

v∈VR

d(x, v)

s.t. t(x∗) = 0

t(x) ≥ 0 ∀x∈XR

d(x∗, v) ≥ 1
2(t(x)− t(y)) ∀v∈VR, x, y∈XR : x ⪰v y

d(x, v) ≤ d(x∗, v) + t(y) ∀v∈VR, x, y∈XR : x ⪰v y

d(x, v) + d(x∗, v) ≥ t(x) ∀v∈VR, x∈XR∑
v∈VR

d(x∗, v) = 1

(LP 1)

Proposition 2. Fix a profile R, a lottery p, and an alternative x∗. If the optimal objective value o∗LP of
LP 1 is bounded, then dist(p,R, x∗) = o∗LP and otherwise dist(p,R, x∗) = ∞.

Proof sketch. Let R denote a profile, p a lottery, and x∗ an alternative. It can be checked that every biased
metric d together with its inducing function t satisfies the conditions of LP 1, so the optimal objective value
o∗LP of our LP is lower bounded by dist(p,R, x∗). Specifically, the constraints in the first four lines follow
directly from the definition of d and t, the fifth line follows by substituting the definitions of d(x, v) and
d(x∗, v), and the constraint that

∑
v∈VR

d(x∗, v) = 1 can be enforced by scaling d and t without affecting
dist(p,R, x∗). Conversely, to show that dist(p,R, x∗) ≥ o∗LP , we prove that every feasible solution of LP 1
with objective value oLP can be transformed into a metric d ∈ D(R) such that sc(p,d)

sc(x∗,d) ≥ oLP . We note
that this direction is independent of the work of Charikar et al. (2024) as we need to reason about our
constraints to turn a feasible solution of our LP into a metric.

Given a profile R on n voters and m alternatives, LP 1 has O(nm2) constraints and it is thus very fast
to solve this LP. For example, based on LP 1, we need in average roughly 20 seconds on a single core of
an Apple M1 Ultra chip to compute the metric distortion of a lottery for a profile with 201 voters and 15
alternatives.

4.2. Simulations with Synthetic Data

As our first computer experiment, we conduct extensive simulations based on synthetically generated
preference profiles. In more detail, we generate 1000 preference profiles on m alternatives and n voters for 14
distributions over preference profiles and all combinations of (m,n) ∈ {5, 10, 15}×{11, 21, . . . , 201}. For each
of the sampled preference profiles R, we then compute the lottery f(R) chosen by the five RSCFs discussed
in Section 2.1 and their respective metric distortion dist(f(R), R). Finally, for each m ∈ {5, 10, 15} and each
distribution, we plot the average metric distortion of each RSCF as a function depending on the number
of voters n. Due to space restrictions, we show the results of these simulations only for two exemplary
distributions, namely the impartial culture model and the 3-dimensional Euclidean cube model. The plots
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for the other distributions (the Mallow’s model, the Pólya-Eggenberg urn model, and the t-dimensional
Euclidean cube and ball models with various parameterizations) as well as further statics can be found in
the appendix. In particular, our experiments cover all major models used in the “map of elections” (Szufa
et al., 2020; Boehmer et al., 2021, 2024). We next define the impartial culture and the Euclidean cube
models.

Impartial Culture (IC) In this model, each voter is assigned a preference relation independently and
uniformly at random. Hence, for each voter v ∈ Vn and preference relation ≻ ∈ R(Xm), the probability
that ≻ is assigned to v is 1

m! .

t-Dimensional Euclidean Cube (tEC) In this model, we assign voters and alternatives independently
and uniformly at random to points in the t-dimensional cube [−1, 1]t. The voters’ preference relations
are then given by their distances to the alternatives: a voter v prefers alternative x to alternative y if
|pv − px|2 < |pv − py|2 where pv, px, and py denote the points of v, x, and y in the hypercube. In the main
body, we use this model with t = 3 dimensions.

The results of our simulations for these two models are shown in Figure 1. We first note that, in most
experiments, the measured variance is rather lower, with typical values lying between 0.05 to 0.01 (see the
appendix for details). Moreover, in all experiments, the average metric distortion of the considered RSCFs
is significantly smaller than their worst-case metric distortion, thus indicating that such worst-case bounds
are too pessimistic for more realistic profiles. In particular, the average metric distortion of all RSCFs is
usually in the interval [2, 2.5], which also shows that the choice of a particular rule has only limited effect.
This is especially striking when comparing C1ML and C2ML rules, which are almost indistinguishable in
our experiments even though the worst-case metric distortion is 3 for C2ML rules and 4 for C1ML rules.

Beyond these general observations, there are several interesting trends in our experiments that can be
observed for most of the distributions. We explain these trends for each RSCF individually.

CRWW rule In most of our simulations and especially when m ∈ {10, 15}, the CRWW rule fCRWW has
the lowest average metric distortion among the tested rules. In particular, for effectively all distributions and
all numbers of voters, the average metric distortion of this rule lies between 2 and 2.15, thus demonstrating
a strong resilience against the used sampling model. These results suggest that, when the metric distortion
is the central factor for deciding on the RSCF, we should use the CRWW rule as it has both the best
worst-case and average-case metric distortion.

Randomized Plurality-Veto The randomized Plurality-Veto rule fRPV has often a very low average metric
distortion if there are only m = 5 alternatives, but it becomes worse as m increases. For instance, in the
3-dimensional Euclidean cube model, it has for most values of n an average metric distortion of less than 2,
but its average metric distortion increases to over 2.2 when m = 15. By contrast, in the impartial culture
model, the average metric distortion of fRPV depends significantly on the number of voters and roughly
converges against 2 + 1

m−1 . We believe the reason for this is that, in our simulations, fRPV randomizes over
larger sets of alternatives when m increases. This is beneficial for the metric distortion if preference profiles
are sufficiently close to uniform, but detrimental if there is an alternative that every voter appreciates.
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Figure 1: Results of our simulations for the impartial culture and 3-dimensional Euclidean cube models.
For both models and m∈{5, 10, 15} alternatives, we plot the average metric distortion (y-axis) of
the uniform random dictatorship, the C2ML and C1ML rules, the randomized Plurality-Veto rule,
and the CRWW rule subject to the number of voters n∈{11, 21, . . . , 201} (x-axis).

Consequently, the randomized Plurality-Veto rule performs worse than, e.g., the C1ML and C2ML rules
when using the Euclidean Cube model and m ∈ {10, 15} alternatives.

Uniform random dictatorship The average metric distortion of the uniform random dictatorship fRD

becomes smaller as the number of voters increases when using distributions that are close to uniform. For
instance, for the impartial culture model and all m ∈ {5, 10, 15}, the average metric distortion of fRD

converges to a value close to 2 as the number of voters n increases. By contrast, if the voters’ preferences
are more structured (e.g., in the Euclidean cube model), the average metric distortion is largely independent
of the number of voters and significantly worse than that of the other rules. A possible explanation for this
is that fRD only considers the voters’ favorite alternatives and thus fails to identify strong compromise
alternatives. In particular, such strong alternatives are likely to exist for structured distributions, but
typically do not exist if n is large and the distribution over profiles is close to uniform.

C1ML and C2ML rules. The average metric distortion of C1ML and C2ML rules is rather high for the
impartial culture model with m = 5 (close to 2.25 when n ≥ 100), but it is close to that of the CRWW
rule for more structured distributions (e.g., the 3-dimensional Euclidean cube model). Moreover, for
most distributions, the average metric distortion of these rules decreases when the number of alternatives
increases. Our explanation for this is that C1ML and C2ML rules use very little randomization as they select
randomized Condorcet winners. This behavior results in a low metric distortion if there are alternatives
that severely beat all other alternatives in a pairwise comparison, but it is detrimental if all alternatives are
roughly equally good or if their is a Condorcet winner that only narrowly beats the other alternatives.
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Figure 2: Results of our simulations with the Spotify Daily dataset. Each data point presents the average
metric distortion of one of our RSCFs over 14 days (e.g., the first data point averages the metric
distortion from January 01 to January 14, the second one from January 15 to January 28, etc.).

4.3. Simulations with Real-world Data

We also conduct computer experiments on the average metric distortion of our RSCFs on real-world data
from PrefLib (Mattei and Walsh, 2013). In more detail, we use the Spotify Daily dataset provided by
Boehmer and Schaar (2023) for our experiments. This dataset contains the rankings of the 200 most listened
songs on Spotify for 53 countries and every day in 2017, and the rankings of each day form an election.
Since not every country ranks the same songs among their top-200, Boehmer and Schaar (2023) have
identified maximal complete subelections for each day, which typically contain between 40 and 50 voters
and around 20 alternatives. These maximal subelections are very well-suited for our computer experiments
because they contain a reasonable number of voters and alternatives and all voters rank all alternatives.
Due to these characteristics, we can directly compute our five RSCFs and their metric distortion on these
maximal subelections, i.e., we conduct our experiments on the real-world data without any modifications
other than those made by Boehmer and Schaar (2023). This also means that it suffices to compute the
metric distortion of our RSCFs for each subelection once since no randomization is used in the generation
of preference profiles.

The results of our experiments with the Spotify Daily dataset are shown in Figure 2, where we display
the average metric distortion of each RSCF in a biweekly rhythm, i.e., each data point is the average of
14 days. Additional statistics can again be found in the apendix. We note that the simulations on the
Spotify Daily dataset roughly agree with our computer experiments based on, e.g., the Euclidean models
or Mallow’s model (see the appendix for more details). In more detail, Figure 2 shows that the metric
distortion of the randomized Plurality-Veto and CRWW rules is typically only slightly better than that of
the C1ML and C2ML rules, whereas the uniform random dictatorship often performs significantly worse.
There are, however, two central differences between our simulations with synthetic data and the Spotify
Daily dataset. Firstly, in the first three month, there is often a very dominant alternative in the elections
from Spotify, which results in a very low metric distortion for all tested RSCFs but fRD . Such profiles
do typically not appear in our synthetic data, which may hint at the fact that our computer experiments
are still too pessimistic. However, after the first three month, this effect vanishes and our RSCFs take
similar values as in the simulation with synthetic data. Secondly, the randomized Plurality-Veto rule fRPV

performs surprisingly well on the real-world data, in particular in light of the large number of alternatives.
The reason for this may be that, while there are many alternatives, only few of them are first-ranked in the
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preference profiles and only such alternatives have a chance to win under fRPV .
To summarize our computer experiments with both synthetic and real-world data, we believe that they

firstly show that that tailored RSCFs, such as the CRWW rule and the randomized Plurality-Veto rule,
typically also have the smallest average-case metric distortion. However, especially when preference profiles
are sufficiently structured, C1ML and C2ML rules are only slightly worse, thus providing an argument in
favor of these rules. Lastly, our simulations show that the uniform random dictatorship is not suitable to
minimize the metric distortion in practice, especially when we expect strong alternatives to exist.

5. Theoretical Average-case Analysis

Lastly, we will analytically examine the average-case metric distortion of our RSCFs by calculating their
expected metric distortion for a randomly drawn profile. In particular, the results in this section can be seen
as a rigorous mathematical counterpart to the simulations in Section 4. For mathematical feasibility, we
will restrict our attention to the impartial culture model and write IC (m,n) for the respective probability
distribution over profiles with m alternatives and n voters. While the impartial culture model is somewhat
unrealistic, it is frequently analyzed as it is often seen as a good starting point for average-case analyses
(e.g., Gehrlein and Fishburn, 1976, 1978; Pazner and Wesley, 1978; Pritchard and Wilson, 2009; Boutilier
et al., 2015; Kavner and Xia, 2021).

As we show next, if the number of voters goes to infinity, the expected metric distortion of every RSCF
with bounded metric distortion converges to a value between 2 and 2 + 1

m−1 under the impartial culture
model. This means that the choice of the voting rule has only a small effect on the expected metric distortion
if there is a large number of voters and alternatives.

Theorem 2. Let m ≥ 3. It holds for every RSCF f with distm(f) < ∞ and z = lim infn→∞ PR∼IC(m,n)[∃x ∈
XR : f(R, x) = 0] that

(1) lim supn→∞ ER∼IC(m,n)[dist(f(R), R)] ≤ 2 + 1
m−1

(2) lim infn→∞ ER∼IC(m,n)[dist(f(R), R)] ≥ 2 + z
m−1 .

Proof sketch. The basic idea of this proof is that, as n grows larger, a profile drawn from IC(m,n) is with
high probability close to the profile R∗ where each preference relation is reported by the same amount of
voters. We thus start by analyzing the profile R∗ and show with the help of LP 1 that the metric distortion
of a lottery p on R∗ is 2+ 1

m−1 − m
m−1 ·minx∈Xm p(x). Next, we prove that the metric distortion of a lottery

p for a profile R that contains R∗ as a large subprofile can be bounded based on the metric distortion of p
for R∗. Based on these two insights, we then fix a number of voters n, set α = 1

3√n
, and define Tα as the set

of profiles for n voters such that each preference relation is reported by more than (1− α) n
m! voters. Using

the law of total probability, we derive that

E[dist(f(R), R)] = P[R ̸∈ Tα] · E[dist(f(R), R)|R ̸∈ Tα]

+ P[R ∈ Tα] · E[dist(f(R), R)|R ∈ Tα]

Finally, for our upper bound, we use standard concentration bounds to show that P[R ̸∈ Tα] goes to 0
as n increases. Since E[dist(f(R), R)|R ̸∈ Tα] ≤ distm(f) < ∞, it hence follows that E[dist(f(R), R)]
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converges to E[dist(f(R), R)|R ∈ Tα] when n goes to infinity, and using our previous insights, we can
bound this expectation by 2 + 1

m−1 . Similarly, for our lower bound, we use that E[dist(f(R), R)] ≥ P[R ∈
Tα] · E[dist(f(R), R)|R ∈ Tα] and derive a lower bound on E[dist(f(R), R)|R ∈ Tα].

Based on a similar approach as in Theorem 2, we will next precisely compute the expected metric
distortion of the uniform random dictatorship fRD and the randomized Plurality-Veto rule fRPV . In
particular, we will show that, in the limit, fRD has an optimal expected metric distortion of 2 under the
impartial culture model, whereas the expected metric distortion of fRPV is 2 + 1

m−1 .

Theorem 3. It holds for every m ≥ 3 that

(1) limn→∞ ER∼IC(m,n)[dist(fRD(R), R)] = 2.

(2) limn→∞ ER∼IC(m,n)[dist(fRPV (R), R)] = 2 + 1
m−1 .

Proof Sketch. For Claim (1), we show that fRD(R) returns with high probability a lottery close to the
uniform one when n is large and R is drawn from IC(m,n). From this insight, we then derive that
lim supn→∞ ER∼IC(m,n)[dist(f(R), R)] ≤ 2. Combined with the lower bound in Theorem 2, this proves
Claim (1). For the claim on fRPV , we prove that this rule only randomizes over all alternatives when
each alternative is top-ranked and bottom-ranked by the same number of voters. Since this happens with
probability 0 when n goes to infinity, we infer that lim infn→∞ PR∼IC(m,n)[∃x ∈ XR : fRPV (R, x) = 0] = 1,
and Claim (2) follows from Theorem 2.

Remark 4. We leave an analogous result to Theorem 3 for C1ML and C2ML rules open because completely
reversed preference relations cancel each other out for these RSCFs. Thus, a small part of the profile
may determine the outcome, which severely complicates the analysis of these rules. However, computer
experiments by Brandl et al. (2022) suggest that the probability PR∼IC(m,n)[∃x ∈ XR : f(R, x) = 0] is close
to 1 for C1ML and C2ML rules. Hence, Theorem 2 implies that the expected metric distortion of these
RSCFs under the IC model is close to 2 + 1

m−1 when n goes to ∞.

Remark 5. Theorem 2 shows that, under the impartial culture distribution, every deterministic SCF f
with distm(f) < ∞ has an expected metric distortion of 2 + 1

m−1 when n goes to ∞. This holds because
every SCF is an RSCF that always assigns probability 1 to a single alternative, so the value z in Theorem 2
is 1.

6. Conclusion

In this paper, we study the metric distortion of randomized social choice functions, with a particular focus on
well-established RSCFs such as the uniform random dictatorship, C1ML rules, and C2ML rules. Specifically,
we first show that every C1ML rule has a metric distortion of at most 4, and we give a lower bound on the
metric distortion of all majoritarian RSCFs that converges to 4 as m increases. This means that C1ML rules
minimize the metric distortion within the class of majoritarian RSCFs when the number of alternatives
is unbounded. Secondly, we conduct extensive computer experiments on the metric distortion of these
three classical RSCFs as well as two RSCFs designed to minimize the metric distortion. These experiments
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show that, while RSCFs designed to minimize the metric distortion have also the best average-case metric
distortion, C1ML and C2ML rules are often only slightly worse. Finally, we also conduct an analytical
average-case analysis for the impartial culture model and, surprisingly, derive that the exact choice of voting
rule has only a negligible influence on the expected metric distortion if the number of voters is large. In
summary, we believe that these results demonstrate that established RSCFs, such as C1ML and C2ML rules,
are also appealing when studied through the lens of metric distortion as they have a reasonable worst-case
metric distortion and their average-case metric distortion is only slightly worse than that of RSCFs that are
tailored to minimize the metric distortion.
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A. Additional Simulations

In this section, we will show additional simulation results and statistics for our simulations. In particular,
we conducted computer experiments for the following 5 standard models, for which we use the verified
implementation provided by Boehmer et al. (2024).

Impartial Culture (IC) In this model, each voter is assigned a preference relation independently and
uniformly at random. Hence, the probability to assign a preference relation → ↑ R(Xm) to a voter v is 1

m! .

t0.5Dimensional Euclidean Cube (tEC) In this model, we assign voters and alternatives independently
and uniformly at random to points in the t-dimensional cube [↓1, 1]t. The voters’ preference relations
are then given by their distances to the alternatives: a voter v prefers alternative x to alternative y if
|pv ↓ px|2 < |pv ↓ py|2 where pv, px, and py denote the points of v, x, and y in the t-dimensional cube. In
our experiments, we use this model with t ↑ {1, 3, 5, 15}. We note that, for t = 1, the preference profiles
generated from this model are single-peaked.

t-Dimensional Euclidean Ball (tEB) Analogous to the t-dimensional Euclidean cube model, we draw a point
for each voter and each alternative independently and uniformly at random, but now from the t-dimensional
ball {x ↑ Rt : |x|2 ↔ 1}. Each voter v again prefers alternative x to alternative y if |pv ↓ px|2 < |pv ↓ py|2
where pv, px, and py denote the points of v, x, and y. We use this model for t ↑ {3, 5, 15}.

Normalized Mallow’s Model (ωMM) Mallow’s model Mallows (1957) is classically parameterized by
a parameter ε ↑ [0, 1] and a preference relation →, and introduces a bias towards a common preference
relation. In more detail, for every voter v and every preference relation →→, the probability that voter
v is assigned →→ is ω|→\→↑|

Z (where Z =
∑

↑̂↓R(Xm) ε
|↑\↑̂| and → \ →→ = {(x, y) ↑ X2

m : x → y ↗ y →→ x}).
However, as observed by Boehmer et al. (2023), the impact of the parameter ε depends on the number of
alternatives since, e.g., a swap distance of 10 means that two rankings are completely inverse if there are
only 5 alternatives but the rankings would be considered rather similar if there are 15 alternatives. Following
the suggestion of Boehmer et al. (2023), we thus use the normalized Mallow’s model, which is parameterized
by the expected relative swap distance. In more detail, given a parameter ε and a preference relation
→↔, we let E↑↗ωMM(m)[swap(→,→↔)] denote the expected swap distance between →↔ and a ranking chosen
by Mallow’s model with parameter ε and →↔ as ground ranking. Then, the normalized Mallow’s model
for a value ω determines the value ε↔ such that E↑↗ω↓MM(m)[swap(→,→ ↘)] · 4

m(m↘1) = ω and generates
preference profile according to Mallow’s model with parameter ε↔. We use the normalized Mallow’s model
for the parameters ω ↑ {0.5, 0.7, 0.9} and the preference relation → = x1 → x2 → · · · → xm.

Pólya-Eggenberger Urn Model (ϑPE) The Pólya-Eggenberger urn model is parameterized by a parameter
ϑ ↑ [0, 1] and works as follows (Berg, 1985; McCabe-Dansted and Slinko, 2006): we start with a urn where
every preference relation is represented by a single ball. Then, we draw a ball uniformly at random, assign
the corresponding preference relation to a voter, and return the ball together with ϑm! copies back to the
urn. Hence, it gets more likely to draw the same preference relation again. This process is repeated until
each voter is assigned a preference relation. We use this model for ϑ ↑ {0.05, 0.15, 0.3}.
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For our computer experiments with these models, we use the same numbers as in the main body: for each
of the 14 distributions (which includes the di!erent parameterizations of the models) and each combination
of (m, n) ↑ {5, 10, 15} ≃ {11, 21, . . . , 201}, we sample 1000 preference profiles with m alternatives and n
voters, compute the lotteries chosen by our RSCFs and their metric distortion. In the subsequent plots,
we show the average metric distortion of the corresponding RSCF over the 1000 sample profiles for each
distribution and each number of alternatives m as a function of n. Moreover, to give a better understanding
of our data, we also show the maximal and minimal metric distortion of an RSCF measured for those 1000
profiles as well as the variance of the metric distortion. While the maximum and minimum are not robust to
outliers, they still allow for interesting observations as they show clear trends for many of our simulations.

We will subsequently discuss some additional observations of our computer experiments. Firstly, we note
that the uniform random dictatorship fRD has in most of our simulations a minimal metric distortion of
at least 2, i.e., this RSCF fails to provide a low metric distortion even if a metric distortion significantly
below 2 is possible (as witnessed by the minimal metric distortion of other RSCFs). Moreover, in all models
except for the impartial culture, the 1-dimensional Euclidean cube, and the Pólya-Eggenberger urn models,
it also has typically the largest (or close to the largest) maximal metric distortion of the measured rules.
This shows that, while fRD has a low metric distortion in the worst-case, it typically fails to actually find
lotteries with a low metric distortion on more realistic profiles. On the other hand, because of this high
minimal metric distortion, the variance of the metric distortion of fRD is typically the lowest.

Next, we will focus on some interesting e!ects for particular distributions. First, for the impartial
culture model, we note that not only the average metric distortion converges to some value in (or close to)
[2, 2 + 1

m↘1 ], but also the minimum and maximum metric distortion converge to values within this range as
n increases. This is well-explained by the proof of Theorem 2 because, as the number of voters increases, it
becomes more and more likely that all alternatives are equally good in a preference profile sampled from the
impartial culture distribution. However, it is somewhat surprising that these convergence e!ects already
take place for relatively small numbers of voters.

Next, we note that, in the 1-dimensional Euclidean cube model the average and maximum metric
distortion of C1ML and C2ML rules is surprisingly high when m = 5. To explain this, we note that this
model produces single-peaked preference profiles, so a Condorcet winner is guaranteed to exist and C1ML
and C2ML rules will always pick this alternative. However, it is likely that there is another alternative
that is only narrowly defeated by the Condorcet winner (i.e., the left or right neighbor of the Condorcet
winner with respect to the single-peaked axis), which is su"cient for the Condorcet winner to have a metric
distortion close to 3. We believe that this very well explains, e.g., the very smooth plot for the maximum
metric distortion of C1ML and C2ML in the 1-dimensional Euclidean cube model when m = 5. However, as
for all experiments with the Euclidean models, the metric distortion of C1ML and C2ML rules significantly
decreases as the number of alternatives increases. Finally, we note that, in the 1-dimensional Euclidean cube
model, the randomized Plurality-Veto rule performs best. Our explanation for this is that the randomized
Plurality-Veto rule randomizes over alternatives close to the Condorcet winner, which exactly avoids the
problem of C1ML and C2ML rules by randomizing over more alternatives. Lastly, the uniform random
dictatorship is performing bad in this model as it puts too much probability on undesirable alternatives.

By contrast, for all other Euclidean models, we note that both the numbers and the observations made in
the main body are still valid. That is, the number of dimensions and the choice between cube or ball has
little influence. Additionally, it should be mentioned that all rules but the uniform random dictatorship
obtain a very small minimum metric distortion in our samples, thus indicating that these rules manage
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to find good compromise alternatives in some of the preference profiles. Even more, both the maximum
and minimum metric distortion are largely independent of n for these models. Lastly, in all of experiments
with the Euclidean models, CRWW rules have a rather low maximum metric distortion (ranging between
2.2 and 2.4), thus demonstrating that this rule performs in general very well for Euclidean models. By
contrast, the maximum metric distortion of C1ML and C2ML rules behaves analogously to their average as
it decreases as the number of alternatives increases.

We next turn to our experiments for the (normalized) Mallow’s model, where the results heavily depend
on the chosen dispersion parameter ω. First, if ω is large (i.e., for ω = 0.9), the average metric distortion of
all our RSCFs but the randomized Plurality-Veto rule perform is similar to the one for the impartial culture
model. This is reasonable because, the larger the value ω, the closer the Mallow’s model becomes to the
impartial culture distribution. The surprising exception here is the randomized Plurality-Veto rule which
performs very well with ω = 0.9. In particular, this rule actually has a lower average metric distortion when
using the Mallow’s model with ω = 0.9 than with ω = 0.7. We explain this as follows: for both ! = 0.7
and ! = 0.9, randomized Plurality-Veto randomizes over relatively large sets of alternatives (in average
between 1

3m and 1
2m). This is beneficial if ! = 0.9 as these profile lack structure. By contrast, if ! = 0.7,

there is typically some strong candidates in the profile, and it is then detrimental to not put su"cient
probability on this candidate. Next, we note that, while the CRWW rule performs (close to) best in all
experiments with Mallow’s model. As last point, we observe that, unsurprisingly, if we choose the dispersion
parameter rather small (i.e., ω = 0.5), all rules except for the uniform random dictatorship typically choose
the top-ranked alternative of the base ranking, which results in a small average metric distortion. Based on
our experiments, we believe that, when the voters’ preferences can be modelled by Mallow’s model, C1ML
and C2ML rules are a rather desirable choice as their average metric distortion is very small.

Lastly, our observations for the Pólya-Eggenberger urn model also depend significantly on the chosen
parameter ϑ. In general, the trend for this model is that, as ϑ grows, the average metric distortion of all
rules but the uniform random dictatorship decreases. By contrast, the average metric distortion of the
uniform random dictatorship grows as ϑ increases. The reason for this should be that, as ϑ increases, it
becomes more likely that there is a strong compromise alternative, which all rules but the uniform random
dictatorship can identify. Moreover, we have also for this model (except for ϑ = 0.3) that the average metric
distortion of C1ML and C2ML rules decreases as m increases, whereas the average metric distortion of
the randomized Plurality-veto rule increases in m. However, we actually find here the maximum metric
distortion more interesting than the average. In particular, for all experiments with the Pólya-Eggenberge
urn model (and especially for ϑ = 0.3), we find for each RSCF some profile where its metric distortion
is close to its worst-case bound. We believe that this is due to the behavior of this model: when ϑ is
large, we e!ectively pick a few preference relations that will be reported by large groups of voters. For
instance, if these preference relations all contain an alternative in the second-place but disagree on the
first-ranked alternatives, the corresponding instance is similar to the worst-case instance for the uniform
random dictatorship. Hence, if the voters’ preferences can be described by the Pólya-Eggenberger urn
model, worst-case instances may arise in practice. Conversely, we sample in our simulations with this model
also profiles where all voters top-rank the same alternative and the metric distortion of all RSCFs is then 1.
Consequently, the variance for our experiments with the urn model is rather high (up to 0.15 for C1ML and
C2ML rules).
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A.1. Impartial Culture
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Figure 3: Results of our computer experiments for the impartial culture model. For each number of
alternatives m ↑ {5, 10, 15}, we present a plot showing the average, maximum, minimum, and variance of
the measured metric distortion of our five RSCFs in dependence of the number of voters.

A.2. Euclidean Cube Model with t = 1 Dimension
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Figure 4: Results of our computer experiments for the Euclidean cube model with t = 1 dimension. For
each number of alternatives m ↑ {5, 10, 15}, we present a plot showing the average, maximum, minimum,
and variance of the measured metric distortion of our five RSCFs in dependence of the number of voters.
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A.3. Euclidean Cube Model with t = 3 Dimension

11 51 101 151 201

2

2.1

2.2

2.3

m = 5, average
11 51 101 151 201

2.4

2.6

2.8

m = 5, max
11 51 101 151 201

1.4

1.6

1.8

2

m = 5, min
11 51 101 151 201

2

4

6

·10→2

RD
C1ML
C2ML

CRWW
RPV

m = 5, variance

11 51 101 151 201
2

2.2

2.4

m = 10, average
11 51 101 151 201

2.2

2.4

2.6

2.8

m = 10, max
11 51 101 151 201

1.4

1.6

1.8

2

2.2

m = 10, min
11 51 101 151 201

1

1.5

2

·10→2

m = 10, variance

11 51 101 151 201

2

2.2

2.4

m = 15, average
11 51 101 151 201

2.2

2.4

2.6

m = 15, max
11 51 101 151 201

1.6

1.8

2

2.2

m = 15, min
11 51 101 151 201

0.5

1

·10→2

m = 15, variance

Figure 5: Results of our computer experiments for the Euclidean cube model with t = 3 dimensions. For
each number of alternatives m ↑ {5, 10, 15}, we present a plot showing the average, maximum, minimum,
and variance of the measured metric distortion of our five RSCFs in dependence of the number of voters.

A.4. Euclidean Cube Model with t = 5 Dimensions
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Figure 6: Results of our computer experiments for the Euclidean cube model with t = 5 dimensions. For
each number of alternatives m ↑ {5, 10, 15}, we present a plot showing the average, maximum, minimum,
and variance of the measured metric distortion of our five RSCFs in dependence of the number of voters.
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A.5. Euclidean Cube Model with t = 15 Dimensions
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Figure 7: Results of our computer experiments for the Euclidean cube model with t = 15 dimensions. For
each number of alternatives m ↑ {5, 10, 15}, we present a plot showing the average, maximum, minimum,
and variance of the measured metric distortion of our five RSCFs in dependence of the number of voters.

A.6. Euclidean Ball Model with t = 3 Dimensions
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Figure 8: Results of our computer experiments for the Euclidean ball model with t = 3 dimensions. For
each number of alternatives m ↑ {5, 10, 15}, we present a plot showing the average, maximum, minimum,
and variance of the measured metric distortion of our five RSCFs in dependence of the number of voters.
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A.7. Euclidean Ball Model with t = 5 Dimensions
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Figure 9: Results of our computer experiments for the Euclidean ball model with t = 5 dimensions. For
each number of alternatives m ↑ {5, 10, 15}, we present a plot showing the average, maximum, minimum,
and variance of the measured metric distortion of our five RSCFs in dependence of the number of voters.

A.8. Euclidean Ball Model with t = 15 Dimensions
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Figure 10: Results of our computer experiments for the Euclidean ball model with t = 15 dimensions. For
each number of alternatives m ↑ {5, 10, 15}, we present a plot showing the average, maximum, minimum,
and variance of the measured metric distortion of our five RSCFs in dependence of the number of voters.
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A.9. Mallow’s Model with ω = 0.5
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Figure 11: Results of our computer experiments for the (normalized) Mallow’s model with ω = 0.5. For
each number of alternatives m ↑ {5, 10, 15}, we present a plot showing the average, maximum, minimum,
and variance of the measured metric distortion of our five RSCFs in dependence of the number of voters.

A.10. Mallow’s Model with ω = 0.7
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Figure 12: Results of our computer experiments for the (normalized) Mallow’s model with ω = 0.7. For
each number of alternatives m ↑ {5, 10, 15}, we present a plot showing the average, maximum, minimum,
and variance of the measured metric distortion of our five RSCFs in dependence of the number of voters.
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A.11. Mallow’s Model with ω = 0.9
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Figure 13: Results of our computer experiments for the (normalized) Mallow’s model with ω = 0.9. For
each number of alternatives m ↑ {5, 10, 15}, we present a plot showing the average, maximum, minimum,
and variance of the measured metric distortion of our five RSCFs in dependence of the number of voters.

A.12. Pólya-Eggenberger Urn Model with ε = 0.05
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Figure 14: Results of our computer experiments for the Pólya-Eggenberger urn model with ϑ = 0.05. For
each number of alternatives m ↑ {5, 10, 15}, we present a plot showing the average, maximum, minimum,
and variance of the measured metric distortion of our five RSCFs in dependence of the number of voters.
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A.13. Pólya-Eggenberger Urn Model with ε = 0.15
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Figure 15: Results of our computer experiments for the Pólya-Eggenberger urn model with ϑ = 0.15. For
each number of alternatives m ↑ {5, 10, 15}, we present a plot showing the average, maximum, minimum,
and variance of the measured metric distortion of our five RSCFs in dependence of the number of voters.

A.14. Pólya-Eggenberger Urn Model with ε = 0.3
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Figure 16: Results of our computer experiments for the Pólya-Eggenberger urn model with ϑ = 0.3. For
each number of alternatives m ↑ {5, 10, 15}, we present a plot showing the average, maximum, minimum,
and variance of the measured metric distortion of our five RSCFs in dependence of the number of voters.
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A.15. Spotify Daily
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Figure 17: Detailed Results of our computer experiments with the Spotify Daily dataset. Each data point
represents combines the outcome of 14 days for the given RSCF.
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B. Proofs from Section 3

In this section, we present the proofs omitted from Section 3. We start by showing Proposition 1.

Proposition 1. It holds for all majoritarian RSCFs f and preference profiles R on m ≥ 3 alternatives that

(1) dist(f(R), R) ≤ 1 + 2maxx∈XR
md(f(R), x,≿R).

(2) distm(f) ≥ 1 + 2maxx∈XR
md(f(R), x,≿R).

Proof. Let f denote a majoritarian RSCF, R an arbitrary profile, and ≿R the corresponding majority
relation. We will show the two claims of this proposition independently.

Proof of (1): Our first goal is to show that dist(f(R), R) ≤ 1 + 2maxx∈XR
md(f(R), x,≿R). To this

end, we first note that, if maxx∈XR
md(f(R), x,≿R) = ∞, there is nothing to show as dist(f(R), R) ≤

1+2maxx∈XR
md(f(R), x,≿R) = ∞ holds trivially in this case. We hence assume that md(f(R), x,≿R) < ∞

for all x ∈ XR, and we will show that sc(x, d) ≤ (1+2md(x, y,≿R))sc(y, d) for every metric d ∈ D(R) and all
alternatives x, y ∈ XR such that md(x, y,≿R) ̸= ∞. Since f(R, x) > 0 implies that maxy∈XR

md(x, y,≿R) <

∞, it then follows that
∑

x∈XR
f(R,x)sc(x,d)

sc(y,d) ≤
∑

x∈A f(R,x)(1+2md(x,y,≿R))sc(y,d)

sc(y,d) = 1 + 2md(f(R), y,≿R) for all
metrics d ∈ D(R), so dist(f(R), R) ≤ 1 + 2maxx∈XR

md(f(R), x,≿R).
To prove that sc(x, d) ≤ (1+2md(x, y,≿R))sc(y, d) for all alternatives x, y ∈ XR with md(x, y,≿R) ̸= ∞

and all metrics d ∈ D(R), we use an induction on the majority distance between x and y in ≿R. First,
if md(x, y,≿R) = 0, then it clearly holds that sc(x,d)

sc(y,d) = 1 as md(x, y,≿R) = 0 only holds if x = y.
Next, we assume for the induction hypothesis that there is some k ∈ N such that sc(x′, d) ≤ (1 +
2md(x′, y′,≿R))sc(y

′, d) for all metrics d ∈ D(R) and alternatives x′, y′ ∈ XR with md(x′, y′,≿R) ≤ k. For
the induction step, we consider two alternatives x, y ∈ XR with md(x, y,≿R) = k + 1 and an arbitrary
metric d ∈ D(R). Our goal is to show that sc(x, d) ≤ (1 + 2(k + 1))sc(y, d). To this end, let z denote the
successor of x on a shortest path from x to y in ≿R, which means that x ≿R z and md(z, y,≿R) = k. By
the induction hypothesis, we can thus conclude that sc(z, d) ≤ (1 + 2k)sc(y, d). Next, we partition the
voters v ∈ NR into the sets Nxz = {v ∈ NR : x ≻v z} and Nzx = {v ∈ NR : z ≻v x}. Since d ∈ D(R), it
follows for all voters v ∈ Nxz that d(v, x) ≤ d(v, z). Moreover, using the triangle inequality, we can show
the following inequality for the voters v ∈ Nzx, where v′ is a voter in Nxz.

d(v, x) ≤ d(v, y) + d(y, v′) + d(v′, x)

≤ d(v, y) + d(y, v′) + d(v′, z)

≤ d(v, y) + d(y, v′) + d(v′, y) + d(y, v) + d(v, z)

= 2d(v, y) + 2(v′, y) + d(v, z)

Finally, we observe that |Nxz| ≥ |Nzx| since x ≿R z, so there is an injective function s from Nzx to Nxz.
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Putting everything together, we infer the following inequality.
∑

v∈NR

d(v, x) =
∑

v∈Nxz

d(v, x) +
∑

v∈Nzx

d(v, x)

≤
∑

v∈Nxz

d(v, z) +
∑

v∈Nzx

2d(v, y) + 2d(s(v), y) + d(v, z)

≤
∑

v∈NR

d(v, z) + 2d(v, y)

= sc(z, d) + 2sc(y, d)

≤ (1 + 2(k + 1))sc(y, d)

The first inequality follows from our bounds on d(v, x) for v ∈ Nxz and v ∈ Nzx, the second one simply
reorganizes the terms and uses that s is an injective function, and the last inequality follows by the induction
hypothesis. This inequality proves the induction step, so it follows that sc(x, d) ≤ (1+2md(x, y,≿R))sc(y, d)
for all alternatives x, y ∈ XR with md(x, y,≿R) < ∞ and metrics d ∈ D(R). This completes the proof of
Claim (1).

Proof of (2): As the second point, we will show that distm(f) ≥ 1 + 2maxx∈XR
md(f(R), x,≿R).

To this end, we use a case distinction with respect to whether maxx∈XR
md(f(R), x,≿R) < ∞ or

maxx∈XR
md(f(R), x,≿R) = ∞.

Case 1: First, we suppose that md(f(R), x,≿R) < ∞ for every alternative x ∈ XR and show that
distm(f) ≥ 1 + 2maxx∈XR

md(f(R), x,≿R). For this, we fix an arbitrary alternative x∗ ∈ XR; we will
construct a family of profiles Rϵ (where ϵ is a parameter in (0, 1)) such that ≿R = ≿Rϵ for every ϵ ∈ (0, 1)
and limϵ→0 dist(f(R

ϵ), Rϵ) = 1 + 2md(f(R), x∗,≿R). To this end, let Dk = {x ∈ XR : md(x, x∗,≿R) = k}
denote the set of alternatives that has a majority distance of k to x∗. Moreover, we define D0 = {x∗} and
Dm = {y ∈ XR : md(y, x∗,≿R) = ∞} denotes the set of alternatives that have no path to x∗ in ≿R. We
note that x ≻R y for all x ∈ Dj , y ∈ Dj′ such that j + 2 ≤ j′ < m as otherwise, y would have a path
to x∗ of length j + 1 < j′ by going to x. Furthermore, x ≻R y for all x ∈ XR \Dm, y ∈ Dm as there is
a path from x to x∗ in ≿R, but no such path exists for y. Based on this observation, we construct the
following profile Rϵ for ϵ ∈ (0, 1), where Di ≻v Dj denotes that voter v prefers all alternatives in Di to all
alternatives in Dj :

1. There is a set of voters I1 such that |I1| = ⌈1ϵ ⌉ and D0 ≻v D2 ≻v D1 ≻v D4 ≻v D3 ≻v D6 ≻v D5 ≻v

· · · ≻v Dm for each v ∈ I1. The alternatives within each set Di are ordered lexicographically.

2. There is a set of voters I2 such that |I2| = ⌈1ϵ ⌉ and D1 ≻i D
0 ≻v D3 ≻v D2 ≻v D5 ≻v D4 ≻v · · · ≻v

Dm for each v ∈ I2. The alternatives within each set Di are ordered inverse lexicographically.

3. For each pair of alternatives x, y such that x ≻R y and x ∈ Dj , y ∈ Dj′ for |j − j′| ≤ 1, we add two
voters v, v′ with preferences x ≻v y ≻v z1 ≻v · · · ≻v zm−2 and zm−2 ≻v′ · · · ≻v′ z1 ≻v′ x ≻v′ y. The
set of these voters is called I3 and we note that |I3| ≤ m(m− 1).

We first note that the profile Rϵ has indeed the same majority relation as R: the voters in I1 and I2
together enforce that a majority of voters prefers every alternative in Dj to every alternative in Dj′ for all
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j ∈ N, j′ ∈ N ∪ {∞} with j + 2 ≤ j′ and cancel each other out with respect to the majority comparison
between every other pair of alternatives. Hence, the voters in I3 set these majority comparisons in the same
way as in ≿R, so ≿R = ≿Rϵ .

Next, we define the following (partial) metric d that is consistent with Rϵ:

d(v, x) =





2⌈k2⌉ if v ∈ I1 and x ∈ Dk

1 + 2⌊k2⌋ if v ∈ I2 and x ∈ Dk

m if v ∈ I3

It can be checked that d can be extended to a full metric on VRϵ ∪XRϵ . For instance, we may assume
that the voters and alternatives are placed in a two-dimensional space such that every alternative x ∈ Dk

lies at (−k, 0) if k is even and at (k+ 1, 0) if k is odd. Moreover, the voters i ∈ I1 all lie at (0, 0), the voters
i ∈ I2 lie at (1, 0), and the voters i ∈ I3 lie at (0,m). Then, d corresponds to the | · |∞ norm, which is
known to be a metric.

Finally, we can compute the social cost of our alternatives and the distortion of f . To this end, we note
that sc(y, d) = 2⌈k2⌉|I1|+ (1 + 2⌊k2⌋)|I2|+m|I3| = (2k + 1)⌈1ϵ ⌉+m|I3| for every alternative y ∈ Dk and
every k. In particular, this means that sc(x∗, d) = ⌈1ϵ ⌉+m|I3|. Moreover, it holds that f(Rϵ) = f(R) since
≿R = ≿Rϵ and f is majoritarian. Next, because md(f(R), x,≿R) < ∞ for all x ∈ XR, we can compute for
every ϵ ∈ (0, 1) that

distm(f) ≥ dist(f(Rϵ), Rϵ)

≥

∑
y∈XR

f(R, y)(1 + 2md(y, x,≿R))⌈1ϵ ⌉+m|I3|

⌈1ϵ ⌉+m|I3|

=
(1 + 2md(f(R), x,≿R))⌈1ϵ ⌉+m|I3|

⌈1ϵ ⌉+m|I3|
.

It is easy to see that, when ϵ goes to 0, the right side converges to 1 + 2md(f(R), x,≿R) as m|I3| is a
constant. Finally, since x is chosen arbitrarily, we thus infer that distm ≥ 1 + 2maxx∈XR

md(f(R), x,≿R).
Case 2: As the second case, we assume that maxx∈XR

md(f(R), x,≿R) = ∞ and we will show that
distm(f) = ∞, too. To this end, we let x denote an alternative such that md(f(R), x,≿R) = ∞ and we
define the sets A = {y ∈ XR : md(y, x,≿R) < ∞} and B = {y ∈ XR : md(y, x,≿R = ∞}. By the definition
of the sets A and B, it holds that y ≻R z for all y ∈ A and z ∈ B. We will next use this observation to
construct a profile R′ with ≿R = ≿R′ such that f has unbounded distortion in R′. To this end, we use
a variant of McGarvey’s construction McGarvey (1953): for all pairs of alternatives y, z ∈ A or y, z ∈ B
with y ≻R z, we add two voters who i) both prefer all alternatives in A to all alternatives in B, ii) both
prefer y to z, and iii) order all remaining pairs of alternatives exactly inverse. It can be checked that
each pair of voters only ensures that y ≻R z for its respective pair of alternatives y, z, and that x′ ≻R y′

for all x′ ∈ A, y′ ∈ B. Hence, it is easy to see that ≿R = ≿′
R, which implies that f(R′) = f(R) as f is

majoritarian. Finally, consider the metric d ∈ D(R′) given by d(v, x) = 0 and d(v, y) = 1 for all v ∈ VR′ ,
x ∈ A, y ∈ B. It is easy to verify that every alternative x ∈ A has a social cost sc(x, d) = 0. By contrast,
sc(f(R′), d) = sc(f(R), d) > 0 as f(R, y) > 0 for some alternative y ∈ B. Hence, dist(f(R′), R′) = ∞,
which proves this case.
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Next, we turn to the proof of Theorem 1. In particular, we note that Claim (1) of this theorem was
proven in the main body, so we focus here only on Claim (2).

Theorem 1. The following claims are true:

(1) It holds for all C1ML rules f and m ≥ 3 that distm(f) ≤ 4 and distm(f) ≥ 4− (13)
⌊m−3

2
⌋.

(2) It holds for all majoritarian RSCFs f that distm(f) ≥ 4− 3
m if m ≥ 3 is odd and distm(f) ≥ 4− 3

m−1
if m ≥ 3 is even.

Proof. To prove Claim (2) of this theorem, we will rely on Claim (2) of Proposition 1 and thus aim to
construct a profile R such that every lottery p has a large expected majority distance md(p, x,≿R) for some
alternative x. To this end, we note that is suffices to construct a complete binary relation ≿ on Xm as we
can find for every such relation a profile R with ≿R = ≿ (McGarvey, 1953).

We first focus on the case that m ≥ 3 is odd and consider in this case the “cyclic” majority relation defined by
xi ≻ xi+mk for all i ∈ {1, . . . ,m} and k ∈ {1, . . . , m−1

2 }, where i+mk = i+k if i+k ≤ m and i+mk = i+k−m
if i+k > m. Our goal is to show that maxx∈Amd(p, x,≿) ≥ 3

2− 3
2m as Claim (2) in Proposition 1 then implies

the theorem. We thus assume for contradiction that there is a lottery p such that maxx∈Amd(p, x,≿) <
3
2 − 3

2m . Moreover, we define the lotteries pk by pk(xi) = p(xi+mk) for all i, k ∈ {1, . . . ,m} and first aim
to show that maxx∈Amd(pk, x,≿) < 3

2 − 3
2m , too. For this, we note that the symmetry of ≿ implies that

md(xi, xj ,≿) = md(xi+mk, xj+mk,≿) for all i, j, k ∈ {1, . . . ,m}. Consequently, it holds that md(pk, xi,≿) =
md(p, xi+mk,≿) as pk(xj) = p(xj+mk) and md(xj , xi,≿) = md(xj+mk, xi+mk,≿) for all xi, xj ∈ Xm. This
implies that maxx∈Amd(pk, x,≿) = maxx∈Amd(p, x,≿). Finally, we consider the lottery p∗ defined by
p∗(x) = 1

m

∑
k∈{1,...,m} p

k(x) for all x ∈ Xm and observe that md(p∗, xi,≿) = 1
m

∑
k∈{1,...,m}md(pk, xi,≿) <

3
2 − 3

2m for all xi. However, p∗(xi) = 1
m

∑
k∈{1,...,m} p

k(xi) =
1
m

∑
k∈{1,...,m} p(xi+mk) =

1
m for all xi. Since

md(x1, xj ,≿) = 2 for all j ∈ {2, . . . , m+1
2 } and md(x1, xj ,≿) = 1 for all j ∈ {m+3

2 , . . . ,m}, we can thus
compute that md(p∗, x1,≿) = 1

m

∑
xi∈XR

md(xi, x1,≿) = m−1
2m + 2(m−1)

2m = 3
2 − 3

2m . This contradicts that
md(p∗, xi,≿) < 3

2− 3
2m for all xi, so the initial assumption that there is a lottery p with maxx∈Amd(p, x,≿) <

3
2 − 3

2m is wrong. Hence, maxx∈Amd(p, x,≿) ≥ 3
2 − 3

2m for every lottery p and Proposition 1 shows Claim
(2) of this theorem for odd m ≥ 3.

Finally, to extend the result also to even m, we can add an alternative x∗ that loses all majority
comparisons. Based on Claim (2) in Proposition 1, the metric distortion of a majoritarian RSCF is
unbounded if it assigns positive probability to x∗. On the other side, we can apply the same analysis as for
the case that m is odd if p(x∗) = 0 and hence infer our lower bound.

C. Proof of Proposition 2

Next, we will present the proof of Proposition 2.

Proposition 2. Fix a profile R, a lottery p, and an alternative x∗. If the optimal objective value o∗LP of
LP 1 is bounded, then dist(p,R, x∗) = o∗LP and otherwise dist(p,R, x∗) = ∞.

Proof. Let R denote an arbitrary profile, p a lottery, and x∗ denote an arbitrary alternative. We will
prove the proposition in two steps: we first show that dist(p,R, x∗) ≥ oLP for the objective value oLP
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of every feasible solution of LP 1 and then that dist(p,R, x∗) ≤ o∗LP where oLP ∗ denotes the optimal
objective value of LP 1 if this value is bounded and o∗LP = ∞ otherwise. From the first insight, it follows
immediately that dist(p,R, x∗) = ∞ if LP 1 is unbounded as we can find for every x ∈ R a feasible solution
with higher objective value. On the other hand, combining the first and the second insight imply that
dist(p,R, x∗) = o∗LP if the optimal objective value of LP 1 is bounded.

Claim (1): dist(p,R, x∗) ≥ oLP for the objective value oLP of every feasible solution of LP 1.
Let dLP , tLP denote a feasible solution of LP 1 and let oLP denote its objective value. To prove that

dist(p,R, x∗) ≥ oLP , we will infer a metric d ∈ D(R) from dLP such that d(x∗, v) = dLP (x
∗, v) for all v ∈ VR

and d(x, v) ≥ dLP (x, v) for all v ∈ vR and x ∈ XR \ {x∗}. Since
∑

v∈VR
dLP (x

∗, v) = 1, we can then infer
that

oLP =
∑

x∈XR

p(x)
∑

v∈VR

dLP (x, v) ≤
sc(p, d)

sc(x∗, d)
≤ max

d∈D(R)

sc(p, d)

sc(x∗, d)
= dist(p,R, x∗).

Towards proving this claim, we will first construct another feasible solution d′LP , t′LP with corresponding
objective value o′LP that satisfies that d′LP (x, v) ≥ d′LP (x

∗, v) for all x ∈ XR, v ∈ VR and o′LP ≥ oLP . Now,
if dLP satisfies these conditions, we can simply set d′LP = dLP and t′LP = tLP . We thus assume that there
is an alternative x and a voter v such that dLP (x, v) < dLP (x

∗, v). In this case, we consider the solution
d̄LP derived from dLP by setting d̄LP (x, v) = dLP (x

∗, v). First, it is easy to verify that d̄LP combined with
the function t̄LP = tLP is still a feasible solution. Indeed, the only upper bounds on d̄LP (x, v) are of the
form d̄LP (x, v) ≤ d̄LP (x

∗, v) + t(y), which are true since d̄LP (x, v) = d̄LP (x
∗, v) and t(y) ≥ 0 for all y ∈ XR.

Moreover, it is straightforward that increasing the value of dLP (x, v) does not decrease the objective value.
Hence, ōLP ≥ oLP , and by repeating this step, we will arrive at a feasible solution d′LP , t′LP such that
d′LP (x, v) ≥ d′LP (x

∗, v) for all alternatives x ∈ XR and voters v ∈ VR.
As second step, we will again construct a feasible solution d′′LP , t′′LP of LP 1 such that o′′LP ≥ oLP and

d′′LP (x, v) ≤ d′′LP (y, v) for all voters v ∈ VR and alternatives x, y ∈ XR with x ≻v y. If d′LP satisfies this
condition, we are immediately done and we hence suppose that there is a voter v and two distinct alternatives
x, y such that x ≻j y and d′LP (x, v) > d′LP (y, v). Note first that this is not possible if y = x∗ because the
fourth condition of LP 1 ensures in this case that d′LP (x, v) ≤ d′LP (x

∗, v) + t′LP (x
∗) = d′LP (x

∗, v). We hence
assume from now on that y ̸= x∗. In this case, we consider the solution d̄LP , t̄LP derived from d′LP , t′LP
by setting d̄LP (y, v) = d′LP (x, v). First, we note that this solution is feasible as the only upper bounds
on d̄LP (y, v) are given by d̄LP (y, v) ≤ d̄LP (x

∗, v) + t̄(z) = d′LP (x
∗, v) + t′LP (z) for z ∈ XR with y ⪰v z.

Moreover, it holds that d̄LP (x, v) = d′LP (x, v) ≤ d′LP (xi∗ , v) + t′LP (z) for all z ∈ XR with x ⪰v z since d′LP ,
t′LP is a feasible solution of LP 1. Finally, since x ⪰v y, it therefore follows that d̄LP is a feasible solution,
too. Moreover, it is again straightforward that we did not decrease the objective value because we only
increased the value of variables. Now, by repeating this step, it is easy to see that we will eventually arrive
at a feasible solution d′′LP and t′′LP = tLP such that o′′LP ≥ o′LP and d′′LP (x, v) ≤ d′′(y, v) for all v ∈ VR and
x, y ∈ XR with x ≻v y. Moreover, d′′LP still satisfies that d′′LP (x, v) ≥ d′′LP (x

∗, v) for all v ∈ VR and xi ∈ XR

as we only increase the distances for alternatives x ̸= x∗.
Finally, based on the solution d′′LP , t′′LP , we will construct a metric d that satisfies all our criteria. In

particular, we define:

1. d(x, v) = d(v, x) = d′′LP (x, v) for all x ∈ XR and v ∈ VR.
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2. d(x, x) = 0 for all x ∈ XR and d(v, v) = 0 for all v ∈ VR.

3. d(x, y) = minv∈VR
d′′LP (x, v) + d′′LP (y, v) for all distinct x, y ∈ XR.

4. d(v, w) = minx∈XR
d′′LP (x, v) + d′′LP (x,w) for all distinct v, w ∈ VR.

By its definition, it is straightforward that d is symmetric and that d(z, z) = 0 for all z ∈ XR ∪ VR.
Moreover, because d′′LP is consistent with R, the same holds for d. Hence, we only need to verify the triangle
inequality, for which we start by an auxiliary observation: we will show that d(x, v) ≤ d(x,w)+d(y, w)+d(y, v)
for all x, y ∈ XR, v, w ∈ VR. By the definition of d, this is equivalent to proving the same for d′′LP . We thus
observe that

d′′LP (x, v) ≤ d′′LP (x
∗, v) + t′′LP (x)

≤ d′′LP (x
∗, v) + d′′LP (x

∗, w) + d′′LP (x,w)

≤ d′′LP (y, v) + d′′LP (y, w) + d′′LP (x,w).

The first and second inequality directly use the third and fifth constraint of our LP. The last inequality uses
that, by construction of d′′LP , it holds that d′′LP (x

∗, v) ≤ d′′LP (y, v) and d′′LP (x
∗, w) ≤ d′′LP (y, w).

Finally, we are ready to show that d satisfies the triangle inequality. To this end, consider three distinct
elements x, y, z ∈ XR ∪ VR. We will show that d(x, z) ≤ d(x, y) + d(y, z) by considering three cases:

• x, y, z ∈ XR: Let v, w ∈ VR denote the voters that minimize d(x, v) + d(v, y) and d(y, w) + d(w, z),
respectively. By our auxiliary claim, it holds that d(x, z) = minv′∈VR

d(x, v′) + d(v′, z) ≤ d(x, v) +
d(z, v) ≤ d(x, v)+d(z, w)+d(w, y)+d(y, v) = minv′∈VR

d(x, v′)+d(v′, y)+minv′∈VR
d(y, v′)+d(v′, z) =

d(x, y) + d(y, z). An analogous argument works if x, y, z ∈ VR.

• x, y ∈ XR, z ∈ VR: Let v denote the voter that minimizes d(x, v) + d(v, y). By our auxiliary claim, it
holds that d(x, z) ≤ d(x, v) + d(v, y) + d(y, z) = d(x, y) + d(y, z). The cases that y, z ∈ XR, x ∈ VR;
x, y ∈ VR, z ∈ XR; and y, z ∈ VR, x ∈ XR are symmetric.

• x, z ∈ XR, y ∈ VR: It holds that d(x, z) = minv∈N d(x, v) + d(v, y) ≤ d(x, y) + d(y, z). The case that
x, z ∈ VR, y ∈ XR is symmetric.

This proves that d is indeed a metric that is consistent with R. We can therefore conclude that
dist(p,R, x∗) ≥ sc(p,d)

sc(x∗,d) = o′′LP ≥ oLP holds for all feasible solutions dLP , tLP with objective value oLP .

Claim (2): dist(p,R, xi∗) ≤ o∗LP where o∗LP is the optimal objective value off LP 1.
We will next show that dist(p,R, xi∗) ≤ o∗LP . To this end, we note that this is trivial if o∗LP = ∞, so

we focus on the case that the optimal objective value of LP 1 is bounded. To this end, let d ∈ D(R)

denote a metric that maximizes sc(p,d)
sc(x∗,d) . We will next construct a biased metric d∗ ∈ D(R) that satisfies

sc(p,d∗)
sc(x∗,d∗) ≥

sc(p,d)
sc(x∗,d) . As second step, we will then derive a feasible solution dLP , tLP of LP 1 with objective

value oLP = sc(p,d∗)
sc(x∗,d∗) . This clearly proves the claim.
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Following the proof of Charikar and Ramakrishnan (2022), we define the function t(x) for all XR by
t(x) = d(x, x∗). The biased metric d∗ is then defined by

d∗(x∗, v) =
1

2
max

x,y∈XR : x⪰vy
t(x)− t(y)

d∗(x, v) = d∗(x∗, v) + min
y∈XR : x⪰vy

t(y).

We first note that d∗ can be extended to a metric that is consistent with R due to Proposition 5.1
of Charikar and Ramakrishnan (2022). Hence, it only remains to show that sc(p,d∗)

sc(x∗,d∗) ≥ sc(p,d)
sc(x∗,d) . To this

end, we will show that sc(x∗, d∗) ≤ sc(x∗, d) and sc(x, d∗) − sc(x∗, d∗) ≥ sc(x, d) − sc(x∗, d). This shows
sc(p,d∗)

sc(xi∗ ,d∗)
≥ sc(p,d)

sc(x∗,d) as demonstrated by the following inequality.

sc(p, d∗)
sc(x∗, d∗)

− 1 =

∑
x∈XR

p(x)(sc(x, d∗)− sc(x∗, d∗))

sc(x∗, d∗)
≥

∑
x∈XR

p(x)(sc(x, d)− sc(x∗, d))

sc(x∗, d)
=

sc(p, d)

sc(x∗, d)
− 1

We first show that sc(x∗, d∗) ≤ sc(x∗, d). To this end, we observe (analogous to Charikar and Ramakrish-
nan (2022) in Proposition 5.2) that d(x, x∗) ≤ d(x, v)+d(v, x∗) ≤ d(y, v)+d(v, x∗) ≤ d(y, x∗)+2d(v, x∗) for
all voters v and alternatives x, y with x ⪰v y. Hence, d(v, x∗) ≥ 1

2 maxx,y∈XR : x⪰vy t(x)− t(y) = d∗(v, x∗).
Clearly, this implies that sc(x∗, d∗) ≤ sc(x∗, d), thus proving our claim. Secondly, we need to prove
that sc(x, d∗) − sc(x∗, d∗) ≥ sc(x, d) − sc(x∗, d) for all x ∈ XR. Since the inequality clearly holds for x∗,
we assume that x ̸= x∗. Following again the ideas of Charikar and Ramakrishnan (2022), we observe
that d(x, v) ≤ d(y, v) ≤ d(y, x∗) + d(x∗, v) for all voters v and alternatives x, y with x ⪰v y. Hence,
d(x, v)− d(x∗, v) ≤ miny∈XR : x⪰vy d(y, x

∗) = miny∈XR : x⪰vy t(y) = d∗(x, v)− d∗(x∗, v). We thus conclude
that sc(x, d∗)− sc(x∗, d∗) ≥ sc(x, d)− sc(x∗, d). Therefore, it follows indeed that sc(p,d∗)

sc(x∗,d∗) ≥
sc(p,d)
sc(x∗,d) .

We next proceed with a case distinction with respect to whether sc(x∗, d∗) = 0 or sc(x∗, d∗) > 0. First, we
consider the case that sc(x∗, d∗) > 0. In this case, we aim to construct a feasible solution dLP , tLP of LP 1
with objective value oLP = sc(p,d∗)

sc(x∗,d∗) . Now, to derive this solution, we first note that every biased metric d ∈
D(R) (together with its inducing function t) satisfies the first four constraints of LP 1 by definition. Moreover,
d also satisfies the fifth constraint since d(x, v)+d(x∗, v) = 2d(x∗, v)+miny∈Xr : x⪰y t(y) ≥ t(x) for all x ∈ XR,
v ∈ VR. The last inequality follows as 2(d∗, v) = maxx,y∈XR : x⪰vy t(x) − t(y) ≥ t(x) − miny∈Xr : x⪰y t(y).
Furthermore, we note that, for every biased metric d ∈ D(R), and ℓ ∈ R>0, the function tℓ defined by
tℓ(x) = ℓt(x) induces a biased metric dℓ ∈ D(R) with sc(x∗, dℓ) = ℓsc(x∗, d) and sc(p, dℓ) = ℓsc(p, d).
Because sc(x∗, d) > 0, it is thus easy to check that the biased metric dℓ together with its defining
function tℓ for ℓ = 1

sc(x∗,d) defines a feasible solution to LP 1 with oLP = sc(p,dℓ)
sc(x∗,dℓ) = sc(p,d∗)

sc(x∗,d∗) . Hence,

dist(p,R, x∗) = sc(p,d∗)
sc(x∗,d∗) = oLP ≤ o∗LP , where o∗LP denotes the optimal objective value of LP 1.

For the second case, we suppose that sc(x∗, d∗) = 0. For this case, we make a further case distinction
with respect to whether sc(p, d∗) = 0 or sc(p, d∗) > 0. First, suppose that sc(p, d∗) = 0, which means
that dist(p,R, x∗) = sc(p,d∗)

sc(x∗,d∗ = 1. To show that dist(p,R, x∗) ≤ o∗LP , it thus suffices to construct a feasible
solution of LP 1 with objective value 1. To this end, consider the following solution: dLP (x, v) =

1
nR

for all
x ∈ XR, v ∈ VR and tLP (x) = 0 for all x ∈ XR. It is easy to check that this is indeed a feasible solution
and that

∑
x∈XR

p(x)
∑

v∈VR
d(x, v) =

∑
x∈XR

p(x) = 1, thus verifying our claim.

38



As the last case, we assume that sc(x∗, d∗) = 0 and sc(p, d∗) > 0, which means that dist(p,R, x∗) = ∞.
We need to show that the optimal objective value of LP 1 is unbounded. Towards this end, we note that
d∗(x∗, v) = 0 for all voters v ∈ VR since sc(x∗, d∗) = 0. Next, we consider again the function tℓ(x) = ℓ · t(x)
for all x ∈ XR, ℓ ∈ R>0 and let dℓ denote the corresponding biased metric. Finally, we define the solutions
dℓLP , tℓLP to LP 1 by i) dℓLP (x

∗, v) = 1
nR

for all v ∈ VR, ii) dℓLP (x, v) = dℓ(x, v) for all x ∈ XR \{x∗}, v ∈ VR,
and iii) tℓLP = tℓ. It can be checked that dℓLP , tℓLP is a feasible solution to LP 1: to this end, we recall that
every biased metric satisfies the first five constraints of our LP. Now, to infer dℓLP from dℓ, we only increase
the distance dℓLP (x

∗, v) to 1
nR

for all v ∈ NR. Since there is no upper bound on dℓLP (x
∗, v), this does not

violate any of the first five constraints and ensures that the last one is true. Finally, we note that there is
an alternative y such that p(y) > 0 and sc(y, d∗) > 0 as sc(p, d∗) > 0. Consequently, the objective value
of the solutions dℓLP , tℓLP is lower bounded by ℓp(y)sc(y, d∗). Letting ℓ go to infinity thus shows that the
objective value of LP 1 is not bounded in this case. Hence, it holds in all cases that dist(p,R, x∗) ≤ o∗LP ,
where o∗LP denotes the optimal objective value of LP 1 if it is bounded and ∞ otherwise.

D. Proofs from Section 5

As last part of this paper, we will formally prove the statements about the expected metric distortion of
RSCFs given in Section 5. To this end, we let n≻(R) = |{v ∈ VR : ≻v = ≻}| denote the number of voters
that report the preference relation ≻ in the profile R. Moreover, we will subsequently show three auxiliary
lemmas: first, we investigate the metric distortion of every lottery on profiles where all preference relations
are reported by the same number of voters (cf. Lemmas 1 and 2). Under the IC model, we can expect that
the output profile is similar to such a profile if the number of voters is large enough. We hence prove in
Lemma 3 that we can bound the metric distortion of such a profile R based on the metric distortion of the
chosen lottery for a large subprofile. Finally, we use these claims to prove Theorem 2 and Theorem 3.

In more detail, in our first lemma, we will identify a class of metrics d ∈ D(R) that satisfy dist(p,R, x∗) =
sc(p,d)
sc(x∗,d) for all profiles R in which all preference relations appear equally often, all lotteries p, and all
alternatives x∗ ∈ XR. Surprisingly, we show that we can focus on a single type of metrics for this
maximization problem: it always suffices to consider the biased metric d ∈ D(R) given by the function
t with t(x∗) = 0 and t(x) = 2 for all x ∈ XR \ {x∗}. We note that this gives further evidence for the
conjecture by Charikar and Ramakrishnan (2022) that this type of metric is the worst-case for all profiles.

Lemma 1. Assume m ≥ 3 and let R ∈ R∗
m denote a profile such that n≻(R) = n≻′(R) > 0 for all

preference relations ≻,≻′ ∈ R(XR). It holds for all lotteries p ∈ ∆(XR) and alternatives x∗ ∈ XR that
dist(p,R, x∗) = sc(p,d∗)

sc(x∗,d∗) , where d∗ denotes the biased metric induced by the function t with t(x∗) = 0 and
t(x) = 2 for all x ∈ XR \ {x∗}
Proof. Let R denote a profile as specified by the lemma and consider a lottery p and an alternative x∗.
If p(x∗) = 1, then sc(p,d)

sc(x∗,d) = 1 for every metric d ∈ D(R), so we assume that p(x∗) < 1. In this case, let

d̂ ∈ D(R) denote the biased metric given by the function t̂ with t̂(x∗) = 0 and t̂(x) = ℓ for all x ∈ XR \ {x∗},
where ℓ is chosen such that sc(x∗, d̂) = 1. First, d̂ is indeed a valid metric in D(R) due to Proposition 5.1
of Charikar and Ramakrishnan (2022). Next, we note that sc(p,d̂)

sc(x∗,d̂)
= sc(p,d∗)

sc(x∗,d∗) for the metric d∗ stated in the

lemma as d̂ = αd∗ for some α ∈ R>0. Hence, we aim to show that dist(p,R, x∗) = sc(p,d̂)

sc(x∗,d̂)
. For this, we
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will prove that dist(px, R, x∗) = sc(px,d̂)

sc(x∗,d̂)
for every alternative x ∈ XR and lottery px with px(x) = 1. This

implies the lemma because

sc(p, d̂)

sc(x∗, d̂)
≤ dist(p,R, x∗) ≤

∑

x∈XR

p(x)dist(px, R, x∗) =
∑

x∈XR

p(x)
sc(x, d̂)

sc(x∗, d̂)
=

sc(p, d̂)

sc(x∗, d̂)
.

Now, we first note that the claim trivially follows for the lottery px∗ as sc(px∗ ,d)
sc(x∗,d) = 1 for every metric

d ∈ D(R). We thus focus on an alternative x̂ ∈ XR \ {x∗}. In more detail, we will show that d̂, t̂ correspond
to an optimal solution of LP 1 for dist(px̂, R, x∗) as Proposition 2 then implies that dist(px̂, R, x∗) = sc(px̂,d̂)

sc(x∗,d̂)
.

We therefore observe that it is easy to show that d̂, t̂ are a feasible solution for this linear program, so we
will subsequently only prove that our solution is also optimal.

Step 1: Since we want to reason about the optimal solutions of LP 1 (for dist(px̂, R, x∗)), we first prove
that the optimal objective value of this linear program is bounded. To this end, let dLP , tLP denote a feasible
solution to LP 1. We first note that

∑
v∈VR

dLP (x
∗, v) = 1 and hence dLP (x∗, v) ≤ 1 for all v ∈ VR. Moreover,

since every preference relation appears at least once in R, there is a voter v such that x̂ ≻v x∗ and we can
conclude by the first and third constraints that 1 ≥ dLP (x

∗, v) ≥ 1
2(tLP (x̂)− tLP (x

∗)) = 1
2 tLP (x̂). Hence, it

holds that tLP (x̂) ≤ 2. By the fourth constraint, we can next conclude that dLP (x̂, v) ≤ dLP (x
∗, v) + t(x̂) ≤

1 + 2 = 3 for all v ∈ VR. Finally, we can now compute that the objective value of any solution is at most∑
x∈XR

px̂(x)
∑

v∈VR
d(x, v) =

∑
v∈VR

d(x̂, v) ≤ 3nR. Since this holds for every feasible solution of LP 1, its
optimal objective value is indeed bounded.

Step 2: Let d0LP , t0LP denote an optimal solution of LP 1 and let o0LP denote its objective value. Our next
goal is to construct an optimal solution d1LP , t1LP of LP 1 such that t1LP (x) = t1LP (y) for all x, y ∈ XR\{x∗, x̂}.
For this, we denote by Π the set of permutations π : XR → XR such that π(x∗) = x∗ and π(x̂) = x̂.
Moreover, given a permutation π ∈ Π, we let Rπ denote the profile defined by x ≻π

v y iff π(x) ≻v π(y) for
all x, y ∈ XR and v ∈ VR. Finally, we define dπ(x, v) = d0LP (π(x), v) and tπ(x) = t0LP (π(x)) for all x ∈ XR

and v ∈ VR. Since Rπ, dπ, and tπ are all derived from R, d0LP , and t0LP by renaming the alternatives
according to π, it can be checked that dπ and tπ constitute a feasible solution of LP 1 for dist(px, R

π, x∗)
with objective value oπLP = o0LP . In particular, it is important here that π(x̂) = x̂ and π(x∗) = x∗ as these
ensure that tπ(x∗) = 0 and dπ(x̂, v) = d0LP (x̂, v) for all v ∈ VR. Next, since all preference relations appear
equally often in the profile R, the profile Rπ equals R up to renaming the voters. Hence, there is another
bijection τ : VR → VRπ such that ≻v = ≻π

τ(v) for all voters v ∈ VR. Based on this permutation, we define
the functions d̄π and t̄π by d̄π(x, v) = dπ(x, τ(v)) and t̄π(x) = tπ(x) for all x ∈ XR and v ∈ VR. Since
we essentially only rename variables in this step, it follows that d̄π, t̄π are a feasible solution to LP 1 for
dist(px̂, R, x∗). Moreover, the objective value of this solution is ōπLP = oπLP = o0LP .

Next, we define the solution d1LP , t1LP by d1LP (x, v) = 1
(m−2)!

∑
π∈Π d̄π(x, v) and t1LP (x) =

1
(m−2)!

∑
π∈Π t̄π(x) for all x ∈ XR and v ∈ VR. Since d1LP , t1LP is a convex combination of feasible so-

lutions of LP 1, it is itself again feasible. Furthermore, for every π ∈ Π, it holds that ōπLP = o0LP ,
so the objective value of our new solution is o1LP = o0LP . In particular, this means that d1LP , t1LP is
an optimal solution to LP 1 (for dist(px̂, R, x∗)). Finally, we note that t1LP (x) = 1

(m−2)!

∑
π∈Π t̄π(x) =

1
m−2

∑
z∈XR\{x̂,x∗} t

0
LP (z) =

1
(m−2)!

∑
π∈Π t̄π(y) = t1LP (y) for all x, y ∈ XR \ {x∗, x̂}. Thus, our new solution

satisfies all our requirements.
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Step 3: As third step, we will show that there is a biased metric d̄ defined by a function t̄ with
t̄(x) = t̄(y) for all x, y ∈ XR \ {x̂, x∗} that constitutes an optimal solution to LP 1. For this, let d1LP ,
t1LP denote the optimal solution constructed in the last step. First, we note that for all x ∈ XR \ {x∗},
v ∈ VR with d1LP (x, v) < d1LP (x

∗, v) + miny∈XR : x⪰vy t
1
LP (y), we can simply increase the value of d1LP to

d1LP (x
∗, v)+miny∈XR : x⪰vy t(y) without violating any constraints. Moreover, increasing the value of d1LP (x, v)

does not reduce the objective value, so there is another optimal solution d2LP , t2LP with d2LP (x
∗, v) = d1LP (x

∗, v)
for all v ∈ VR, t2LP (x) = t1LP (x) for all x ∈ XR, and d2LP (x, v) = d2LP (x

∗, v) + miny∈XR : x⪰vy t
2
LP (y) for all

x ∈ XR \ {x∗}, v ∈ VR.
Next, we want to ensure that d2LP (x

∗, v) = 1
2 maxx,y∈XR : x⪰v t

2
LP (x) − t2LP (y). To this end, we assume

that there is a voter v∗ such that d2LP (x
∗, v∗) > 1

2 maxx,y∈XR : x⪰v∗y t
2
LP (x) − t2LP (y). In this case, we

define δ = d2LP (x
∗, v∗) − 1

2 maxx,y∈XR : x⪰v∗y t
2
LP (x) − t2LP (y) and observe that δ < 1 as d2LP (x

∗, v) < 1
for all voters v ∈ VR. In more detail, we first note here that the third constraint of LP 1 implies that
d2LP (x

∗, v) ≥ 1
2(t

2
LP (x

∗)− t2LP (x
∗)) = 0. So, if d2LP (x

∗, v) ≥ 1 for some voter v ∈ VR, then d2LP (x
∗, v′) = 0

for all v′ ∈ VR \ {v}. Since m ≥ 3 and XR contains every preference relation equally often (and therefore
at least once), there is for every alternative x ∈ XR \ {x∗} a voter v′ ∈ VR \ {v} such that x ≻v x∗. Since
d2LP (x

∗, v′) = t2LP (x
∗) = 0, we can infer from the second and third conditions that t2LP (x) = 0 for all x ∈ XR.

Moreover, the fourth condition then implies that d2LP (x, v
′) ≤ 0 for all x ∈ XR, v′ ∈ VR \ {v} and that

d2LP (x̂, v) ≤ 1, so the optimal objective value is at most 1. However, the biased metric d̂ corresponds to a
feasible solution with a higher objective value, so d2LP (x

∗, v) < 1 for all v ∈ VR.
Now, consider the solution d̃, t̃ derived from d2LP and t2LP by setting d̃(x, v∗) = d2LP (x, v

∗)−δ for all x ∈ XR.
We first note that d̃, t̃ still satisfies the first four constraints of LP 1. Moreover, it holds for all x ∈ XR that
d̃(x, v∗) = d̃(x∗, v∗) + miny∈XR : x⪰v∗y t̃(y), so d̃(x, v∗) + d̃(x∗, v∗) = 2d̃(x∗, v∗) + miny∈XR : x⪰v∗y t̃(y) ≥ t̃(x)

because 2d̃(x∗, v∗) ≥ t̃(x)−miny∈XR : x⪰v∗y t̃(y). Hence, our new solution only violates the normalization
condition of LP 1, and we can restore this by scaling all variables by the value 1

1−δ , i.e., d̃′(x, v) = 1
1−δ d̃(x, v)

and t̃′(x) = 1
1−δ t̃(x) for all x ∈ XR and v ∈ VR while leaving the remaining conditions intact. Finally, we

compute the objective value of our new solution d̃′, t̃′:

∑

v∈VR

d̃′(x̂, v) =
1

1− δ

∑

v∈VR

d̃(x̂, v)

=
1

1− δ

∑

v∈VR

(
d2LP (x̂, v)

)
− δ

1− δ

=
1

1− δ

∑

v∈VR

(
d2LP (x

∗, v) + min
y∈XR : x̂⪰vy

t2LP (y)

)
− δ

1− δ

=
1

1− δ

∑

v∈VR

(
min

y∈XR : x̂⪰vy
t2LP (y)

)
+

1

1− δ
− δ

1− δ

≥
∑

v∈VR

(
d2LP (x

∗, v) + min
y∈XR : x̂⪰vy

t2LP (y)

)

= o2LP .
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Here, the first two inequalities use the definitions of d̃′ and d̃ respectively. Next, we apply that d2LP (x̂, v) =
d2LP (x

∗, v) +miny∈XR : x̂⪰vy t
2
LP (y) for all v ∈ VR. In the third step, we then use that

∑
v∈VR

d2LP (x
∗, v) = 1.

The remaining steps are simple arithmetic changes. This inequality proves that our new solution d̃′, t̃′ is an
optimal solution to LP 1.

Finally, we can repeat this step until we arrive at an optimal solution d3LP , t3LP such that i) d3LP (x
∗, v) =

1
2 maxx,y∈XR : x⪰vy t

3
LP (x)− t3LP (y) for all v ∈ VR, ii) d3LP (x, v) = d3LP (x

∗, v) + miny∈XR : x⪰vy t
3
LP (y) for all

x ∈ XR, v ∈ VR, iii) t3LP (x) = t3LP (y) for all x, y ∈ XR \ {x∗, x̂}, and iv) t3LP (x
∗) = 0 and t3LP (x̂) ≥ 0. In

particular, for the last points, we note that we only scale the values t1LP by some constants during our
constructions, so we directly inherit this insight from d1LP . Therefore, d3LP is the biased metric d̄ defined by
t̄(x) = t3LP (x) for all x ∈ XR.

Step 4: As last step, we will show that sc(x̂, d̂) ≥ sc(x̂, d̄) for the metric d̄ constructed during the last
step. This completes the proof of this lemma since it means that d̂, t̂ are an optimal solution to LP 1. To
this end, we recall that the function t̂ that defines d̂ is specified by a single value ℓ ∈ R>0: t̂(x∗) = 0 and
t̂(x) = ℓ for all x ∈ XR \ {x∗}. Moreover, the function t̄ that defines d̄ is specified by two values ℓ1 and ℓ2:
t̄(x∗) = 0, t̄(x̂) = ℓ1 and t̄(x) = ℓ2 for all x ∈ XR \ {x̂, x∗}. If ℓ1 = ℓ2 > 0, we are done and we thus suppose
that ℓ1 ̸= ℓ2.

First suppose that ℓ1 ≤ ℓ. In this case, we first note that sc(x∗, d̂) = sc(x∗, d̄) = 1 by construction, so we
will aim to show that sc(x̂, d̂)− sc(x∗, d̂) ≥ sc(x̂, d̄)− sc(x∗, d̄). To this end, we observe that

sc(x̂, d̂)− sc(x∗, d̂) =
∑

v∈VR

min
y∈XR : x⪰vy

t̂(y) =
nR

2
ℓ

because half of the voters prefer x̂ to x∗ (which means that miny∈XR : x̂⪰vy t̂(y) = 0) and the other half of
the voters prefers x∗ to x̂ (which means that miny∈XR : x̂⪰vy t̂(y) = ℓ). An analogous argument shows that
sc(x̂, d̄)− sc(x∗, d̄) ≤ nR

2 ℓ1. Finally, since ℓ1 ≤ ℓ, this implies that sc(x̂, d̂)− sc(x∗, d̂) ≥ sc(x̂, d̄)− sc(x∗, d̄),
which shows that the lemma holds in this case.

We thus suppose next that ℓ1 > ℓ, which implies that ℓ2 < ℓ. Indeed, if ℓ1 > ℓ and ℓ2 ≥ ℓ, then
d̂(x∗, v) ≤ d̄(x∗, v) for all v ∈ VR, and the inequality is strict for all voters that rank x∗ below x̂. In more detail,
it holds that d̂(x∗, v) = 0 ≤ d̄(x∗, v) for all voters v that top-rank x∗ and d̂(x∗, v) = ℓ

2 ≤ min(ℓ1,ℓ2)
2 ≤ d̄(x∗, v)

for all other voters. Hence, sc(x∗, d̄) > sc(x∗, d̂) = 1, which contradicts that sc(x∗, d̄) = 1. So, we derive
indeed that ℓ2 < ℓ.

We thus suppose that ℓ2 < ℓ < ℓ1 and assume for contradiction that sc(x̂, d̂) < sc(x̂, d̄). Since sc(x∗, d̂) =
sc(x∗, d̄) = 1, this assumption implies that sc(x̂, d̂)− sc(x∗, d̂) < sc(x̂, d̄)− sc(x∗, d̄). We will thus compute
the values of these differences and therefore recall that sc(x̂, d̂)−sc(x∗, d̂) = nR

2 ℓ. Moreover, d̄(x̂, v) = d̄(x∗, v)
for all voters v ∈ VR with x̂ ≻v x∗, d̄(x̂, v) = d̄(x∗, v) + ℓ1 for all voters v ∈ VR that bottom-rank x̂, and
d̄(x̂, v) = d̄(x∗, v) + ℓ2 for all remaining voters as these prefer x̂ to some alternative x ̸= x∗. Since nR

2 voters
prefer x̂ to x∗, nR

m voters bottom-rank x̂ in R, there are nR(
1
2 − 1

mR
) voters in the last case. Consequently,

sc(x̂, d̄)− sc(x∗, d̄) =
nR

m
ℓ1 + (

nR

2
− nR

m
)ℓ2.
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Because sc(x̂, d̂)− sc(x∗, d̂) < sc(x̂, d̄)− sc(x∗, d̄), we conclude that
nR

2
ℓ <

nR

m
ℓ1 + (

nR

2
− nR

m
)ℓ2

⇐⇒ (
nR

2
− nR

m
)(ℓ− ℓ2) <

nR

m
(ℓ1 − ℓ)

⇐⇒ m− 2

2
(ℓ− ℓ2) < ℓ1 − ℓ. (1)

To derive a contradiction, we next use that sc(x∗, d̂) = sc(x∗, d̄). We hence observe that

1 = sc(x∗, d̂) = nR · m− 1

m
· ℓ
2

as the nR
m voters who top-rank x∗ satisfy d̂(x∗, v) = maxx,y∈XR : x⪰vy t̂(x) − t̂(y) = 0 and all other voters

have d(x∗, v) = ℓ
2 .

Furthermore, to compute sc(x∗, d̄), we will determine (lower bounds on) d̄(x∗, v) for every voter v ∈ VR.
To verify the subsequent values, it suffices to identify the pair of alternatives x, y ∈ XR with x ⪰v y that
maximizes 1

2(t̄(x)− t̄(y)) due to the definition of d̄(x∗, v).

• d̄(x∗, v) ≥ 0 for all voters v top-rank x∗. There are nR
m such voters.

• d̄(x∗, v) = ℓ1
2 for all voters v that bottom-rank x∗. There are nR

m such voters.

• d̄(x∗, v) = ℓ1
2 for all voters v that neither top-rank nor bottom-rank x∗ and that prefer x̂ to x∗. We

note that there are nR
m−2
m voters that neither top-rank nor bottom-rank x∗ and exactly half of them

prefer x̂ to x∗. Hence, there are nR(m−2)
2m such voters.

• d̄(x∗, v) ≥ ℓ2
2 for all voters v that neither top-rank nor bottom-rank x∗ and that prefer x∗ to x̂. The

central observation for this is that these voters prefer an alternative x with t̄(x) = ℓ2 to x∗. Analogous
to the last case, there are nR(m−2)

2m such voters.

Finally, we can now lower bound sc(x∗, d̄):

sc(x∗, d̄) =
∑

v∈VR

d̄(x∗, v) ≥ nR

2

(
1

m
0 +

1

m
ℓ1 +

m− 2

2m
ℓ1 +

m− 2

2m
ℓ2

)
=

nR

2m

(
m

2
ℓ1 +

m− 2

2
ℓ2

)

On the other side, we have sc(x∗, d̄) = sc(x∗, d̂) = 1. Since sc(x∗, d̂) = nR(m−1)
2m ℓ, we derive that

nR(m− 1)

2m
ℓ ≥ nR

2m

(
m

2
ℓ1 +

m− 2

2
ℓ2

)

⇐⇒ m− 2

2
(ℓ− ℓ2) ≥

m

2
(ℓ1 − ℓ)

⇐⇒ m− 2

m
(ℓ− ℓ2) ≥ ℓ1 − ℓ. (2)

Finally, we get from Equations 1 and 2 that m−2
2 (ℓ− ℓ2) < ℓ1 − ℓ ≤ m−2

m (ℓ− ℓ2). This is a contradiction

as m ≥ 3, so the initial assumption that sc(x̂,d̂)

sc(x∗,d̂)
< sc(x̂,d̄)

sc(x∗,d̄) must have been wrong. We have now exhausted

all cases and thus conclude that sc(x̂, d̂) ≥ sc(x̂, d̄), which finally proves the lemma.
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Due to Lemma 1, we can now compute the metric distortion of every lottery on a profile R with
n≻(R) = n≻′(R) for all ≻,≻′ ∈ R(XR).

Lemma 2. Assume m ≥ 3 and let R ∈ R∗
m denote a profile such that n≻(R) = n≻′(R) > 0 for all preference

relations ≻,≻′ ∈ R(XR). It holds for every lottery p ∈ ∆(XR) that dist(p,R) = 2+ 1
m−1− m

m−1 minx∈XR
p(x).

Proof. Let R denote a profile such that n≻(R) = n≻′(R) > 0 for all preference relations ≻,≻′ ∈ R(XR)
and consider an arbitrary lottery p. We will next compute dist(p,R, x∗) for every alternative x∗ ∈ XR. To
this end, we use that, by Lemma 1, dist(p,R, x∗) = sc(p,d)

sc(x∗,d) for the biased metric d defined by the function t

with t(x∗) = 0 and t(x) = 2 for all x ∈ XR \ {x∗}. Next, we observe that sc(p,d)
sc(x∗,d) =

∑
x∈XR

p(x) sc(x,d)
sc(x∗,d) . We

will thus compute the social cost of every alternative.
For x∗, we first note that d(x∗, v) = 0 for all voters that top-rank x∗ and d(x∗, v) = 1 for all other voters.

Hence, it is easy to infer that sc(x∗, d) = nR(m−1)
m . By contrast, to compute the social cost of an alternative

x ∈ XR \ {x}, we need a more elaborate analysis of the distances d(x, v):

• d(x, v) = 2 for all voters who top-rank x∗. There are nR
m such voters.

• d(x, v) = 1 for all voters who bottom-rank x∗. There are nR
m such voters.

• d(x, v) = 1 for all voters who do neither top-rank nor bottom-rank x∗ and prefer x to x∗. There are
nR(m−2)

m voters who do neither top-rank nor bottom-rank x∗ and precisely half of them prefer x to x∗.
Thus, there are nR(m−2)

2m such voters.

• d(x, v) = 3 for all voters who do neither top-rank nor bottom-rank x∗ and prefer x∗ to x. There are
again nR(m−2)

2m such voters.

We can hence compute that

sc(x, d) =
∑

v∈VR

d(x, v) = nR

(
2

m
+

1

m
+

m− 2

2m
+

3(m− 2)

2m

)
=

nR

m
(2m− 1).

It hence follows that sc(x∗,d)
sc(x∗,d) = 1 and sc(x,d)

sc(x∗,d) =
2m−1
m−1 = 2 + 1

m−1 . Moreover, we can now compute that
sc(p,d)
sc(x∗,d) = (1− p(x∗))(2 + 1

m−1) + p(x∗) = 2 + 1
m−1 − m

m−1p(x
∗). Clearly, this function is decreasing in p(x∗),

so we derive that dist(p,R) = 2 + 1
m−1 − m

m−1 minx∈XR
p(x).

We note that, by Lemma 2, the optimal lottery p for a profile R with n≻(R) = n≻′(R) > 0 for all
≻,≻′ ∈ R(XR), assigns probability p(x) = 1

m to all x ∈ XR. In particular, this lottery achieves a metric
distortion of 2 for R. By contrast, every lottery that assigns 0 to some alternative has a metric distortion of
2 + 1

m−1 in R.
To be able to use Lemma 2 in the analysis of the expected metric distortion of RSCFs, we observe that

each preference relation will appear roughly equally often with high probability in a preference profile drawn
from the IC distribution if the number of voters n is sufficiently large. However, we cannot expect to get
precisely a profile where every preference relation appears equally often, and we thus give next a lemma
that allows to bound the metric distortion of a lottery p in a profile R based on a large subprofile of R.
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Lemma 3. Let R be a profile and let p ∈ ∆(XR) denote a lottery. Moreover, let R′ denote a profile
derived from R by choosing a subset of the voters VR′ ⊊ VR and setting ≻′

v = ≻v for all v ∈ VR′ , and define
α = 1− |VR′ |

|VR| . If dist(p,R) < ∞ and dist(p,R′) < ∞, then dist(p,R) ≤ dist(p,R′) + α(dist(p,R) + 1).

Proof. Let R and R′ denote two profiles as defined by the lemma and let α = 1− |VR′ |
|VR| . Moreover, consider

an arbitrary lottery p, let d denote the metric d ∈ D(R) that maximizes sc(p,d)
minx∈XR

sc(x,d) , and let x∗ denote

an alternative with sc(x∗, d) = minx∈XR
sc(x, d). Finally, we define the set V̄R = VR \ VR′ and note that

αnR = |V̄R|. Our main goal is to bound
∑

v∈V̄R
d(x, v) for every alternative x ∈ XR. To this end, we first

note that d(x, v) ≤ d(x, x∗) + d(x∗, v) for every voter v ∈ VR. Moreover, d(x, x∗) ≤ d(x, v) + d(v, x∗) for
every voter v ∈ VR, so d(x, x∗) ≤ 1

nR
(sc(x, d) + sc(x∗, d)). Combining these insights means that

∑

v∈V̄R

d(v, x) ≤ |V̄R|d(x, x∗) +
∑

v∈V̄R

d(x∗, v) ≤ α(sc(x, d) + sc(x∗, d)) +
∑

v∈V̄R

d(x∗, v).

Hence, we now compute that

dist(p,R) =
∑

x∈XR

p(x)
sc(x, d)

sc(x∗, d)

=
∑

x∈XR

p(x)

∑
v∈VR′ d(x, v) +

∑
v∈V̄R

d(x, v)

sc(x∗, d)

≤
∑

x∈XR

p(x)

∑
v∈VR′ d(x, v) +

∑
v∈V̄R

d(x∗, v)

sc(x∗, d)
+

∑

x∈XR

p(x)
α(sc(x, d) + sc(x∗, d))

sc(x∗, d)

=
∑

x∈XR

p(x)

∑
v∈VR′ d(x, v)∑
v∈VR′ d(x

∗, v)
·
∑

v∈VR′ d(x
∗, v)

sc(x∗, d)
+

sc(x∗, d)−∑
v∈VR′ d(x

∗, v)

sc(x∗, d)
+ α

(
sc(p, d)

sc(x∗, d)
+ 1

)

≤ dist(p,R′)

∑
v∈VR′ d(x

∗, v)

sc(x∗, d)
+ α(dist(p,R) + 1) + dist(p,R′)

sc(x∗, d)−∑
v∈VR′ d(x

∗, v)

sc(x∗, d)

= dist(p,R′) + α(dist(p,R) + 1).

The first two equalities merely employ definitions. The next step uses our previously deduced upper

bound for
∑

v∈V̄R
d(x, v). In the fifth step, we substitute

∑
v∈VR′ d(x,v)+

∑
v∈V̄R

d(x∗,v)

sc(x∗,d) by
∑

v∈VR′ d(x,v)∑
v∈VR′ d(x

∗,v) ·∑
v∈VR′ d(x

∗,v)

sc(x∗,d) +
sc(x∗,d)−∑

v∈VR′ d(x
∗,v)

sc(x∗,d) and simplify the last summand. Next, we use that 1 ≤ dist(p,R′) and∑
v∈VR′ d(x,v)∑
v∈VR′ d(x

∗,v) ≤ dist(p,R′), and the last step is just a simple transformation. This completes the proof of

this lemma.

Based on analysis so far, we now prove Theorem 2.

Theorem 2. Let m ≥ 3. It holds for every RSCF f with distm(f) < ∞ and z = lim infn→∞ PR∼IC(m,n)[∃x ∈
XR : f(R, x) = 0] that
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(1) lim supn→∞ ER∼IC(m,n)[dist(f(R), R)] ≤ 2 + 1
m−1

(2) lim infn→∞ ER∼IC(m,n)[dist(f(R), R)] ≥ 2 + z
m−1 .

Proof. Fix some number of voters and alternatives m and n such that n is significantly larger than m! (i.e.,
such that all subsequent terms are well-defined) and consider an arbitrary RSCF f with distm(f) < ∞.
We will give lower and upper bounds on ER∼IC(m,n)[dist(f(R), R)] that converge to 2 + z

m−1 and 2 + 1
m−1

respectively. To facilitate the proof, we let R denote a random variable which is distributed according to
IC(m,n), and set α = 1

3√n
and y = distm(f). Moreover, we define Tα as the set of profiles R′ such that

n≻(R′) > (1 − α) n
m! for all ≻ ∈ R(Xm), and S as the set of profiles R′ such that f(R′, x) = 0 for some

x ∈ XR. By the law of total probability, we first observe that

E[dist(f(R), R)|] = P[R ̸∈ Tα] · E[dist(f(R), R)|R ̸∈ Tα]

+ P[R ∈ Tα] · E[dist(f(R), R)|R ∈ Tα].

Based on this insight, we will now compute our upper and lower bounds.

Upper bound: For our upper bound, we fist note that E[dist(f(R), R)|R ̸∈ Tα] ≤ y as dist(f(R), R) ≤ y
for all profiles R on m alternatives. Moreover, it holds for every preference relation ≻1 that

P[R ̸∈ Tα] = P[∃≻ ∈ R(XR) : n≻(R) ≤ (1− α)
n

m!
]

≤ m! · P[n≻1(R) ≤ (1− α)
n

m!
]

≤ m!e−
α2

2
· n
m!

= m!e−
3√n
2m! .

Here, the first inequality is the union bound and the second one a standard Chernoff bound, where we
use that n

m! is the expectation of n≻1(R). This means that

E[dist(f(R), R)|] ≤ ym!e−
3√n
2m! + (1−m!e−

3√n
2m! )E[dist(f(R), R)|R ∈ Tα].

We next aim to bound E[dist(f(R), R)|R ∈ Tα]. Towards this, we note that every profile R ∈ Tα has a
subprofile R′ such that n≻(R′) = ⌈(1 − α) n

m!⌉ for every ≻ ∈ R(Xm). Now, by Lemma 2, it follows that
dist(f(R), R′) ≤ 2 + 1

m−1 . Applying Lemma 3 then shows that

dist(f(R), R)) ≤ 2 +
1

m− 1
+ (1− |VR′ |

n
)(y + 1) ≤ 2 +

1

m− 1
+ α(y + 1).

Hence, we can now conclude that

E[dist(f(R), R)|] ≤ ym!e−
3√n
2m! + (1−m!e−

3√n
2m! )(2 +

1

m− 1
+ α(y + 1)).

Since α = 1
3√n

, taking the limit shows that

lim sup
n→∞

ER∼IC(m,n)[dist(f(R), R)] ≤ 2 +
1

m− 1
.
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Lower bound: For the lower bound, we note that E[dist(f(R), R)|R ̸∈ Tα] ≥ 1 because dist(f(R), R) ≥ 1
for every profile R. Hence, we derive that

E[dist(f(R), R)] = P[R ̸∈ Tα] · E[dist(f(R), R)|R ̸∈ Tα]

+ P[R ∈ Tα \ S] · E[dist(f(R), R)|R ∈ Tα \ S]
+ P[R ∈ Tα ∩ S] · E[dist(f(R), R)|R ∈ Tα ∩ S]

≥ P[R ∈ Tα \ S] · E[dist(f(R), R)|R ∈ Tα \ S]
+ P[R ∈ Tα ∩ S] · E[dist(f(R), R)|R ∈ Tα ∩ S].

Next, it is simple to see that P[R ∈ Tα ∩ S] ≥ 1 − P[R ̸∈ Tα] − P[R ̸∈ S] = P[R ∈ S] − P[R ̸∈ Tα].

Moreover, as shown for the upper bound, it holds that P[R ̸∈ Tα] ≤ m!e−
3√n
2m! , so we have that

P[R ∈ Tα ∩ S] ≥ P[R ∈ S]−m!e−
3√n
2m! .

Subsequently, we will derive lower bounds on our expectations and first analyze E[dist(f(R), R)|R ∈ Tα∩S].
To this end, we first fix a profile R ∈ Tα ∩ S and investigate dist(f(R), R). Moreover, let x∗ denote an
alternative with f(R, x∗) = 0 (which exists as R ∈ S) and consider the biased metric d ∈ D(R) given by the
function t with t(x∗) = 0 and t(x) = 2 for all x ∈ XR \ {x∗}. We observe again that R has a subprofile R′

such that n≻(R′) = ⌈(1− α) n
m!⌉ (because R ∈ Tα). Similar to the proof of Lemma 1, it is easy to show for

all x ∈ XR \{x∗} that
∑

v∈VR′ d(x, v) =
nR′ (2m−1)

m and that
∑

v∈VR′ d(x
∗, v) = nR′ (m−1)

m . Since f(R, x∗) = 0,
we can compute that

sc(f(R), d) =
∑

x∈XR

f(R, x)
∑

v∈VR

d(v, x) ≥
∑

x∈XR

f(R, x)
∑

v∈VR′

d(v, x) =
nR′(2m− 1)

m
≥ (1− α)n

2m− 1

m
.

By contrast, we can infer that sc(x∗, R) ≤ nR′ (m−1)
m + (n− nR′) ≤ (1− α)nm−1

m + αn. In particular, we
note for this inequality that nR′ = m!⌈(1− α) n

m !⌉ ≥ (1− α)n and that d(v, x∗) ≤ 1 for all v ∈ VR. We can
now derive that

sc(f(R), d)

sc(x∗, d)
≥ (1− α)n2m−1

m

(1− α)nm−1
m + αn

=
2m−1
m−1

1 + αm
(1−α)(m−1)

= (2 +
1

m− 1
) · 1

1 + m
m−1 · 1

3√n−1

.

Finally, we conclude that dist(f(R), R) ≥ sc(f(R),R)
sc(x∗,d) ≥ (2 + 1

m−1) · 1
1+ m

m−1
· 1
3√n−1

for all R ∈ Tα ∩ S. As a

consequence, E[dist(f(R), R)|R ∈ Tα ∩ S] ≥ (2 + 1
m−1) · 1

1+ m
m−1

· 1
3√n−1

, too.

Next, we will bound E[dist(f(R), R)|R ∈ Tα \ S]. To this end, let R ∈ Tα \ S, let x∗ ∈ XR denote an
alternative that minimizes f(R, x∗), and let d denote the same biased metric as before. Since R ∈ Tα, there
is a subprofile R′ that contains every ballot precisely n≻(R′) = ⌈(1− α) n

m!⌉ times. Since f(R, x∗) ≤ 1
m , we
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can compute that

sc(f(R), d) ≥
∑

v∈VR′

∑

x∈XR

f(R, x)d(x, v)

= (1− f(R, x∗))
nR′(2m− 1)

m
+ f(R, x∗)

nR′(m− 1)

m

≥ 2nR′
m− 1

m

≥ 2(1− α)n
m− 1

m
.

Moreover, by our previous analysis, sc(x∗, d) ≤ (1− α)nm−1
m + αn. Hence, we derive that

dist(f(R), R) ≥ sc(f(R), d)

sc(x∗, d)

≥ 2(1− α)nm−1
m

(1− α)m−1
m n+ αn

≥ 2
1

1 + m
m−1 · α

1−α

≥ 2
1

1 + m
m−1 · 1

3√n−1

.

Since this holds for every R ∈ Tα, we infer that E[dist(f(R), R)|R ∈ Tα \ S] ≥ 2 1
1+ 1

3√n−1

. Finally, we can

now put everything together:

E[dist(f(R), R)] ≥ P[R ∈ Tα \ S] · E[dist(f(R), R)|R ∈ Tα \ S] + P[R ∈ Tα ∩ S] · E[dist(f(R), R)|R ∈ Tα ∩ S]

≥ P[R ∈ Tα \ S] · 2 · 1

1 + m
m−1 · 1

3√n−1

+ P[R ∈ Tα ∩ S] · (2 + 1

m− 1
) · 1

1 + m
m−1 · 1

3√n−1

= P[R ∈ Tα] · 2 · 1

1 + m
m−1 · 1

3√n−1

+ P[R ∈ Tα ∩ S] · 1

m− 1
· 1

1 + m
m−1 · 1

3√n−1

≥ 1

1 + m
m−1 · 1

3√n−1

· 2 · (1−m!e−
3√n
2m! ) +

1

1 + m
m−1 · 1

3√n−1

· (P[R ∈ S]−m!e−
3√n
2m! ) · 1

m− 1
.

Now, it is easy to verify that

lim
n→∞

1

1 + m
m−1 · 1

3√n−1

= 1 and

lim
n→∞

m!e−
3√n
2m! · (2 + 1

m− 1
) · 1

1 + m
m−1 · 1

3√n

= 0.

Since z = lim infn→∞ P[R ∈ S], it hence follows that lim infn→∞ ER∼IC(m,n)[dist(f(R), R)] ≥ 2+ z
m−1 .
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Finally, we present the proof of Theorem 3.

Theorem 3. It holds for every m ≥ 3 that

(1) limn→∞ ER∼IC(m,n)[dist(fRD(R), R)] = 2.

(2) limn→∞ ER∼IC(m,n)[dist(fRPV (R), R)] = 2 + 1
m−1 .

Proof. We will prove each of our three claims separately.

Claim (1): Uniform Random Dictatorship.
We first will show that limn→∞ ER∼IC(m,n,)[dist(fRD(R), R)] = 2. To this end, we note that z =
lim infn→n P[∃x ∈ XR : f(R, x) = 0] ≥ 0 because we consider a probability here. Hence, we can sim-
plify the lower bound in Theorem 2 to lim infn→∞ ER∼IC(m,n)[dist(fRD(R), R)] ≥ 2. We will next show a
matching upper bound on this limit, i.e., that lim supn→∞ ER∼IC(m,n)[dist(fRD(R), R)] ≤ 2, which then
implies our claim. In more detail, we will infer an upper bound on ER∼IC(m,n)[dist(fRD(R), R)] for every
fixed n that will converge to 2. For this, we denote by R a random variable that is distributed according to
IC(m,n) and set α = 1

3√n
. We furthermore define by Tα the set of profiles on n voters and m alternatives

such that n≻(R) > (1−α) n
m! for all ≻ ∈ R(XR) and note that, by the law of total probability, it holds that

E[dist(fRD(R), R)|] = P[R ̸∈ Tα] · E[dist(fRD(R), R)|R ̸∈ Tα]

+ P[R ∈ Tα] · E[dist(fRD(R), R)|R ∈ Tα].

For our upper bound, we note that E[dist(fRD(R), R)|R ̸∈ Tα] ≤ 3 as dist(fRD(R), R) ≤ 3 for all profiles
R. Moreover, just in the proof of Theorem 2, we can infer that

P[R ̸∈ Tα] ≤ m!e−
3√n
2m! .

We next aim to bound E[dist(fRD(R), R)|R ∈ Tα]. For this, we observe that fRD(R, x) > (1 − α) 1
m

for all x ∈ XR and R ∈ Tα. Next, let R′ denote the subprofile of R such that each preference relation
appears ⌈(1 − α) n

m!⌉ times; such a subprofile exists as R ∈ Tα. By Lemma 2, we hence have that
dist(fRD(R), R′) ≤ 2+ 1

m−1− m
m−1 ·(1−α) 1

m = 2+ α
m−1 . By Lemma 3 and the fact that dist(fRD(R), R) ≤ 3

for all profiles R, we furthermore conclude for all R ∈ Tα that

dist(fRD(R), R) ≤ dist(fRD(R), R′) +
n− |VR′ |

n
(1 + dist(fRD(R), R))

≤ 2 +
α

m− 1
+ 4

n−m!⌈(1− α) n
m!⌉

n

≤ 2 +
α

m− 1
+ 4α

= 2 +
1
3
√
n
(4 +

1

m− 1
).

Since 2 + 1
3√n

(4 + 1
m−1) ≤ 3 for sufficiently large n, we can now compute E[dist(f(R), R)]:

E[dist(fRD(R), R)|] ≤ 3m!e−
3√n
2m! + (1−m!e−

3√n
2m! )(2 +

1
3
√
n
(4 +

1

m− 1
)).
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Finally, it is easy to check that this bound indeed converges to 2 as n goes to infinity, thus demonstrating
that lim supn→∞ ER∼IC(m,n)[dist(fRD(R), R)] ≤ 2.

Claim (2): Randomized Plurality-Veto.
For the randomized Plurality-Veto rule, we first note that lim supn→∞ ER∼IC(m,n)[dist(fPRV (R), R)] ≤
2 + 1

m−1 by Theorem 2. We thus only need to improve the lower bound. To this end, we will prove
that lim infn→∞ P[∃x ∈ X : fPRV (R, x) = x] = 1 as the Claim (2) in Theorem 2 then shows that
lim infn→∞ ER∼IC(m,n)[dist(fPRV (R), R)] ≥ 2 + 1

m−1 .
Since fPRV randomizes over the set of Plurality-Veto winners, we start our proof by reasoning about

when every alternatives is in the set of Plurality-Veto winners PV (R). To this end, we recall that tR(x)
is the number of voters that top-rank alternative x in the profile R, and we define bR(x) as the number
of voters that bottom-rank alternative x in R. We then claim that PV (R) = XR holds if and only if
bR(x) = tR(x) > 0 for all x ∈ X. We start by showing the direction from left to right and assume for
contradiction that there is a profile R such that PV (R) = XR even though there is an alternative x such
that bR(x) ̸= tR(x). (We note that, if tR(x) = 0, then it follows trivially that x ̸∈ PV (R)). By a simple
counting argument, it follows that if bR(x) < tR(x) for some x ∈ XR, then there is also an alternative y
such that bR(y) > tR(y). Because of this, we will assume that bR(x) > tR(x). Now, in order for x to be
chosen by Plurality-Veto, the plurality scores tR(y) of every other alternative y ̸= x must be decreased to 0.
This requires at least

∑
y∈XR\{x} tR(y) = |VR| − tR(x) voters as every voter only decreases the score of an

alternative by 1. However, the voters who bottom-rank x will not reduce the score of any other alternative
if x is the winner. Hence, there are only |VR| − bR(x) < |VR| − tR(x) voters that can decrease the scores of
the alternatives in XR \ {x}. This contradicts that all these scores hit 0, so the assumption that x ∈ PV (R)
is wrong. For the other direction, we assume that tR(x) = bR(x) > 0 for all x ∈ XR. Then, it is easy to see
that x ∈ PV (R) by ordering the voters by their bottom-ranked alternatives and ensuring that those who
bottom-rank x are last in our sequence. This completes the proof of our auxiliary claim

By this insight, it holds for the random variable R ∼ IC(m,n) (for some fixed m and n), and an arbitrary
alternative x∗ that

P[∃x ∈ X : fPRV (R, x) = 0] = 1− P[∀x ∈ X : fPRV (R, x) > 0]

= 1− P[∀x ∈ XR : tR(x) = bR(x) > 0]

≥ 1− P[tR(x∗) = bR(x
∗)].

Now, define Z(R) = tR(x
∗)− bR(x

∗) and define ri as the random variable such that ri(R) = 1 if x∗ is the
favorite alternative of voter i in R, ri(R) = −1 if x∗ is the least preferred alternative of voter i in R, and
ri(R) = 0 otherwise. It is straightforward to verify that Z(R) =

∑
i∈VR

ri(R). Moreover, by the definition
of the impartial culture distribution, all random variables ri(R) are independent of each other (because the
preference relation of each voter is sampled independently from that of all other voters). We can now apply
the central limit theorem to infer that P[Z(R) = x] converges to a normal distribution with mean 0 (as
the mean of Z(R) is easily shown to be 0). In principle, this is sufficient to infer that P[tR(x∗) = bR(x

∗)]
converges to 0 as n goes to ∞. We will, however, make this more precise by using the Berry-Esseen theorem
(Berry, 1941; Esseen, 1942), which bounds the error of the central limit theorem for a finite n. To apply

this result, we first observe that E[ri(R)] = 0, σ =
√
E[ri(R)2] =

√
2
m , and φ = E[|ti(R)|3] ≤ 1. Now, let

Π(x) = 1√
2π

∫ x
−∞ e−t2/2dt denote the cumulative distribution of the standard normal distribution. The
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Berry-Esseen theorem (Berry, 1941; Esseen, 1942) then states that there is a constant C ≤ 1 such that for
every n and every x

|P[ Z(R)√
2n/m

≤ x]− Φ(x)| ≤ Cφ

σ3
√
n
.

We will use this bound for x = 0, for which P[ Z(R)√
2n/m

≤ 0] = P[Z(R) ≤ 0] and Φ(0) = 1
2 . Moreover,

by defining C ′ = Cφ
σ3 , we infer from this inequality that P[Z(R) ≤ 0] ≤ 1

2 + C′√
n
. Finally, we note that

P[Z(R) ≤ 0] = P[Z(R) ≥ 0] because if Z(R) ≤ 0 for some profile R, then Z(R′) ≥ 0 for the profile R′ where
we reversed the preferences of all voters. This means that

P[Z(R) = 0] = P[Z(R) ≤ 0] + P[Z(R) ≥ 0]− 1 = 2P[Z(R) ≤ 0]− 1 ≤ 2C ′
√
n
.

Combining this with our first inequality shows that, for every n ∈ N, that

P[∃x ∈ X : fPRV (R, x) = 0] ≥ 1− 2C ′
√
n
.

It is now straightforward to see that the right side converges to 1, which finally proves our claim.
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