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Abstract  

In this short paper we derive a representation result in terms of a solution to a stochastic differential equation that is 
valid for both continuous and discrete time Markov processes that live on a finite state space. Martingale techniques are 
used throughout the paper. @ 1998 Elsevier Science B.V. All rights reserved 
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I .  I n t r o d u c t i o n  

Let ( f 2 , ~ ,  ~:,P) be a filtered probabili ty space. Assume that the filtration g: satisfies the usual conditions 
in the sense of  Dellacherie and Meyer  (1980). Let X be a cadlag process on [0, cx~) with a finite state 
space. Without  loss of  generality we can assume that the state space is the standard orthogonal basis of  the 
Euclidian space ~ " .  Call this set B m = {bl . . . . .  bin}. (Indeed, i f  ~ is a stochastic process with values in a set 
{zl . . . . .  Zm}, where all the zi are different, then we can define the process X with values in B m by Xt = bi 
iff ~.t = zi. Hence the probabilistic structure o f  ~ determines that o f  X and vice versa). So, we view X as a 
mapping X : ~2 × [0,c~)  ~ Bm. I f  we work with a discrete t ime chain X then we use the familiar way of  
considering it as a continuous time cadlag chain by the convention Xt =- Xt0. Similarly, one then usually has 
for the filtration ~ - f f [ t l .  

By definition X is called tZ-Markov i f  for all t ~ s  and for all b E B m one has P(Xt = b l ~ )  = P(X~ = 

b ] a(Xs)). Denote by q~(t,s) the m × m matrix with elements ~ij( t ,s)  = P(Xt = bi [Xs = bj). Notice that the 
column sums of  ~ ( t , s )  are all equal to one. 

The advantage of  working with the state space B m can already be illustrated with the following observation: 

X is DZ-Markov i f  and only i fE[Xt  1 ~ ]  = ~ ( t , s ~  for all t ~ s .  
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Necessity of  this equality for the Markov property can be shown as follows. First we note that P(Xt = bi [ ~ )  
m m m 

= ~ j : ,  P(Xt = bi [X~. = bj)l(x,=bA = b T i ~ ( t , s ~  .. Hence E[Xt I ~ ]  = E i = I  b~P(Xt = bi I ~s) = ~'~4:1 bibT 

• (t,s)Xs = ~(t,s)Xs, since ~im_l bibVi = I. 
In order to show sufficiency we use that Xt = bi iffbviXt = 1. So we obtain P(Xt = bi ] ~s) = E[l{x,=b,} I .~] 

= bTe[ x,  I ~ ]  = bT~(t,s)Xs. 
The representation of a discrete time Markov chain X as the solution of a linear (stochastic) difference 

equation (Proposition 1.1 below) has been popular in the stochastic systems theory literature for a long time, 
since this equation looks the same as the one for a Gaussian state process. Especially in references devoted 
to filtering problems one will often encounter such representations, cf. the book by Elliott et al. (1995) and 
references therein. Specifically, there one uses the following result, see e.g. Elliott et al. (1995, p. 17) for the 
time homogeneous case. 

Proposition 1.1. Let {St}tc{0,1,2,...} be a discrete time Markov chain with A(t)  the matrix o f  one step tran- 
sitions probabilities at time t : Aij(t) = P(Xt+l = ei ] Xt = ej) and define for  each t >~ 1 

~, = Xt - A(t - 1)Xt-1. (1.1) 

The process {et} is then a martingale difference sequence adapted to the filtration generated by X.  

In a previous paper (Spreij, 1990) we showed a similar result (but now of/if-type) in continuous time. Let 
• (t ,s) be as before and let (the limit is assumed to exist for all t~>0) A(t)  = limhlo(1/h)[~(t + h , t ) -  1]. 
Then we have the following convenient equivalent representation of an ~:-Markov process with values in B m 
as the solution of a stochastic differential equation. 

Proposition 1.2. A stochastic process X : (2 x [0, c~) ~ B m is ~--Markov with generating matrix A iff X 
satisfies the stochastic differential equation 

dXt = A(t)Xt dt + dMt, Xo (1.2) 

with M : ~2 × [0, cxz ) ---, ~n a n-dimensional F--martingale. 

2. The general representation 

The next proposition generalizes Propositions 1.1 and 1.2. As before we consider an D:-adapted cadlag 
stochastic process X : f2 x [0,co) ---. B m and we denote by q~(t,s) the matrix with entries ~ij(t ,s) = P(Xt = 
bi Ix,  = b j )  

Before stating the main result (Proposition 2.2 below) we need a technical lemma. It involves the Dol~ans 
exponent ~ (see Jacod (1979, Chapter 6) for a definition). The following holds true. 

Lemma 2.1. I f  X is g:-Markov, then there is a function o f  bounded variation Q with values' in ~m×m such 
that ¢(t ,s)  = ~(Q(s + "))t-s for  all t ~ s .  

Proof. This follows from Gill and Johansen (1991 ). Using their Theorem 15, we have Q(t) = f(0,d d ( ~ -  I) ,  

and ~(t ,s)  = I-I(sj](l + dQ), where the I I  here stands for the product-integral defined as a limit of  matrix 
products, in which the ordering of the product is the opposite of the one in Gill and Johansen (1991 ). As a 
consequence their formula (40) now takes the form 

• (t ,s) = I + [ dQ(u)Cb(u-,s)  (2.1) 
a(s ,t] 

from which the assertion follows. [] 
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Remark. The form of the function Q follows from results on product integration. However, in two extreme 
cases it is easy to define Q without the theory of product integration. Consider first the case in which ~(., 0) 
is differentiable. Then ~(t ,0)  is invertible and Q(t) is simply fo tb(u,O)~(u,O) -ldu" 

In the other case we assume that X is a Markov chain in discrete time on the integers with ~b(t+ 1, t) = A(t). 
t - -I  

Then Q(t) = ~k=l (A(k)  - I) .  

Proposition 2.2. I f  X is F--Markov, then there is a bounded variation function Q such that M defined by 

M, = X, - Xo - I dQ(s)X,._ (2.2) 
J(o ,t] 

is an F--martingale. Conversely, if there is a martingale M and a bounded variation function Q such that X 
is the solution of  Eq. (2.2), then X is U:-Markov with transition probabilities as in Lemma 2.1. 

Proof. Using the fact that E[Xt I 4 ]  = ~(t,s)X~, the definition of M and Lemma 2.1 we compute the condi- 
tional expectation 

E [ M ~ I . ~ ] = E [ X t , ~ s ] - - X o - - f (  ° d Q ( u ~ u _ - E [ f ( s  dQ(u)Xu_lo~]  
, s] ,t] 

= ~(t,s)X~ +M~ - X s  - / dQ(u)~(u-,s)X~ 
J(,, ,t] 

and the result follows from Eq. (2.1). For the proof of the converse statement we compute 

,s] ,t] 

- -  x, + [ dQ(u)E[Xu_ I 4]. 
J~, (s, t] 

SO, E[Xt [ .~]  satisfies a Volterra in equation t which has a unique solution given by E[Xt 1.~] = ~(t,s~. ,  
in view of the fact that cb(t,s) satisfies Eq. (2.1). 

Remark. I f  we consider again the two cases mentioned in the remark following Lemma 2.1, we see that we 
obtain Propositions 1.1 and 1.2 as special cases of Proposition 2.2. 

In much the same way as in the second part of the proof of  Proposition 2.2 we obtain that an I:-Markov 
chain X also satisfies the Strong Markov property. In the book of Breiman (1968, Proposition 15.25) one can 
find a classical proof. 

Proposition 2.3. Let X be ~:-Markov and T an a.s..finite ~--stoppin 9 time. Then 

E[Xr+, I.~r]=Cb(T + t,T)Xr for all t>~O. (2.3) 

Proof. First we assume that T is bounded. Since we know that X satisfies Eq. (2.2) and that E[Mr+t I ~T] = 
Mr by the optional stopping theorem, we find by application of Fubini's theorem (Q has bounded variation 



186 P. Spreij" / Statistics & Probability Letters 38 (1998) 183-186 

over finite intervals) for conditional expectations and the fact that T is ~ r -measurab le  that 

E[XT+t I ,~T]=XT + E [f(r ' dQ(u)Xu- I °~T] 
T+t] 

=Xr+E[fdQ(u)I{T<u~T+OXu-'.YT] 

+ f dQ(u)E[I{T<u<.T+t}X.- I ~ X T gr] 

= X r  + f dQ(u)E[X._ [ ,FF]. 
J(T, T+t] 

So we obtain again a Volterra equation, the solution of  which yields the desired expression under the condition 
that T is bounded. 

Next we consider the general case. Let n be a natural number, then T A n is a bounded stopping time. In 
the string of  equalities below we use Eq. (2.3) for this bounded stopping time. Because {T<~n} is ~rAn- 
measurable, we can write 

E[Xr+, I ~TA.] =E[I{T<~4Xr+, [ YTA.] + I{T>4E[Xr+, ] ~TA.] 

=E[I{T<~nIXTAn+t [ ,-~TA.] + I{T>nIE[XT+t [ ~TAn] 

= I{T<.}E[XrA.+t [ YTA~] + I{T>4E[Xr+t [ ~rA~] 

= l{ r~ .}(b(T A n + t, T A n)XTA. + l{r>.}E[Xr+t [ ~ r A . ]  

= I{T<~nI~(T 4- t, T)Xr + l{r>n}E[Xr+t I ~TAn]. 

Now take limits for n ~ ~ in the extreme members of  the above string. Clearly the last term converges 
to ~(T 4- t, T)XT and the first one, being a martingale in n, to E[XT+t J ~T] according to the martingale 
convergence theorem. [] 

Remark. Notice that we can now also deduce that E[Mr+t ] ,Tr] = Mr, with M as in Eq. (2.2) for finite 
stopping times T. This does not immediately follow from the optional sampling theorem, where one requires 
M to be uniformly integrable or T bounded. As a second remark we mention that Eq. (2.3) is also valid on 
the set T < e~ for an arbitrary stopping time, as can easily be verified. 
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