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1. Introduction

Let S denote the log price process of some stock in a financial market. It is often assumed that S can be modeled as the
solution of a stochastic differential equation or, more generally, as an It diffusion process. So we assume that we can write

dSt:bfdt—i—Utth, SOZO, (])
or, in integral form,
t t
S :/ b ds—l—/ os dWs, (2)
0 0

where W is a standard Brownian motion and the processes b and o are assumed to satisfy certain regularity conditions (see
[16]) to have the integrals in (2) well defined. In a financial context, the process o is called the volatility process. In the
literature, the process o is often taken to be independent of the Brownian motion W.

In this paper we adopt this independence assumption and we furthermore assume that o is a strictly stationary positive
process satisfying a mixing condition, for example an ergodic diffusion on (0, co). We will assume that all p-dimensional
marginal distributions of o have invariant densities with respect to the Lebesgue measure on (0, oo)?. This is typically the
case in virtually all stochastic volatility models that are proposed in the literature, where the evolution of ¢ is modeled by
a stochastic differential equation, mostly in terms of o2, or log o' (cf. e.g. [27,14]).

Therefore, think of X as X = % or X = logo?, as a motivation for nonparametric estimation procedures, consider
stochastic differential equations of the type

dX; = b(X;) dt + a(X;) dB;,
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with B equal to Brownian motion. Focusing on the invariant univariate density of X;, we recall that it is up to a multiplicative
constant equal to

1 * b(y)
o exp (2 20 dy) , (3)

where xj is an arbitrary element of the state space (I, r); see e.g. [12] or [21]. From formula (3) one sees that the invariant
distribution of X may take on many different forms, as is the case for the various models that have been proposed in the
literature. Refraining from parametric assumptions on the functions a and b, nonparametric statistical procedures may be
used to obtain information about the shape of the (one-dimensional) invariant distribution.

A phenomenon that is often observed in practice, is volatility clustering. This means that for different time instants
t1, ..., tp that are close, the corresponding values of o, . .., o¢, are close again. This can partly be explained by assumed
continuity of the process o, but it might also result from specific areas around the diagonal where the multivariate density
of (o, ..., 0r,) assumes high values. For instance, it is conceivable that for p = 2, the density of (o, 01,) has high
concentrations around points (£, £) and (h, h), with £ < h, a kind of bimodality on the diagonal of the joint distribution,
with the interpretation that clustering occurs around a low value £ or around a high value h.

X =

Here is an example where this happens. We consider a regime switching volatility process. Assume that for i = 0, 1
we have two stationary processes X', each of them having multivariate invariant distributions having densities. Call these
frll,....rp (X1, ..., Xp), whereas for p = 1 we simply write f'. We assume these two processes to be independent, and also

independent of a two-state homogeneous Markov chain U with states 0, 1. Let Q (t) be the matrix of transition probabilities
qij(t) = P(X; = i|Xo = j). Let A be the matrix of transition intensities and write

()
(¢h) —ay
with ag, a; > 0. Then Q(t) = AQ(t), and

1 a + aOe*(ao+al)t a; — ale*(ﬂoﬂll)f
ag + a; ao_aoe—(ﬂo+a1)t ao+a1e—(ﬂo+ﬂl)f :

Q) =

The stationary distribution of U is given by 7r; := P(U; = i) = a21+_t;1 and we assume that Uy has this distribution. We finally
define the process £ by

& = UX! + (1 —U)X?.

Then £ is stationary too and it has a bivariate stationary distribution with a density, related by P(&; € dx, & € dy) =
fs.t(x, y) dx dy. Elementary calculations lead to the following expression for f;; for0 <s <t

fir . y) = qu(t — )mif, X, y) + qro(t — Hmf*Of ' ¥) + o1 (t — )mf ' XF° V) + qoo(t — $)af (%, ¥).

Suppose that the volatility process is defined by o = exp(&;) and that the X' are both Ornstein-Uhlenbeck processes given
by

dX; = —a(X] — ;) dt + bdw/,

with W', W? independent Brownian motions, jt; # i, and a > 0. Suppose that the X' start in their stationary N (u;, bz)

2a
distributions. Then the center of the distribution of (Xsi , X[i) is (i, 1), whereas the center of the distribution of (XSO , th) is
(o, m1)- Hence the density f; ; is a mixture of four hump shaped contours, each of them having a different center of location.
If t — s is small, this effectively reduces to mixture of distributions with centers (w1, ;1) and (w3, (2). Similar qualitative
observations can be made for models that switch between different GARCH regimes.

Nonparametric procedures are able to detect such a property of a bivariate distribution, and are consequently appropriate
tools to get some partial insight into the behavior of the volatility. In the present paper we propose a nonparametric estimator
for the multivariate density of the volatility process. Using ideas from deconvolution theory, we will propose a procedure for
the estimation of this density at a number of fixed time instants. Related work on estimating a stationary univariate density
of the volatility process has been done by Van Es et al. [22], Comte and Genon-Catalot [3], Van Zanten and Zareba [24],
whereas a deconvolution approach has also been adopted to estimate a regression function for a discrete time stochastic
volatility model by Franke et al. [8], Comte [1] and Comte et al. [2]. In [4] it is assumed that the volatility process solves a
stochastic differential equation and nonparametric estimators for the drift and diffusion coefficients of that equation are
studied. In most of these papers, one works with a simplified model with detrended log prices, which amounts to modeling
the process S by Eq. (1) with a zero drift coefficient. In the present paper we adhere to this approach, which has become the
tradition, as well.

The observations of the log-asset price S process are assumed to take place at the time instants A, 2A, ..., nA, where
the time gap satisfies A = A, — 0and nA,, — oo asn — oo. This means that we base our estimator on the so-called high
frequency data.
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To assess the quality of our procedure, we will study how the bias and variance of the estimator behave under these
assumptions. In [22] this problem has been studied for the marginal univariate density of o. The multivariate study of
the present paper largely builds on the approach of the cited paper, in particular we will rely not only on a number of
technical results that are contained in it, but also we will borrow ideas from [23], where a multivariate problem for discrete
time models has been studied. Nevertheless, we will encounter a number of technical problems that are not present in the
univariate case, nor in the multivariate case for discrete time models.

The remainder of the paper is organized as follows. In Section 2, we give the heuristic arguments that motivate
the definition of our estimator. In Section 3 the main results concerning the asymptotic behavior of the estimator are
presented and discussed. Section 4 contains simulated examples in which the estimator is computed and whose behavior is
qualitatively compared to that of another estimator. The proofs of the main theorems are given in Section 5. They are based
on a number of technical lemmas, whose proofs are collected in Sections 6 and 7.

2. Construction of the estimator

As stated in the introduction, we consider (1) without the drift term, so we assume to have
dSt = O¢ th, So =0.

It is assumed that we observe the process S at the discrete time instants 0, A, 2A, ..., nA.Fori = 1,2, ... we work, as in
[9,10], with the normalized increments
1 1 iA
XA = — — o dW,. (4)

; ﬂ(SIA Si-1)4) Ney

For small A, we have the rough approximation (its precise meaning is not relevant at this stage, since we only develop
the heuristics that eventually lead to the estimator to be presented below; but see (39) for a precise statement given the
appropriate assumptions)

1
XA~ O(ifl)Aﬁ(WiA — Wi—1)a) = 0G-1aZ{, (5)
where fori = 1, 2, ... we define
zA ! (Wix — W, )
i «/Z iA @i—1)

By the independence and stationarity of Brownian increments, the sequence Z{*, Z;', . .. is an ii.d. sequence of standard
normal random variables. Moreover, the sequence is independent of the process o by assumption.
Let us first describe the univariate density estimator. Taking the logarithm of the square of XiA, we get from (5)

log((X*)?) = log(a_y)4) + 1og((Z*)?), (6)
where the two terms on the right are independent. Assuming that the approximation is sufficiently accurate we can use this
approximate convolution structure to estimate the unknown density f of log(afA) from the observed log((XiA)z).

Before we can define the estimator, we need some more notation. Observe that the density of the ‘noise’ log(ZiA)z, denoted
by k, is given by

k(o) = — edte3e", 7)
V2r
The characteristic function of the density k is denoted by ¢, and is given by ¢ (t) = ﬁ 2 F(% + it); see [22].
In the present paper we will estimate the density f (X) = f;, ..., (X), with X = (x1, ..., xp), of a vector (log 02], ., log aé
Here the 0 < t; < --- < t, denote p pre-specified time points. For clarity of exposition we first briefly outline the

construction of an estimator of the univariate (p = 1) density f of log 0[2, which is by assumed stationarity the same for all ¢.

Following a well-known approach in statistical deconvolution theory, we use a deconvolution kernel density estimator; see
e.g. Section 6.2.4 of [26]. To that end we will use a kernel function w, satisfying certain regularity conditions to be explained
further down (Condition 3.3). Having the characteristic functions ¢, and ¢,, at our disposal, choosing a positive bandwidth
h, we introduce the bandwidth dependent kernel function

1 o S )
(%) = —/ %0 (5) e ¥ ds (8)
27 J oo $K(s/h)
and the density estimator of the univariate invariant density f of log otz given by
1< x — log((X{")?)
= — _. 9
fan@0 = — ;vh< p 9)

One easily verifies that the function vy, and therefore also the estimator f, is real valued. In [22] bias expansion and bounds
on the variance of f,,(x) have been obtained.
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In the present paper we will extend these results to a multivariate setting, in which we will estimate the density
f&X) = fiy...,,®). In all that follows, we will adopt the convention to use boldface expressions for (random) vectors. The
expression for the estimator of this density will be seen to be analogous to the estimator in the univariate case, that has
been analyzed in [22], and exhibits some similarity with the estimator of a similar multivariate density in a discrete time
framework as treated in [23]. The high frequency regime of the observations (A — 0) introduces non-trivial complications
as compared to the discrete time framework of [23], whereas the estimation of a multivariate density also substantially
complicates the analysis further as compared to the univariate estimation problem of [22].

What one ideally needs to estimate f (X) are observations of p-dimensional random vectors that all have a density equal to
f. This happens under the observation scheme that we have introduced previously, if the t; are multiples of A, t; = i, A say.
In that case, one should use (X[f Ay Xfp‘ i ) forall the values ofj that are given by the observations. The first complicating
factor is however that the t; are not given as fixed multiples of A. On the other hand, if this would be the case, it would lead
to an uninteresting estimation problem, as A — 0 in our setup, resulting in a degenerate density in the limit. Note that this
kind of problem is not present, when one aims at estimating a univariate marginal density of log o2, since all logo2, t > 0
have the same marginal density.

We approach the problem as follows. Write (i]A, ..., i%) for the vector ([t;/A], ..., [t,/ A]) where [.] denotes the floor

function. We use Xf to denote the random vectors of length p

A A A . A A
xf_o(f""’xiﬁ—ifﬂ)’ j=1,...,n iy +iy.

Hence its kth component is Xi’ﬁii Ay k=1,...,p.Analogously, log((X:")*) denotes the vector

A2 A2 A 2
log(X)? = (10g(X")2. ... 10g(X] s, )").

Anywhere else in what follows, we adhere to a similar notation. Functions of a vector are assumed to be evaluated
componentwise, yielding again a vector.
Note that XjA is, by virtue of (5), approximately equal to the vector

Y. — A A
Xj = (0071)AZj yoeeey O'(ié_if+f_1)AZi§7ilA+j) (10)

log(XjA)z, in the construction of a kernel estimator.
The kernel w that we will use in the multivariate case is just a product kernel, w(x) = ]_[le w(x;). Likewise we take
k(x) = le k(x;) and the Fourier transforms ¢y and ¢y factorize as well. Let v;, be defined by

1 Pw(s)
(27)P Jre dr(s/h)

where s € RP and - denotes inner product. Notice that we also have the factorization v, (x) = ]_[5;1 vp ().
The multivariate density estimator f,;; (x) that we will use to estimate f (x) is given by

) 1 TEN x — log((X)?)
nh(x)—m ; ‘' T .

Vi(X) = e % s, (11)

(12)

Note that this estimator bears some similarity to, but also differs from the corresponding one for a discrete time model in
[23], where the multivariate density of (o¢41, ..., 0¢1p) at consecutive time points is the object under study for a discrete
time model. Let us explain the most important differences with [23]. In that paper one works with discrete time models,
whereas the focus of the present paper is on continuous time models, that are discretely observed under a sampling regime in
which the sampling interval tends to zero, i.e. high frequency observations. We emphasize that this situation cannot occur in
adiscrete time setup. The high frequency assumption introduces an additional problem in that the consecutive observations
Sia will exhibit a stronger dependence when A — 0. This introduces additional technical complications as compared to the
discrete time setup of [23], that cannot be tackled with the techniques used in that paper. The problem of estimating a
multivariate density is another source of technical complications as compared to univariate density estimation treated in
[22]. These will become apparent from the proofs in Section 5, although this more complex situation should already have
become clear from the construction of the estimator as outlined above.

As a final note in this section we briefly discuss marginalization. Under the condition that the integral of v, is equal to
one, an estimator off(tl,m,[p_n(x], ..., Xp—1) is obtained by integrating out the variable x, in (12). The resulting expression
resembles, but is slightly different from, the analog of (12) for a (p — 1)-dimensional density. To describe the precise result,



B. Van Es, P. Spreij / Journal of Multivariate Analysis 102 (2011) 683-697 687

. . . .
letX = (X1, ...,%-1),Vh = [ [, vn(x), Xt = (XjA,...,Xiﬁ

i ?+j)' Then the estimator of f(X) obtained by integrating

f.n(X) over x, becomes

A A v
) ()v() . 1 n—ip +ij . (,“( _ log((XjA)z)>
nh = T A iANbD h - . )
(n— i +i7)hp o h
which indeed slightly differs from f,,_; ,(X). Further integration over the variables x, . .., x,_1 then reduces this estimator

to the estimator of the univariate density given by (9) upon the substitution of n by n — i§ + i
Let us emphasize that vy, is in general not an L'-function, so care has to be taken with the integration above. The integral

of vj, has to be understood as an improper Riemann integral, or even as its principal value (limy_, o /iVN vp(x) dx). However,
if one of these concepts of the integral is well defined, the resulting value of the integral of v, is equal to 1.

3. Results

To derive the asymptotic behavior of the estimator, we need a mixing condition on the process o. For the sake of clarity,
we recall the basic definitions. For a certain process X let ?‘ab be the o -algebra of events generated by the random variables
X;, a <t < b. The mixing coefficient «(t) is defined by

a(t) = sup [P(ANB) — P(A)P(B)|. (13)
AeFO, BeF>®

The process X is called strongly mixing if «(t) — 0ast — oc.
As we mentioned in the introduction, it is common practice to model the volatility process V = &2 as the stationary,
ergodic solution of an SDE of the form

dV; = b(Vy) dt 4 a(V;) dB;.
It is easily verified that for such processes it holds that E |V, — Vo| = O(t'/?), provided that b € L;(1) and a € L, (), where
 is the invariant probability measure. Indeed we have E|V; — V| < E fot |b(Vy)|ds + (E for a*(Vs) ds)? = tllbll, ) +
V| a||,)- In this setup, the process V is strongly mixing; see for instance Corollary 2.1 of [ 11]. Although we will not assume
explicitly that o2 solves an SDE, the above observations motivate the following condition.

Condition 3.1. The process o is stationary and is

(i) L'-Hélder continuous of order one half, E [0 — oZ| = 0(t'/?) fort — 0,
(ii) strongly mixing with coefficient «(t) satisfying, for some 0 < q < 1,

o0
/ a(t)?dt < oo (14)
0
(iii) independent of the Brownian motion W.

Remark 3.2. Since the mixing coefficients «(t) are non-increasing in t, condition (14) is equivalent to the following. For all
t € R there exists C(q, t) such that forall A > 0
> C(g,t
Y aka+1) < %,

k=0

(15)

where «(t) is setequal to 1fort < 0.

The kernel function w is subject to the following condition.
Condition 3.3. Let w be a real symmetric function with real valued symmetric Fourier transform ¢, (¢n,U) =
ffooo e w(x) dx) having support [—1, 1]. Assume further that

L[ Jw@ldu < oo, [ ww)du=1, [ u*|w)|du < oo,

2. ¢wcfl —t) = At? + o(t/%c, ast | Ofor somogp > 0.

One example of such a kernel is

48x(x* — 15) cosx — 144(2x*> — 5) sinx
X’

whose characteristic function is ¢,,(t) = (1 — t2)3, |t| < 1. For other examples of such kernels see [25].

Our main theorems are multivariate generalizations of results in [22] which describe the asymptotic behavior of the
univariate density estimator.

wX) = ; (16)

,,,,,

twice continuously differentiable with a bounded second derivative and Lipschitz in ty, ..., t,, uniformly in X. Assume that the
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first of Condition 3.1 holds and that the invariant density of atz is bounded in a neighborhood of zero. Suppose that A = n~° for
given 0 < § < 1and choose h = ym /logn, where y > 4p/é. Then the bias of the estimator (9) satisfies

600 = fo.y (0 + 5 / uT V2 uw(u) du + o(h?) + 0(4), (17)
where V2f (x) denotes the Hessian of f at x.

Theorem 3.5. Let the kernel function w satisfy Condition 3.3. Assume that Condition 3.1 holds, that [ |w(w)|*¥~9 du < oo,
where q is as in (14), and that the invariant density of atz is bounded in a neighborhood of zero. Suppose that A = n™? for given
0 < 8 < 1and choose h = ym /logn, where y > 4p/$. The variance of the estimator satisfies

_ 1 2pp opr/h 1
Varfnh(x) _O<Eh e +0 m . (18)

Corollary 3.6. Under the assumptions of Theorems 3.4 and 3.5 the bias satisfies y2m?(logn)~2(1 + o(1)) and the order of the
variance is n~+® (log n)?(+9, Hence the mean squared error of the estimator f,;,(x) is of order (logn)™*.

Proof. The choices A = n™%, with0 < § < 1andh = ym/logn, with y > 4p/8 render a variance that is of order
n~1*P/7 (1/ log n)?P* for the first term of (18) and n~'*? (log n)?(1+® for the second term. Since by assumption y > 4p/8 we
have 1/y < 8/4p < & so the second term dominates the first term. The order of the variance is thus n='*% (log n)?(1+9, Of
course, the order of the bias is logarithmic, hence the bias dominates the variance and the mean squared error of fu,(x) is
also logarithmic. O

The proof of the theorems are deferred to the next section. We conclude the present section by a number of comments on
the result.

Remark 3.7. We observe some features that parallel some findings for the univariate case. The expectation of the
deconvolution estimator is, apart from the O(A)-term equal to the expectation of an ordinary kernel density estimator, as
becomes clear from the proof of Lemma 5.1. From that proof we also see that this term is due to estimation of a multivariate
density, in the univariate case, it vanishes. It is well known that the variance of kernel-type deconvolution estimators heavily
depends on the rate of decay to zero of |¢y(t)| as |t| — oo. The faster the decay the larger the asymptotic variance. This

follows for instance for i.i.d. observations from results in [7] and for stationary observations from the work of [17]. The rate
of decay of |¢(t)| for the density (7) is given by |¢(t)] = ~/2e~27(1 + O(ﬁ)); see Lemma 5.3 in [22]. This shows
that k is supersmooth; cf. [7]. By the similarity of the tail of this characteristic function to the tail of a Cauchy characteristic
function we can expect the same order of the mean squared error as in Cauchy deconvolution problems, where it decreases
logarithmically in n; cf. [7] for results on i.i.d. observations. Note that this rate, however slow, is faster than the one for
normal deconvolution. Fan [7] also shows that we cannot expect anything better. Note also that in the first term of the order
bound on the variance in (18) the decay rate of || can be recognized. It is a consequence of the asymptotic behavior of the

function y,(h) of (25) as given in Lemma 6.1.

Remark 3.8. The first order bound for the variance coincides with the order bound for the variance of the multivariate
density estimator in discrete time models under the assumption that the volatility process and the error process are
independent; see Theorem 3.2 in [23]. The second order bound is of the same nature as in the case of estimating a univariate
density in continuous time models, see Theorem 3.1 in [22], the difference being that in the multivariate case of the present
paper one has h”(*9 in the denominator instead of h!*9.

Remark 3.9. The rate of convergence (logn)~* for the mean squared error as in Corollary 3.5 has also been found for
other estimators. Comte and Genon-Catalot [3] use (penalized) projection estimators for f. These estimators are obtained
by computing certain projections on large, growing with n, but finite-dimensional subspaces of L?>(R). Under similar
assumptions as ours, they also find the rate of convergence (log n) ~#. By sharpening the assumed smoothness properties of
f,i.e. fast enough exponential decay of the characteristic function of f, so that f itself is a supersmooth density, they were
able to obtain rates that are essentially negative powers of n.

Van Zanten and Zareba [24] consider wavelet estimators of the density of the accumulated squared volatility over
intervals of length A with A fixed for the model without drift and with the same observation scheme. Under similar
conditions, they found this rate for the supremum of the mean integrated squared error, the supremum taken over densities
in some Sobolev ball. For densities satisfying stronger smoothness conditions, their estimators obtained better rates, albeit
still negative powers of log n. Both papers deal with estimating a univariate density only.

Franke et al. [8] consider a discrete time model, where the evolution of log o; is described by a nonlinear autoregression.
By adopting a deconvolution approach they estimate the unknown regression function and establish tightness of the
normalized estimators, where the normalization again corresponds to the rate that we found.
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15,105

N 1o
-15

Fig. 1. Left: estimator based on direct observations, Right: deconvolution estimator.
Remark 3.10. Better bounds on the asymptotic variance can be obtained under stronger mixing conditions. Consider for
instance uniform mixing. In this case the mixing coefficient ¢ (t) is defined for t > 0 as
p(t)= sup  |P(A|B) — P(A)]| (19)

AeFO, BeF>®

and a process is called uniform mixing if ¢(t) — 0fort — oo. Obviously, uniform mixing implies strong mixing. As a matter
of fact, one has the relation

a(t) = %90(0-

See [6] for this inequality and many other mixing properties. If o is uniform mixing with coefficient ¢ satisfying
I~ 9(®)'?dt < oo, then the variance bound is given by

1 1
\Y =0(-h¥®reP™/M) + 0 ) 20
ar fun (x) (n e +0{ (20)

The proof of this bound runs similarly to the strong mixing bound. The essential difference is that in Eq. (58) one can use
Theorem 17.2.3 of [15] with T = 0 instead of Deo’s [5] lemma, as in the proof of Theorem 2 in [18].

4. Numerical examples

In the present section we evaluate the quality of the deconvolution estimator (12) at hand of two simulated examples.
In the first example, the underlying stochastic volatility model is of continuous GARCH type, much in the spirit of [19]. For
the simulations we used a discretized model (based on Euler discretization, with a discretization step normalized to 1) that
amounts to an ordinary GARCH(1, 1) model. Specifically, the discretized model is given by

Xt‘ = 0'th (21)

ol =ag+ a1 X2, + pol,, (22)
where X; stands for detrended log price, the Z; are i.i.d. standard normal random variables, and the parameters g, o1, 8
are positive. Note that no closed form expression is available for the stationary bivariate densities of o2, not even for the
univariate densities. We have simulated (using R) this model with the parameter values g = 1.0, 2y = 0.7, 8 = 0.2.
Since the simulations also yield the values of the volatility process, we have been able to estimate the bivariate stationary
density of (log o2, log otll) directly by ordinary kernel estimation methods, using the kernel given in (16) and a bandwidth
of h = 0.4. Alternatively, mimicking a realistic practical situation, we used the deconvolution estimator to estimate this
bivariate density, based solely on the observations X;. Using the same kernel and bandwidth, we have computed the
estimated bivariate density estimator, using some routines based on Fast Fourier Transforms. The results for both methods
are shown in Fig. 1. We conclude that the deconvolution estimators show a behavior that agrees well with that of the ordinary
density estimator.

In a second example, we used a regime switching GARCH(1, 1) process. That is, we keep on having Eq. (21), but for o we
take a process that switches according to a two-state Markov chain with all transition probabilities equal to 0.5, between
two processes of type (22). The first one is 0.1 times the process given by (22) with the same parameter values, whereas for
the second one we used (22) with the values oy = 2.0, @y = 0.7, = 0.2. As for the previous, we compared the bivariate
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Fig. 2. Left: estimator based on direct observations, Right: deconvolution estimator.
density estimators, one directly based on the values of 0[2 and the second one on the convolution density estimator. From

the graphs depicted in Fig. 2 we conclude that also in this case the two estimators agree rather well. Note the four peaks of
the bivariate density estimators.

5. Proof of the theorems
Let ¥, denote the sigma field generated by the processo.Forj = 1,...,n — ipA + if we introduce, along with the )~(j
of (10), the following vector notation
0j = (0G-1as - > T it 1))

A _ 7A A
0=z, ....25

i —ilﬂ+j)7

so that 5(] equals the Hadamard product o; o ZjA. Note that since the o process is defined on the whole real line the ¢ vectors
are actually well defined for all j.

Let f,, denote the ‘estimator’ based on the approximating (but unobserved) random vectors )~(J ie.
_iAA -
1 n—ip +ij v X — log((XjA)z)
(n—i2 +ifHhv " h '

The proof of (17) is partly based on the following two lemmas, whose proofs are given in the next section. The first one deals
with the expectation of fy,.

£ (%) = (23)

j=1

~ 1 —
“M”ZE/W/WGTSE ..... , (W) du+ 0(A). (24)

Notice that, apart from the O(A) term, the equality (24) is the same as that for ordinary multivariate kernel estimators;
see for instance [13,20]. _
The second lemma estimates the expected difference between f,;;, and f;,. The bound is in terms of the functions

1 ("] duls
h) = — 25
7o 2n[1mwm (29)
and
a1 §1+7T/|X|> 1+7/Ix|
y1(h,x) =e2™/" 4 p exp (2 p log p . (26)

Lemma 5.2. Assume Condition 3.3 and that the first of Condition 3.1 holds and that the invariant density of 0[2 is bounded in a
neighborhood of zero. For h — 0 and & small enough we have

1/4 1 Al/2

E£, (%) — B 0] = 0 [ —— yo(hP 2 + (h)P + Py (h, | log 26l ) —
n —Ef, = — e — —_— — s & .
h h o+ Yo B P Yo 2 o1 Yo 14! g | Tog 2¢|
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Proof of Theorem 3.4. Statement (17) follows by combining standard arguments of kernel density estimation applied to
expression (24) in Lemma 5.1 with Lemma 5.2. We will now show that the bound in Lemma 5.2 is essentially a negative
power of n, whereas h? is of logarithmic order. Recall that we have assumed that § > 4p/y. It follows that p/2y <
8/4 — p/2y, so we can pick a 8 € (p/2y,8/4 — p/2y) and take ¢ = n~?. By Lemmas 6.1 and 6.3, up to factors that
are logarithmic in n, the order of |E f;;; (x) — Ef,,h (x)| is then

n%%‘”ﬂ +n%+2ﬂ7% +n%7ﬂ, (27)
which is negligible to h*> = 3?72 /(log n)? for the chosen values of the parameters. O

To prove the bound (18) we use the two lemmas below, which are proved in the next section. First consider the variance
of £, (x).

Lemma 5.3. Assume Condition 3.3 and assume the second of Condition 3.1(ii). Assume also f lw@)|>=Pdu < oo for the
same q and nA — oc. We have, for h — 0,

¥ _ 1 2pp opr/h 1
Varfnh(x) _O<Eh e +0 m . (28)

The next lemma estimates Var (f,(x) — fnh (x)).

Lemma 5.4. Assume that Conditions 3.1 and 3.3 hold and let o2 have a bounded density in a neighborhood of zero. We have, for
h — 0and ¢ > 0 small enough,

v < _ 1 A 1 p2 , €
ar (fon (%) — f(x)) = 0 (TZM Yo(h) 2 Tz Yo(M™ 7 y1(h, |log2e[/h) Tlog 262 10g28|2> (29)
1 A1-9)/2
a0 (G o) G0

Remark 5.5. For p = 1, the order bounds of Lemma 5.4 reduce to those of Lemma 4.3 in [22].

Proof of Theorem 3.5. The bound of (18) follows as soon as we show that the estimate in Lemma 5.4 is of lower order than
the one in Lemma 5.3. Up to terms that are logarithmic in n, the bound in Lemma 5.3 is oforclgr n®~1.Choosing againe = n~#,
by Lemmas 6.1 and 6.3, one finds that, up to logarithmic factors, the order of Var (f,,(x) — f;5(X)) is

pm P28 B g TS | B0, (31)

Recall our assumption §y > 4p.If we pick § less than % 8(1—q), then all these terms are indeed of lower order thann®~!. O

6. Some technical results

We need expansions and order estimates for the functions ¢, the kernel vy, as defined in (8), , as defined in (25) and
the function y; as defined in (26). These are collected in the next technical lemmas, that are partially taken from [22,23].

Lemma 6.1. Assume Condition 3.3. For h — 0 we have
yo(h) = O(h"+Pe2™/M). (32)
Proof. See the proof of Lemma 5.3in[22]. O

Lemma 6.2. Assume Condition 3.3. The functions v, and vy are bounded and Lipschitz. More precisely, for all x we have
lup(X)| < po(h) and for all x and u |vy(x 4+ u) — vp(x)| < yo(h) |ul. For all p-vectors X we have

Vh(X)| < yo(h)P (33)

and for all p-vectors X and u

)4
Va4 1) — v ()| < yo ()Y D lul (34)

=1

and for some C > 0,

p
W+ u) —wE)| <C Y ful. (35)
j=1
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Proof. The results for |v,(-)| are known from Lemma 5.4 in [22]. The bound (33) follows by the product structure of vj,.
Inequality (34) follows by induction and the same technique can be used to prove inequality (35). O

Lemma 6.3. Assume Condition 3.3. For x — oo we have the following estimate on the behavior of vy,. For some positive constant
D it holds that

on (0| <D”(I | D s — o, (36)
and
1108 Rl 174 /1xy/m
y1(h,x) =0 Tez ash — 0. (37)
Let x* = max{|x4], ..., [xp|}. We have the following estimate on the behavior of vy,. For some positive constant D it holds that,

if x* tends to infinity,
p—1 )/1 (hv X*)

VA (01 < Dyo(h)? ™ == (38)

Proof. The estimates of (36) and (37) are taken from Lemma 5.5 of [22]. To show (38), we argue as follows. Without
loss of generality we may assume that x* = x, > 0. Use the bound on y, of Lemma 6.2 and the bound in (36) to get

va®)| = 122 vonx)vn(x,) < Dyo(h?~'y1(h, %) /%y = Dyo(h)P~ 'y (h, ) /x*. OO
7. Proof of Lemmas 5.1-5.4

Recall that 7 is the o -algebra generated by the process o.
Proof of Lemma 5.1. By Condition 3.1(iii),

n—id i 2 AN2
- 1 LN x — log o — log(Z?)
Efn(®)|F) = —————— Elv ! ! Fo
En015) = > <h< ;

j=1

n—i +11
_ ; / / w(S) E(e—isA(xflogajzflog(ZjA)Z)/h|3:. ) ds
(n—i8 + if)hv j:l Q)P Pr(s/h)
n—i +11

1
(n —id +if)hP

/ / w(S) e—isx/hislog ”jz/h ¢k (s/h) ds
¢k

(2m)P (s/h)

j=1

_iAGA
1 n—ip +ij

- - —is-(x— loga )/h
= (n—iﬁ"’i?)hp Z (27-[)17/ /¢w(5)e ds

j=1

1 n—ig'+if! X — log 2

J
= E wl——=].
(n—id +it)hp ( h )

j=1

By taking the expectation and exploiting the stationarity of o we get, also using |(ijA — 1At <2A,forj=1,...,p,and
the uniform Lipschitz continuity of f

~ ~ 1 —1 —

Efu(0) = Et‘,ﬁﬂx)ﬂﬁw(%) h,,/ / (x )f(, A an - na() du

f / ( >ft1 ..... (ll) du+*f / <x_ >(f(, A_1a,..., (jﬁfl)A(u) _ft1 ..... tp(u)) du
/ / ( )ftl ,,,,, LW du+0(4). O

For the proof of Lemma 5.2 we need two properties of the process o, valid under Condition 3.1(i). There exists a constant
C > 0 such that

E(X? — 00Zf)? < CAY? for A — 0, (39)

«1 A
E‘A/ O‘tzdt—O'g
0

and

<CA'? foraA — 0. (40)
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We only show Eq. (39), because the proof of (40) does not involve additional arguments. We will use the basic inequality
(x—y)? <x* —y? valid forx > y > 0. Since v/AX? — 0pZ) = fOA (0; — 0p) dW;, we have

A
AE(X{ — 0pZ{)? = E / (0r — 0p)? dt
0

A
Ef |(rt2 —oozldt
0

A
= o(/ t”zdt>
0

= 0(A%?).

IA

Proof of Lemma 5.2. We follow the lines of thought as in the proof of Lemma 4.2 of [22], now applied in a multivariate
setting. Let || - || denote the Euclidean norm. Writing

x — log((X")?) x — log(X?)
Wi=v [ —— )~ [ — ). (41)
h h

so that f,;(x) — fn,, x) = m Z]_ i W;, and defining the event A as the event where all components of |XA| and

P

|X;] are larger than or equal to &, we have
~ 1

|E £ (X) — Efan(X)| < hTQEIW1| (42)
= Lew 43
= 15 EWilla (43)

1
+ 15 EWillaelyxa s, 2) (44)

1
+ 1 EWallaclyxa ;<o (45)

Recall that |logx — logy| < |x — y|/e for x,y > &. By Lemma 6.2, the bound (39) and stationarity, the term (43) can be
bounded by

1/4

2 A

hp+1

2 2p ~
— Vo(h)”ZEllog(IXAl) —log(R sl = r ~yo(WPEIX — K <

This gives the first term in the order bound of Lemma 5.2.
The boundedness of the function vj, as stated in Lemma 6.2 yields |w4| < 2y, (h)P. Using also Chebychev’s inequality and
(39), we bound the term (44) by

2 » A 2 p A
wp Yo(WPP (X, —Xill = e) < i Yo(W"pP { 1X; —Xi|l = —

f

2p? , Al2
< 7 Yo(h) Ci,

which gives the second term in order bound of Lemma 5.2.
Consider the two arguments of the v, functions in W;. Since at least one of them (and then the same for both arguments)
is in absolute value eventually larger than | log 2¢|/h, by Lemma 6.3 the term (45) can be bounded by

1 1 1
2D— (WP~ y1(h, |log2e|/h) ————— pP(|X;| < 2¢) < Co——vo(W)P~ 'y, (h, | log 2¢|/h
hpyo() v1(h, | log2¢|/ )(“nggl/h)p (IX1] < 2¢) 200 Tvo(MP™" 1 (h, |log2e|/ )|10g2 i

for some constant Cz, where we used in the last inequality the fact that the density of X; is bounded. This follows from the
assumption that ‘70 has a bounded density in a neighborhood of zero, as can easily be verified. O

Proof of Lemma 5.3. Consider the decomposition

Var (£ (x)) = Var (E (£ (X)|F5)) + E (Var (f(X)| F5)). (46)
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By the proof of Lemma 5.1 the conditional expectation E (fnh (X)| F,) is equal to a multivariate kernel estimator of the density
of log o2. Adapting the proof of Theorem 3 of [ 18] to the multivariate situation, we can bound its variance by

20(1 1 o0 1-q poo
%f@]_q (f_oo |w (/- du) /0 a(r)?dr,

which is of the order 0(1/(nh"*9P A)). This gives the second order bound in (28).
We turn to the expectation of the conditional variance. Using Lemma 6.2, we can bound the ‘diagonal terms’ of the
conditional variance in (46) by

~ 2
1 x — log X? 1 5
. E 7)) o h)?
(n—id + id)h (V“ ( h )) < 70

where we also used that iﬁ/n — 0.

Next we consider the ‘cross terms’ of the conditional variance. Since nonzero covariance can only occur if the vectors X;
and X; have common elements, we investigate a ‘worst case’. For fixed i, there are at most p — 1 among the X; that have
elements in common with x;, which yields

1 x — log X? x — log )~(j2 _
(n—id +i4)2h2p ;ECOV (Vh (h i ) , Vp (h Fo
p i#j
n—if i i —id! ~ <>
2 p iy i+ 1 X — log X2 X — log X’
= ECov (v L].,v L
(n— iﬁ\ 4 ilA)thp Z Z < h ( h h h

i=1  j=it+1

2p—1) 5 1 5
< m)’o(m P=0 (m?o(h) P,

where in the last inequality we used that the expectation of the conditional covariance is bounded in absolute value by

oo %2
E (vh(xm%x‘))z, due to stationarity. The first order bound in (28) follows by an application of Lemma 6.1. O

Proof of Lemma 5.4. We will use arguments similar to those in the proof of Lemma 5.2. With Wj as in (41) we have, using
the ordinary variance decomposition and stationarity of the W;,

~ 1 1
Var (fn(X) — £ (X)) = ———+———=-VarW; +

— Y Cov(W, W, 47
(n—i2 +i{)h?» (n 1A+1A)2h2pz ov (We, W)- 47

Let us first derive a bound on Var Wy. As in the proof of Lemma 5.2 we use A, the event where all components of |X1A| and
|X1]| are larger than or equal to €. We have VarW; < E Wf, which can be split up as the sum of three terms

EW; = EW3l, (48)
2
TEWilackyxa g, =) (49)
+EWilelyxa g, <e)- (50)
By stationarity, the Lipschitz property of v, in Lemma 6.2 and (39), the term (48) can be bounded by
4 ? 4p
o3 Yo(WE (Zuog X3~ log || |) Iy < —m(h)ZPE Z(log IXi31 = log X;s )*la
j=1 j=1
p* 1 2p A &2
=7 ;Vo(h) E(XT1 = 1XaD)
4p2 5 4 1/2
< 7 nMTEXT =X’ < 45 yo(h)ZPC—. (51)

We turn to the term (49). By the bound on v, of Lemma 6.2 and by (39) again, it can be bounded by

4yo(WPP(IXS — Xyl > &) < 4yo(h)*pP (le —X| > —)
7

A]/Z

< 4p’y(W’C —-
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Due to the absence of a factor h? in the denominator, this bound is of smaller order than the one for (48) and will therefore
be neglected.

Next we consider (50). Recall from the proof of Lemma 5.2 that P(|)~(1| < 2¢&) = 0(g). Since at least one (the same)
coordinate of the absolute value of both arguments of v is eventually larger than | log 2¢|/h, by Lemma 6.3 the term (50)
can be bounded by

AD? o)~y (h, | 10g 261 /)% Lo pP (1| < 26) < Goh?yo ()P 2y (h, |log 26 /h) 15, (52)

for some constant C;.
Wrapping up the order bounds (51) and (52) for EW?, we get

A2

1 1
EW? =0 (h—zyo(h)zl"—2 + WPy (M)~ y1(h, | log 2¢|/h)* (53)

&

e
|log2s)? )’
which, substituted in (47), gives the order bounds of (29).

We now consider the covariance terms in (47), that will be seen to have the order bounds of (30). We have the
decomposition

Cov (Wi, Wj) = E Cov (W;, Wj| ;) + Cov (E (W;|F5), E (Wj|F5)). (54)
The last term in (47) then becomes

A GA i A _GA
n—ip iy ity —ig

2

(n_iﬁw l:Z] ; ECOV(WI,WJ|$O—) (55)
1 3 Cov (E (Wi, ), E(W)|%,)). (56)

(n —igt +i)2h% 4

In a first step we consider the expectation of the conditional covariances in (55). Arguing as in the proof of Lemma 5.3, we
can bound it by

-1

Ao, VarWa,
(n —id i )h%

which is p — 1 times the first term on the right hand side of Eq. (47). Hence its contribution can be absorbed in the already
obtained bounds of (29).
Next we concentrate on the sum of covariances in (56). Define

1 iA
62 =— oldt (57)
i t
A Ji-1a
and the vector 612 by 6j? = (6j2, e 61,2A ; A+j)' Note that given F, Xf‘ is a multivariate normal vector with independent
12|

components with variances equal to the components of 61-2 and that X; is a multivariate normal vector with independent
components with variances equal to the components of ¢2. As in the proof of Lemma 5.1 it follows that

x — logo? x — log o
E(Wi|$6) =W f — W T .

We follow the line of arguments in the proof of Theorem 3 in [18]. The stationarity of W; implies that the conditional
expectations W; := E (W;|#;) are also stationary. Hence we have

n—1
> Cov (Wi, W)) =2 (n— k)Cov (Wo, Wy).
i k=1

Now note that the process \7\Ij is strongly mixing with a mixing coefficient (k) < a((k —2)A +t; —t,), k = 1,2,...if
kA > t, — t; + 2A and a (k) = 1 otherwise. By a lemma of [5] for strongly mixing processes it follows that for all T > 0

|Cov (Wo, W)| < 10a((k — 2)A 4ty — £,)/CH0 (B |W, [7T7)>/ H0), (38)
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By the equivalent condition (15) on the mixing coefficients «(t) (applied with T = 2q/(1 — q), a choice for t that we will
make later on as well), we get for (56)

1 ™ z ~
A Cov (W;, W) (E|W 2+1:)2/(2+z)
(n— lﬁ + llA)zth ; i, VVj [Wi]

10
B —
T (n—id +if)h?

n—ig!

k
X 1— —_— % Ol(kA +t1 — )T/(2+T)
; ( n—id + 1?) 170

- 10 Clamti—tp—
T (n—id + i) A

24)
(E |W] |2+1.')2/(2+‘L') .

Next we derive a bound on E |\7V1 |2** Fix k € (0, 1] and define the event B as the event where all components of &% and G%
are larger than or equal to €. We have

- x — log(a? x —log(a)\ |**"
W, —F |lw (220890, (X289 Iy 5
E W, [+ g(07) g(07) (59)
h h
— 241
x — log(6?) x — log(o?)
+E ‘W (hl — W fl IBCI[H('_I%K—U%KHES] (60)
- 24+t
x — log(6?) x — log(o?)
+E ‘w (hl -w fl Il 52e _g2e ) <q1- (61)
By Lemma 6.2 the term (59) can be bounded by a constant times
1 P , , 2 pitt & , , ,
_ _ .
= E Z] |10g(G3) = 10g(0a_ )1 ) I = {5 E Zl |108(63) —Tog(0g_,, )" In
= j=
p2+r
< e Elog(E) — log(cr(lA S et
p2+r _ e 2
< WE|O’1K—O’OK| +T. (62)
The term (60) can be bounded by
2+17/2
_ 3 p
P <|012" o3| > f) Ty E|GH — ol |*".

Since this is for h — 0 of smaller order than (62), it will be neglected in what follows.
Finally we analyze the term (61). On the complement of B there is at least one component of either 01 or ‘70 thatis smaller

than or equal to €. Together with ||6%" — af" || < e this implies that there is at least one pair of corresponding components
of the vectors that are both smaller than (1 + £'7%)/. Using the stationarity, we bound the term (61) by

PPG? <e(1+& ™)V and of <e(1+¢'™)"%),

which is bounded by
pP(og < 2¢) = O(e), (63)
since 002 was assumed to have a bounded density in a neighborhood of zero. Combining (62) and (63) with T = 2q/(1 — q)
and k = % = 2 , we have with an application of the basic inequality |u“ — v*| < |[u — v|*“ foru, v > 0Oand « € (0, 1] in
the second equality below and (40) in the fourth equality for the term (56)
1 - 1 1 1 5 2124 2/241)
_ CoviW,W) )| = —————— 0| =— —E|67“ — 5| +¢
(n —igt +i{")2h% ; W W) = Gz id +i)h2P A (h2+f grre 1O 03] )
/(2+7)
_ 1 1 1 =2 2k(247) 2
S -t ima’ <h2+r gare Hloi mos T e

=2 2
_ 1 0 (E |O’1 — 05 |)2/(2+I) T £2/@4D)
— AL iAo 2.2

(n—id +i)h?P A h2e ’
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1 A/ C+D)
0
(n—id + i¢)h2p A ( h2g?

1 A0-0)/2 -
= 0 +e 7).
(n— iﬁ + ilA)thA ( h2g2 )

Hence the last term in (47) now gives the third order bound (30). O

+ 82/(2+T)>
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