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Abstract

In this paper we study various properties of !nite stochastic systems or hidden Markov chains as they are
alternatively called. We discuss their construction following di0erent approaches and we also derive recursive
!ltering formulas for the di0erent systems that we consider. A key tool is a simple lemma on conditional
expectations.
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1. Introduction

This paper deals with hidden Markov chains (HMCs), stochastic processes that are nowadays
widely used in applied !elds such as signal processing, communication systems and biology, see
for instance the examples and references in K=unsch et al. (1995). We consider the case where the
observed process (denoted by Y ) and the underlying chain (denoted by X ) take on !nitely many
values. HMCs are such that probabilities of future events of X and Y given the past only depend
on the current state of X . Typically this means that X satis!es the role of a state process as it is
used in stochastic system theory. One of the aims of the present paper is to shed some more light
on the relation between stochastic systems and HMCs. There are two slightly di0erent de!nitions
of stochastic systems, related by a time shift of the observed process. We will see that an HMC
satis!es both de!nitions. HMCs satisfy di0erent factorization and splitting properties of conditional
probabilities of the bivariate process (X; Y ). These properties are related to the di0erent concepts of
a stochastic system. We will also study for the di0erent constructions the !ltering and prediction
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problems and show that the solutions coincide if one deals with a HMC in the way we de!ne it.
The paper is organized as follows.

In Section 2 we describe the probabilistic behaviour of the joint process (X; Y ) in more detail
using the outer product of X and Y and by using properties of Kronecker products of matrices. We
also introduce some properties that are typical for HMCs.

In Section 3 we study these properties and related ones in more detail. The convenient tool is
a simple key lemma, that is presented in the appendix, on conditional expectations that involves a
!nitely generated �-algebra. It is also shown that HMCs can be described by what in the engineering
literature are called stochastic systems. In particular, it is shown that HMCs are characterized by being
stochastic systems in two di0erent senses. It is also shown how these two notions are interrelated.

In Section 4 we show how various !ltering and prediction formulas are simple consequences of
the same key lemma on conditional expectations.

2. Preliminaries and motivation

Let (�;F;P) be a probability space on which all the random variables to be encountered below
are de!ned. Consider the following familiar construction of what later will be called an HMC. We
have a (stationary) Markov chain X with !nite state space S= {1; : : : ; n} and transition probabilities
aij = P(Xt+1 = i|Xt = j) with t ∈T = {0; 1; : : :}, A is the matrix with elements aij. Furthermore, we
have for each i∈ S and t ∈T a random variable ht(i) that all take values in {1; : : : ; m}. We assume
that the n-vectors (ht(1); : : : ; ht(n)) form an independent identically distributed (iid) sequence that is
also independent of X . We let gji = P(ht(i) = j) and put these probabilities into an m × n matrix
G. Finally, we de!ne the process Y by Yt = h(Xt) for all t. By specifying the distribution of X0 we
thus completely determine the law of the bivariate process (X; Y ). Note that the distribution of X0,
since it is a unit-vector valued random variable, is given by the vector EX0.

A convenient way to represent the distribution of the above process (X; Y ) is obtained by changing
the state space S into E={e1; : : : ; en}, the set of standard basis vectors of Rn and the space where Y
takes its values into the set F={f1; : : : ; fm} of basis vectors of Rm. With Ht=[ht(e1); : : : ; ht(en)] we
then get Yt=HtXt . Note that EHt=G. De!ne the !ltration F={Ft} by Ft=�{X0; : : : ; Xt ; H0; : : : ; Ht}.
Then X and Y are adapted to this !ltration. We will call X the state process and Y the observation
or output process. Throughout the paper we assume that each state ei is reachable from the starting
state with positive probability. If this were not the case, this can always be accomplished by reducing
the state space of X by taking basis vectors of a lower-dimensional Euclidean space. We also assume
(without loss of generality) the nondegeneracy condition that none of the rows of G is zero.

By construction, the joint process (X; Y ) is Markov with respect to F. For completeness we give
its transition probabilities, already present in Baum and Petrie (1966).

P(Xt = ei; Yt = fj|Ft−1) = gjie�i AXt−1: (1)

Let us now represent the one-step transition probabilities of the joint chain (X; Y ) in matrix form. To
this end it is useful to work with the process Z that is obtained by Zt=Yt⊗Xt (⊗ denotes Kronecker
product). Note also the trivial relations Xt = (1�m ⊗ In)Zt and Yt = (Im ⊗ 1�n )Zt , with Im being the
m-dimensional identity matrix and 1n the n-dimensional column vector with all its elements equal
to one.
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The transition probabilities of (X; Y ) may then be represented by those of the Markov chain Z
and vice versa. If we put the latter in a nm× nm matrix Q, then we have according to (1) that Q
can be decomposed into m2 blocks Qij that are equal to diag(Gi:)A, where Gi: is the ith row of G.
For a more compact formulation we introduce (like in Spreij (2001)) the following notation. Given
an m× n matrix G let �(G) be the nm× n matrix de!ned by

�(G) =



diag(G1:)

...

diag(Gm:)


 :

Using the notation �(G) we can now write

Q = �(G)A(1�m ⊗ In): (2)

We thus get (see Spreij, 2001) E[Zt|Ft−1]=QZt−1 and the initial distribution of Z , also a unit-vector
valued random variable, is given by the vector EZ0 = �(G)EX0. One also obtains the relations
E[Xt|Ft−1] = AXt−1 and E[Yt|Ft−1] = GXt−1.

As an alternative to looking at the bivariate process (X; Y ) via the process Z as above, we also
study the process W , again built from X and Y and de!ned by Wt = Yt−1 ⊗ Xt for t¿ 1. Along
with this process we consider the !ltration G of �-algebras Gt := �{H0; : : : ; Ht−1; X0; : : : ; Xt}. Then
W is G-adapted and the Gt and the Ft are related by Ft−1 ∨ �(Xt) = Gt and Gt ∨ �(Ht) =Ft .

We obtain the relations

E[Wt|Ft−1] = (Im ⊗ A)Zt−1; (3)

E[Wt|Gt−1] = GXt−1 ⊗ AXt−1 = (Im ⊗ A)�(G)Xt−1: (4)

In particular, it follows that W is G-Markov with transition matrix

R := (Im ⊗ A)�(G)(1�m ⊗ In): (5)

We mention some properties that (X; Y ) has:

1. (X; Y ) is a stochastic system in the sense of Picci (1978), since Z is F-Markov (see Section 3).
2. It is immediate from the construction at the beginning of this section, or from Eq. (1), that what

is called the “factorization property” (Finesso, 1990) holds:

P(Xt = ei; Yt = fj|Ft−1) = P(Yt = fj|Xt = ei)P(Xt = ei|Xt−1); (6)

which can compactly be formulated in terms of Z as

E[Zt|Ft−1] = �(G)E[Xt|Xt−1] ∀t: (7)

3. (X; Y ) is a stochastic system in the sense of van Schuppen (1989), (see Section 3), since W is
G-Markov.

4. W has, as opposed to the factorization property, the splitting property

E[Wt+1|Gt] = E[Yt|Gt]⊗ E[Xt+1|Gt]; (8)

which immediately follows from (4).
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In the subsequent section we will see how these (necessary) properties can be used to construct
stochastic systems that result in HMCs.

Remark 2.1. All the properties mentioned above in terms of conditional expectations given the
�-algebras Ft and Gt remain valid if we replace these with �{X0; : : : ; Xt ; Y0; : : : ; Yt} and �{X0; : : : ; Xt ;
Y0; : : : ; Yt−1}. Hence the law of the bivariate process (X; Y ), being a Markov chain with respect to
its own !ltration, is completely speci!ed by the matrices A and G and the initial law of X . It
follows that any bivariate Markov process (X; Y ) can be generated by the mechanism Yt = HtXt of
this section, if we assume the following: The transition matrix Q of the associated process Z de!ned
by Zt = Yt ⊗ Xt is of form (2) and the initial law is given by EZ0 = �(G)E X0.

In view of Remark 2.1 above we adopt the following

De�nition 2.2. A bivariate process (X; Y ) that assumes !nitely many values is called an HMC if
the process Z = Y ⊗ X is Markov with respect to its own !ltration and if its matrix of transition
probabilities is of the type given by (2).

Remark 2.3. The assumption in this section that the sequence {Ht} is iid is equivalent to assuming
that {Ht − G} is a martingale di0erence sequence with respect to its own !ltration. This is due to
the fact that the columns of Ht are basis vectors and the argument is as follows. If {Ht − G} is
a martingale di0erence sequence, so is {ht − g}, where ht = vec(Ht) and g = vec(G). The ht are
again unit-vector valued and for a unit-vector e we thus have P(ht = e|h0; : : : ; ht−1) = P(e�ht =
1|h0; : : : ; ht−1) = E[e�ht|h0; : : : ; ht−1] = e�g. Since this conditional probability does not depend on
h0; : : : ; ht−1, nor on t, we obtain that the sequence {ht}, and hence also {Ht}, is iid. Hence the iid
assumption is not as restrictive as it may seem at !rst glance.

3. HMCs and stochastic systems

There are various ways to describe properties of an HMC. We mention a few possibilities and
show how these can be used as building stones for an HMC, together with notions from stochastic
system theory.

Let X and Y be two stochastic processes taking values in the sets E and F , respectively, like in
Section 2. Let Z again be the process Y ⊗ X . For the time being, no further assumptions on X and
Y are imposed, except that redundant states are excluded in the sense that each state of X is visited
at least once with probability one and likewise for Y .
Throughout the rest of the paper we assume that for all t the �-algebra Ft is generated by

X0; : : : ; Xt and Y0; : : : ; Yt . The family {Ft} is again denoted by F. We also consider the pro-
cess W again, with Wt = Yt−1 ⊗ Xt , adapted to the !ltration G = {Gt}, with Gt generated by
X0; : : : ; Xt ; Y0; : : : ; Yt−1. Note the relations

Ft = Gt ∨ �(Yt);
Gt =Ft−1 ∨ �(Xt):
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In the previous section we restricted ourselves to time-invariant processes, implying that all condi-
tional probabilities and expectations do not depend on time directly. Many properties of an HMC
can be formulated without assuming stationarity. We introduce some notation. Given a stochastic
process � with values in some arbitrary measurable space, we denote for all t by F�

t the �-algebra
generated by the �s for s6 t and by F�+

t the �-algebra generated by the �s for s¿ t. Many of
the results in the previous sections can be abstractly formulated in terms of properties of stochastic
systems. A stochastic system is a formally de!ned concept. The main ingredients are a state process
X and an output process Y (de!ned on a suitable probability space and taking values in some other
spaces) and certain conditional independence relations.

Let us therefore recall some facts on conditional independence. Two �-algebras H1 and H2 are
called conditionally independent given a �-algebra G, if for all bounded Hi-measurable functions
Hi (i = 1; 2), the relation E[H1H2|G] = E[H1|G]E[H2|G] holds. A convenient characterization of this
is that �-algebras H1 and H2 are conditionally independent given �-algebra G, if for all bounded
H1-measurable functions H1, the relation E[H1|G ∨H2] = E[H1|G] holds.
In the literature one can !nd two de!nitions of a stochastic system, that are slightly di0erent. The

!rst one is due to Picci (1978), and the essential part of the de!nition is that for all t the �-algebras
FX+

t+1 ∨ FY+
t+1 and FX

t ∨ FY
t are conditionally independent given �(Xt). The other one is due to

van Schuppen (1989) in which the conditional independence relation between �-algebras becomes:
for all t the �-algebras FX+

t ∨FY+
t and FX

t−1 ∨FY
t−1 are conditionally independent given �(Xt).

Implications of the two di0erent de!nitions for the !ltering problem will be discussed in Section 4.
We will write (X; Y )∈ P if the pair of processes (X; Y ) is a stochastic system according to

Picci (1978) and (X; Y )∈ S if it is one in the sense of van Schuppen (1989). Using this notation,
we see that (X; Y )∈ P is equivalent with saying that Z is an F-Markov process with transition
probabilities depending on X only, and that (X; Y )∈ S is equivalent with saying that W is a
G-Markov process with transition probabilities depending on X only. Note that both for stochastic
system (X; Y ) either in  P or in  S the state process is always Markov relative to its own !ltration.

Let us consider a set of possible properties that the processes X and Y may possess, motivated
by what we found in Section 2 for HMCs. We gather these properties in the next

De�nition 3.1. Let X and Y be unit-vector valued processes.

1. We say that the output property holds if

E[Yt|Gt] = E[Yt|Ft−1 ∨ �(Xt)] = E[Yt|�(Xt)] ∀t: (9)

Alternatively, one can say that the output property holds if the sigma-algebras �(Yt) and Ft−1

are conditionally independent given �(Xt). If this property holds together with time invariance,
we use the matrix G de!ned by E[Yt|�(Xt)]=GXt , where we also assume that G is not depending
on t. G is then such that the columns G·i are equal to E[Yt|Xt = ei].

2. The processes X and Y enjoy the factorization property if there exists a matrix K ∈Rm×n such
that

E[Zt|Ft−1] = �(K)E[Xt|Ft−1] ∀t: (10)

3. The splitting property holds if

E[Wt+1|Gt] = E[Yt|Gt]⊗ E[Xt+1|Gt] ∀t: (11)
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Hence the splitting property says that �(Xt+1) and �(Yt) are conditionally independent given Gt .
This can alternatively expressed by E[Xt+1|Ft] = E[Xt|Gt], because of the above given character-
ization of conditional independence and the relation Ft = Gt ∨ �(Yt).

First we comment on the factorization property. We showed that it is valid for the HMC of Section 2.
But one can always factorize E[Zt|Ft−1] with a second factor E[Xt|Ft−1] as in (10), however, in
general, the left factor is a random (Ft−1-measurable) diagonal matrix (see Eq. (14) below).
Denote by Pi the conditional measure on (�;F) given Xt = ei. Expectation with respect to these

measures will be denoted by Ei, with the understanding that expectations EiU are set equal to zero,
if P(Xt=ei)=0 (cf. the appendix). Then for any sub-�-algebra F0 of F and any integrable random
variable U we have from Eq. (A.3) in the appendix the relation

E[U1{Xt=ei}|F0] = Ei[U |F0]P(Xt = ei|F0): (12)

Application of Eq. (12) with U = f�
j Yt , F

0 =Ft−1 for all i yields

E[Xtf�
j Yt|Ft−1] = diag (mj)E[Xt|Ft−1]; (13)

where mj is the column vector with ith element Ei[f�
j Yt|Ft−1]. Let M be the matrix that has ith

column Ei[Yt|Ft−1]. Then we get

E[Zt|Ft−1] = �(M)E[Xt|Ft−1]: (14)

Proposition 3.2. Properties 1 and 2 of De8nition 3.1 are equivalent if the processes are time
invariant. Moreover, in that case one has K = G.

Proof. Assume that the output property holds. Use then reconditioning in (9) to get: E[Zt|Ft−1] =
E[E[Zt|Ft−1 ∨ �(Xt)]|Ft−1] = E[E[Yt|Gt]⊗ Xt|Ft−1] = E[E[Yt|Xt]⊗ Xt|Ft−1] = E[GXt ⊗ Xt|Ft−1] =
E[�(G)Xt|Ft−1]. It follows from (14) that �(G) = �(M), but since G is nonrandom, the validity
of the factorization property follows.

Conversely, assume that the factorization property 2 holds. Take expectations in (10). Then EZt=
�(K)EXt . From the de!nition of G (in property 1) we get EZt = EE[Yt|�(Xt)⊗ Xt] = E(GXt ⊗ Xt) =
�(G)EXt . Since for each i there is a t such that the ith component of EXt is strictly positive, it
follows from the blockwise diagonal structure of the �-matrices that �(G) = �(K) and G = K .
Next we show that the output property holds. Assume for a moment that all elements of EXt are

positive. According to Eqs. (A.2) and (A.3) we have

E[Yt|Ft−1 ∨ �(Xt)] =
∑
i

E[Yte�i Xt|Ft−1]
e�i E[Xt|Ft−1]

e�i Xt :

Since Yte�i Xt = (Im ⊗ e�i )Zt and using the factorization property, we can rewrite this as

∑
i

(Im ⊗ e�i )�(G)E[Xt|Ft−1]
e�i E[Xt|Ft−1]

e�i Xt :
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Because (Im ⊗ e�i )�(G) = Geie�i , this reduces to

G
∑
i

eie�i E[Xt|Ft−1]
e�i E[Xt|Ft−1]

e�i Xt ;

which in turn is nothing else but GXt , from which we obtain the output property. In the case where
the vector EXt has some elements equal to zero, the above procedure is still valid, provided we let
the summation indices run through the set {i : e�i EXt ¿ 0}.

An obvious relation between the di0erent concepts of stochastic system is that (X; Y )∈ P i0
(X; �Y )∈ S, where �Y is the process de!ned by �Yt=Yt+1. Another relation, involving the splitting
and output properties, is given in the following

Proposition 3.3. A pair (X; Y ) belongs to  S and the splitting property holds i: it belongs to  P

and the output property (or the factorization property) holds.

Proof. Suppose that (X; Y )∈ P and that the output property holds. Since X is F-Markov, we have
E[Xt+1|Ft]=E[Xt+1|Xt], which is Gt measurable and therefore equal to E[Xt+1|Gt], which is equivalent
to the splitting property.

Next we show that (X; Y ) also belongs to  S. We compute

E[Wt+1|Gt] = E[E[Wt+1|Ft]|Gt]

= E[Yt ⊗ E[Xt+1|Ft]|Gt]

= E[Yt ⊗ E[Xt+1|Xt]|Gt]

= E[Yt|Gt]⊗ E[Xt+1|Xt];
which is �(Xt)-measurable because of the output property.
Conversely, letting (X; Y )∈ S we automatically get the output property, because E[Yt|Gt] = (In⊗

1�n )E[Wt+1|Gt]=(In⊗1�n )E[Wt+1|Xt] in view of (X; Y )∈ S. Assuming the conditional independence
relation we obtain the Markov property of Z from

E[Zt+1|Ft] = E[E[Zt+1|Gt+1]|Ft]

= E[E[Yt+1|Gt+1]⊗ Xt+1|Ft]

= E[E[Yt+1|Xt+1]⊗ Xt+1|Ft] (output property)

= E[E[Yt+1|Xt+1]⊗ Xt+1|Gt] (splitting property)

= E[E[Yt+1|Xt+1]⊗ Xt+1|Xt] (W is G-Markov);

which shows that (X; Y )∈ P.

The connection between systems in  P and  S and HMCs can be characterized as follows.

Proposition 3.4. A 8nite valued time-invariant system belonging both to  P and to  S is an HMC
and vice versa.
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Proof. We have seen already in Section 2 that an HMC belongs to both  P and to  S. Conversely,
let a pair (X; Y ) belong to these two classes. Since it belongs to  S we conclude from the proof
of Proposition 3.3 that the output property holds and thus in view of Proposition 3.2 also the
factorization property, saying that E[Zt|Ft−1] = �(G)E[Xt|Ft−1]. Since the process X is Markov
w.r.t. F, with transition matrix A say, we get E[Zt|Ft−1] = �(G)AXt−1 = �(G)A(1� ⊗ In)Zt−1.
Therefore, the result follows from De!nition 2.2.

4. Filtering and prediction

In this section we give some !ltering and prediction formulas. By the !ltering problem for a
system (X; Y ) belonging to  P or to  S we mean the determination for each t of the conditional
law of Xt given Y0; : : : ; Yt . As before, for each t we denote by FY

t the �-algebra generated by
Y0; : : : ; Yt . Since the state space of X is a set of basis vectors, this conditional law is completely
determined by the conditional expectation E[Xt|FY

t ]. The prediction problem is to determine for
each t the conditional law of Xt+1 given Y0; : : : ; Yt , that is completely characterized by the conditional
expectations E[Xt+1|FY

t ]. We will use the notations E[Xt|FY
t ]=X̂ t and E[Xt+1|FY

t ]=X̂ t+1|t . Similarly,
we write E[Yt+1|FY

t ]= Ŷ t+1|t . In addition to the above, one wants to have X̂ t and X̂ t+1|t in recursive
form. We shall see below that the recursions for the cases (X; Y )∈ P and (X; Y )∈ S are di0erent.

In the book (Elliott et al., 1995) recursive formulae for unnormalized !lters are obtained by a
measure transformation. Here we undertake a direct approach that leads to a simple recursive formula
for the conditional probabilities itself. The key argument in all cases is provided by Lemma A.1.

4.1. Filter for  P

In this section we obtain the !lter for a system in  P, so we work with a Markov chain Zt=Xt⊗Yt
with transition matrix Q = QQ(1�m ⊗ In). We can write the matrix QQ as

QQ =



Q1

...

Qm


 (15)

with the Qi in Rn×n. No further assumptions on the Qi are made. Observe that the Qi have the
interpretation that

QiXt = E[Xt+11{Yt+1=fi}|Ft]: (16)

We have the following result (alternatively presented in Picci (1978)).

Theorem 4.1. The 8lter X̂ is given by the recursion

X̂ t =
[

Q1X̂ t−1

1�n Q1X̂ t−1
· · · QmX̂ t−1

1�n QmX̂ t−1

]
Yt (17)
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with the initial condition determined by the initial law of Z . The prediction X̂ t+1|t is equal to AX̂ t

with A =
∑m

i=1 Qi and X0|−1 = EX0 = p0. For the prediction Ŷ t+1|t we have Ŷ t+1|t = CX̂ t with
C = (Im ⊗ 1�n ) QQ.

Proof. We use Eq. (A.2) with F0=FY
t , H=�(Yt+1), which is generated by the sets Hi={Yt+1=fi}

and U = Xt+1. Thus, we obtain

E[Xt+1|FY
t+1] =

m∑
i=1

Ei[Xt+1|FY
t ]1Hi =

m∑
i=1

E[Xt+11Hi |FY
t ]

P(Hi|FY
t )

1Hi :

Then we use the Markov property of Z to write

E[Xt+11Hi |FY
t ] = E[E[Xt+11Hi |Ft]|FY

t ] = E[QiXt|FY
t ] = QiX̂ t :

Since P(Hi|FY
t ) = E[1Hi |Ft] = 1�n E[Xt+11Hi |FY

t ] we get Eq. (17).
De!ne now A =

∑m
i=1 Qi = (1�m ⊗ In) QQ and C = (Im ⊗ 1�n ) QQ. Then we have E[Xt+1|Ft] = AXt

and E[Yt+1|Ft] = CXt . As a consequence we get by reconditioning that X̂ t+1|t = AX̂ t and that
Ŷ t+1|t = CX̂ t .

We see that the !lter X̂ t satis!es a completely recursive system, that is, X̂ t is completely de-
termined by X̂ t−1 and Yt . In the absence of further conditions on the matrix Q (in particular the
factorization property), there seems to be no complete recursion that is satis!ed by Xt|t−1. The reason
for this is that we did not have the Markov property of W with respect to G, unless the factorization
property holds, in which case the formulas above take a particular nice form (see Section 4.3).

Remark 4.2. It follows from Eq. (16) that !lter (17) can alternatively be expressed as

X̂ t =
[
Q1X̂ t−1; : : : ; QmX̂ t−1

]
diag(CX̂ t−1)−1Yt:

Indeed, from Eq. (16) we obtain 1�QiXt = P(Yt+1 = fi|Ft), hence E[Yt+1|Ft] is the vector with
elements 1�QiXt . Conditioning of this vector on FY

t gives that Ŷ t+1|t is the vector with elements
1�QiX̂ t . So we can rewrite (17) as X̂ t=[Q1X̂ t−1; : : : ; QmX̂ t−1] diag(Yt|t−1)−1Yt and the result follows.

4.2. Filter for  S

In this section we obtain the !lter for a system in  S, so we work with a Markov chain Wt =
Xt ⊗ Yt−1 with transition matrix R= QR(1�m ⊗ In), where the matrix QR can be written as

QR=



R1

...

Rm


 (18)

for certain matrices Ri in Rn×n. No further assumptions on the Ri are made. Observe that the Ri
have the interpretation that

RiXt = E[Xt+11{Yt=fi}|Gt]: (19)

Then we have
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Theorem 4.3. The predictor X̂ t|t−1 is given by the recursion

X̂ t+1|t =

[
R1X̂ t|t−1

1�n R1X̂ t|t−1

· · · RmX̂ t|t−1

1�n RmX̂ t|t−1

]
Yt (20)

with the initial condition X0|−1=EX0. For the 8lter X̂ t and for Ŷ t+1|t we have the following relations:

X̂ t+1 = diag(X̂ t+1|t)G�diag(Ŷ t+1|t)−1Yt+1; (21)

where G = (Im ⊗ 1�n ) QR and

Ŷ t+1|t = GXt+1|t : (22)

Proof. We use Eq. (A.2) with F0=FY
t−1, H=�(Yt), which is generated by the sets Hi={Yt=fi}

and U = Xt+1. Then we obtain

E[Xt+1|FY
t ] =

m∑
i=1

Ei[Xt+1|FY
t−1]1Hi =

m∑
i=1

E[Xt+11Hi |FY
t−1]

P(Hi|FY
t )

1Hi :

Then we use the Markov property of W to write

E[Xt+11Hi |FY
t−1] = E[E[Xt+11Hi |Gt]|FY

t−1]

= E[RiXt|FY
t−1]

=RiX̂ t|t−1:

Since P(Hi|FY
t−1) = E[1Hi |FY

t−1] = 1�n E[Xt+11Hi |FY
t−1] we get Eq. (20).

To derive formula (21) for the !lter we proceed similarly, using Lemma A.1 again with U =Xt+1,
F0 =FY

t and H = �(Yt+1) generated by the sets Hi = {Yt+1 = fi}. Then we can write Eq. (A.2)
as E[Xt+1|FY

t+1] = E[Xt+1Y�
t+1|FY

t ] diag(Ŷ t+1|t)−1Yt+1,

E[Xt+1Y�
t+1|FY

t ] = E[E[Xt+1Y�
t+1|Gt+1]|FY

t ]

= E[Xt+1E[Y�
t+1|Gt+1]|FY

t ]

= E[Xt+1(GXt+1)�|FY
t ]

= E[diag(Xt+1)|FY
t ]G

�:

Then Eq. (21) follows, as well as Eq. (22), since we have E[Yt+1|FY
t ] = E[Yt+1X�

t+1|FY
t ]1n =

G diag(X̂ t+1|t)1n = GX̂ t+1|t .

Remark 4.4. By a similar argument as in Remark 4.2 we can rewrite recursion (20) for the
predictor as

X̂ t+1|t = [R1X̂ t|t−1; : : : ; RmX̂ t|t−1] diag(GX̂ t|t−1)
−1Yt:

Remark 4.5. Note that in contrast with what we got in Section 4.1 for  P here the predictor satis!es
a completely recursive system, whereas we obtain the !lter in terms of the predictor.
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The formulas above take a particular nice form if the system satis!es the splitting property (see
Section 4.3).

4.3. Filter for an HMC

In this section we give the recursive !ltering formula for the stochastic system with the HMC Y as
its output. Therefore, we can apply the results of Section 4.1 with the speci!cation that QQ=�(G)A,
so we have Qi = diag(Gi:)A and 1�n Qi = Gi:A. The following holds.

Theorem 4.6. (i) The conditional distribution of the Xt given Y0; : : : ; Yt is recursively determined
by

X̂ t = diag(AX̂ t−1)G� diag(GAX̂ t−1)−1Yt; (23)

with initial condition X̂ 0 = diag(p0)G� diag(Gp0)−1Y0, with p0 = EX0.
(ii) The conditional distribution of the Xt given Y0; : : : ; Yt−1 is recursively determined by

X̂ t+1|t = A diag(X̂ t|t−1)G
� diag(GX̂ t|t−1)

−1Yt; (24)

with initial condition X0|−1 = EX0 = p0.
(iii) The conditional expectation Ŷ t+1|t = E[Yt+1|FY

t ] is given by

Ŷ t+1|t = GA diag(X̂ t|t−1)G
� diag(GX̂ t|t−1)

−1Yt: (25)

Proof. (i) Just use Eq. (17) and note that

QiX̂ t−1

1�n QiX̂ t−1
= diag(AX̂ t−1)

G�
i:

(GAX̂ t−1)i
:

(ii) follows from (i), since we know from Theorem 4.1 that X̂ t+1|t = AX̂ t .
(iii) also follows from Theorem 4.1, upon verifying that C now becomes GA.

Remark 4.7. Here both the !lter and the predictor satisfy a complete recursive system. This is
not surprising, because an HMC is a stochastic system belonging to both  P and  S. Note that
Theorem 4.6 can alternatively be derived from Theorem 4.3, since under the assumptions of the
present subsection we have that Ri = A diag(Gi:).

Remark 4.8. If we de!ne for x∈Rn+ the matrix

Gx := diag(x)G� diag(Gx)−1;

then Eqs. (23) – (25) take the form X̂ t = GAX̂ t−1
Yt , X̂ t+1|t = AGX̂ t|t−1

Yt and Ŷ t+1|t = GAGX̂ t|t−1
Yt .

One may check that under the condition that Y is a deterministic function of X (in which case
the columns of G are basis vectors of Rm) the matrices Gx are right pseudo-inverses of G.
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Appendix A. A lemma on conditional expectations

Consider some probability space (�;F;P) and let H be a sub-�-algebra of F that is generated
by a !nite partition {H1; : : : ; Hk} of �, satisfying P(Hi)¿ 0 for all i. We introduce the (conditional)
probability measures Pi on (�;F) de!ned by Pi(F) = E[1F (1Hi =P(Hi))] = P(F |Hi). Expectation
with respect to Pi is denoted by Ei. Recall that for any integrable random variable U it holds that

E[U |H] =
k∑
i=1

Ei[U ]1Hi : (A.1)

We extend this result in the following easy to prove lemma. It is used frequently in Sections 3
and 4.

Lemma A.1. Let F0 be some sub-�-algebra of F. Then the following equalities hold true.

E[U |F0 ∨H] =
k∑
i=1

Ei[U |F0]1Hi ; (A.2)

E[1HjU |F0] = E[1Hj |F0]Ej[U |F0]: (A.3)

Proof. Concerning the !rst equality we have to show that

E{1F∩HjU}= E
{
1F∩Hj

k∑
i=1

Ei[U |F0]1Hi

}

for all F ∈F0, because every set in F0 ∨H can be written as a !nite union of sets F ∩ Hj with
some F ∈F0 and because the RHS of (A.2) is clearly F0 ∨H-measurable. We develop

E
{
1F∩Hj

k∑
i=1

Ei[U |F0]1Hi

}
= E{1F∩HjEj[U |F0]}

= Ej{1FEj[U |F0]}P(Hj)
= Ej{1FU}P(Hj)
= E{1F∩HjU}:

In these computations we used the trivial identity E1HiX=P(Hi)EiX in the second and fourth equality
and the de!ning property of conditional expectation in the third. This proves (A.2).

The second equality is a direct consequence of the !rst by conditioning on F0. Equality (A3)
follows from (A2) by taking 1HjU instead of U and by conditioning on F0.
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Remark A.2. If we take for F0 the trivial �-algebra, then (A.2) reduces to (A.1). If P(Hi) = 0 for
some i, then Pi is not well de!ned but (A.2) is still valid provided we de!ne Ei[U |F0] to be zero
for such an i.

Eq. (A.3) is also known as the conditional Bayes theorem (cf. Elliott et al., 1995, p. 23).
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