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INFORMATION CONCEPTS IN FILTERED EXPERIMENTS
UDC 519.21 v

K. DZHAPARIDZE, P. SPREL], AND E. VALKEILA

ABSTRAGT. In this paper we define randomized filtered experiments with an abstract
parameter space and analyze some properties of this concept. To that end we relate
with the parametric family of density processes the arithmetic and geometric mean
processes. The latter will be naturally linked to a generalized Hellinger process and
Hellinger integrals. We also introduce and analyze the Kullback—Leibler information
processes of a posterior distribution on the parameter space with respect to a prior
{and vice versa) and give certain characterizations to their development in terms of
the concepts given above.

1. INTRODUCTION

In this paper we study the Kullback-Leibler information between a posterior and a
prior distribution on an abstract parameter space. First we consider static randomized
experiments. Then we analyze the dynamics of Kullback-Leibler information in experi-
ments equipped with a filtration.

For a proper analysis of the dynamical information it is necessary to define arithmetic
and geometric mean measures, (the latter generalizations of a probability measure in-
troduced by Grigelionis in [9]) as well as the notions of Hellinger integral and Hellinger
process with respect to an arbitrary, not necessarily finite, family of probability measures.
We give some extremal properties of the arithmetic and geometric mean measures and the
related geodesic measure. To understand the dynamical behavior of the Kullback—Leibler
information we give a representation of this information in terms of the likelihood ratio
between the arithmetic mean and the geometric mean measures and Hellinger process.
Therefore a considerable part of the present paper is devoted to Hellinger processes. To
malke the present paper self-contained we ineluded some necessary results from [7] and [8].

The paper is organized as follows. After the introduction we treat in section 2 ran-
domized statistical experiments in a static setting and introduce the notions of the in-
formation in the posterior given a prior, as well as the notion of relative entropy in the
posterior given a prior. In section 3 we switch to a dynamic setting and in the sections 4
and 5 we discuss a dynamic family of arithmetic and geometric mean measures. Finally,
in section 6 we treat the dynamics of the information and entropy processes in terms of
the previously defined concepts. The results of the present paper are of a general nature.
For applications to semimartingale experiments we refer to [8].
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2. RANDOMIZED EXPERIMENTS

2.1. Statistical experiment. We consider a statistical experiment (Q,F,{Ps}scs),
where {Pg}¢co is a certain parametric family of probability measures defined on a mea-
surable space (2, F) with a set of elementary events () and a o-field F. We suppose that
each member of the family {Py}sco is equivalent to a certain probability measure @, i.e.,

{Pa}oco~Q, (2.1)

and for each fixed # € © we denote by py the Radon-Nikodym derivative of Py with
respect to Q:
_ dPy
Dy = Q" (2.2)
So, foreach# € ® and Be F
Po(B) = [ o) Qlde) = Eq{Tspo). (23

Here and elsewhere below we use the expectation sign E indexed by a probability measure.
When we want to express dependence of pg on the dominating measure Q, we also write

p(6, Q).

2.2. Randomization. On the set of parameter values @ define a o-field A and consider
a probability space (8, .4, ) where « is a certain probability measure. In this way a
statistical parameter ¢ is viewed as a random variable (on a possibly different probahbility
space) with values in (€, A). The probability measure & determines the distribution of &.

Consider now the direct product (£2.F, Q) of two probability spaces (2, F,Q) and
(0, A,0), where 2 =1x 0, F=F®A and Q = Q x o. Along with Q define on (2, F)
another probability measure P as follows: for each B e F

P(B) = [ polw) Q(e) o(ds) = EalTap) (24
so that for each w = (w,d) € & we have py(w) = p(w) = dP/dQ(w). Obviously,
pw) = 5(9) = T26) = o) (2:3)

(ef. (2.2)).

Observe that in the present setting the probability measure Py defined for each § € ©
by (2.3) (and satisfying Pg(f)) = 1), can be viewed as a regular conditional probability
measure, under the condition that the statistical parameter ¥ takes on the particular
value 6. In view of (2.3) we can rewrite (2.4) as follows: foreach B=Bx A F

P(B) = /A p6(B) a(d) = Eq {14 Eq{Tzp}} = Eo {Ts Ea{Lap}},

since by the Fubini theorem for positive functions (e.g. Loeéve [15, Theorem 8.2B]) it is
allowed to interchange the integration order.

Throughout the paper the Kullback-Leibler information in P given Q is defined by
(we follow the notation of [3])

.

I(P|Q) = Eqlog 52,%- = —Eqlogp (2.6)

with the density p as in (2.5). Indeed, in view of our assumptions in section 2.1 this
quantity 1s well-defined, since the measures P and Q are equivalent and

dQ/dP = (dP/dQ)™"  Q-as.,
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so that I(P|Q) = —Eqlog{dP/dQ}. In order to avoid trivialities this information is
assumed positive. Often we will also assume that it is finite, i.e.,

0 < I{P|Q) < o (2.7)

Notice that we can alternatively write I(P|Q) = E. I(Py|Q), showing that we deal with
an average information in the experimnent given a dominating measure Q.
Already in the next section will also come across the quantity

I(Q[P) =Eplog g—% = Eqplogp (2.8)
(cf. proposition 2.2) with the density p as in (2.5), where we assume that plogp is
integrable with respect to Q. This Kullback-Leibler information in Q given P equals
to I(Q|P) = Ea [(Q|Ps). Using the terminology of the theory of large deviations we
may characterize this quantity as the average relative entropy in the experiment given a
dominating measure @ (cf. e.g. [6, Section 1.4]; for a different, statistical context, see
e.g. [13]). Instead of (2.7) we will sometimes assume that the average relative entropy is
well-defined, positive and finite, 1.e.;

0 < I(Q|P) < 0. (2.9)

2.9, Arithmetic mean measure. Usually, one intends to get statements about the
experiment that are independent from the choice of a dominating measure . But even
in that case it is often handy from a technical point of view to make specific computa-
tions under a special choice of a dominating measure Q. Following and [3], we will make
two different choices, called the arithmetic mean measure and the geodesic measure, Te-
spectively. The motivation will be their extremal properties proved in propositions 2.2
arid 2.5.

First, we define the arithmetic mean measure as follows. Consider once more a statis-
tical experiment (@, F, {Pg}oce,Q). With the family of probability measures {Ps}oce
we associate a new measure defined on the same measurable space ({2, F), the so-called
arithmetic mean measure Py: for each BE F

; B.(B)=P(B x ©) = E.Py(B)- (2.10)

Let us also introduce the notation a(e, @) = E.{pg} for the arithmetic mean with respect

to o of the density ps. The following simple lemma allows us to use P, as a measure
equivalent to whole family {Psloco:

Lemma 2.1. Assume (2.1). Then the measures P, and Q are equivalent and
= a(0,Q)

Proof. See [8,Lemma 2.1]. O

Dealing with the present statistical experiment one may wish to select a special dom-
inating measure that is most peutral with respect to the given family {Pg}sce in the
following sense. One may choose for the probability measure that possesses the following
extremal property: it minimizes Eq I (Q|Ps) = I(Q|P) among all dominating measures @,
which is exactly the average relative entropy in the experiment given a dominating mea-
sure @ of (2.8). The arithmetic mean measure achieves this extremal property as we
have the following proposition.

Proposition 2.2. For all dominating measures Q wverifying (2.1)
I(Q|P) 2 I(P.|P)

where P, is the product measure B, x a. The equality is attained if and only if @ = Pa.
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Proof. Since I(Q|P) = I(Q|P,) + I(P4|P) the assertion is straightforward. O

Remark 2.3. The relation I(Q|P) = I(Q|P,) +I(P4|P) is of the same type as a so-called
nonsymmetric Pythagorean theorem for orthoprojections obtained in [3, Chapter 22].
The first term equals I(Q|P,) = Ep_In{dP,/dQ} which is well-defined by Jensen’s in-
equality for the convex function £(z) = zlnz and by the equivalence B, ~ Q.

2.4. Geodesic measure. In this section another candidate will be defined to serve as
a dominating measure. This new measure, called below the geodesic measure, is closely
related to the notion of the Hellinger integral of order o, which in analogy with [11,
Section IV.1, formula 1.6], is denoted by H(a) and defined as the Q-expectation of the
geometric mean of the density py with respect to . That is, H(a) = Eq g(e, Q) where
gle, Q) = exp{E, logps} is this geometric mean. In view of Jensen’s inequality (applied
to the concave function log), we see that g(e, Q) < a(a, Q), therefore 0 < H (a) < 1. Note
that the Hellinger integral is independent of the choice of the dominating measure Q: if
@)’ is another dominating measure such that Q < Q' and Z = dQ/d(Q’, then Egg(e. Q) =
Eqg g(a,Q'), since Eg g(a, Q) = Eg-{Zg(a, @)} and by definition of g9{o, Q)

Zg(a, Q) = exp{Ea log{Zp(¥, Q)}} = exp{E. logp(¥,Q")} = g(e, Q). (2.11)

Let then @ and Qp be two dominating measures and Q' = 1(Q + Qo). A double applica-
tion of the above result gives Eq g(e, Q) = Egr g(e, @) = Eq, 9(a, Qo), which establishes
the postulated independence of the choice of the dominating measure.

The geodesic measure mentioned at the beginning of this section, is denoted by C,,
and defined for all B € F as follows:

_ Jpexp{Ealogps(w)} Q(dw) _ Eq{Izg(e, @)}

T hexp{Ealogpe(w)}Q(dw) ~ H{a)
Recall lemma 2.1. The arithmetic mean measure was characterized by having a(a, @),
the arithmetic mean of the py as its density with respect to Q. Now we are dealing
with the measure C,, that is absolutely continuous with respect to Q, having the density,
proportional to the geometric mean,

Ca(B) (2.12)

déa b g(a, Q)
‘E,j_ = H_(&j_ (2.13)

Moreaver, we have the following lemma.
Lemma 2.4. Assume (£.7). Then the measure Cy, is equivalent to Q.

Proaf. We only have to prove Q < C,. If Ca(B) =0 for a B € F, then gla,@) =0
and E;logpg = —co on this B Q-a.s. But logpy is integrable with respect to Q by
assumption. Hence Q(B) = 0 by the Fubini theorem. The proof is complete. [

Like the arithmetic mean measure, also the geodesic measure has an extremal praperty:

Proposition 2.5. The following relation holds
I(P|Q) = I(CalQ) ~log H(a). (2.14)
Moreover, among the dominating measures Q the measure Cy s such that I(P|Q) is

mindmized with mindmaum value —log H (o).

Proof. First, since f,’o ~ (), we observe that
< dc,
I(CalQ) = —Eg logd—Q— = —Eglogg(a, Q) + log H(a)

and then I(P|Q) = —Eg E, logps = — Eglogg(a, Q). Equation (2.14) now follows.
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Since 1(C|Q) > 0 we have I(P|Q) > —log H(a). Because H(a) is independent of Q,
we also have infg I(P|Q) = —log H(a). Clearly we get equality for @ =C,. O
Remark 2.6. Equation (2.14) is equivalent to I(P|Q) = IC,1Q) + I®P|Cs x ). This
is another analogue of Pythagoras’ theorem. Similar results are obtained in [4] for I-
projections.

2.5. Prior and posterior measures. Let us turn for awhile back to the probability
measure o that we have defined on the parametric space (©,.4) at the beginning of
section 2.2, In a Bayesian set up it is called a priori probability measure. Along with
this one usually defines on the same space the a posteriori probability measure 8 by the
following Bayes formula: for all A € A

i J-,q, p(8, Q) a(df) (2.15)

BA) = 06,0 ald)

In other words i 4.0)
piv,

2% = T 2(0,Q) (@) Ly
for each § € ©. Obviously, the posterior 3 so defined is free of the choice of a dominating
measure (J.

In section 6 we will be interested in the Kullback-Leibler information in the posterior 3
given the prior o that in virtue of the identity (2.18) is

d
I(Bla) = — Ealog 22 (9) = log Ea p(9, Q) — Ealop(?, Q). @17)
Note that in terms of section 2.3 the identities (2.16) and (2.17) may be written as follows:
dg p(6,Q) 5
40 gy = PO S g B o
and 0
exp{—1(B|a)} = gla, Fa). (2.19)

The denominator in (2.16) is indeed ala, Q) so that (2.18) follows from (2.2) and
lemma 2.1. The equation (2.19) is obvious, since on the right of (2.17) we have

Ea IOg{a(a! Q)/P(T?. Q)} ==Ea mgp(ﬁﬁpcx)v

The P,-expectation of the Kullback-Leibler information in 3 given « is then easily
seen to be equal to E, I(Py|P,), which in turn is nothing else than I(P|Pg).

We will also treat the relative entropy of the posterior given a prior that by definition
amounts to a8

I{a|8) = Eglog aa(u?) = Eq p(d, Pa)log p(¥, Pa). (2.20)

In Bayesian statistics this quantity is called information from data (see (1, Definition 2.26,
p. 78]). Its expectation Ep, T (a|f) is an especially important notion. It is called ezpected
utility from data. By (2.20) we get the following representation:

EP,,I(Qlﬁj =EsEp, (¥, P.)log p(9, Pa) =Eq Itjjctlpﬁj ¥ I(anP} (2.21)
Hence the expected utility from data is Anite under assumption (2.9) in view of propo-
sition 2.2.
3. RANDOMIZED FILTERED EXPERIMENT

Let the measurable space (92, F) be equipped with a filtration F = {F;}iz0, an in-
creasing and right continuous How of sub-o-fields of F, so that V:ge = iEren
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Assume that the filtered probability space (Q,F, F = {Fi}+>0, @) is a stochastic basis:
F is Q-complete and each F; contains the @-null sets of F. We also assume for simplicity
that 7 = {2, 0} Q-as. The filtered probability space

(Qs j:a F'r {p8}3681 Q)

so defined is called a filtered statistical ezperiment.

Consider now the aptional projections of the probability measures @ and Py with
respect to F, and use the same symbols for resulting optional valued processes: for a
F-stopping time T' Q@ and Pg r are then the restrictions of the measures () and Py to
the sub-o-field Fr. Since Pyt is equivalent to Q@ for each 8 € ©, we can define the
Radon—Nikodym derivatives

dPg
— =E Frl.
aOn o{ps|Fr}

Thus according to [11, Section IIL.3], for each fixed # € © there is a unique (up to Q-
indistinguishability) process z(f) = 2(8, Q) called the density process (we usually stress
the dependence on a dominating measure Q), so that z:(8,Q) = dPg,/dQ; for all t = 0,
which possesses the following properties (see [11, Proposition I11.3.5] for more details):
foreach 8 € © -

(1) inf;2(8,Q) >0 Q-as.

(i) sup, z(6,@) < oo Q-as.

(iii) the density process z(6,Q) is a (Q, F)-uniformly integrable martingale with

Eg{z:(0.Q)} =1, for all £ € [0, 00].

Later on in this paper we will also encounter various Kullback-Leibler information

numbers like I(Pg 7|7}, next to the ones that have been previously introduced.

2r(f) =

4, ARITHMETIC MEAN PROCESS AND ARITHMETIC MEAN MEASURE

4.1. Arithmetic mean process. In section 2.3 we have associated with the parametric
family of densities {p(f, @) }sco the arithmetic mean a(a, @) with respect to the prior a.
Likewise, with the parametric family of density processes {z(8, Q)}oco the process

a(e, @) = Ea 2(4,Q) (4.1)

i5 associated, that is called the arithmetic mean process.

In view of the definition (4.1) and the identity of lemma 2.1 the a-mean process can
also be defined as the density process of P, with respect to @: with the notation like in
section 3

ale, Q) = 2(Pa, @), (4.2)

where

dQ
for all £ > 0. Therefore with the choice P, as the dominating measure it becomes
particularly simple: identically a(a, Py) = 1.
Parallel to the above statements (i)-(iil) on the density processes at the end of sec-
tion 3, the following properties of the arithmetic mean process can'be stated:

Zc{PauQ:‘ = Eg {E&|F:}

Proposition 4.1. Assume (2.1). The arithmetic mean process a = a(a, Q) possesses
the following properties:
{1) illft ag = 0 Q"G.S.
(i1) sup;as < oo (0.5
(iii) a is o (@, F)-uniformly integrable martingale with Egay = 1 for all t = 0.
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Proof. In view of lemma 2.1 it suffices to refer again to [11, Section IIL3, Proposi-
tion 3.5]. O
Recall the Bayesian terminology of section 2.5 where the measure & on (8, A) is called
a priori probability measure. Along with this one may also define for each stopping
time T on the same space the a posteriori probability measure A7 by the Bayes formula:
forall Aec A I (
. Jaz(8,Q) aldd)
A=A, 4.3
G = 6,0 a@ 52
je,foreach €O
" zr(0, Q)
ol = 4.4
ao 9 = T572(0.Q) oldd) -
¢f. (2.15) and (2.15). Obviously, the posterior BT so defined is free of the choice of a
dominating measure Q. Note that for fixed A € A the random variable 47 (A) is Fr-
measurable. In virtue of the identity (4.2) we get with Py as the dominating measure

_ that for each 8 € © 2
dg _ 2p(6,Q) _ 5
e O R T e G

¢f. (2.18). In particular, Eq zr (9, Pa) = afa, P,) = 1. It is now straightforward to define
at each stopping time T' the information or the relative entropy in the posterior given a

prior like in (2.17) or (2.20), respectively. But we postpone this till section 6 where the
development in time of the related processes are treated.

4.2. Arithmetic mean process as an exponential. In practice each density process
z(8,Q), 6 € ©, is often given in the form of the Doléans exponential of a certain (@, F)-
local martingale, say m(6, Q), that is by definition z(6, Q) = £(m(f, Q)) with

E(m) = exp {m — %(m‘”}} 8[;[ (14 Amg)e 2™, (4.6)

Moreover. often the continuous and the discontinuous parts of the (@, F)-local martin-
gales m(f) = m(0,Q), 6 € ©, are separately modeled as martingale transforms of a
certain continuous (Q, F)-local martingale, say M°, and a certain purely discontinuous
(Q, F)-local martingale, say M 4 hoth free of the parameter 8. The dependence on the
parameter is realized via the predictable integrands, say ¢(f) and d(8), respectively, so
that m(@) is given the form

m(8) = c(f) - M® + d(8) - M°. (4.7)

In fact many models of practical interest are of this particular form, the examples can
be found in [8] (the specification (4.7}, however, is superfluous throughout most of the:
present paper, except in the present and in the concluding section 6.2). As we have:
seen in section 4.1, the arithmetic mean process alo, @) is a density process, of. (4.2).
Therefore, it may as well be represented as a Doléans exponential. Under the present
circumstances this representation is particularly appealing, gince it is only required to!
take the predictable posterior expectations (with respect to the posterior measure defined
in (4.3)) of both integrands, namely ¢ = Eg- ¢(¢f) and d = Eg- d(¥). It suffices then to
form the (@, F)-local martingale

m=c ME+d- MY, ' (4.8)
as iz shown in theorem 4.2 below.

Theorem 4.2. Assume (2.1) and (2.9). Suppose that for each § € © the density process
2(6,Q) can be represented as the Doléans exponential 2(6.Q) = £(m(0.Q)) with the
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(@, F)-local martingale m(0,Q) of the form (4.7). Then the arithmetic mean process i3
the Doléans exponential of the (Q, F)-local martingale (4.8), i.e.,

a(a,Q) = Z(pQ,Q] = S{Tﬁ).
Proof. The relation z(6, @) = £(m(8,Q)) implies that

2(6,Q) =1+2(6,Q)-m(8,Q)
=1+2_(6,Q)c(8) - M® +2_(6,Q) d(6) - M*.

The latter equality follows from the condition (4.7). Replace now 6 by ¥ and take the
sxpectation E, of both sides. On the left we get the arithmetic mean process a(a, @),
£, (4.1). On the right we are allowed to interchange the integration order under assump-
tion (2.9), since we can now use the stochastic Fubini theorem in [2]. The condition in
this paper under which the stochastic Fubini theorem holds boils in our case down to
Eo E.[2(1, Q) ]U ? < co. This follows from [2, theorem 3.1] and the martingale case of
‘\ample 2 of the same paper. Combining inequalities (25.2) in chapter V and (90.2)
in chapter VII of [5], we can (using a suitable constant C) bound Eg Eq[z(¥, Q)]l"' -
by C(1+ EgEqzoo(, Q) log™ zeo (1, @) which is finite in view of (2.9) and the trivial
relation zlogt z < zlogz +e7t. .
Hence we obtain the integrands a_(a, Q) & and a_(a, @) d, since by (4.5) we have

Eo{z (9, Q) c(9)} = a_(a, Q) Eafz- (8, Pa)e(®)} = a_(a, Q) Ea= ¢(0)

that indeed yields the first integrand by the definition of &. The second one is obtained
o a similar way. We thus get by (4.8) a(e, Q) = 1+ a_(a, @) - 7 that is equivalent to
the desired relation a(a, @) = E(m). O

Theorem 4.2 has important consequence: it allows us to express the demsity of the
posterior with respect to the prior as a Doléans exponential.

Corollary 4.3. Under the conditions of theorem 4.2 the process df3° /da is the Doléans

exponentiol
% () = £(n(6, Pa) (49)
o =c\nib,ral), .
where for each 8 € © the process n(f, P,) is a (P,, F)-local martingale given by
n(d, Ps) = (¢(6) — &) - N + (d(8) — d) - N¢ (4.10)

with N¢ = M* — (i, M°) and N¢ = M? — (14 Am)~* . [m, M9

Proof. By (4.5) and by theorem 4.2 we may write the density df /da as the fraction of
+=0 Doléans exponentials:
E(m(6,Q))
~Em)
Hence we only need to verify the identity £(n)E(m) = £(m) with m = m(6,Q) and
= = n(6, P,), by using the multiplication rule for Doléans exponentials (cf. [10, propo-
| ssion (6.4)]). This is a straightforward computation. Indeed, according fo this rule we
=ust have m = n+m+[n, m] but this is satisfied by n = m—e—(1+Am) - [, m—m].
| This plainly holds always, irrespective the specifications (4.7) and (4.8) that gives n the
asserted form (4.10). O
|
|

= (9}

Note the following relation

1+ An(0,P,) =1+ (d@) — d)AN* = ————= > 0. (4.11)

|
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5. GEOMETRIC MEAN PROCESS AND GEQOMETRIC MEAN MEASURE

5.1, Geometric mean process. Along with the a-mean process (4.1), we associate
with the parametric family of density processes {z(6, Q)}oeco a so-called geometric mean

pTG'CﬁHS

gl Q) = exp{Ea{log 2(9; Q)}}; (5.1)
conform to the geometric mean of family of densities {p(f, Q) }eeo of section 2.4. By the
same argument as in the latter section (Jensen’s inequality) the geometric mean Process.
is dominated by the g-mean process identically, i.e.,

9(a, Q) < a0, Q) (5.2)

so that the geometric mean process also possesses property (ii) of proposition 4.1. As for
the lower bound, we have assumed (2.7) in order to guarantee that the geometric mean
process has property (i) of proposition 4.1 as well.

Proposition 5.1. Assume (2.1) and (2.7). The geometric mean process g = g(o, @)
possesses the following properties:

(i) inf, g > 0 Q-a.s.
(i) sup;ge < 0o Q-e.5.
(iii) gis @ (Q, F)-supermartingale of class (D) with go = 1.

Proof. Property (i) is an immediate consequence of (2.7) and Jensen's inequality and (ii)
follows from equation (5.2).

As for property (iii) we have that the g-mean process is indeed of class (D), since |
it is dominated by a process of class (D), a (@, F)-uniformly integrable martingale a
(see (5.2)). It remains to show that Eq{ge|Fs} < gs for s <t. To this end apply first the
Jensen inequality and then interchange the integration order: on the set {gs > 0} of full

(J-measure
Et_ = z:('ﬁr Q) 25(19, Q]
EQ {Qs Fﬂ} i EQ {exp {Ea ks zs('ﬂeQ}} Fﬂ} = EQ {Ea za('g:Q) FS}

= Ig{ﬂ.Q)
e {E“? #(0,Q)

Observe that in virtue of (4.2) we have by inequality (5.2) that

.?:5} —al ]

Q(a: Q) ]

i e i B S 5.3
ﬂ{ﬂ, Q} QE ﬂ} ( )
Surely, this fraction depends only on the prior @ and the family {Pg}see but not on the
choice of a dominating measure €.

5.2. Hellinger integrals and Hellinger processes. Let T be a F-stopping time. The
Hellinger integral of the family of probability measures {Pg r}oco, is defined according
to [11, Section IV.1], as the (Q-expectation of the g-mean process evaluated at T:

Hr(a) = Eg{or(a. Q)}- (5.4)

This is called the Hellinger integrol of order c. As iz mentioned in section 2.4 the Hellinge:
integral is independent of the dominating measure .

Next, we define the Hellinger process of order o, denoted traditionally by he). Like
the Hellinger integrals, the Hellinger processes are independent of the choice of the dom

inating measure :

Theorem 5.2. Assume (2.1) and (2.7). There exists a (unigue up to Q-indistinguishabi
lity) predictable finite-valued increasing process h{a) starting from the origin ha(a) =0
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so that

M(e, Q) = g(c, @) + 9—(, Q) - h(cx) (5.5)
is a (Q,F)-uniformly integrable martingale. Moreover, two Hellinger processes h{c)
determined under two different dominating measures @ and Q' are Q- and Q'-indistin-
guishable.

Proof. See [8, Theorem 5.2]. O
Lemma 5.3. Assume (2.1) and (2.7). Then up to o Q-evanescent set

Ahfa) <1 (5.6)
sa that the Doléans exponential of —h(a) is well defined:
E(=h(a)) = e M ] (1 — Ahy(a))e (5.7)
a<-

is a positive decreasing finite-valued process.

Proof. It suffices to prove (5.6). But in view of proposition 5.1, property (ii), this follows
from the equation

Eq{gr|Fr-} — gr-(1 — Ak{a)r) = 0, (5.8)
valid on the set {T' < oo} with a predictable time T, since by the predictable section
theorem 1.2.18 in [11] the latter equation implies 1 — Ah(a) > 0 up to a Q-evanescent
set. The validity of (5.8) is verified as follows: first take A on both sides of (5.5), and
then take the conditional Q-expectation given Fp_. 0

Remark 5.4. Notice that equation (5.8) also implies that

Ah(@)r = — E{ﬂ‘ﬁ_}
gr-

valid on {T" < oo} with a predictable time T'.
Remark 5.5. It is easily verified that
E(—h(a))™! = £((1 - Ah(a)) ™ - A(c)),

cf. [14, p. 199].
Remark 5.6. Note the following relationship between Hellinger integrals and Hellinger
DIOCESses:

Hr(e) =1-Eq{g-(a.Q) - h{a)7} (5.9)
that follows from (5.4) and (5.5). It will be shown below (theorem 5.17) that, under addi-
tional assumptions, Hy(a) is in fact the expectation with respect to a certain probability
measure of the Doléans exponential (5.7) evaluated at 7.

In the special situation in which the Hellinger process is deterministic, equation (5.9)
reads Hr(a) =1 — H_(a) - h(a)r and hence Hr(a) = E(—h(a))r.
Zemark 5.7 To draw once more parallels with the basic section 2 (in which the prob-
ability space is not yet equipped with the filtration), let us dwell for a moment on the
slementary special case called a “one period model”, since time T > 0 is fixed and F; is
taken to be trivial if ¢+ < T, while 7, = F for t > 7. In this case we have z(8,Q) = 1
for all @ if t < T and z(6,Q) = pp for t > T with py as in equation (2.2). Consequently,
wla,Q) = 1fort < T and for ¢t > T we have g(c,Q) = expE,logps. In this case
it follows from equations (5.4) and (5.5) that Ay(a) = (1 — Hp(a))I>7). Therefore
£(—h{a)); is equal to 1 if t < T and equals Hr(a) if t > T. Therefore the density of the
seodesic measure of section 2.4 can be alternatively expressed as g:(a, Q)/E(—=h(a)): for
any 1= 0.
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5.3. Geometric mean process of an exponential. The characterization of the
Hellinger process h(c), presented in section 5.4, is based on proposition 5.8 below. We
use here the following notations: if { X (#)}seg is a certain parametric family of processes,
then a(X) = E, X(¥#) and (for a nonnegative family) ¢(X) = exp{E.log X(¥)} denote
its arithmetic and geometric mean processes, respectively (cf. the special cases (4.1)
and (5.1)). Until the end of this section we assume sufficiently strong measurability
properties and that the expectation with respect to o is well defined. The results of this
section will be applied to the density processes z(#, ()) and related processes for which
these measurability properties are automatically satisfied.

Denote by ¢(X) = a(X) —g(X) the difference of the arithmetic and geometric process
and note that this difference process is homogeneous in the sense that if ' is a process
independent of #, then

$(CX) = Jo(X). (5.10)

Proposition 5.8. Let {X(#)}oco be a parametric family of (Q, F)-semimartingales with
AX(0) > =1 for all 6. Let its arithmetic mean process a(X) = Ex X(9) be o (Q, F)-
semimartingale and a—(X) = Eo X_(F). Suppose that the increasing processes a(({X°))
and

a| > (AX, —log(1+ AX,))

A%

are finite-valued.
Then the g-mean process g(£) = exp Ea{log&(X(9))} of the family of the Doléans
exponentials {£(X(0))}eca is weil-deﬁnsd and

g{S):S{a(X ——e.r (LX) — Z@ +AX} (5.11)

where ©(:) = a({-)) — (a(-)) and ¢(-) = a(-) — g(-).
For the proof we refer to [7, Proposition 4.5].
Remark 5.9. If the comtinuous martingale part X (1)° possesses the variance process

u(X°) = var(X (9)°) = Ea {|X(9)°} - [Ea {X(@)}* (5.12)
that is a (Q, F)-submartingale of class (D), then the compensator is given by §{X¢) that
occurred in (5.11).

Remark 5.10. Obviously, the identity (5.11) implies
9(&) = g-(€) ~a(X) — —9 (€) - 3(X) = > g (E)ps(1 + AX)

s

which is reduced in the special binary case to the It formula (cf. [11, p. 199]).

5.4, The Hellinger process as a compensator. The assertions in section 5.3 for
an arbitrary family {X (0, @)}sce are almed at the application to the special parametric
family of processes {m(#, @) }oce with m(f, Q) so that each density process z(#, Q) is a
Daléans exponential £(m(f,Q)) of a martingale m(6,@). Then the assumptions made
in section 5.3 are satisfied. Write m as a shorthand notation for m(2, Q).

Below the notations of section 5.3 are used.

Theorem 5.11. Assume (2.1) and (2.7). Let the process

7 - %v(m“) + ;%(1 i) (5.13)
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be a (Q, F)-submartingale of class (D). Then its compensator V and the Hellinger process
h(a) are Q-indistinguishable. Furthermore, for a predictable stopping time T on the set
{T < oo} it holds that

1o Abpla) = Eglgil s A B ). (5.14)
Proof. It holds that E4 Eq{m(¥, Q)°}? < oo, since

10§ 2(6, Q) < m(6, Q) ~ 3(m(6.Q)")

and the Kullback-Leibler information is finite as postulated in (2.7).
By definition (5.13) and remarks 5.9 and 5.10 in section 5.3, especially equation (5.12),
we get with g(z) = g(a, @) the equation

o(e) = (=) -alm) + 39 (2) - {olm) ~8(m) —9-(2) V,  (5.19)

where the first two terms are ()-martingales. In order to see that V and the Hellinger
process h{a) are J-indistinguishable, compare this equation with (5.5).
Next we find from (5.15) that

Eq {%PTT—} = —Eg{dr(l + Am)|[Fr_}, .

which by definition of ¢ is nothing else but Eg{gr(1l + Am)|Fr_} — 1. Now use re-
mark 54. O

Remark 5.12. It follows from this proof that the martingale M (e, @) in theorem 5.2 can
now be expressed as

M=g_(z)- {a(m) i %{U(m"] —#(m)} — (V — 'l_f'j} . (5.16)

5.5. Geometric mean measure. In this section we generalize the approach of Grige-
Honis [9], who worked with experiments having a finite parameter set. The result is
formulated in theorem 5.17 below. In section 4.1 we showed that the density process of
the arithmetic mean measure with respect to (@ was the arithmetic mean of the density
process z(6, Q). In this section, that deals with the dynamic version of section 2.4, we
define a measure whose density process is based on the geometric mean process. Since
this process was shown to be a (J-supermartingale, we need a proper normalization to
turn it into a martingale. To this end the multiplicative decomposition theorem of a
sonnegative supermartingale (cf. [14, Theorem 2.5.1]) together with the additive de-
composition of equation (5.5) is precisely what we need. Notice that we cannot simply
normalize the geometric mean process with its expectation to get a martingale, as we
did in the static case of section 2.4, cf the right-hand side of (2.13) where the ratio
gle,Q)/ Eg g(a,Q) occurs. However remark 5.7 suggests an alternative, namely, the
sormalization with £(—h(e)). These two normalizations coincide only in the case of a
deterministic Hellinger process when Eg g(a, Q) = H(a) = £(—h(a)), cf. remark 5.6.

Theorem 5.13. Assume (2.1) and (2.7). Then the ratio

_ _9(Q) “
Q) = 2 hta)

i a local martingale under Q and, with M(a, Q) as in (5.5), the following relations are
salid:

Cla, @) =1+ M(a, Q) (5.17)

E(—h(a))
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and
1

0(0,@) =€ (g M(@.0)). (5.18)

Proof. Apply theorem 2.5.1 of [14] to the positive supermartingale g(c, @) with the
Doob-Meyer decomposition as in (5.5). This also yields formula (5.18). The expres-
sion (5.17) is a direct corfsequence of the Ité formula applied to g(a, Q) /E(—h{a)) and
the definition of A(a). It is now clear that ((a, @) is a Q-local martingale. [

It is our purpose to use ((e, ) as a density process, for which it is necessary that
{(a, Q) is a martingale under (. Since it is a nonnegative process, it is also a supermartin-
gale, hence a sufficient condition for {(a, @) to become a martingale is Eg {(o, @) = 1.
In [9] this equality is assumed to hold.

Asg is well known, in general a positive local martingale is not necessarily a martingale.
However, in a discrete time setting more can be said. Then it is shown in [12] that a
nonnegative local martingale is in fact a martingale. So working in discrete time one
obtains Eg (e, @) = 1, see the examples in [8] for other possibilities.

If we assume that ((e,@) is uniformly integrable, there is a nonnegative random
variable (. (e, Q) with expectation 1 such that

EQ{c::O(an)'Ft} - ct("—h Q)

We will often need this property, and therefore we will state this, in the same spirit as
in [9], as an assumption. Since the nonnegative supermartingale ¢{cx, @) has a limit a.s.
for t — oo, call it (o, @), we use it as a Radon-Nikodym derivative to define a new
measure G, on (1, F), 20 for all B € F we have G, (B) = Eg Ipl..(a, (). Alternatively,
in terms of a density we haye

dGa _ gol(a,Q)
dQ  E(-h(a))e’
with gee(er. @) the Q-a.s. limit of gog (e, Q) for £ — oo and likewise £(—h(a)}qo the Q-a.s.
limit of £(—h(a)): for t — oo, Clearly, both limits exist and we put % =
Notice that G, is independent of the choice of the underlying measure ¢} and that in
general G, is a subprobability measure. When G, is a probability measure, we call it
the geometric mpean measure.

(5.19)

Lemma 5.14. Assume (2.7). Then the measure G, is equivalent to Q.

Proof. We have G, < () by construction. That ) < G, follows from the first assertion
of proposition 5.1. O

A sufficient condition for existence of G as a probability measure is given in the next
proposition. It is in terms of the Hellinger process and is aimed at the applications in
the spirit of [8]. Notice that the sufficient condition is satisfied if h..(a) is P, (or Q)-a.5.
bounded and in particular if it is deterministic and finite.

Proposition 5.15. Assume that Ep {1/£(—h{a))oc} < 00. Then the process ((a, Q) is
a uniformly integrable martingale under Q and hence G, is a probability measure.

Proof. Tf we use P, as the dominating measure, then the geometric mean is bounded
above by the arithmetic mean, which for the density processes z(6, Q) equals one, see
section 4.1. Hence (. P, ) is dominated by the F,-integrable random variable

1/E(—h(e))oa
and is therefore P,-uniformly integrable. The conclusion now follows. O

Remark 5.16. Assume that (G, is a probability measure. Then we can give a rather
explicit form of the density process z(Gn, &) in terms of the martingales m(é,Q) of
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section 5.4. First we get that z(G,, Q) is nothing else but the ((n, @) of theorem 5.13.
From the equations (5.16) and (5.18) we obtain ((a, Q) = £(m®=), with

= Tlh{a) g {a(m) + % {v(m®) —8(m°)} — (V — 1?3}_

If the discontinuous part of a(m) is a sum of jumps martingale, we can say more:
G e s 1 + &m
o = - ~1).
al) Z (1 —Ahs(a

This follows from equation (5.14).

It will be shown next that with the special choice of the geometric mean measure as
the dominating probability measure, the geometric mean processes take a particularly
simple form, namely that of a predictable decreasing process. As a matter of fact, G, is
the only probability measure that gives this special form to the geometric mean process.

mGn

Theorem 5.17. Along with the conditions (2.1) and (2.7), assume that G, is a probabil-
ity measure and that it is used as a dominating measure. Then the following multiplicative
decomposition holds for the geometric mean process gle, Q):

9{0'1 Q) == Z{Ga: Q) g(_h(&))! * (520}
in particular, g(o,Go) = E(—h(a)). Besides, at each stopping time T the Hellinger
integral and the Hellinger process are related as follows:

Hr(e) = Eg, E(=h{a))p.

Proof. The representation (5.20) immediately follows from the remark 5.16 that 2(Ga, Q)
is nothing else but the (o, (}) of theorem 5.13. The rest follows upon substitution of Q
in (5.20) and in (6.4) by G,. O
The geometric mean measure has, like the geodesic measure, a minimizing property.
The criterion is different from the one in proposition 2.5 however. We need the following
notations. For a stopping time I' we denote, as in section 3, by Qr and Psq the
restrictions of @, respectively Py, to Fp. By G, r we denote the measure on Fp defined
by dGa,r/dQr = (r(e, Q). Put
Kr(Q7) = Ea I(Py,7|Qr) + Eg log £(—h(a))r (5.21)

as the criterion to be minimized and notice the difference {putﬂng T = oo) with the
eriterion E, I(Py|@) of section 2.4.
Proposition 5.18.
(i) Assume that G, 1 is a probability measure. Then Kr(Qr) is equal to
I{Ga,r|Qr),
hence it is nonnegative and the minimum value zero of Kp(+) is attained at
@r =Gar

(ii) Conversely, if inf Ko(Qr) = 0, where the infimum is taken over all resiric-
tions Qr to Fp of the dominating measures @, then Go1 15 o probability measure
on Fr.

Proof. (i) Notice first that
Ea I(Po,r|Qr) = —Eqloggr(a, Q) = —Eqlog(r(a, Q) - EQlog&(~h(a))r
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in view of the definition of ¢{a, @), which gives (5.21) with

I
Kr(@r) = - Eqloglr(e, @) = ~ Eqlog —5=.

Because we assumed that G 7 is a probability measure, this reduces to
Kr(@Qr) = I{Gar|@r)-

The other statement is now clear.
{ii) From

dGa
Kr(Qr) = —Eqlog 755

(see the proof of (i)) we obtain by Jensen’s inequality applied to the convex function

— log that
. dGar
Kr(Qr) 2 —logkg 5 == —log Gar(R2).
Q7

If the infimum is zero, then for each n € N there exists a probability measure €
on Fr such that Kr(Q.) < n~!. Hence we have —logGar{fl) < n~* for all n so that
—logGa,r(f2) <0, 0r G () = 1, Since we already know that G, 1 is a subprobability
measure, it must be a prabability measure. [

We close this section with some extra observations comcerming the case where the
Hellinger process is deterministic. Note once again that now & (a) = £(—h(a)). Hence
2(Ga, Q) = gla, Q)/H(e), which completely parallels the static ease of section 2.4. In
particular the restriction of G, to Fir coincides with the geodesic measure as defined in
section 2.4 with F replaced by Fr. In section 5.6 we investizate some more relations
between these measures. The relation in proposition 5.18 now takes the form

Eo Ir(Py|Q) = I7(G0lQ) — log Hria).

precisely as in proposition 2.5 and the restriction of G, to Fr minimizes E.IT(Fs|Q)
over all dominating measures () (restricted to Fr).

»
5.6. Relation between geodesic and geomeiric mean measure. 1T is our purpose
to study in this subsection some relations between G, and .. both measures being
defined in terms of certain normalizations of the geometric mean of densities (fo see the
difference, compare equations (2.13) and (5.19)). It is therefore Interestins to relate these
two measures. This will also yield a characterization (in thecssss 519 below)of G, as a

probability measure in terms of properties of s
Recall from section 2.4 that (. is defined on F = Foo by its denssty g (e, Q) /Ho (@)
with respect to @. Call this density Zoo(Clay Q). Note that B < gl @) < o Q-as.
We have seen in section 2.4 that Cy ~ @, in other wosds s HC..0) is Q-as.
finite and positive. By z (Cu‘u, Q) we denote the density of the restricsion of €, w.r.i. the
restriction of @ to F;. Cleatly,

zt(éan Q] =] E{Em(ém Q”Ft} = EQ{gw{ﬂ'Q:" ."-:}H;.;i‘ﬂ:‘

Now we consider the process ¢ (a?(iu?'a). It satisfies
VogE v glee@)
((aic&} - (_(Q°Q)“f{Qicﬂ) = E{'—h(ﬂ‘]‘r‘ EQ{Q—:-:-Q—Qi ..F_}-
Recall that in our set up the random variable h..(a). as wedl a=s the wamizble
1

E—h@)es’

(5.22)
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is finite a.s. under @ (or any other dominating measure), see [11, p. 209] for the binary
case. From (5.22) we see, letting ¢ — oo, that

Hoo ()

Coo(0, Ca) = = (5.23

( E—h(e)m )

Observe that this random variable has C,-expectation less than or equal to 1 and hence
1 1

E

2 < )
e E(=h(a))oe ~ Heola)

We are now in the position to formulate another result that gives necessary and sufficient
conditions for G, to be a probability measure.

Theorem 5.18. The measure Gy 18 a probability measure if and only if
1 1
E = : 5.24
e E RN ool e

Mareover, if Gy is a probability measure, then its density process z(G., C‘:‘G) with respect
fo the geodesic measure has a particularly simple structure. [t is uniformly integrable
(funder Cy) and given by

2(Gay Ca) = Hool0) Egs, {m'ﬁ} : T )

Similarly, we have under the same condition that the density process of Co w.r.t. Ga is

given by
1

"~ Hel(a)
Proof. The equivalence of the first claim follows from the identities

Eg, Goo(@ Ca) = Eq (0@, Q) = Ga(Q)
and expression (5.23). The validity of (5.25) also follows from (5.23) and (5.26) follows
Som (5.25). O
Semark 5.20. Equation (5.25) again illustrates the fact that the measures G, and 3
scincide if h{a) is a deterministic process in view of remark 5.6.

2(Ca, Ga) Eg, {€(—~A(a))ool| 7t} (5.26)

6. INFORMATION PROCESSES

In this section we will treat the Kullback-Leibler information in the posterior proba-
~iity measure §7 with respect to the prior o, defined according to (2.17). Afterwards,
== will use the representation of type (2.19) to relate this information to the Hellinger
s=ocess and to the density process of the geometric mean measure with respect to the
o hmetic mean measure, cf. theorem 6.3.

We will treat as well the relative entropy in the posterior probability measure 57 with
s==nect to the prior o, defined according to (2.20). Looking at the development in time,
== will see that the related process is a (P,, F')-submartingale with a rather complicated
wmertingale part. Therefore, the focus in theorem 6.4 will be on the compensator part
o vields the information from data like in (2.21), cf. remark 6.5.

4 1. Kullback—Leibler information in a posterior, The definition (2.17) suggests
W o define af a stopping time T > 0 the Kullback-Leibler information in the posterior
seesability measure 87 with respect to the prior & by
5 dey

I(6"|a) = Eq (6.1)
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This is a non-negative quantity by the Jensen inequality. In view of the relation (2.19),
we have readily the following statement:

Theorem 6.1. Let T > 0 be a stopping time, let o and BT be the prior and posterior
probability measures on the parameiric space (0, A) and let I(57|a) be the Kullback-
Leibler information in the posterior 37 with respect to the prior o, as defined in (6.1).
Then (@)

exp{=I (fTla)} =28 ) _ ot B, 6.2

p {~1 (47]a)} = ELE = gr(e ) 62)
Proof. Recall the relation (4.5) and made appropriate substitutions in (2.19), O

Observe again that the information 737 |a) depends only on the prior e but not on

the choice of a dominating measure Q). In view of the propositions 4.1 and 5.1 we have
the following proposition,

Proposition 6.2. Assume (2.1) and (2.7). Let I{3'|a) be the information process start-
ing from zero, I{(°|a) =0, and ot t > 0 defined by (6.1). Then it possesses the following
properties:
(i) inf, I(3%a) >0 Q-a.s
(ii) sup,I(Fa) < oo Q-u.s.
(iii) exp{—I(8|a)} is a (P, F)-supermartingale of class (D).

Proof. This is a direct consequence of the propositions 4.1 and 5.1 and theorem 6.1. [

Departing from the identity (6.2) we obtain the following representation of the infor-
mation process in terms of the Hellinger process and the geometric mean and arithmetic
Mearn measures:

Theorem 6.3. Under the conditions (2.1) and (2.7) and the condition that G, is a
probability measure the information I(A7|a) at a stopping time T > 0 can be presented
as follows:
T, : o
: e~ (E710) = 21(Ga, P)E(=h(a))r

Proof. Combine (5.20) and (6.2). O

6.2. The information from data. According to (2.20) the relative entropy in the
posterior A7 at a stopping time T with respeet to a prior a is defined by

) = e
As was already mentioned, in Bayesian statisties this guantity is called the information
from data and its expectation y

Ep. I (a]BT) = Ea I(Par|Ps.z) (6.4)

is called the expected utility from data, ¢f. (2.21). For T = o0 we can use the notation
of section 2 to write the information from data as I(e3%) = E, p(¢, Py ) log n(d, P,) or
as I(a)f8).

For brevity, let us agree to denote xlog z by £(z). Then the process of the information
from data is simply expressed by I(al@) = E, £(z(d, P.)). We claim that this process
is a uniformly integrable submartingale under condition (2.9). Notice first that |£(z)] <
{x) + 2e~'. Hence condition (2.9) guarantees that Ep E, |£(2(d, B,))| < 0. Since the
function £ on R 15 convex. we readily conclude from Jensen’s inequality and the fact
that the z(8, P,) are (P,, F)-martingales that indeed I{a|#) is a (P,, F)-submartingale
with limit I(a|8), satisfying 0 < I{a|8") < Ep_{I(a}B)|F;} for all t > 0.

The first step towards the expected utility from data is thus to determine the com-
pensator to it. This will be done in theorem 6.4 under the same special circumstances

(9) = Ea 2r(d, Fa) log 27(9, Pa). (6.3)
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as in section 4.2: it will be again assumed that each density process 2(6,Q), € € ©,
is the Doléans exponential of a certain (@, F)-local martingale m(#, Q), i.e., 2(0,Q) =
£(m(#,Q)) with the exponential (4.6), and that the latter martingale is representable in
the special form (4.7). Exactly as in section 4.2 and using (here and elsewhere below) the
notations of that section we need to take certain predictable posterior expectations from
both integrands ¢ and d. Firstly, the posterior variance of the integrand c(¥) is required
at each instant ¢ > O that is defined like in (5.12) as follows: ©(c) = Ez-(c(¥) — &)°.
Secondly, we require the posterior moment Eg- £(1 + (d(¥) — d)AN) with N as in corol-
lary 4.3.

We also use the following notation. Define for a process X depending on £ the process
I(X) = Ep- £(X(6)). With this notation the latter central posterior moment is expressed
as £(X) = Eg- £(1+ An(, B,)), cf. (4.11). From lemma 2.1 we know that the argument
of £ is strictly positive. Moreover, invoking once more Jensen’s inequality one sees that
this posterior moment is nonnegative.

Theorem 6.4, Along with the conditions (2.1), and (2.9), assume the representation
property (4.7). Then the difference between the information from date I(e|3") and the
nondecreasing finite-valued process

250 () + SO B(1+ Any, Ba) . (65
8

is a (By, F)-martingale (cf. the expression ({.11) for 1 + An,(-, P)).

Proof. For simplicity, we shall write for the rest of the proof z instead of z(d, P,) and
similarly n instead of n(¥, B,). The latter comes from corollary 4.3 where its explicit
representation can be found, together with z = £(n), the consequence of (4.5) and (4.9).
This will cause no ambiguity. With these notations (6.3) reduces to I(alf) = E. £(2).
Integration by parts gives

l(z)=z2logz=2_-logz+logz_-z+[zlogz] (6.6)

It will be seen in a moment that the (P,, F)-local martingale mentioned in the assertion
stems from the second term and equals to

Eaflogz- - 2] = Ealé(-) -, 6.7

Let us examine the first and third terms. In view of the general formula (4.6) we have

1 c
z_+logz=2_-n— 57- - {n®) +§zg_ {log(1 + An,) — An,}

[z,log 2] = z— - (nf} + Ezs_é.nalog(l + Ang).
g5
Take now the expectation of both sides with respect to the prior o and take into con-
sideration that Eyz— -n=0and E4 3, .. 2s—Ang = 0 (this follows e.g. from B,z = 1,
see (4.5),and z=1+z_-n). Substituting the explicit expression for n, see corollary 4.3,
we get by Fubini’s theorem

1 ..
oz -logz= ——g-v(c) S{MEy + Z{: Eg.- log(l + An,)
o<

and
Ealz,log 2] = 9(c) - (M®) + ) Ege- An, log(l + Am,).

E
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These two formulas allow us to find the expectation with respect ta a of (6.6). On the
right we get the information from data and on the left the local martingale (6.7) plus the
expression (6.5). Thus the local martingale mentioned in the assertion is indeed given
by (6.7). The proof is complete. O
Remark 6,5. Notice that the decomposition in theorem 6.4 of the information from data
process is in general not its Doob—-Meyer decomposition, since the diseontinuous part (if
it is not vanishing) of the increasing process of (6.5) is not predictable,

Since the expectation with respect to the measure P, of the martingale in theorem 6.4
is zero (under the conditions of the theorem), the expeeted utility from data at the
stopping time T equals to

Ep. H|BT) = Ea I(Pa|Psr)

=Ep, { 29(0) - (M) + 3T, (ANE)

2
a%

The first identity is already known, see (6.4). The second one follows from (6.5).
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