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Extreme tails for linear portfolio credit risk models1 

AndrÈ Lucas,2,3 Pieter Klaassen,2,4 
Peter Spreij5 and Stefan Straetmans6 

Abstract 

We consider the extreme tail behaviour of the CreditMetrics model for portfolio credit losses. We 
generalise the model to allow for alternative distributions of the risk factors. We consider two special 
cases and provide alternative tail approximations. The results reveal that one has to be careful in 
applying extreme value theory for computing extreme quantiles efficiently. The applicability of extreme 
value theory in characterising the tail shape very much depends on the exact distributional 
assumptions for the systematic and idiosyncratic credit risk factors. 

1. Introduction 

The management of market risks by banks and other lending institutions - especially investment banks 
- has gained in importance in recent years due to growing proprietary trading portfolios on the banksí 
balance sheets; see, for example, the popularity of the value-at-risk (VaR) concept. However, credit 
risk management is perhaps even more important within the financial sector because it directly relates 
to a bankís core function of financial intermediation. 

Until recently, the bulk of the credit risk literature mainly concentrated on assessing the credit risk of 
individual exposures in isolation, ie without taking into account the potential for credit quality 
comovements and defaults; see, for example, Altman (1983), Caouette et al (1998) or the Journal of 
Banking and Finance (2001, vol 25 (1)) as starting references. More recently a portfolio view on credit 
losses has emerged by recognising that changes in credit quality tend to comove over the business 
cycle and that one can diversify part of the credit risk by a clever composition of the loan portfolio 
across regions, industries and countries. Thus in order to assess the credit risk of a loan portfolio, a 
bank must not only investigate the creditworthiness of its customers, but also identify the concentration 
risks and possible comovements of risk factors in the portfolio. 

Several approaches have been developed in order to determine the credit loss distribution at the 
portfolio level; see, for example, CreditMetrics by Gupton et al (1997), CreditRisk+ by Credit Suisse 
(1997), PortfolioManager by KMV (Kealhofer (1995)) or CreditPortfolio View by McKinsey (Wilson 
(1997a,b)). Despite the apparent differences between these approaches, they exhibit a common 
underlying framework; see Koyluoglu and Hickman (1998) and Gordy (2000). In a recent paper we 
extended the one-factor CreditMetrics approach to allow for general dependencies on and 
distributions of credit risk factors; see, for example, Lucas et al (2001a). We also introduced a limit law 
to efficiently approximate loss quantiles for portfolios with a finite number of exposures; see Lucas et 
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al (2001b) and Finger (1999). This limit law can be used in order to perform analyses of the sensitivity 
of the credit loss quantiles to changes in the exposure characteristics, such as credit quality, the 
degree of systematic risk, and the maturity profile. 

Suppose, however, that a credit risk manager is also interested in calculating credit loss quantiles for 
very high confidence levels or, stated differently, for very low tail probabilities q. Such tail probabilities 
may be much smaller than the usual 5% or 1%. These extreme credit loss quantiles may be of interest 
for the sake of testing certain stress scenarios. An initial way of calculating these quantiles consists in 
using the closed-form expression of the credit loss limit law from Lucas et al (2001b). However, in 
order to be able to derive this expression, one has to choose a probability distribution for the latent 
variable triggering credit migrations and defaults in the CreditMetrics setup. It can be shown that the 
quantile calculations may be quite sensitive to varying this distributional choice for the latent variable.7 

Moreover, in case more than one systematic risk factor is present, analytical techniques may be 
unavailable. In such cases, the manager has to resort to simulations. If the desired tail probability is 
extremely small, an unduly large number of simulations might be called for. 

In order to circumvent this risk of misspecification, one can also estimate credit loss quantiles by 
directly focusing upon the distributional tail of portfolio credit losses. It is now generally accepted as a 
stylised fact that the tail of credit loss distributions behaves fairly different from the tail of a normal 
distribution. In particular, the portfolio credit losses exhibit more probability mass in the tails than a 
normal distribution with identical mean and variance. In fact, using the toolkit of extreme value theory 
(EVT), we have shown in our previous paper that the tail probabilities of portfolio credit losses are 
polynomially declining to zero whereas a normal distribution has a tail that declines at an exponential 
rate. Stated differently, extreme portfolio credit losses happen relatively more frequently than one 
would expect on the basis of a normally distributed random variable. As a result, common rules of 
thumb for calculating loss quantiles based on the normal paradigm no longer apply. For example, the 
99.9% quantile may lie much more than three standard deviations above the distributional mean, 
which is the number one would expect for the normal distribution. 

Distributions with a polynomial tail decay are also called heavy-tailed or fat-tailed distributions. The 
statistical theory of EVT shows that a wide class of distributional models all display polynomially 
declining tails. Stated otherwise, if one is only interested in the tail behaviour of an empirical process, 
one does not need to know the whole distribution. For statistical inference on the extreme quantiles, it 
is sufficient to know that the stochastic process exhibits heavy tails. Apart from providing statistical 
derivations of limit laws for sample maxima, EVT also provides various estimators for the rate of tail 
decay in the case of fat tails, the so-called tail index. Quantile estimators that use these tail index 
estimates as an input can then easily be formulated. 

EVT has become increasingly popular in financial research as a tool for modelling the tail of return 
distributions with an eye towards calculating risk measures such as value-at-risk (VaR). Exploiting the 
empirical stylised fact of heavy-tailed financial returns (Mandelbrot (1952)), EVT provides extreme 
quantile estimates for confidence levels q typically beyond the tail of the empirical distribution function 
(q < nñ1 with n the sample size). Good starting references on applications of EVT in market risk 
management include DanÌelsson and de Vries (2000), Longin (2000), Longin and Solnik (2001), 
Embrechts et al (1997) and Embrechts (2000). Diebold et al (1998) provide a discussion of pitfalls and 
opportunities in the use of extreme value analysis in financial risk management. 

EVT techniques have reportedly been employed in empirical work to limit the number of simulations 
needed to reliably estimate far-out quantiles. This is especially relevant if multiple risk factors are 
present. To our knowledge, however, there are no theoretical papers on the applicability of EVT to 
estimating credit loss quantiles far out in the distributional tail. In this paper we investigate the 
accuracy (estimation error) of EVT techniques for credit loss distributions. More specifically we 
investigate how far one should go into the distributional tail in order to obtain extreme value quantile 
estimates that are reasonably close to their exact underlying values. The latter quantile values are 
calculated for two different parametric distributions of the factor model components triggering default: 
the factors are assumed to be either normally distributed or Student-t distributed. For both cases, we 
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find that the confidence levels q should be chosen extremely low in order to obtain an acceptable level 
of estimation risk. This evidence raises doubts over the practical use of extreme value analysis in the 
field of credit risk management. 

The remainder of this article is structured as follows. In Section 2 we briefly review the CreditMetrics 
setup towards deriving the analytic distribution of portfolio credit losses. In Sections 3 and 4 we apply 
extreme value analysis to the tails of the portfolio credit loss distribution and compare the EVT quantile 
values with their true underlying counterparts in order to assess estimation risk. Concluding remarks 
are in Section 5. 

2. Theoretical framework 

Consider a credit portfolio consisting of n bonds. As we eventually want to focus upon the accuracy of 
extreme value analysis for estimating credit loss quantiles far into the tail, we keep the model setup 
relatively stylised to highlight the main issues. In particular, we consider bonds with identical 
characteristics (equal initial ratings, unit face values (1), equal default probabilities, etc). Moreover, we 
allow for only two end-of-period states for the bond: defaulted and not defaulted.8 

In our benchmark setting, each bond j, where j =1, ..., n, is characterised by a latent variable Sj 
triggering a bondís default. A logical, though not the only, candidate for Sj is the companyís ìsurplusî, 
ie the difference between the market value of assets and that of liabilities. Default occurs when the 
surplus falls below a threshold s*. Given our assumption of a uniform default probability for the entire 
portfolio, s* does not depend on j. The credit loss on individual exposures j is now given by the 
indicator variable 

1{Sj < s*}. 

We assume that the company surplus variable Sj obeys the linear factor model 

jj fS !"#$"% 21  (1) 

with f and εj representing systematic influences (business cycle conditions, stock market fluctuations) 
and firm-specific shocks, respectively. Non-linear extensions of this model can be found in Lucas et al 
(2001a). The systematic and idiosyncratic shocks are assumed to follow stationary distributions 
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Gaussian CreditMetrics setup. 
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Notice that equation (2) is equivalent to Theorem 1 in Lucas et al (2001b). By conditioning on the 
common factor f in (2), one effectively averages out all idiosyncratic risk εj just as in the case of linear 
portfolio theory. Indeed, within the CAPM model only systematic risk persists when the number of 
assets increases. The limit law in (2) generalises this feature to the non-linear context of credit risk 

                                                      
8 The effects of portfolio heterogeneity on the credit loss distribution and its tail are discussed in Lucas et al (2001a,b). 



 

274 
 

management. Moreover, it is important to realise that the above limit law holds irrespective of the 
precise distributional assumptions on f and εj. 

Knowledge of the limit lawís analytic expression enables risk managers to calculate the loss 
distributionís quantiles for given confidence levels q without the need to resort to simulations. This 
follows from the following chain of equalities:9 
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Clearly the use of the analytic quantile formula (4) requires knowledge of G(ּ) and F(ּ). However, a 
credit risk manager might only be interested in knowing the credit-at-risk for very low values of q for 
the sake of, for example, stress testing. In the next section we investigate to what extent extreme 
value analysis might be of use to the credit risk manager in order to calculate these extreme credit risk 
quantiles. 

3. Analysing extreme tails 

It has been established previously that portfolio credit losses in (2) exhibit a heavy tail; see Lucas et al 
(2001a,b) for a formal proof. This property can be expressed analytically as: 

P (C > c) = (1ñ c)! L (1 / (1 ñ c)), (5) 

where α is the tail index of C governing the tail decay towards zero and L(ּ) stands for a slowly varying 
function, ie 1)()(lim !

!"

tLtxL
x

, for t > 0. Examples are L(x) = ln(x) and L(x) =K for some constant K. 

Clearly, the lower the tail index, the more likely extreme credit losses become. 

It can be easily shown that there is a direct relation between the tail properties of the factors f and εj in 
(1) and the value of α. For example, if (f, εj) are standard normally distributed, then ! = (1 ñ "

2) / "2. For 
Student-t distributed risk factors with corresponding degrees of freedom µ and # for f and εj, 
respectively, we have α = µ/#; see Lucas et al (2001a). The tail result for the Gaussian case might 
appear somewhat counterintuitive at first sight, as normally distributed (thin-tailed) risk factors lead to 
a portfolio credit loss distribution with a polynomially (ie ìfatî) tail. However, the result simply reflects 
that a higher degree of systematic risk ρ implies a stronger domino effect of individual loans defaulting 
simultaneously in a credit portfolio. This effect makes the tail of the portfolio losses relatively fatter 
(lower α). The Student-t result leads to the observation that the tails of the credit loss distribution may 
be very fat if the idiosyncratic risk factor has thinner tails than the systematic risk factor (# > µ). This 
makes economic sense. If f has fatter tails than εj, extreme realisations of Sj occur relatively more 

                                                      
9 Analytic quantile calculations for linear multifactor models are more complicated, but there are still advantages over pure 

simulation in that the number of stochastic variables is reduced significantly by n. 
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often due to bad realisations of f than bad realisations of εj. Consequently, it is much more likely that 
large portions of the portfolio default simultaneously (due to systematic risk). Because of this clustering 
effect, extreme realisations of portfolio credit losses also become more likely, resulting in a lower rate 
of tail decay. 

In order to evaluate the accuracy of extreme value analysis for the sake of extreme quantile 
estimation, we compare exact tail quantiles for specific choices of F(ּ) and G(ּ) with tail quantiles 
calculated by means of (4). The exact analytic quantiles are calculated by means of the quantile 
formula (4). We consider two specific choices of F(ּ) and G(ּ). Our first choice is the standard 
CreditMetrics model with F(ּ) and G(ּ) both standard normal. Second, we also consider a fat-tailed 
alternative where F(ּ) and G(ּ) are Student-t distributions with 3 and 5 degrees of freedom, 
respectively. The Student-t distributions are rescaled to have unit variance. These numbers for the 
degrees of freedom parameters are not unreasonable given empirical work on the tail behaviour of 
stock returns. Moreover, this choice of parameters ensures that the portfolio credit loss density does 
not diverge towards the edges of its support; see Lucas et al (2001a). We set the value of the asset 
correlation parameter ρ2 to 20%, which is the value prescribed for corporate loans in the Basel 
proposals for the New Capital Accord; see Basel Committee on Banking Supervision (2001). 

Table1 

ML estimate of α for different tail probabilities q 

!!!! = """", #### = """" !!!! = 5, #### = 3 
q 

ML EVT ML EVT 

10ñ1 45.1 4 44.2 1.67 
10ñ2 29.8 4 9.3 1.67 
10ñ3 22.7 4 1.9 1.67 
10ñ4 18.7 4 0.9 1.67 
10-5 16.1 4 1.1 1.67 
10ñ6 14.2 4 1.3 1.67 
10ñ7 13.0 4 1.4 1.67 
10ñ8 12.0 4 1.5 1.67 

Note: The table contains the ML estimate of the tail index α in the Weibull approximation of the tail obtained by minimising 
Kullback-Leibler distance in the tail, ie conditional on c > c* with c* the (1 ñ q)-quantile of the exact credit loss distribution. 
The model is the CreditMetrics model with a 1% unconditional default probability, Student-t(5) distributed systematic risk 
factor f, and Student-t(3) distributed idiosyncratic risk factor εj . The correlation parameter is ρ2 = 20%. The EVT column 
contains the exact (limiting) EVT tail index. 

Taking the tail expression in (5) as a point of departure, EVT analysis of the credit loss tail naturally 
starts by considering a linear (1st) Taylor approximation of the credit loss tail around the upper bound 
of the distributional support c = 1: 

P (C > c) $ K w (1 ñ c)! (6) 

for some constants K and α, and with c close to 1. Thus we assume that the slowly varying function 
L(1/(1 ñ c)) is approximately constant for large c. First, we calculate extreme tail probabilities using (6) 
using the exact values of the tail index, ie α = (1 ñ ρ2) / ρ2 = 4 for the Gaussian model, and α = % /# = 5/3 
for the Student-t model. Second, we estimate α by a Maximum Likelihood (ML) procedure which 
consists in minimising the Kullback-Leibler distance between (6) and (5) over the range [c*,1], where 
c* is the (1 ñ q)-quantile of the credit loss tail for small values of q.10 

                                                      
10 The Maximum Likelihood (ML) procedure based upon the Kullback-Leibler distance is asymptotically equivalent to applying 

the Hill (1975) estimator to a set of historical credit losses. This is because the Hill estimator is the ML estimator for a Pareto 
distribution. Note that (1 ñ C)ñ1 has a regularly varying, ie a Pareto-type tail. Conditional upon knowledge of α (either the true 
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Let us now turn to the results for the linear tail approximation case. Table 1 gives the ML estimates of 
α for decreasing tail probabilities q, ie the lower q, the larger the corresponding tail quantile. 

Figure 1 

Tail approximations for the Gaussian model 

 
The model is the Gaussian CreditMetrics model with a 1% unconditional default probability. The title gives the 
tail area over which the credit loss distribution is plotted. EVT is the EVT tail approximation, while ML is the 
Weibull fit obtained after maximum likelihood or minimum Kullback-Leibler. The correlation parameter is 
ρ2 = 20%. 

Clearly ML tail index estimates vary considerably with the chosen tail probability. For the Student-t 
model, the variation is even non-monotonic. It appears that the direction of convergence is ultimately 
towards its theoretical limit. But even for tail probabilities equal to a basis point of a basis point, the 
distance between the EVT and the ML α may be substantial, see the Gaussian model. For given 
values of !, K, and c (close to 1), the corresponding cumulative probabilities and densities can be 
derived. Conditional tail densities (h(c|c > c*)) for different tail areas are shown in Figures 1 (Gaussian 
case) and 2 (Student-t case). Each figure contains three density curves: the exact density calculated 
by using the limit law for portfolio credit losses in (4), and two approximating densities 
ĥ(c|c > c*) = K! (1 ñ c)αñ1. The two approximations are the EVT, which uses the exact EVT value for α, 
and ML, which uses the ! that minimises the Kullback-Leibler distance between the approximation ĥ(ּ) 
and the exact density h(ּ). For the ML density we impute the tail index estimates from Table 1. 

At first sight, the ML fit does remarkably well in approximating the exact density. For the Gaussian 
models, the ML fit and exact density overlap for all practical purposes for given tail probability q. It may 
still be the case, however, that for varying q the approximation becomes worse. We investigate this 
issue in the next section in more detail. The EVT fit appears to approximate the true densities in the 
extreme tail, meaning that its shape resembles the extreme right-hand part of the exact density in 
each of the plots. For a given tail probability q, however, the EVT fit over the range [c*,1] is appallingly 
bad compared to the ML fit, unless one considers the Student-t case and q =10ñ8. This means that to 
recover the exact or limiting EVT tail shape from the exact credit loss density, one has to go really 
extremely far out into the tails. One may wonder whether credit risk managers want to know loss 
quantiles for q ≤ 10ñ4, which appears to be necessary for (exact) EVT to start to work. 
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Figure 2 

Tail approximations for the Student-t model 

 
The model is the CreditMetrics model with a 1% unconditional default probability, Student-t(5) distributed systematic 
risk factor f, and Student-t(3) distributed idiosyncratic risk factor εj. The title gives the tail area over which the credit 
loss distribution is plotted. EVT is the EVT tail approximation, while ML is the Weibull fit obtained after maximum 
likelihood or minimum Kullback-Leibler. The correlation parameter is ρ2 = 20%. 

Hitherto, we have compared the exact and approximate densities of credit losses on the basis of first-
order tail approximation in (6). Note, however, that the linear approximation may be very imprecise 
because it assumes that the slowly varying function L(ּ) is approximately constant far out in the tails. 
As we have shown in previous work, this does not hold for the Gaussian model; see Lucas et al 
(2001a). This may partly explain the poor fit of the EVT approximation for moderately extreme 
quantiles. For the Student-t model, we can go even further. There, it can be shown analytically that the 
EVT fit is very poor for empirically relevant quantiles, but ultimately correct. 

From Figure 2, the Student-t model produces a tail such that the conditional (tail) density starts up, 
goes down, then remains fairly constant over a certain range, and then slowly increases to sharply 
decline towards zero for c very close to the maximum loss 1. The exact EVT fit shows a conditional tail 
density that starts up and then decreases towards zero for c ↑ 1. This is precisely the shape of the true 
density. To understand why the EVT tail approximation fits so badly, we consider the tail shape in 
more detail. In the case of a Student-t(3), the inverse cdf of F(w) can be approximated by 
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where the Student-t densities are parameterised to have zero mean and unit variance. Using further 
standard Taylor expansions, we obtain 
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see the appendix. It is clear from (9) that near c = 1 the density of credit losses indeed has a Weibull 
expansion with α ñ 1 = 2/3, or α = 5/3 = µ/ ! . The expression for dk(k ≥ 0) is equivalent to 
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where 2F1(a, b; c; z) is a hypergeometric function; see Abramowitz and Stegun (1970), Chapter 15. 
For !"k , |dk| diverges. However, 
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for some constant a2 that does not depend on c, see equation (17) in Section 2.3.2 of ErdÈlyi (1953). 
Note, therefore, that dk(1 ñ c)k converges to zero for (1 ñ c) for sufficiently small values of (1 ñ c). A plot 
of ln|ck|/k is given in Figure 3. 

It is clear that higher-order terms in (9) than (1 ñ c)2/3 will be smaller in magnitude than K > 0 if 
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A plot of the critical value of 1 ñ c for different values of K is given in the right-hand panel of Figure 3. 
For example, if K = 0.01, we have for k = 1 that (1 ñ c) should be smaller than 7w10ñ10, which is about 
7% of a basis point of a basis point. Clearly, the Weibull tail expansion only appears to set in in the 
really extreme tail, and not before. This explains the tail shapes in Figure 2. 
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The main conclusion we draw from our present computations is that one has to be very careful in 
applying tail expansions stemming from extreme value theory in the credit risk context. Higher-order 
terms may be important because they decline to zero very late, like the (1 ñ c)k/3 terms for k =1,2 in the 
Student-t case. Moreover, the coefficients of the higher-order term may increase very steeply, also 
implying that one has to go further into the tails for the terms to become negligible. As a result, the 
extreme tail may start beyond quantiles of empirical interest. If this is the case, a different method of 
tail approximation might be called for altogether. 

Figure 3 

Coefficients ln|ck|/k from (9) and following 

 
The left-hand figure contains ln|ck|/k, where ck are the tail expansion coefficients from (9) and following. The 
right-hand plot gives the critical value of (1ñ c) for which the kth-order term in the expansion is below K, where 
K is 10ñ2, 10ñ4 or 10ñ8. It is computed as 1.1(K/|ck|)3/k. 

4. Results 

The ML fits in Figures 1 and 2 were reasonable for most tail areas. As this mimics the empirical 
application of EVT in practice to efficiently approximate a simulated version of h(c), there is still some 
hope for the practical use of extreme value analysis in credit risk management. The applicability of 
EVT, however, hinges on the stability of the approximation over decreasing tail probabilities. 

Of course, the estimate of α may differ for different tail areas (as shown in Table 1), but the real 
question is whether the fitted α produces estimates of credit loss quantiles or conditional expected 
credit losses that are adequate approximations to their true underlying values. To investigate this, we 
conducted the following experiment. Using the ML estimate of α for a specific tail probability q, we 
estimate the quantiles (ĉ1 and ĉ2) and conditional expected losses beyond those quantiles ( 1 and  2) 
corresponding to tail probabilities of q/10 and q/100, respectively. We also calculated the percentage 
deviation (∆) of the estimates from their true values. The results are in Table 2. 
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Table 2 

Quantiles and expected losses beyond sample 

q c0 c1 ĉ1 ∆ c2 ĉ2 ∆ E1  1 ∆ E2  2 ∆ 

 ML fit, !!!! = """", #### = """" 

10ñ1 0.03 0.08 0.07 ñ0.02 0.15 0.12 ñ0.18 0.11 0.09 ñ0.11 0.18 0.14 ñ0.24
10ñ2 0.08 0.15 0.14 ñ0.01 0.23 0.21 ñ0.09 0.18 0.17 ñ0.05 0.27 0.23 ñ0.13
10ñ3 0.15 0.23 0.23 ñ0.01 0.32 0.30 ñ0.05 0.27 0.26 ñ0.03 0.36 0.33 ñ0.08
10ñ4 0.23 0.32 0.32 ñ0.00 0.41 0.40 ñ0.03 0.36 0.35 ñ0.02 0.45 0.43 ñ0.05

 EVT fit, !!!! = """", #### = """" 

10ñ1 0.03 0.08 0.45 5.00 0.15 0.69 3.75 0.11 0.56 4.34 0.18 0.75 3.15
10ñ2 0.08 0.15 0.48 2.30 0.23 0.71 2.09 0.18 0.58 2.22 0.27 0.77 1.86
10ñ3 0.15 0.23 0.52 1.27 0.32 0.73 1.28 0.27 0.62 1.29 0.36 0.78 1.18
10ñ4 0.23 0.32 0.57 0.77 0.41 0.76 0.84 0.36 0.65 0.82 0.45 0.81 0.79

 ML fit, !!!! = 5, #### = 3 

10ñ1 0.03 0.06 0.08 0.20 0.24 0.12 ñ0.48 0.14 0.10 ñ0.28 0.46 0.14 ñ0.69
10ñ2 0.06 0.24 0.27 0.14 0.82 0.43 ñ0.48 0.46 0.34 ñ0.26 0.91 0.49 ñ0.47
10ñ3 0.24 0.82 0.77 ñ0.06 0.99 0.93 ñ0.05 0.91 0.85 ñ0.07 0.99 0.96 ñ0.04
10ñ4 0.82 0.99 0.99 ñ0.00 1.00 1.00 0.00 0.99 0.99 0.00 1.00 1.00 0.00 

 EVT fit, !!!! = 5, #### = 3 

10ñ1 0.03 0.06 0.76 10.70 0.24 0.94 2.95 0.14 0.85 5.26 0.46 0.96 1.09 
10ñ2 0.06 0.24 0.76 2.22 0.82 0.94 0.15 0.46 0.85 0.85 0.91 0.96 0.05 
10ñ3 0.24 0.82 0.81 ñ0.01 0.99 0.95 ñ0.03 0.91 0.88 ñ0.04 0.99 0.97 ñ0.02
10ñ4 0.82 0.99 0.95 ñ0.03 1.00 0.99 ñ0.01 0.99 0.97 ñ0.02 1.00 0.99 ñ0.01

Note: Starting from the true quantile c0 corresponding to a tail probability of q, we use the estimates of Table 1 to 
approximate the tail using a Weibull with the ML or EVT fit for α. Next, we compute the true q/10 quantile c1 and the q/100 
quantile c2 and compare these with their Weibull approximations ĉ1 and ĉ2, respectively. We do the same for the conditional 
expected loss beyond c1 and c2 for the true distribution (E1 and E2, respectively), and beyond ĉ1 and ĉ2 for the Weibull 
approximation ( 1 and  2, respectively). The fraction increase of the fitted/approximated value vis-‡-vis the true one is given 
in the ∆ columns.  

Let us first consider the Gaussian model and the ML fit. If VaRs, or quantiles, slightly out of sample are 
estimated and the fit is very good (compare ĉ1 with c1), then the true VaR is underestimated by only 
1% or 2%. Further out of sample, however, the approximation works less satisfactorily (compare ĉ2 
with c2) and approximation errors increase within a range of 3% to as high as 18%. The approximation 
works better if the α parameter is estimated further out in the tails, ie for lower values of the tail 
probability q. A similar picture emerges if we consider expected losses rather than VaRs. The lower q, 
the better the out-of-sample approximation. Moreover, the approximation becomes worse the further 
we try to apply it out of sample. Also note that percentage mismatches of expected loss are already 
significant (11%) for q = 10ñ1 and moderately out of sample (q/10). This is due to the fact that the 
expected loss also takes the goodness of fit of the tail approximation beyond the VaR quantile into 
account. From the quantiles we already noted that the q/10 quantile is approximately correct, but the 
tail approximation beyond that point becomes increasingly worse (see the q/100 quantile c2 and ĉ2). In 
any case, it is clear from all the ∆ columns that the standard empirical application of EVT to the 
Gaussian model generally leads to an underestimation of the risk involved out of sample. 

We now turn to the Student-t model and the ML fit. First, we note that the percentage and absolute 
approximation errors are much larger in general than for the Gaussian model. Moreover, the VaR 
moderately out of sample (q/10) may be under- or overestimated. The expected loss is 
underestimated. The same underestimation of risk is apparent if we look further out of sample (q/100) 
to either the VaR or the expected loss. Clearly, in the case of fat-tailed systematic and idiosyncratic 
risk factors, our results suggest that one should be more cautious in straightforwardly applying EVT 
approximations in the standard way to increase simulation efficiency and approximate risk measures 
out of (the simulated) sample. 
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Finally, we turn to the results for the Weibull approximation based on the EVT fit, ie on the exact rather 
than estimated tail index. The picture confirms the results from Figures 1 and 2, ie that the EVT fit 
works less well than the ML one. For the Gaussian model, percentage errors for the EVT fit are 
considerably higher than for the ML fit. Quantiles and expected losses are all more than 75% off mark. 
The use of the exact extreme value index α in the Weibull approximation leads to much too 
conservative (or prudent) estimates of risk. The picture is more subtle for fat-tailed risk factors. In 
particular, if one goes far out into the tails (q = 10ñ3, 10ñ4) to estimate the tail index ! by ML, the EVT 
and ML fits produce very similar risk measures, which are both accurate to an error of about 5%. If one 
does not go far into the tails (q = 0.1), the ML fit is much better than the EVT fit for extrapolation 
purposes (at least up to q/100). For the intermediate case, q = 0.01, the EVT fit is much more useful if 
extrapolated far out into the tail (q/100; see ĉ2 and  2). For nearer quantiles (see ĉ1 and  1) the ML fit 
is considerably better. So the usefulness of Weibull approximations based on exact extreme value 
indices compared to ML estimates in the credit risk context very much depends on the tail area the ML 
estimate is based on and the extent of extrapolation beyond the sample envisaged for the EVT fit. If 
the tail area considered for ML estimation is large (high q) and one does not need to extrapolate 
further than q/100, then the exact EVT indices are of limited use. Note, however, that the 
approximations of quantiles and expected losses based on EVT fits improve broadly speaking when 
applied further out of sample (q/100 versus q/10). This holds for both the Gaussian and the Student-t 
models and corresponds to what one would expect. Though better, the approximation may, however, 
still be too prudent for empirical use. 

5. Concluding remarks 

The statistical theory of extreme values has been gaining in popularity within the financial research 
area for quite some time now. Researchers increasingly use tail index and quantile estimators (value-
at-risk) in order to assess the tails of return distributions, both for single positions and for fully fledged 
portfolios. These statistical techniques can also be applied to calculate extreme credit loss quantiles. 
We investigated in this paper whether the application of extreme value theory (EVT) to the tails of 
portfolio credit losses is useful for the credit risk manager, ie are estimated EVT quantiles acceptably 
accurate or is the estimation error too large? 

We started the analysis by calculating extreme quantile probabilities using the exact analytic 
expression of the portfolio credit loss distribution. We derived the loss distribution if the number of 
portfolio exposures grows large within the traditional CreditMetrics framework, ie portfolio exposures 
default either because of idiosyncratic shocks (εj) or because of systematic shocks (f). The analytic 
expression for the portfolio credit loss distribution for a large number of exposures exists upon 
knowledge of the distributional parameterisations for these factors. We therefore calculated the 
analytic credit loss quantiles conditional upon two different parametric choices for f and εj : Gaussian 
and Student-t distributed factors. The analytic portfolio credit loss distribution is heavy-tailed under 
either of the distributional choices for the underlying factors triggering defaults. As a consequence, we 
know from EVT that credit loss tail probabilities P(C > c) can be factorised into a Pareto tail (1 ñ c)! and 
a slowly varying function. We then considered a linear approximation for this factorisation and 
calculated extreme value probabilities, conditional upon both true values of the tail index and 
estimated values. 

Upon comparing the analytic tail probabilities with their extreme value counterparts, we found that the 
extreme value probabilities come close to their true values provided one goes very far into the credit 
loss tail. Using higher-order expansions, we showed that very far out in the tail may mean, for 
empirical reasons, moving unrealistically far into the tails for higher-order terms to become negligible. 
It is doubtful whether credit risk managers would ever be interested in these remote tail areas. We 
conclude that standard use of EVT methods as applied in, for example, the market risk context is 
inappropriate in the credit risk context. More care should be taken when using EVT for credit risk 
management, and possibly a different method of tail approximation might be called for altogether. 
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Appendix 
Proof of (9) 

From (8), we obtain 
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with t = (1.1/(1ñc))1/3. Define y = 1/t, and use the definitions in (10) to (16), then from (A2) 
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Note that for y ≈ 0 we have 
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where an = aw(a ñ1)www(a ñ n +1) is the Pochammer symbol. Using this result, rewrite 
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Combining all this, we obtain 
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