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We consider the filtering problem for a doubly stochastic Poisson or Cox process,
where the intensity follows the Cox–Ingersoll–Ross model. In this article we assume
that the Brownian motion, which drives the intensity, is not observed. Using filtering
theory for point process observations, we first derive the dynamics for the inten-
sity and its moment-generating function, given the observations of the Cox process.
A transformation of the dynamics of the conditional moment-generating function
allows us to solve in closed form the filtering problem, between the jumps of the Cox
process as well as at the jumps, which constitutes the main contribution of the article.
Assuming that the initial distribution of the intensity is of the Gamma type, we obtain
an explicit solution to the filtering problem for all t > 0. We conclude the article with
the observation that the resulting conditional moment-generating function at time t,
after Nt jumps, corresponds to a mixture of Nt + 1 Gamma distributions. Currently,
the model that we analyze has become popular in credit risk modeling, where one
uses the intensity-based approach for the modeling of default times of one or more
companies. In this approach, the default times are defined as the jump times of a Cox
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process. In such a model, one only has access to observations of the Cox process, and
thus filtering comes in as a natural technique in credit risk modeling.

1. INTRODUCTION

The main results of this article are explicit, closed-form expressions for the solution of
a filtering problem with counting process observations, where the unobserved inten-
sity process is a solution to a square root stochastic differential equation. As a matter
of fact, the explicit solution we provide is split into a part that concerns the update of
the filter at jump times and a part that solves the problem between jump times. This, of
course, reflects the usual strategy for filtering problems with counting observations.
The evolution of the filter between jump times is commonly expressed by a partial
differential equation (PDE) for the conditional moment-generating function. In gen-
eral, an explicit solution to this PDE is impossible to get, if only were it for the fact
that it can be viewed as an infinite-dimensional problem, reflecting that the filter itself
is, in general, infinite dimensional. However, for the specific choice of the state pro-
cess that we have made, we are able to provide explicit solutions. The choice for our
specification of the state process is made upon two considerations. First, it is known
that for a conditional Poisson process where the intensity is a random variable having
a Gamma distribution, the filtered intensity at a time t also has a Gamma distribution,
with parameters depending on t and the value Nt of the counting process. However,
in the case that we analyze, the random intensity is also evolving in time; it solves a
stochastic differential equation of the Cox–Ingersoll–Ross (CIR) type, which admits
a stationary solution for which all marginal distributions also belong to the Gamma
family. By choosing the initial distribution of the intensity properly, we are able to
come up with explicit expressions for the conditional moment-generating function,
and we also show that the filtered intensities have distributions that are mixtures of
Gamma distributions.

Another reason to study the chosen state process is that it comes up naturally in
a simple model for credit risk, which has become a major field of interest in financial
mathematics. Indeed, in [23] the author considered this model for the intensity. Further,
Duffie [9] considered more general affine models for credit risk. The filtering problem
in this setup has previously been studied in [12], where the focus was more on the
update for the filter on jump times, whereas we also treat the evolution between jump
times in great detail. The filtering problem as such has already been mentioned in [3],
where the state process was assumed to follow an Ornstein–Uhlenbeck process and
the intensity of the counting process was taken to be the square of the state process,
which is easily shown to be a CIR process. Although in [3] attention has been paid to
the evolution of the filter between jump times, an explicit formula for the solution of
the resulting PDE has not been given. We obtain this part of the solution analytically
by providing a closed-form solution to a PDE. Furthermore, we follow a different
approach to obtain the recursive solution at jump times as compared to [12]. By
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combining these solutions, we obtain a solution for all t > 0. It is further observed
that the resulting conditional moment-generating function at time t corresponds to a
mixture of Nt + 1 Gamma distributions according to some discrete distribution.

Let us give some background for credit risk modeling and explain why filtering
is a natural tool in this field of research. The main goal in credit risk is the modeling of
the default time of a company or default times of several companies. The default times
are often modeled using the so-called intensity-based approach, as opposed to the firm
value approach. Here, the default time of a company is modeled as the first jump time
of a Cox process, of which the intensity is driven by some stochastic process (e.g.,
Brownian motion) or, in case of more than one company, as consecutive jump times
of this Cox process. This approach enables one to calculate survival probabilities and
to price financial derivatives depending on the default of one or more companies, such
as defaultable bonds and credit default swaps. We refrain from a further presentation
of these issues, as it is beyond the objectives of this article and refer to [20] and [22]
for detailed expositions. Overviews of the intensity-based modeling approach can
be found in [10,15,18]. In this approach, it is a common assumption that the driving
process can be observed; that is, the observed filtration is generated by the Cox process,
which can be seen as the default counting process, and by the driving process.

In this article it is assumed that the driving process is not observed, and thus only
a point process Nt is observed, which introduces a stochastic filtering problem for
point processes. For instance, one may want to compute the conditional probability
that default has not occurred yet, given the observations, the conditional survival
probability. In particular, we assume the intensity to follow the CIR model, where the
driving Brownian motion is not observed. See Example 3.1 for the computation of the
conditional survival probability. For general results on nonlinear filtering in models
for credit risk, we refer to [13,14].

Our results are obtained under the assumption that the CIR process follows a
stochastic differential equation (SDE) with constant parameters. We briefly discuss
what happens if we let the parameters also depend on time. Such a model is more
attractive from a practical point, as it allows for more flexible modeling. In general, we
will then lose the attractive feature of obtaining closed-form solutions. However, if one
restricts the model by taking parameters that are piecewise constant functions, closed-
form solutions still exist. In practice, these piecewise constant models have become
popular in credit risk, as its flexibility does not destroy calibration procedures; see [19].

The article is organized as follows: In Section 2 the CIR model is discussed and
some results for the case of full information are discussed. Next, in Section 3 the filter-
ing problem is introduced and some background is given for filtering of point process
observations. First, the filtering formulas from [5] are given, and the equations for the
conditional intensity and conditional moment-generating function are derived. Then
in the second part of Section 3, we introduce filtering by the method of the probability
of reference, and the filtering equations are transformed using the ideas introduced
in [3]. Section 4 deals with the filtering problem between the jump times of the point
process, given the initial distribution of the intensity at jump times. In Section 5
the filtering problem is solved at jump times, and an explicit, recursive solution is
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obtained, which combines the solutions between and at jumps. Further, the result-
ing conditional moment-generating function is analyzed and it is observed that this
function agrees with the moment-generating function of a mixture of Gamma distribu-
tions. The section concludes with an illustration of the mixing probabilities. Finally, in
Section 6 we discuss possible extensions of the problem under consideration, where
the parameters of the SDE for the state process are allowed to be time-varying or
where the state process is more dimensional.

2. MODEL AND BACKGROUND

The main goal of the article is to derive explicit closed-form expressions for a filtering
problem with counting process observations. Filtering problems with such observa-
tions have been studied already some 30 years ago; see, for example, [4,24,25] and the
later appearing book [5]. Recently, this kind of problem has gained renewed interest
in the field of credit risk modeling (see also [12]), as we will outline below. One of the
main goals in this field is the modeling of the default time of a company or the default
times of several companies. Over the years, two approaches have become popular,
the structural approach and the intensity-based approach. In the structural approach,
the company value is modeled, for example as a (jump-)diffusion, and the company
defaults when its value drops below a certain level. This approach is discussed in
more detail in, for example, [2,11,15]. In the intensity-based approach, the default
time is modeled as the first jump of a point process (e.g., a Poisson process or, more
general, a Cox process, which is an inhomogeneous Poisson process conditional on
the realization of its intensity). In the case that one considers more than one com-
pany, one can model the default times as consecutive jump times of the Cox process.
In [10,15,18] this modeling approach is discussed in more detail, and [21] provides a
detailed application. In this article we focus on the intensity-based approach, where
the intensity λt of the Cox process, a nonnegative process, has an affine structure,
similar to interest term structure models [8]. This means that the intensity process λt

follows a SDE of the form

dλt = (a + bλt) dt + √
c + dλt dWt , (2.1)

for a Brownian motion Wt , with d > 0. In particular, the focus is on the CIR square
root model with mean reversion [7] for the intensity, where the intensity λt satisfies

dλt = −α(λt − μ0) dt + β
√

λt dWt . (2.2)

In [17, Sect. 6.2.2.] one finds parameter restrictions for this model that guarantee
positivity of λt . Naturally one should start with a positive initial value λ0, and if
αμ0 ≥ β2/2, then λt remains strictly positive with probability 1. Note that using
the transformation Xt = λt + c/d and by a reparametrization, Xt satisfies the general
SDE (2.1) and λt satisfies (2.2). This implies that the general form (2.1) and the CIR
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intensity (2.2) are in fact equivalent. Therefore, the CIR intensity will be considered
in most of the remainder of this article.

A big advantage of the affine setup that we choose in this article, is that many
relevant quantities in credit risk can be calculated explicitly. Using the formulas
from [17, Sect. 6.2.2.] one can, for example, easily calculate the survival probability
P(τ > t|Fs), with t > s and Ft = FN

t ∨ FY
t , where the former filtration is generated

by the point process Nt and the latter is generated by some process Yt driving the
intensity process.

Example 2.1: Consider, on the filtered probability space
(
�, F , (Ft)t≥0, P

)
, a random

time τ > 0 as the first jump time of a Cox process Nt , whose intensity follows the CIR
model (2.2). Further assume that Ft = FN

t ∨ FW
t , where FW

t is the filtration generated
by the Brownian motion that drives the intensity process. Then one can calculate the
survival probability for t > s as

P(τ > t|Fs) = 1{τ>s}E
[

e− ∫ t
s λu du

∣∣∣ FW
s

]
, (2.3)

which follows from formulas in [2, Chap. 6]. Because λt is a Markov process, one
can condition on λs instead of FW

s . An application of Proposition 6.2.4. from [17] to
(2.3) yields

P(τ > t|Fs) = 1{τ>s} exp (−αμ0φ(t − s) − λsψ(t − s)) , (2.4)

where

φ(t) = − 2

β2
log

(
2γ et(γ+α)/2

γ − α + etγ (γ + α)

)
,

ψ(t) = 2
(
eγ t − 1

)
γ − α + etγ (γ + α)

,

γ =
√

α2 + 2β2.

Other relevant quantities, such as the price of a defaultable bond, can also be calculated
analytically, under some restrictions on the interest rate (e.g., by posing that the interest
rate evolves deterministically). In [12] some of these quantities are considered in more
detail.

It is a common assumption, which is also followed above, that the filtration Ft

is built up using two filtrations FY
t and FN

t , where the first filtration represents the
information about the process driving the intensity and the second filtration contains
information about past defaults. In this article it is assumed that the factor Y is not
observed which results in a filtering problem of a point process.

In the following sections the problem is introduced formally and solved for the
case where the intensity follows the CIR model.
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3. THE FILTERING PROBLEM

In filtering theory, one deals with the problem of partial observations. Suppose that a
process Zt on the probability space (�, F , P) is adapted to the filtration Ft . Further-
more, let the process Yt be observed, where Yt is measurable with respect to a smaller
filtration FY

t � Ft . One is then interested in conditional expectations of the form
Ẑt = E

[
Zt|FY

t

]
, and one tries to find the dynamics of the process Ẑt—for instance,

by showing that it is the solution of a stochastic differential equation.
In this section the filtering problem is considered in the case that a point process is

observed. First, some general theory about filtering with point process observations is
discussed, and Example 2.1 is continued within the filtering setup. The calculation of
the survival probability depends on the conditional moment-generating function, for
which an SDE is derived. In the second part of this section, this equation is transformed
in such a way that the filtering problem allows an explicit solution.

3.1. Filtering Using Point Process Observations

In the case of point process observations, the observed process Yt is equal to the point
process Nt , with Ft-intensity λt . The process Zt is assumed to follow the SDE

dZt = at dt + dMt (3.1)

for an Ft-progressive measurable at , with
∫ t

0 |as| ds < ∞, and an Ft-martingale Mt .
The filtering problem is often cast as the calculation of the conditional expectation
E[Zt|FN

t ] =: Ẑt . Using the filtering formulas from [5, Chap. IV] and under the condi-
tions of its Theorem T2, a representation of the solution to this filtering problem can
be found. In the case that the martingale Mt and the observed point process have no
jumps in common, one has

dẐt = ât dt +
(

Ẑλt−
λ̂t−

− Ẑt−
) (

dNt − λ̂t dt
)

, (3.2)

with ât := E[at|FN
t ] and Xt− := lims↑t Xs.

Example 3.1 (Example 2.1 continued): When one wants to calculate the survival
probability givenFN

t , one has Zt = 1{τ>t}. Combining this with the survival probability
in the case of full information, one can calculate the survival probability P(τ > t|FN

s ):

P
(
τ > t|FN

s

) = E
[
P

(
τ > t|FN

s ∨ FW
s

)∣∣ FN
s

]
= 1{τ>s} exp (−αμ0φ(t − s)) E

[
exp(−ψ(t − s)λs)| FN

s

]
,

which can be calculated if an expression for the conditional moment-generating
function f̂ (s, t) := E

[
esλt

∣∣ FN
t

]
is available.

Example 3.1 illustrates that one can calculate the survival probability if the condi-
tional moment-generating function f̂ (s, t) is known.As a first step in the determination
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of this function, the SDEs of λ̂t := E
[
λt| FN

t

]
and f̂ (s, t) are determined. First, Itô’s

formula is used to obtain the SDE for esλt , where λt satisfies (2.2):

desλt =
[(

−αs + 1

2
s2β2

)
∂

∂s
esλt + sαμ0esλt

]
dt + β

√
λte

sλt dWt . (3.3)

The filtered versions are obtained by applying (3.2). One obtains for λ̂t that

d̂λt = −α(̂λt − μ0) dt +
(

λ̂2
t −

λ̂t−
− λ̂t−

) (
dNt − λ̂t dt

)
, (3.4)

and for f̂ (s, t), one finds

d̂f (s, t) =
[(

−αs + 1

2
s2β2

)
∂

∂s
f̂ (s, t) + sαμ0̂f (s, t)

]
dt

+
(

(∂/∂s)̂f (s, t−)

λ̂t−
− f̂ (s, t−)

) (
dNt − λ̂t dt

)
. (3.5)

In general, filtering equations are very difficult, if possible at all, to solve explicitly, as
the first equation involves terms with λ̂2

t and the second equation involves combina-
tions of λ̂t and f̂ (s, t). In order to solve these equations, one should also have equations
for λ̂2

t , but this involves λ̂3
t and so on, assuming that they exist. So instead of trying to

solve these equations directly, a different approach is considered in order to find an
expression for f̂ (s, t).

3.2. Filtering by the Method of Probability of Reference

In order to solve the problem introduced above, the filtering by the method of probabil-
ity of reference is considered; see [5, Chap.VI] or [3, Sect. 2]. In this approach, a second
probability measure P0 and intensity process λ0

t are introduced, such that Nt − ∫ t
0 λ0

s ds
is a martingale with respect to Ft under P0. Corresponding to this change of measure,
one has the likelihood ratio, or density process �, given by �t := E0[ dP

dP0
|Ft] (where

E0 denotes expectation under P0), which is a martingale under P0 by construction.
Moreover, one has (see [5, Theoms. VI T2, VI T7, and III T9]).

�t = 1 +
∫ t

0
�s−

λs− − λ0
s−

λ0
s−

(
dNs − λ0

s ds
)

. (3.6)

Conversely, one defines for given positive predictable processes λt and λ0
t the process

�t = exp

(∫ t

0
log

λs

λ0
s

dNs −
∫ t

0
(λs − λ0

s ) ds

)
is a martingale under P0 under the condition that E0�t = 1 for all t ≥ 0. This
likelihood ratio turns out to be a useful tool to solve the filtering problem for f̂ (s, t).
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It is known that under appropriate conditions (see, e.g., [5, Result VI R8] for the case
λ0

t ≡ 1) that the filtered version of this likelihood ratio, �̂t := E0
[
�t| FN

t

]
, follows

an equation similar to (3.6). One has

�̂t = 1 +
∫ t

0
�̂s−

λ̂s− − λ̂0
s−

λ̂0
s−

(
dNs − λ̂0

s ds
)

.

To solve the filtering problem for f̂ (s, t), an auxiliary function g(s, t) is introduced. It
is defined by

g(s, t) := f̂ (s, t)�̂t exp

(
−

∫ t

0
λ̂0

u du

)
. (3.7)

The exponent is used in order to obtain a simpler SDE of g(s, t). After a solution to
this equation has been found, one can obtain f̂ (s, t) by

f̂ (s, t) = g(s, t)

g(0, t)
. (3.8)

It is directly clear that the first and third component of g(s, t) are positive, and from
(3.10), it follows that also the second component is positive; thus, the division in
(3.8) is well defined. The solution to the filtering problem is obtained as soon as an
expression for g(s, t) is found. In Proposition 3.2, an SDE is derived for g(s, t) for the
intensity following the CIR model.

Proposition 3.2: Let g(s, t) be given by (3.7), then one has, for t ≥ 0,

dg(s, t) =
[

sμ0αg(s, t) +
(

1

2
s2β2 − sα − 1

)
∂

∂s
g(s, t)

]
dt

+
[(̂

λ0
t−

)−1 ∂

∂s
g(s, t−) − g(s, t−)

]
dNt . (3.9)

Proof: As a first step in proving (3.9), one can rewrite the function g(s, t). Denoting
the consecutive jump times of Nt by Tn (n ≥ 0, and putting T0 = 0), an alternative
expression for �̂t is given by

�̂t =
∏
Tn≤t

(
λ̂Tn−
λ̂0

Tn−

)
exp

(
−

∫ t

0

(̂
λu − λ̂0

u

)
du

)
, (3.10)

which can be checked by a direct calculation. From this it is easy to see that

g(s, t)
(3.7)= f̂ (s, t)�̂t exp

(
−

∫ t

0
λ̂0

u du

)

= f̂ (s, t)
∏
Tn≤t

(
λ̂Tn−
λ̂0

Tn−

)
exp

(
−

∫ t

0
λ̂u du

)
=: f̂ (s, t)̂Lt .
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For L̂t , one finds the SDE

d̂Lt = L̂t−λ̂t−
λ̂0

t−

(
dNt − λ̂0

t dt
) − L̂t− dNt .

The SDE in (3.9) follows from the product rule

dg(s, t) = f̂ (s, t−) d̂Lt + L̂t− d̂f (s, t) + �̂f (s, t)�L̂t

= f̂ (s, t−)

(
L̂t−λ̂t−

λ̂0
t−

(
dNt − λ̂0

t dt
) − L̂t− dNt

)
+ L̂t−

( [(
−αs + 1

2
s2β2

)
∂

∂s
f̂ (s, t) + sαμ0̂f (s, t)

]
dt

+
(

(∂/∂s)̂f (s, t−)

λ̂t− − f̂ (s, t−)

) (
dNt − λ̂t dt

) )

+
(

(∂/∂s)̂f (s, t−)

λ̂t−
− f̂ (s, t−)

) (
L̂t−λ̂t−

λ̂0
t−

− L̂t−
)

dNt .

Collecting the terms before dt and dNt , one obtains

dg(s, t) =
(

− λ̂t̂ f (s, t)̂Lt +
(

−αs + 1

2
s2β2

)
∂

∂s
f̂ (s, t)̂Lt

+ sαμ0̂f (s, t)̂Lt − ∂

∂s
f̂ (s, t)̂Lt + f̂ (s, t)̂Lt̂λt

)
dt

+
(

f̂ (s, t−)̂Lt−λ̂t−
λ̂0

t−
− f̂ (s, t−)̂Lt−

+ L̂t−(∂/∂s)̂f (s, t−)

λ̂t−
− L̂t−̂f (s, t−) + (∂/∂s)̂f (s, t−)̂Lt−

λ̂0
t−

− f̂ (s, t−)̂Lt−λ̂t−
λ̂0

t−
− (∂/∂s)̂f (s, t−)̂Lt−

λ̂t−
+ f̂ (s, t−)̂Lt−

)
dNt .

The result follows by simplifying the last equation. �

The right-hand side of (3.9) depends only on g(s, t) and its partial derivative with
respect to s. In the next section this equation is solved between jumps, and in Section 5
the equation is solved at jump times of the process Nt .

4. FILTERING BETWEEN JUMPS

In the previous sections the filtering problem for point processes has been defined in
general terms, and the problem has further been considered for an intensity following
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the CIR model. To solve the filtering problem, one has to solve (3.9). This equation
can be split up into a PDE between jumps of the process Nt and an equation at jumps.
In this section the equation between jumps is solved for a general initial condition
at time T > 0. Later, T will be considered as a jump time of Nt . Note that an initial
condition for g(s, t) is given as

g(s, T) = f̂ (s, T)�̂T exp

(
−

∫ T

0
λ̂0

u du

)
.

For T = 0, it follows that

g(s, 0) = f̂ (s, 0) = E
[

esλ0
∣∣ FN

0

] = E
[
esλ0

]
,

which is the moment-generating function of the intensity at time t = 0, since
FN

0 = {∅, �}.
Before the solution to (3.9) is found, the specific case is considered, in which all of

the parameters in the CIR model are set to zero. Albeit a simple example, the analysis
of it sheds some light on the approach that will be followed for the general case.

Example 4.1: Consider the CIR model in which all the parameters are set to zero.
This results in a constant intensity and, thus, dλt = 0. The filter equations (3.4) and
(3.5) reduce to

d̂λt =
(

λ̂2
t −

λ̂t−
− λ̂t−

) (
dNt − λ̂t dt

)
,

d̂ft =
(

λ̂t−f t−
λ̂t−

− f̂t−

) (
dNt − λ̂t dt

)
.

The PDE for g(s, t) between jumps reduces to

∂

∂t
g(s, t) = − ∂

∂s
g(s, t).

With an initial condition g(s, T) = w(s), one easily finds that the solution to this
equation is

g(s, t) = w(s − t + T).

In fact, what happens in this example is nothing else than computing the a posteriori
mean and a posteriori moment-generating function of λ given the observations Ns,
s ≤ t. We have thus considered a classical Bayesian problem.

In the next section this example is considered once more, where the filter at jump
times is considered. We proceed with the case of an intensity following the CIR model.
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Proposition 4.2: Let λt follow the CIR model (2.2) and let g(s, t) be given by (3.7),
with an initial condition at time T, g(s, T) = w(s). Then, for T ≤ t < Tn, with Tn the
first jump time of Nt after T, g(s, t), solves the PDE

∂

∂t
g(s, t) = sμ0αg(s, t) + 1

2ρ
(ρs − α + τ)(ρs − α − τ)

∂

∂s
g(s, t), (4.1)

where ρ := β2 and τ := √
α2 + 2β2. The unique solution to this equation is given by

g(s, t) = eθ(α−τ)(t−T)

(
2τ

ρs(e−τ(t−T) − 1) + (τ − α)e−τ(t−T) + τ + α

)2θ

× w

(
s
(
(α + τ)e−τ(t−T) + τ − α

) + 2e−τ(t−T) − 2

ρs(e−τ(t−T) − 1) + (τ − α)e−τ(t−T) + τ + α

)
, (4.2)

where θ := μ0α/ρ.

Proof: The PDE (4.2) for g(s, t) follows directly from Proposition 3.2, as the jump
part of this equation can be discarded.

To obtain a solution to this equation, a candidate solution is derived by making a
number of transformations of the independent variables, until a simple PDE is found,
which can be solved explicitly using known techniques. This candidate solution can
then be checked to be the solution by calculating its partial derivatives and inserting
these into (4.1).

The first transformation is given by

(s, t) −→
(

ρs − α + τ

ρs − α − τ
, t

)
=: (u, t). (4.3)

Instead of g(s, t), one writes f1(u, s), in terms of the new variable u. Using this trans-
formation and the PDE for g(s, t), one can derive a PDE for f1(u, t), by expressing s
in terms of u and expressing the partial derivatives of g(s, t) as partial derivatives of
f1(u, t). The resulting PDE for f1(u, t) is

∂

∂t
f1(u, t) = μ0α

(
α

ρ
+ τ(u + 1)

ρ(u + 1)

)
f1(u, t) − τu

∂

∂u
f1(u, t).

The second transformation that is used is given by

(u, t) −→
(

log(u)

τ
, t

)
=: (v, t),

where, for the time being, u is tacitly understood to be positive. Instead of the function
f1(s, t), one considers the function f2(v, t) := f1(u, t), in terms of the new variable v.
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This transformation results in a PDE for f2(v, t):

∂

∂t
f2(v, t) = μ0α

(
α

ρ
+ τ(eτv + 1)

ρ(eτv − 1)

)
f2(v, t) − ∂

∂v
f2(v, t).

The final transformation is given by

f3(v, t) := log( f2(v, t)),

which results in the PDE for f3(v, t):

∂

∂t
f3(v, t) + ∂

∂v
f3(v, t) = μ0α

(
α

ρ
+ τ(eτv + 1)

ρ(eτv − 1)

)
. (4.4)

This equation can be solved using the method of characteristics, which is explained
in [6, Chaps. 1 and 8], for example. Using this technique, the PDE is transformed in an
ordinary differential equation (ODE) by introducing new variables ξ(v, t) and ζ(v, t).
The former is used to replace both v and t, and the latter is used to parameterize the
initial curve. To be able to solve the PDE, an initial condition is required for f3(v, t).
By applying all of the previous transformations to the initial condition g(s, T) = w(s),
with t ≥ T , one obtains the initial condition

f3(v, T) = log

(
w

(
eτv(τ + α) + τ − α

ρ (eτv − 1)

))
=: G(v).

Next, one has to solve the differential equations

∂

∂ξ
t(ξ , ζ ) = 1,

∂

∂ξ
v(ξ , ζ ) = 1,

with the initial conditions t(0, ζ ) = T and v(0, ζ ) = ζ . The unique solution to these
equations is trivially given by

t(ξ , ζ ) = ξ + T , v(ξ , ζ ) = ξ + ζ ,

respectively. Inverting these expressions yields

ξ(v, t) = t − T , ζ(v, t) = v − t + T ,

respectivley. Using these transformations, the PDE (4.4) can be transformed into
the ODE

∂

∂ξ
f3(ξ , ζ ) = μ0α

(
α

ρ
+ τ(eτ(ξ+ζ ) + 1)

ρ(eτ(ξ+ζ ) − 1)

)
= μ0α(α + τ)

ρ
+ 2τμ0α

ρ(eτ(ξ+ζ ) − 1)

= θ(α + τ) + 2τθ

eτ(ξ+ζ ) − 1
, (4.5)
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where θ = μ0α/ρ. This ODE can be solved for the given initial condition f3(v, T) =
G(v). To derive the solution, one can start with a candidate solution

f3(ξ , ζ ) = C1 log
(
eτ(ξ+ζ ) − 1

) + C2ξ + C3.

For ξ = 0, one has f3(0, ζ ) = C1 log(eτζ − 1) + C3 and f3 has partial derivative with
respect to ξ :

∂

∂ξ
f3(ξ , ζ ) = τC1 + C1τ

eτ(ξ+ζ ) − 1
+ C2.

Using the initial condition f3(0, ζ ) = G(ζ ), together with the ODE (4.5), one can find
the values of C1, C2, and C3:

C1 = 2θ ,

C2 = θ(α − τ),

C3 = G(ζ ) − 2θ log(eτζ − 1).

This leads to the unique solution

f3(ξ , ζ ) = θ(α − τ)ξ + 2θ log(eτ(ξ+ζ ) − 1) + G(ζ ) − 2θ log(eτζ − 1). (4.6)

The proof of the uniqueness of this solution is postponed to the end of this proof.
Replacing ξ by t − T and ζ by v − t + T results in

f3(v, t) = θ(α − τ)(t − T) + 2θ log

(
eτv − 1

eτ(v−t+T) − 1

)

+ log

(
w

(
eτ(v−t+T)(τ + α) + τ − α

ρ
(
eτ(v−t+T) − 1

) ))
. (4.7)

Next, one obtains a candidate solution for g(s, t), by reversing all of the transforma-
tions. This gives

f2(s, t) = eθ(α−τ)(t−T)

(
eτv − 1

eτ(v−t+T) − 1

)2θ

w

(
eτ(v−t+T)(τ + α) + τ − α

ρ
(
eτ(v−t+T) − 1

) )
,

f1(s, t) = eθ(α−τ)(t−T)

(
u − 1

ue−τ(t−T) − 1

)2θ

w

(
ue−τ(t−T)(τ + α) + τ − α

ρ
(
ue−τ(t−T) − 1

) )
.
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By performing the last substitution, (4.3), an expression for g(s, t) is obtained. One has

g(s, t) = eθ(α−τ)(t−T)

((
ρs − α + τ

ρs − α − τ
− 1

) (
ρs − α + τ

ρs − α − τ
e−τ(t−T) − 1

)−1
)2θ

× w

((
ρs − α + τ

ρs − α − τ
e−τ(t−T)(τ + α) + τ − α

)

×
(

ρ

(
ρs − α + τ

ρs − α − τ
e−τ(t−T) − 1

))−1
)

= eθ(α−τ)(t−T)

(
2τ

ρs(e−τ(t−T) − 1) + (τ − α)e−τ(t−T) + τ + α

)2θ

× w

(
s
(
(α + τ)e−τ(t−T) + τ − α

) + 2e−τ(t−T) − 2

ρs(e−τ(t−T) − 1) + (τ − α)e−τ(t−T) + τ + α

)
,

where it was used that (α + τ)(τ − α) = 2ρ. By inserting this candidate into (4.1),
one can check that it indeed is the solution.

The last thing to proof is the uniqueness of the solution to (4.1). As all of the
transformations are clearly one-to-one, the uniqueness of this solution should follow
from the uniqueness of the solution to (4.5). It is easy to see that the solution to
this equation is unique, as the difference of two possible solutions, with the same
initial condition, has a zero derivative, which implies that the two solutions are in
fact equal. �

The result of Proposition 4.2 tells us that one can calculate g(s, t), for T ≤ t < Tn,
where Tn is the first jump time of Nt after T . In order to completely solve the filtering
problem, one further has to solve (3.9) at jump times. This is the topic of the next
section, in which a recursive solution will be obtained for the case in which λ0 has a
Gamma distribution.

5. FILTERING AT JUMPTIMES AND A GENERAL SOLUTION

In the previous section the filtering problem has been solved between jumps, for an
arbitrary initial condition w(s) for g(s, t), at time T > 0. In this section the filtering
problem is solved at jump times, first for Example 4.1 and after that for the case where
the intensity follows the CIR model.

Example 5.1 (Example 4.1 continued): At jumps, one obtains from (3.9),

�g(s, t) =
(

∂/∂s g(s, t−)

λ̂0
t−

− g(s, t−)

)
�Nt .

https://doi.org/10.1017/S0269964811000076 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964811000076


FILTERING PROBLEM WITH POINT PROCESS OBSERVATIONS 407

From this identity it easily follows that at a jump time T > 0,

g(s, T) = (̂
λ0

T−
)−1 ∂

∂s
g(s, T−). (5.1)

Combining the results between jumps and at jumps, one can obtain the solution to

dg(s, t) = − ∂

∂s
g(s, t) dt +

(
(∂/∂s)g(s, t−)

λ̂0
t−

− g(s, t−)

)
dNt .

At each jump time Tn, one has to take the derivative of the function g(s, t), and divide
by λ0

Tn−; the resulting function can then be used as initial condition for the interval
[Tn, Tn+1). Using an initial condition g(s, 0) = w(s), one obtains the solution

g(s, t) = w(Nt)(s − t)
Nt∏

n=1

(̂
λ0

Tn−
)−1

,

where w(n)(s) denotes the nth derivative of w(s). The conditional moment-generating
function is found from (3.8) and is given by

f̂ (s, t) = g(s, t)

g(0, t)
= w(Nt)(s − t)

w(Nt)(−t)
.

If one assumes that λ0 ∼ �(α, β), one has

f (s, 0) = f̂ (s, 0) =
(

β

β − s

)α

, f̂ (s, t) =
(

β + t

β + t − s

)α+Nt

. (5.2)

From this follows that at time t > 0, λt given FN
t is distributed according to �(α +

Nt , β + t). Further, λ̂t can easily be derived by a differentiation with respect to s:

λ̂t = ∂

∂s
f̂ (s, t)

∣∣∣∣
s=0

= α + Nt

β + t
.

We recognize here, in a slightly more general form (we condition on FN
t and not just on

Nt), a classical result on conjugate distributions from Bayesian analysis: If a random
variable has a Poisson distribution with random parameter λ that a priori follows a
Gamma distribution, the posterior distribution of λ also belongs to the Gamma family.

The solution in this example was easy to find, which could be expected, because
λt is constant over time in this case. The general CIR model for the intensity is more
complicated, but in the remainder of this section this problem is solved. At jumps,
one has the same equation as in Example 5.1, which is already solved in (5.1). In
Theorem 5.2, solution for g(s, t) for the CIR model is given. Before this theorem is
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stated, some notation is introduced. Let x, y ∈ R, t ≥ 0 and put

A(x, t, y) := x
(
(τ − α)e−τ t + τ + α

) + 2y
(
1 − e−τ t

)
, (5.3)

B(s, t) := ρs
(
e−τ t − 1

) + (τ − α)e−τ t + τ + α, (5.4)

C(x, t, y) := y
(
(α + τ)e−τ t + τ − α

) + ρx
(
1 − e−τ t

)
. (5.5)

This notation allows us to write the general solution between jumps, (4.2), as

g(s, t) = eθ(α−τ)(t−T)

(
2τ

B(s, t − T)

)2θ

w

(
C (−2/ρ, t − T , s)

B(s, t − T)

)
. (5.6)

Next, let T1, T2, . . . denote the jump times and let T0 = 0. Then introduce the following
notation:

A (t, T0) := A(φ, t, 1) for 0 ≤ t < T1, (5.7)

A (t, Tn) := A(A (Tn, Tn−1), t − Tn, C (Tn, Tn−1)) for Tn ≤ t < Tn+1, (5.8)

C (t, T0) := C(φ, t, 1) for 0 ≤ t < T1, (5.9)

C (t, Tn) := C(A (Tn, Tn−1), t − Tn, C (Tn, Tn−1)) for Tn ≤ t < Tn+1. (5.10)

With this notation, the main result of this article can be stated. A recursive solution to
the filtering problem is obtained for the case where λ0 has a Gamma distribution.

Theorem 5.2: Let λ0 ∼ �(2θ , φ), for φ > 0 and θ = μ0α/ρ > 0. Then one has

f̂0(s) = g(s, 0) =
(

φ

φ − s

)2θ

,

which is the moment-generating function of the �(2θ , φ) distribution.With the notation
introduced in (5.3)–(5.5) and (5.7)–(5.10), one further has, for Tn ≤ t < Tn+1,

g(s, t) = K(t)pn(s, t)

(
1

A (t, Tn) − sC (t, Tn)

)2θ+n

, (5.11)

where p0(s, t) ≡ 1, and for n ≥ 1, pn(s, t) is a polynomial of degree n in s, which
satisfies the recursion

pn(s, t) = Bn(s, t − Tn)

[
pn−1

(
C (−2/ρ, t − Tn, s)

B(s, t − Tn)
, Tn

)
(2θ + n − 1)C (Tn, Tn−1)

+ ∂1

(
pn−1

(
C (−2/ρ, t − Tn, s)

B(s, t − Tn)
, Tn

))
×

(
A (Tn, Tn−1) − C (−2/ρ, t − Tn, s)

B(s, t − Tn)
C (Tn, Tn−1)

) ]
,

(5.12)
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where ∂1 denotes the derivative with respect to the first argument of pn and

K(t) = eθ(α−τ)t(2τφ)2θ
∏

m≥1, Tm≤t

(
(2τ)2θ

λ̂0
Tm−

)
. (5.13)

In the proof of this theorem, the following lemma is used.

Lemma 5.3: With the notation from (5.3)–(5.5) and (5.7)–(5.10), the following
relations hold for n ≥ 1 and x, y ∈ R:

(i) A (Tn, Tn) = 2τA (Tn, Tn−1);

(ii) C (Tn, Tn) = 2τC (Tn, Tn−1);

(iii) xB(s, t) − yC (−2/ρ, t, s) = A(x, t, y) − sC(x, t, y).

Proof:

(i) From (5.8) and (5.3) it follows that

A (Tn, Tn) = A(A (Tn, Tn−1), 0, C (Tn, Tn−1))

= A (Tn, Tn−1)
(
(τ − α)e0 + τ + α

) + C (Tn, Tn−1)
(
1 − e0

)
= 2τA (Tn, Tn−1).

(ii) This follows along the same lines as in (i), using (5.10) and (5.5).

(iii) Using (5.3)–(5.5) one finds

xB(s, t) − yC

(
− 2

ρ
, t, s

)
= x

(
ρs

(
e−τ t − 1

) + (τ − α)e−τ t + τ + α
)

− y
(
s
(
(α + τ)e−τ t + τ − α

) + 2
(
1 − e−τ t

))
= x

(
(τ − α)e−τ t + τ + α

) + 2y
(
1 − e−τ t

)
− s

(
y
(
(α + τ)e−τ t + τ − α

) + xρ
(
1 − e−τ t

))
= A(x, t, y) − sC(x, t, y). �

Now, Theorem 5.2 can be proved.

Proof of Theorem 5.2: For each n it has to be shown that (5.11) holds at Tn and
between Tn and Tn+1. First, this is shown for n = 0. Then the induction step is proved
for n ≥ 1.
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n = 0 : For t = T0 = 0, one has, by assumption,

g(s, 0) =
(

φ

φ − s

)2θ

.

From (5.11) one finds

g(s, 0) = K(0)p0(s, 0)

(
1

A (0, 0) − sC (0, 0)

)2θ

= e0(2τφ)2θ

(
1

A(φ, 0, 1) − sC(φ, 0, 1)

)2θ

=
(

2τφ

2τφ − 2τ s

)2θ

=
(

φ

φ − s

)2θ

.

Next, the interval up to the first jump time, 0 < t < T1, is considered. From (5.6) and
the expression for w(s) = g(s, 0), one finds

g(s, t) = eθ(α−τ)t

(
2τ

B(s, t)

)2θ (
φ

φ − C (−2/ρ, t, s) /B(s, t)

)2θ

= eθ(α−τ)t(2τφ)2θ

(
1

B(s, t)φ − C (−2/ρ, t, s)

)2θ

= K(t)p0(s, t)

(
1

A (t, 0) − sC (t, 0)

)2θ

,

which is the same expression as in (5.11) for n = 0. The final step in the above
derivation follows from Lemma 5.3 (iii), with x = φ and y = 1, together with the
definition of K(t) in (5.13).

n ≥ 1: Now, it remains to prove the induction step. Therefore, one can assume that
(5.11) holds for n − 1. It then remains to show that the equation holds for n at Tn

and between Tn and Tn+1. First, the jump is considered. Thus, one has to calculate
the derivative of g(s, t) with respect to s and take the left limit in t = Tn; further, the
derivative is divided by λ̂0

Tn−. By (5.1) one has

g(s, Tn) = (̂
λ0

Tn−
)−1 ∂

∂s
g(s, Tn−)

= (̂
λ0

Tn−
)−1 ∂

∂s

(
K(Tn−)pn−1(s, Tn−)

×
(

1

A (Tn, Tn−1) − sC (Tn, Tn−1)

)2θ+n−1 )
. (5.14)
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Calculating the derivative with respect to s leads to

g(s, t) = (̂
λ0

Tn−
)−1

K(Tn−)

×
[

pn−1(s, Tn)(2θ + n − 1)C (Tn, Tn−1) + ∂

∂s
pn−1(s, Tn)

× (A (Tn, Tn−1) − sC (Tn, Tn−1))

]

×
(

1

A (Tn, Tn−1) − sC (Tn, Tn−1)

)2θ+n

. (5.15)

From Lemma 5.3 parts (i) and (ii) follows that for the denominator in (5.15), one has

A (Tn, Tn−1) − sC (Tn, Tn−1) = (2τ)−1 (A (Tn, Tn) − sC (Tn, Tn)) .

Hence, (5.15) can be written as

g(s, Tn) = (̂
λ0

Tn−
)−1

K(Tn−)(2τ)2θ (2τ)n

×
[

pn−1(s, Tn)(2θ + n − 1)C (Tn, Tn−1) + ∂

∂s
pn−1(s, Tn)

× (A (Tn, Tn−1) − sC (Tn, Tn−1))

]

×
(

1

A (Tn, Tn) − sC (Tn, Tn)

)2θ+n

. (5.16)

From (5.13), it is easy to see that K(Tn) = K(Tn−)
(̂
λ0

Tn−
)−1

(2τ)2θ , and further,
one has 2τ = B(s, 0) = B(s, Tn − Tn). From this follows that (5.16) can be written as

g(s, Tn) = K(Tn)B
n(s, Tn − Tn)

×
[

pn−1(s, Tn)(2θ + n − 1)C (Tn, Tn−1) + ∂

∂s
pn−1(s, Tn)

(A (Tn, Tn−1) − sC (Tn, Tn−1))

]

×
(

1

A (Tn, Tn) − sC (Tn, Tn)

)2θ+n

.

This can be simplified further using the definition of pn(s, t) as given in (5.12), together
with the identity C (−2/ρ, 0, s) = τ s. This results in

g(s, Tn) = K(Tn)pn(s, Tn)

(
1

A (Tn, Tn) − sC (Tn, Tn)

)2θ+n

,
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which is the required result at t = Tn. Finally, one has to check that (5.11) holds for
Tn < t < Tn+1. For this one, can use the general solution (5.6) with initial condition
w(s) = g(s, Tn). One finds

g(s, t) = eθ(α−τ)(t−Tn)

(
2τ

B(s, t − Tn)

)2θ

eθ(α−τ)Tn(2τφ)2θ

×
∏

m≥1, Tm≤Tn

(
(2τ)2θ

λ̂0
Tm−

)
pn

(
C (−2/ρ, t − Tn, s)

B(s, t − Tn)
, Tn

)

×
(

1

A (Tn, Tn) − (C (−(2/ρ), t − Tn, s) /B(s, t − Tn))C (Tn, Tn)

)2θ+n

.

Simplifying this expression yields

g(s, t) = eθ(α−τ)t(2τφ)2θ

(
n∏

m=1

(
(2τ)2θ

λ̂0
Tm−

))
(2τ)2θ

× Bn(s, t − Tn)pn

(
C (−(2/ρ), t − Tn, s)

B(s, t − Tn)
, Tn

)

×

⎛⎜⎜⎝ 1

2τB(s, t − Tn)A (Tn, Tn−1)

−2τC (−(2/ρ), t − Tn, s) C (Tn, Tn−1)

⎞⎟⎟⎠
2θ+n

.

An application of Lemma 5.3, with x = A (Tn, Tn−1) and y = C (Tn, Tn−1), and the
definitions of A (t, Tn) and C (t, Tn) in (5.8) and (5.10) together with the definition of
K(t) results in

g(s, t) = K(t)
1

(2τ)n
Bn(s, t − Tn)pn

(
C (−(2/ρ), t − Tn, s)

B(s, t − Tn)
, Tn

)
×

(
1

A (t, Tn) − sC (t, Tn)

)2θ+n

.

Next, with the definition of pn(s, Tn) from (5.12), evaluated in t = Tn, together with
C(x, 0, y) = 2τy and B(s, 0) = 2τ , one rewrites this to

g(s, t) = K(t)

(
1

A (t, Tn) − sC (t, Tn)

)2θ+n 1

(2τ)n
Bn(s, t − Tn)

× (2τ)n

[
pn−1

(
C (−(2/ρ), t − Tn, s)

B(s, t − Tn)
, Tn

)
(2θ + n − 1)C (Tn, Tn−1)

+ ∂1

(
pn−1

(
C (−(2/ρ), t − Tn, s)

B(s, t − Tn)
, Tn

))
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×
(

A (Tn, Tn−1) − C (−(2/ρ), t − Tn, s)

B(s, t − Tn)
C (Tn, Tn−1)

) ]

= K(t)pn(s, t)

(
1

A (t, Tn) − sC (t, Tn)

)2θ+n

.

In the final step, the definition of pn(s, t) is used—this time evaluated in t—which
concludes the proof of (5.11). From the definitions of B(s, t) and C(x, t, y), with y = s,
which are both linear in s, follows that pn(s, t) is a polynomial of degree n in s. �

This theorem provides a recursive solution to (3.9), for the case λ0 is distributed
according to a �(2θ , φ) distribution. From (3.8) it already known that the conditional
moment-generating function can easily be obtained from an expression for g(s, t).
Now that this has been found, the conditional moment-generating function f̂ (s, t) can
be obtained easily.

Corollary 5.4: Under the assumptions of Theorem 5.2, the conditional moment-
generating function f̂ (s, t), for Tn ≤ t < Tn+1, can be expressed as

f̂ (s, t) = qn(s, t)

(
Q(t, Tn)

Q(t, Tn) − s

)2θ+n

, (5.17)

where

qn(s, t) = pn(s, t)

pn(0, t)
and Q(t, Tn) = A (t, Tn)

C (t, Tn)
.

Here, qn(s, t) is a polynomial of degree n in s.

Proof: The result follows directly from (3.8), Theorem 5.2, and the definitions of qn

and Q. �

With the derivation of the conditional moment-generating function, the filtering
problem has been solved, and one is able to calculate conditional default probabilities
using the results in Example 3.1. To conclude this section, it is observed that the
conditional moment-generating function in (5.17) corresponds to a mixture of Gamma
distributions.

Remark 5.5: Corollary 5.4 provides an expression for f̂ (s, t) that involves the poly-
nomial qn(·, t). Deriving an explicit expression for qn(s, t) = pn(s, t)/pn(0, t) for any
n ≥ 0 is quite complicated, but we can write

qn(s, t) =
n∑

i=0

Rn
i (t)s

i,

where the coefficients Rn
i (t) of the polynomial follow directly from the coefficients of

the polynomial in s, pn(s, t), which, in turn, can be obtained using the recursion (5.12).
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Next, one can consider n + 1 independent random variables �i, where �i ∼
�(2θ + n − i, Q(t, Tn)), for i = 0, 1, . . . , n. Further, consider the discrete random vari-
able Mn, independent of the �i, which assumes the values 0, 1, . . . , n, with probabilities
πn

i (t), and define the random variable

Xn
t =

n∑
i=0

1{M=i}�i.

The moment-generating function of Xn
t can easily be found, as �i and Mn are

independent, hence,

E
[
esXn

t
] =

n∑
i=0

E
[
es�i 1{M=i}

]
=

n∑
i=0

πn
i (t)E

[
es�i

] =
n∑

i=0

πn
i (t)

(
Q(t, Tn)

Q(t, Tn) − s

)2θ+n−i

. (5.18)

The goal is to show that by choosing the probabilities correctly, the moment-generating
function of Xn

t equals the conditional moment-generation function f̂ (s, t). Therefore,
(5.18) is first rewritten as

E
[
esXn

t
] =

(
Q(t, Tn)

Q(t, Tn) − s

)2θ+n n∑
i=0

πn
i (t)

(
Q(t, Tn) − s

Q(t, Tn)

)i

.

To have that both moment-generating functions f̂ (s, t) and (5.18) are equal, it is
required that

qn(s, t) =
n∑

i=0

Rn
i (t)s

i =
n∑

i=0

πn
i (t)

(
Q(t, Tn) − s

Q(t, Tn)

)i

.

The right-hand side of this equation can be written as

n∑
i=0

πn
i (t)Q(t, Tn)

−i
i∑

j=0

(
i
j

)
Q(t, Tn)

i−jsj(−1)j.

This equation can be turned into a polynomial in s by interchanging the summations,
which leads to

n∑
j=0

n∑
i=j

(
i
j

)
πn

i (t)Q(t, Tn)
−jsj(−1)j

=
n∑

j=0

sj

⎛⎝(−1)jQ(t, Tn)
−j

n∑
i=j

(
i
j

)
πn

i (t)

⎞⎠ .
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FIGURE 1. Graphs of the mixing probabilities after two jumps of the process Nt , (a),
and after three jumps, (b). The values of the previous jump times, T1 and T2 in case
(a), and T1, T2 and T3 in case (b), are taken as Ti = i, such that one is able to calculate
the πn

j (t). The model parameters are chosen to be α = 0.5, β = 0.5, μ0 = 0.4, and
φ = 4.0.

The moment-generating functions are equal when

Rn
j (t) = (−1)jQ(t, Tn)

−j
n∑

i=j

(
i
j

)
πn

i (t)

for j = 0, 1, . . . , n. This can be solved iteratively, starting from j = n, which results
in the probabilities

πn
j (t) = (−1)jRn

j (t)Q(t, Tn)
j −

n∑
i=j+1

πn
i (t)

(
i
j

)
. (5.19)

It is not immediately clear from (5.19) that the πn
j (t) are all nonnegative and sum to 1.

It turns out, however, that this is indeed the case for Tn ≤ t < Tn+1, which means that
the πn

j (t) can be interpreted as probabilities. It is, however, far from trivial to provide
a general proof for all n ≥ 0. We confine ourselves to illustrate this fact by some
examples. In Figure 1, two graphs are given in which the probabilities are plotted.

6. REMARKS ON MODEL EXTENSIONS

We briefly discuss two ways of extending the model that we have considered in
this article. First, we consider time varying parameters for the intensity. This is a
more realistic assumption from a practical point of view. Next, we look at a simple
multifactor specification of the intensity, where we see that the calculations for the
one-dimensional case do not carry over to this multifactor case. In the situations in
which explicit solutions cannot be obtained—which is the rule—one has to resort to
numerical methods. One of the options is to approximate the state process by a finite-
state Markov chain (or rather a sequence of them), for which the associated filtering
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problem admits a finite-dimensional solution. This approach has been first developed
for filtering with conditionally Gaussian observations, see [16]. For a recent financial
application, see [14]. As an alternative, one could think of the use of particle filters,
see [1] or [26] for a recent example in finance.

6.1. Time-Varying Parameters

In this subsection we briefly outline the consequences for our results when we replace
the constant parameters in (2.2) with time-varying ones. Clearly, this introduces more
flexibility of the model. So, we have α(t) instead of α, μ0(t) instead of μ0, and so for.
Many results in Sections 2 and 3 remain valid upon substitution of the constants by
their time-varying counterparts. In particular, (4.1) will change into

∂

∂t
g(s, t) = sμ0(t)(ρ(t)s − α(t) + τ(t))(ρ(t)s − α(t) − τ(t))

∂

∂s
g(s, t). (6.1)

However, an explicit closed-form solution for g(s, t) that we were able to give for the
constant parameter case by (4.2) is, in general, impossible to obtain. The main reason
for this is that transformation as given in (4.3) now introduces additional dependence
on t and a simple PDE for f1(u, t) cannot be given. This complication carries over to
similar ones for the functions f2(u, t) and f3(u, t).

If one uses piecewise constant functions for the parameters (as an approximation
if needed), closed-form solutions are still possible, although they will be given by
complex expressions. We briefly outline how to get these. Suppose that 0 < t1, t2, . . .
(with ti → ∞) denote the time instants where the parameters possibly change value.
Consider a realization of the jump times T1, T2, . . . . On each interval [Tn−1, Tn) (n ≥
1), we relabel the ti that fall in this interval by {tn

1 , . . . , tn
kn
}, which could be an empty

set, in which case we can simply use (4.2) with the prevailing parameter values.
Suppose now that this set is nonempty. On the subinterval [Tn−1, tn

1), we can compute
the solution g(s, t) to (6.1) again according to (4.2), eventually yielding g(s, tn

1−).
Then we consider the PDE (6.1) on the interval [tn

1 , tn
2) with initial condition at tn

1
(instead of T ) w(s) = g(s, tn

1−), and the values of the parameters on this interval.
With the appropriate modifications, (4.2) can be used again. One then proceeds in this
way until the final interval [tn

kn
, Tn) is reached, which eventually produces g(s, Tn−).

We conclude by stating that more flexibility of the model by introducing
time-varying, but piecewise constant parameter functions also leads to closed-form
expressions, although they are more cumbersome to write down.

6.2. Multifactor Intensity

A second extension of the model that we have considered is to assume that the intensity
is driven by more than one Brownian motion, or factor. To illustrate the difficulties
that emerge in such an extension, we look at a very simple two-factor model for
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the intensity:

λt = λ1,t + λ2,t ,

dλi,t = −αi
(
λi,t − μi

)
dt + βi

√
λi,t dWi,t , for i = 1, 2,

where W1 and W2 are independent Brownian motions and λ1,t and λ2,t both follow the
CIR model with suitable parameter restrictions.

When we apply the filtering formulas (3.2) to λt we find

d̂λt = (−α1
(̂
λ1,t − μ1

) − α2
(̂
λ2,t − μ2

))
dt +

(
λ̂2

t −
λ̂t−

− λ̂t−

) (
dNt − λ̂t dt

)
.

Just as in the one-dimensional case, this involves the term λ̂2
t and, thus, we again con-

sider the conditional moment-generating function f̂ (s, t) = E
[

esλt
∣∣ FN

t

]
. Therefore,

we have to determine the dynamics of esλt . An application of Itô’s formula yields

desλt =
[ (

−α1s + 1

2
s2β2

1

)
λ1,te

sλt +
(

−α2s + 1

2
s2β2

2

)
λ2,te

sλt

+ s (α1μ1 + α2μ2)

]
dt + sesλt

(
β1

√
λ1,t dW1,t + β2

√
λ2,t dW2,t

)
. (6.2)

Comparing the terms in the square brackets above with those in (3.3), we directly
observe that we have lost an important feature. In the one-dimensional case, we could
write the term λtesλt as ∂esλt /∂s, eventually resulting in the PDE that we could solve
explicitly in Proposition 4.2. In the two-factor model, the derivative of esλt with respect
to s results in

(
λ1,t + λ2,t

)
esλt . The terms λi,tesλt in (6.2) thus cannot be written as

∂esλt /∂s. This shows that a solution, similar to that of Proposition 4.2, cannot be
obtained.

Alternatively, one could consider the conditional moment-generating function of
(λ1,t , λ2,t), given by h(s1, s2, t) = E

[
es1λ1,t+s2λ2,t

∣∣ FN
t

]
, and derive its dynamics. As we

introduce an additional variable, the eventual PDE will be of a higher dimension and
thus more complex. Obtaining an explicit closed-form solution, if it exists, will be a
substantially harder task and is beyond the scope of the present article. We conclude
that it is far from straightforward to extend the explicit solution that we have obtained
to models with more than one.
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