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Modeling the stock price development as a geometric Brownian motion
or, more generally, as a stochastic exponential of a diffusion, requires the
use of speci®c statistical methods. For instance, the observations seldom
reach us in the form of a continuous record and we are led to infer about
diffusion coef®cients from discrete time data. Next, often the classical
assumption that the volatility is constant has to be dropped. Instead, a
range of various stochastic volatility models is formed by the limiting
transition from known volatility models in discrete time towards their
continuous time counterparts. These are the main topics of the present
survey. It is closed by a quick look beyond the usual Gaussian world in
continuous time modeling by allowing a LeÂvy process to be the driving
process.

1 Introduction

The amount of literature on quantitative aspects in ®nance is huge, even if one

restricts the attention to papers that have a strong mathematical ¯avor. The purpose

of the present paper is to give a survey of some (rather recent) approaches to

problems of a statistical nature that arise in the context of mathematical ®nance.

Due to space limitations it is impossible to give an account of this subject that does

fully give justice to all the efforts of the many researchers in this ®eld. Necessarily

we had to give up striving for completeness. The choice of subjects that we present

re¯ects our own, perhaps slightly biased, interests.

Nevertheless we attempt to present a rather coherent looking point of view based

on the following principles. We mainly concentrate on models in continuous time
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(however, these may be viewed as approximations of some explicit discrete time

models that we also discuss). However, observations may reach us in the form of a

continuous record or (more realistically) at discrete time instants only. The models

we discuss are used to explain the behaviour of stock prices and of the volatility of

these prices. Both are described by stochastic differential equations driven by Wiener

processes. Parameters of interest are then found in the drift and diffusion coef®cients

and we will discuss various estimation methods that may be used in the different

observations schemes that occur under different circumstances. We will only be

concerned with ®nite dimensional parameters. We also discuss the relevance of using

Wiener processes as the basic process on which the models are built and review

alternatives.

In a paper that has been forgotten for many decadesÐas an illustration of this we

mention that the English translation appeared 64 years laterÐBACHELIER (1900)

introduced Brownian motion as a basic stochastic process to account for the

¯uctuations of stock prices. The model he used also contained an additive drift term

(a trend). Although this model had some appeal it suffered from the substantial

drawback that at all moments prices could be negative with positive probability. This

led SAMUELSON (1965) to use the same model for the logarithm of the stock price as

Bachelier did for the stock price itself. Formulated in another way, he suggested to

use geometric Brownian motion to model the evolution of stock prices. His model is

re¯ected in equation (1) below, that is nowadays often attributed to BLACK and

SCHOLES (1973) who used it in their seminal paper on option pricing that appeared 8

years later than Samuelson's paper. If we denote by St the stock price at time t, the

model suggested by Samuelson can be formulated in terms of the following

stochastic differential equation

dSt � St(ì dt � ó dWt), S0 . 0 (1)

where ì and ó are constants and W is a standard Brownian motion. The parameter

ó is called the volatility parameter and measures how uncertain we are about future

stock price movements. We ®nd it back in the variance of in®nitesimally small

relative changes of the stock price. Informally, we have Var dSt=St � ó 2 dt.

Using the ItoÃ formula (see equation (3)) we ®nd that log (St=S0) �
(ìÿ 1

2
ó 2)t � óWt so that St is always positive, and that the log-return log(St�Ä=St)

over an interval [t, t � Ä] is normally distributed and independent of the past values

up to time t. Consequently we also get Var log(St�Ä=St) � ó 2Ä. Hence ó 2 is in this

model not only the variance of log-returns over an interval of unit length, but also the

conditional variance given the prices before such an interval. Other models that we

will come across in the sequel are generalizations of the one in (1). This means that

we will mainly work with diffusions.

For future reference we brie¯y recall some terminology from the theory of

stochastic processes. A good account of this theory can be found in KARATZAS and

SHREVE (1991).
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By diffusion processes or diffusions we mean processes, X say, that can be

represented by

dX t � bt dt � at dWt (2)

with W a Brownian motion and bt and at other stochastic processes that are usually

of the form bt � b(X t) and at � a(X t) for certain functions b and a. In equations

of the type of (2) we call b the drift coef®cient and a the diffusion coef®cient.

One of the main reasons for modeling with diffusion processes is that functions of

a diffusion are diffusions again. More precisely if f is a twice continuously

differentiable function and X satis®es (2), then f (X ) satis®es an equation of the same

type, namely

d f (X t) � ( f 9(X t)bt � 1
2
f 0(X t)a

2
t ) dt � f 9(X t)at dWt: (3)

The resulting differentiation formula in equation (3) is known as ItoÃ's formula, an

indispensable and powerful tool.

Consider now a process X satisfying (2), with bt � b(X t) and at � a(X t), i.e. X is

the solution of the following stochastic differential equation.

dX t � b(X t) dt � a(X t) dWt: (4)

Weak solutions of such equations are Markov processes and under a condition that

guarantees the existence of an invariant distribution also ergodic (see e.g. GIHMAN

and SKOROHOD (1972) or ROGERS and WILLIAMS (1997)). The invariant measure of

an ergodic diffusion has a density that can be expressed in terms of the coef®cients

as follows. Let

s(x) � exp ÿ2

�
b(x)

a2(x)
dx

� �
,

where the notation
�

f (x) dx is used to denote any function whose derivative is f .

Then the stationary density is proportional to

1

s(x)a2(x)
: (5)

The rest of the paper is organized as follows. In section 2 we abandon the

assumption that ó in (1) is taken as a constant. Instead we discuss several ways of

modeling ó as a stochastic process, both in discrete and in continuous time and the

relations between these models in terms of weak convergence of discrete time

processes to a diffusion limit. Then we treat in section 3 parameter estimation for

diffusion processes with full observations, by which we mean that we observe all

components of this process in case it is multidimensional. Most attention is paid to

the case where the observations are available at discrete times only. In section 4 we

will have a look at an estimation problem for a partially observed diffusion. The

®nancial context is that of a bivariate diffusion, whose components are stock price

and volatility, while only the stock price is observed. Whereas most of the models

that we will treat up to that section are based on a diffusion we change this point of
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departure in section 5 where we discuss statistical problems that give rise to use a

certain LeÂvy process other than Brownian motion as a driving process.

2 Stochastic volatility models

The underlying model according to Samuelson, represented in (1), has a number of

consequences. One is that the log-returns follow a normal distribution. Contrary to

that it has been known since quite some time (MANDELBROT, 1963) that empirical

analysis of ®nancial data reveals excess kurtosis. Hence many authors tried to

model returns of ®nancial data directly by means of other distributions. We will

come back to this issue in section 5.

Another issue is the constancy of the volatility parameter ó . This has been

criticized by a number of authors. To explain some of the criticism we introduce

some terminology. First we de®ne the log price process Rt � log St. Assuming (1), as

we said before, it is given by Rt � R0 � (ìÿ 1
2
ó 2)t � óWt. Notice that we have that

Rt ÿ Rs is independent of the past up to time s, so that the conditional variance

Ó t ÿ Ós of Rt ÿ Rs given this past equals ó 2(t ÿ s). Hence for this model we ®nd that

(d=dt)Ó t � ó 2. In more general models we de®ne the volatility ó t at time t as the

conditional standard deviation of an in®nitesimal small increment of Rt given the

whole past just before time t. In general then, the ó t form a stochastic process, called

the volatility process, or just volatility. Let us make this notion precise. Suppose that

S is given by the following extension of (1)

dSt � St(ì t dt � ó t dWt), (6)

where ì and ó are appropriate stochastic processes. Applying ItoÃ's rule we get for

R � log S

dRt � (ì t ÿ 1
2
ó 2

t ) dt � ó t dWt: (7)

Let M be given by M t �
� t

0
ó s dWs and let Ó � hMi, the quadratic variation pro-

cess of M . Then Ó t �
� t

0
ó 2

s ds, with the interpretation that the conditional variance

of Rt�d t ÿ Rt given the past up to time t is given by Ó t�d t ÿ Ó t � ó 2
t dt. Hence the

ó t in equation (6) is indeed the volatility as we just de®ned it.

For discrete time models we follow a similar approach. Now the stock price is

given by a discrete time process S0, S1, . . .. As before R is the log-price process and

the log-return process ÄR is de®ned by ÄRt � log(St=Stÿ1), with ÄRt � Rt ÿ Rtÿ1.

In this case we de®ne the volatility ó t at time t as the conditional standard deviation

of ÄRt given the past up to time t ÿ 1. Again we will call the process fó tg the

volatility (process).

An empirical fact is that volatility evolves in clusters, there are periods of high

volatility (a nervous market) followed by periods of low volatility (a calm market)

and vice versa. Typically ARCH models (to be discussed in section 2.1) explain this

behaviour in discrete time.
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Another empirical ®nding is that volatility movements are negatively correlated

with stock price movements. This is called the leverage effect (BLACK, 1976).

In practice people also work with what is called implied volatility. This is de®ned

as follows. Suppose that S is modeled according to equation (1). The Black±Scholes

price of an option (see BLACK and SCHOLES (1973) or BJOÈ RK (1998), page 90) for

the explicit formula) is a function of the volatility parameter ó as well as a function

of the exercise price, the time to maturity, the current price of the underlying asset

and the interest rate. Keeping all the parameters constant except the ó (a ceteris

paribus condition) one can invert the Black±Scholes formula to ®nd ó as a function

of the market price of an option. The resulting value of ó is called the implied

volatility (parameter). Doing so for different options and different values of the

exercise price, it has been observed that the implied volatility showed a typically not

constant behaviour that is not compatible with the Samuelson±Black±Scholes

assumption. As a matter of fact, if the exercise price is close to the actual stock price

(this is called an `at the money option') the implied volatility is relatively low as

compared to the values obtained when the exercise price and stock price are far apart.

This phenomenon is known as the smile pattern of implied volatility.

The qualitative properties of ®nancial data that we mentioned above are often

referred to as stylized facts or stylized features of these data. Other examples of

stylized features are heavy-tailedness and long-range dependence. In the next

subsections we will discuss a number of alternative approaches that are aimed at

mimicking the practically observed non constant behaviour of the volatility. Although

efforts have been undertaken to model volatility as a deterministic function (see e.g.

DUPIRE (1994)), these models suffer from some drawbacks especially when it

concerns predictive performance DUMAS, FLEMING and WHALEY (1995). Neverthe-

less these models also have a great advantage, since in this set up markets are

complete. Therefore hedging strategies can be used to price derivatives and a unique

price exists (see BJoÈRK, 1998, chapter 9 for a discussion of these concepts).

Henceforth we will concentrate on stochastic models.

2.1 Volatility models in discrete time

As we have argued at the beginning of this section, the assumption that the

volatility is a constant cannot be held. There is a variety of models that give

alternative descriptions of the volatility as a stochastic process. In this subsection

we present some of the more popular ones in discrete time. In the next subsection

we present continuous time models.

All models below belong to the class of so called (G)ARCH-processes or to some

related class of processes. An introduction to modeling with (G)ARCH processes is

given in the recent book by GOURIEÂ ROUX (1997) as well as in the survey papers

BOLLERSLEV, CHOU and KRONER (1992) (which contains an extensive discussion of

qualitative aspects and an economic interpretation of the ARCH-like methodology of

modeling) and BOLLERSLEV, ENGLE and NELSON (1994) (where more attention is

paid to mathematical and probabilistic properties of these models).
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Whereas in the 1970s modeling with ARMA processes (BOX and JENKINS, 1976, is

a widely used reference), which concentrates on modeling conditional ®rst moments

of a time series, became very popular it was observed later on that a standard ARMA

®t to ®nancial data was poor. The by now classical paper of ENGLE (1982), where

ARCH processes were introduced as a way to model conditional second order

moments, was a ®rst attempt to overcome this problem. Later on BOLLERSLEV (1986)

observed that even the class of ARCH-processes was not always suitable for

modeling, unless a large number of parameters was involved. In line with the

parsimony doctrine of BOX and JENKINS (1976), he extended the concept of ARCH

to that of GARCH, in a way similar to the extension of AR models to ARMA ones.

Indeed, GARCH models with few parameters often give a good ®t, see e.g.

BOLLERSLEV, CHOU and KRONER (1992). Note that (G)ARCH is just one of the

possible ways of nonlinear modeling of time series.

We continue with an explanation of (G)ARCH modeling. Suppose one is given

some sequence of observations, fYtg say, for instance Yt � ÄRt. The basic model is

to write

Yt � ì t � å t (8)

Here we take å as a zero mean martingale difference sequence w.r.t some

underlying ®ltration fF tg and ì t is then the conditional expectation of Yt given the

past up to time t ÿ 1. In the ARCH modeling framework a model is speci®ed for

the innovations process å. The starting point for this is

å t � ó t zt (9)

where ó is a nonnegative predictable process (i.e. ó t is F tÿ1-measurable for all t)

and z an i.i.d. sequence, usually standard normal. In this set up we ®nd that ó 2
t is

the conditional variance of Yt given the past. In particular, if Yt � ÄRt and

assuming that ó t > 0, we see that ó t plays the role of the volatility process as we

de®ned it for discrete time observations of the stock price.

In the rest of this section we assume that the zt form a white noise sequence that is

symmetric around zero, i.e. all the zt have the same symmetric distribution with

Ez2
t � 1 (and Ezt � 0) and Eztzs � 0 for t 6� s.

Recall that the kurtosis k of the distribution of a random variable X is de®ned by

k � [E(X ÿ EX )4]=(E(X ÿ EX )2)2 if EX 2 ,1 and by1 if EX 2 � 1. Notice that

always k > 1 and that for a normal distribution k � 3.

One feature that one wants to capture in a model for ®nancial data is leptokurtosis

(as compared to a Gaussian sequence), one way of expressing that the tails of a

probability distribution are fatter than those of a (standard) normal distribution. It

already follows from the general set up of equation (8) and the speci®cation of the

innovations as in (9) that this is the case, as we shall see now.

Assuming that z is an i.i.d. sequence with ®nite fourth moments, we ®nd that the

conditional kurtosis of å t, de®ned as E[å4
t jF tÿ1]=(E[å2

t jF tÿ1])2, is equal to the

kurtosis of zt, whereas the unconditional kurtosis of å t factorizes as the product of
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the kurtosis of ó t and that of zt and is therefore bigger than the conditional kurtosis if

ó t is not deterministic. Moreover, assuming a standard normal law for the zt, we ®nd

that the kurtosis of å t is equal to 3 times the kurtosis of ó t and hence bigger than 3.

The contribution of Engle was to specify a functional relationship (called

ARCH(q)) between ó 2
t and past innovations as

ó 2
t � a0 �

Xq

i�1

aiå
2
tÿi, (10)

with the ai nonnegative, or equivalently with ut � å2
t ÿ ó 2

t as

å2
t � a0 �

Xq

i�1

aiå
2
tÿi � ut, (11)

where u is again a martingale difference sequence, provided that Eó 2
t is ®nite for

all t. So the squares å2
t satisfy an equation of the autoregressive type and in

particular they also form a positively correlated sequence, as opposed to the

uncorrelated sequence å.
Assuming (weak) stationarity of å2 (it is then required that

Pq
i�1ai , 1) we ®nd

Eå2
t � a0=(1ÿ Óq

i�1ai).

It is not too dif®cult to compute the kurtosis of å t in the ARCH(1) case under the

assumption that the zt are standard normals, see e.g. GOURIEÂ ROUX (1997). The result

is 3(1ÿ a2
1)=(1ÿ 3a2

1), provided that 3a2
1 , 1. It is clear that apart from explaining

excess kurtosis, ARCH models are also appropriate to describe other stylized facts

for ®nancial time series such as volatility clustering, due to the positive correlation in

the å2
t . Typically we ®nd the tendency of small (large) absolute values of the å t's to be

followed by large (small) values.

The GARCH extension (G stands for generalized) introduced by Bollerslev then

consists of adding past values of ó 2 with positive weights to equation (2.10) to obtain

the GARCH( p, q) speci®cation

ó 2
t � a0 �

Xq

i�1

aiå
2
tÿi �

Xp

i�1

bió
2
tÿi, (12)

with the bi nonnegative. With the u process as above this equation may be rewritten

as

å2
t � a0 �

Xmaxf p,qg

i�1

(ai � bi)å
2
tÿi � ut ÿ

Xp

i�1

biutÿi, (13)

with the convention that ai � 0 for i . q and bi � 0 for i . p. This gives an

ARMA-like represention for the å2 process.

It has been reported that already a GARCH(1,1) model gave a good description of

certain ®nancial data (BOLLERSLEV, CHOU and KRONER, 1992).

Among the many variations on the (G)ARCH theme we mention one, the so called

EGARCH model proposed by NELSON (1990), see also NELSON (1991). In this case
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we have a speci®cation of the logarithm of the conditional variance process, viz. with

v t � log ó 2
t

v t � a0 �
Xp

i�1

aiv tÿi �
Xq

i�1

bi(jztÿij ÿ Ejztÿij � cztÿi): (14)

An additional feature of EGARCH models is that they are capable of explaining the

leverage effect, whereas (G)ARCH models cannot. To see the latter, notice that due

to the independence property of the z process, we have that the increments of ó 2 as

modeled by a (G)ARCH process are uncorrelated with zt, since the correlation

between zt and z2
t is zero. (G)ARCH depends on the past of å only through å2, so

the magnitude of å, not its sign. Clearly, in EGARCH models for ó 2, this is

different.

All these models that are used to describe or explain ®nancial data are based on

empirical analysis of these data. There is no structural dynamic economic theory that

can be used as a basis for modeling.

2.2 Stochastic volatility models in continuous time

We continue with proposing some stochastic volatility models in continuous time.

These models, all of them of the type of equation (4), can often be seen as diffusion

approximations of discrete time models. This will be explained in subsection 2.3.

Out of the many models that are currently used we have selected the following

ones that are of prime interest (for the present paper). They all start from the model

(1) for the stock price behaviour, but instead of assuming ó to be constant a

stochastic model in terms of a suitable function of ó is proposed for it. These models

are

dó 2
t � bó 2

t dt � äó 2
t dWt (15)

d logó 2
t � (b1 ÿ b2 log ó 2

t ) dt � ä dWt (16)

dó 2
t � (b1 ÿ b2ó

2
t ) dt � ä dWt (17)

dó 2
t � (b1 ÿ b2ó

2
t ) dt � äó t dWt (18)

dó 2
t � (b1 ÿ b2ó

2
t ) dt � äó 2

t dWt (19)

Equation (15) models the volatility as a geometric Brownian motion and was used

by HULL and WHITE (1987). In equation (16) an Ornstein±Uhlenbeck process is

used to model the logarithm of the volatility and was proposed as a model by

WIGGINS (1987). It turned out to be an empirical relevant one, see BOLLERSLEV,

ENGLE and NELSON (1994). We will come back to this model in subsection 2.3.

The Ornstein±Uhlenbeck process of equation (17) is mainly used as a (popular)

model for short term interest rates and has been proposed by VASICEK (1977). It is

not suitable as a model for ó 2, since the solution of this equation takes on negative
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values with positive probability. The model of equation (18) was suggested by

HESTON (1993). It is the same as the one that Cox, INGERSOLL and ROSS (1985)

used for the term structure of interest rates. Finally, equation (19) arises in a natural

way as a limit of a GARCH(1,1) process, see subsection 2.3. From the examples

above the conditions to ensure an ergodic solution are satis®ed by all of them for

proper choices of the parameters except for the geometric Brownian motion of (15).

After some years in which the ARCH-type processes in discrete time had enjoyed

an immense popularity, the question arose as to how such processes had to be de®ned

in continuous time. A de®nition has been proposed by DROST and WERKER (1996)

based on temporal aggregation for discrete time models or equivalently (for contin-

uous time models) sampling at different frequencies to get a discrete time process.

They also showed that the process of equation (19) satis®es their de®nition of a

continuous time GARCH process. We will not go into details and subtleties

concerning this topic and refer the reader to DROST and WERKER (1996) and the

references therein.

2.3 Continuous time approximations

Although there had been many results for diffusion limits of discrete time processes

around (most famous is perhaps the functional Central Limit Theorem, or Donsker's

invariance principle, see (KARATZAS and SHREVE, 1991, theorem 2.4.20 or

(BILLINGSLEY, 1968, theorem 2.10.1), it was not until 1990, that limiting results

for ARCH-type models were investigated. NELSON (1990) appears to be one of the

®rst who made contributions in this direction and proved for instance a limit

theorem for the GARCH(1,1) process.

As examples we summarize some results in the literature and con®ne ourselves in

doing so to the models we have discussed previously.

The general scheme is the following. A sequence of random processes X n, where

X n � (X n
1 , X n

2 , . . .) is available. With this sequence we associate a sequence î n of

continuous time processes as follows. Let (hn) be a sequence that converges to zero

(often hn � 1=n) and consider

în
t �

X
k< t=hn

X n
k : (20)

This way a sequence of processes is obtained that are (obviously) right continuous

and have ®nite left limits at all time instants. The suitable space to consider weak

convergence is therefore the Skorohod space D[0, 1] (or D[0, 1)). General

theorems on weak convergence in this setting can be found in e.g. the books

ETHIER and KURTZ (1986), JACOD and SHIRYAEV (1987), BILLINGSLEY (1968), or

STROOCK and Varadham (1979).

We proceed with giving two examples, both taken from NELSON (1990). The ®rst

one concerns a GARCH (1,1) process with ì t � Ytÿ1 � có 2
t and ó 2

t � a0 �
bó 2

tÿ1 � aå2
tÿ1. We assume that 0 , a� b , 1. The basic model given by (8) and (9)

is then speci®ed as follows:
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Yt ÿ Ytÿ1 � có 2
t � ó t z t (21)

and

ó 2
t ÿ ó 2

tÿ1 � a0 ÿ (1ÿ bÿ a)ó 2
tÿ1 � aó 2

tÿ1(z2
tÿ1 ÿ 1) (22)

where z is the i.i.d. sequence of section 2.1. This is a usual discrete time model

with the time parameter t running through consecutive integers. A continuous time

approximation to it may arise only if we partition time more and more ®nely. In this

way the following sequence of related models, indexed by n � 1, 2, . . . is treated.

The mesh of the partition in the nth model is hn, like in (20). To describe thus the

nth model, write for simplicity

Ykhn
� Y n

k , ó khn
� ó n

k , zkhn
� zn

k ,

and give the upper index n to all the constants involved. From (21) and (22) we get

at t � khn

Y n
k ÿ Y n

kÿ1 � cnó n2
k � ó n

k zn
k (23)

and

ó n2
k ÿ ó n2

kÿ1 � an
0 ÿ (1ÿ bn ÿ an)ó n2

kÿ1 � anó n2
kÿ1(zn2

kÿ1 ÿ 1): (24)

We have deliberately written the increments on the left-hand side of these

equations. It is now easy to take the sum like in (20) to get

Y n
[ t=hn] �

cn

hn

X
k< t=hn

ó n 2
k hn �

X
k< t=hn

ó n
k zn

k (25)

and with òn
k � (zn2

k ÿ 1)=
���
2
p

and the parameters än � ���
2
p

an, èn � (1 ÿ
bn ÿ an)=hn

ó n
[ t=hn] � an

0

t

hn

� �
ÿ èn

X
k< t=hn

ó n2
kÿ1 hn � än

X
k< t=hn

ó n2
kÿ1ò

n
kÿ1 (26)

where all the coef®cients are supposed to be convergent as n!1 so that

cn

hn

! c, än ! ä,
an

0

hn

! b1, èn ! b2;

we retain the notations of (19) for the limiting coef®cients. The system (25) and

(26), treated continuously in time for n � 1, 2, . . . , yield the sequence of a

bivariate piecewise constant process (Y n
t , ó n2

t ) that may be imbedded in the

Skorohod space D([0, T ], R2). To understand the weak limit of this sequence, ®rst

look at the sum in the ®rst term on the right hand side of (25) or at the similar sum

in the second term on the right hand side of (26). It is easy to recognize the usual

Riemann sum which tends to converge to a corresponding Riemann integral. We

shall display it soon. Look meanwhile at the second term on the right hand side of

(25) or at the similar sum in the extreme right term of (26) ± both weighted sums

formed by the standardized iid sequences z and ò (note that if z is the sequence of
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independent standard normal variables, then ò is a standardized iid sequence

uncorrelated with z; this anticipates the independence of the two Gaussian

components which these two sequences yield in the limit). Here the matter is a bit

more delicateÐwe leave out the detailsÐand one needs to appeal to Donsker's

invariance principle which explains occurrence of two stochastic integrals with

respect to two independent standard Brownian motions W 1 and W 2 in the following

system of diffusion equations:

Yt � c

� t

0

ó 2
sdS �

� t

0

ó s dW 1
s (27)

ó 2
t �

� t

0

(b1 ÿ b2ó
2
s) dS � ä

� t

0

ó 2
s dW 2

s , (28)

with the solution (Y , ó 2) that is the resulting weak limit of the bivariate sequence

of piecewise constant process (Y n, ó n2)n�1,2,.... Note that the second of these

equations is the integral version of the stochastic differential equation (19).

Under the conditions that b1 . 0 and 2b2 � ä2 . 0 it follows from (28) that the

process óÿ2
t has a stationary gamma distribution with parameters 1� 2b2=ä2 and

2b1=ä2. Furthermore, it can be shown that for the case where c � 0 the t-distribution

with 2� 4b2=ä2 degrees of freedom is the invariant distribution of Y . We will return

to this in subsection 4.2.

As a next example we brie¯y consider the EGARCH model (14) with p � q � 1

and set (for simplicity) ì t identically zero. The approach is similar in spirit to the

previous example and we only give the result. The limiting diffusion process satis®es

(for an appropriate choice of the coef®cients)

log ó 2
t �

� t

0

(b1 ÿ b2 log ó 2
s) ds� W 2

t : (29)

Unlike the situation of the previous example here the Brownian motion W 2 has

non-zero correlation with the Brownian motion that drives the return process. As a

consequence this model also captures the leverage effect. We refer to NELSON

(1990) for details.

Equation (29) describes the logarithm of the volatility process in the same way as

the model of WIGGINS, cf. (16).

3 Inference for diffusion processes with full observations

In this section we will consider parameter estimation when we have observations,

either as a continuous record or as a ®nite set, from a diffusion process. We limit

ourselves to estimation of ®nite dimensional parameters. Nonparametric procedures

will not be treated. The reader who is interested in these is referred to work by AIÈT-

SAHALIA (1996), for instance, where the important topic of nonparametric

estimation of the volatility function is treated.
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The sequel of this section is divided into two parts. In the ®rst part (subsection 3.1)

we discuss estimation procedures based on the likelihood of a diffusion that is

continuously observed. In the second part (subsection 3.2) inference procedures

based on the likelihood of discrete time observations of a diffusion will be treated.

3.1 Inference based on the continuous likelihood

3.1.1 MLE for continuous observations

Consider the stochastic differential equation (SDE)

dX t � b(Xt, è) dt � ó (X t) dWt, X 0 � x, 0 < t < T , (30)

where W is a standard Brownian motion, ó . 0 and the drift b depends on an

unknown parameter è 2 È � R. We suppose that the SDE has a weak solution for

all è, and that this solution is unique in law. We denote the law of such a solution

by Pè, that is a probability measure on the Borel sets of C[0, T ]. The aim is to

estimate è from the continuous observations fXtg t<T .

It is well known (see e.g. LIPTSER and SHIRYAYEV (1977)) that if for all è�T

0

b2(X s, è)

ó 2(X s)
ds ,1,

Pè-a.s., then there exists a probability measure P0 on C[0, T ], equivalent to all the

Pè and such that for all è

dPè

dP0

(X ) � exp

�T

0

b(X s, è)

ó 2(X s)
dX s ÿ 1

2

�T

0

b2(X s, è)

ó 2(X s)
ds

" #
, (31)

Pè-a.s. This fact follows from Girsanov's theorem (KARATZAS and SHREVE, 1991,

theorem 3.5.1 or JACOD and SHIRYAYEV, 1987, theorem III.3.24 for a more general

result). The Radon-Nikodym derivative LT (è) � dPè=dP0 is called the likelihood

function and the maximum likelihood estimator (MLE) is de®ned as the point where

è 7! LT (è) attains its maximum.

It is important to note that for the derivation of (31) it is essential that the diffusion

coef®cient a does not depend on the parameter. The dominating measure P0 is

constructed by using Girsanov's theorem to remove the drift from X . In other words,

P0 is the law of the weak solution of the SDE

dX t � ó (Xt) dWt, X0 � x:

Therefore, we can only use Girsanov's theorem to ®nd the dominating measure P0

and the expression (31) when ó does not depend on the parameter è. In subsections

3.1.3 and 3.2 we will discuss estimation problems when ó depends on è.

For the study of the asymptotic properties of the MLE we refer to KUTOYANTS

(1984). Suppose that the diffusion X is ergodic, with invariant law ðè, and that b is

differentiable with respect to è, denote the derivative by _b. For all è, suppose that the

following quantity is ®nite:
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I(è) �
�1
ÿ1

_b(x, è)

ó (x)

 !2

ðè(dx): (32)

This quantity is called the Fisher information. If è 7! I(è) is bounded away from 0,

then (under some extra regularity conditions) the MLE is consistent, and we have

for all è that the law of
����
T
p

(è̂T ÿ è) under Pè converges to the normal law N (0,

I(è)ÿ1) as T !1, i.e.

L f
����
T
p

(è̂T ÿ è)jPèg ! N (0, I(è)ÿ1): (33)

Hence, by the CrameÂr±Rao theorem, the estimator is asymptotically ef®cient.

3.1.2 Discretization of the likelihood

Consider the ergodic diffusion X de®ned by (30) with the drift b that again satis®es

some smoothness and growth conditions. But unlike the previous section, suppose

that X is observed at certain equidistant instants t n
i � ihn, i � 0, 1, . . . , n; hn . 0

is called the discretization step. Put T � nhn, for simplicity. Let the sample size n

increase unboundedly and consider again the problem of estimating the parameter è
of the drift.

The ®rst approach to this problem is based on the straightforward discretization of

the continuous likelihood (31). We simply substitute the Lebesgue integral by the

corresponding Riemann sum, and the stochastic integral by the corresponding

ItoÃsum. When the drift coef®cient b is differentiable with respect to è, we obtain the

approximate score function

~ln(è) �
Xn

i�1

_b(X t n
iÿ1

, è)

ó 2(X t n
iÿ1

)
[X t n

i
ÿ X t n

iÿ1
ÿ hnb(X t n

iÿ1
, è)]: (34)

We can now de®ne the estimator ~èn as the zero of the estimating function

è 7! ~ln(è). Asymptotic properties of the estimator strongly depend on the behaviour

of the discretization step hn as n!1. As is shown in FLORENS±ZMIROU (1989) the

estimator is consistent if hn ! 0 and T � nhn !1 as n!1. If, in addition,

nh2
n ! 0, then the estimator is also asymptotically normal and asymptotically

ef®cient as T � nhn !1 in the sense that

L f
��������
nhn

p
(~èn ÿ è)jPèg ! N (0, I(è)ÿ1) (35)

where I(è) is the Fisher information (32); cf. (33). However, when hn is bounded

away from 0 as n!1, the estimator is not even consistent.

3.1.3 Method of Bibby and Sùrensen

As was mentioned in the preceding section, if the discretization step is independent

of the sample size, i.e. hn � h, the estimation function (34) does not yield a

consistent estimator. In this situation BIBBY and SéRENSEN suggest in BIBBY and

SéRENSEN (1995) an adjustment of (34) to get a zero-mean martingale as a renewed
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scoring function, and to remove thus the estimation bias. Departing in this manner

from the likelihood function (31) and the corresponding score (34), Bibby and

Sùrensen allow the parameter è also to appear in the diffusion coef®cient ó . Thus

the SDE considered in BIBBY and SéRENSEN (1995) is given by

dX t � b(Xt, è) dt � ó (X t, è) dWt, X0 � x, (36)

with the parameter è to be estimated from the observations fX ti
gi�0,1,..., n at

equidistant instants ti � ih. This results in an estimating function of the following

form:

~Gn(è) �
Xn

i�1

_b(X tiÿ1
, è)

ó 2(X tiÿ1
, è)

[X ti
ÿ m(X tiÿ1

, è)],

where

m(x, è) � Eè[X hjX 0 � x]: (37)

As it is well known, this conditional moment is related to the drift coef®cient in the

follow manner:

m(x, è) � x� hb(x, è)� o(h): (38)

Its explicit expression, however, is often unknown, in which case one cannot utilize

the estimating function ~Gn. We will turn back to this situation later.

Obviously, ~Gn is one particular choice out of the entire class of martingale

estimating functions of the form

Gn(è) �
Xn

i�1

giÿ1(è)[X ti
ÿ m(X tiÿ1

, è)] (39)

where giÿ1(è) is a certain function of observations X 0, . . . , X tiÿ1
, depending on the

unknown parameter è. Under certain regularity conditions, these estimating

functions de®ne a class of consistent and asymptotically normal estimators, see

BIBBY and SéRENSEN (1995). Furthermore, they show that there is an optimal

estimating function within the class (39) that yields the smallest possible

asymptotic con®dence interval around è. By using arguments of HEYDE (1997)

(cf. also DZHAPARIDZE and SPREIJ, 1993), this optimal estimating function is

constructed as follows:

G�n (è) �
Xn

i�1

_m(X tiÿ1
, è)

m2(X tiÿ1
, è)

[X ti
ÿ m(X tiÿ1

, è)] (40)

where

m2(x, è) � Eè[(X h ÿ m(x, è))2jX 0 � x] (41)

is the conditional variance. It is related to the diffusion coef®cient as follows:

m2(x, è) � hó 2(x, è)� o(h): (42)
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But its explicit expression is often unknown and the corresponding optimal

estimator è�n , the zero of (40), is impossible to ®nd. This situation will be discussed

in sections 3.2.2 and 3.2.3.

3.2 Inference based on the discrete likelihood

3.2.1 Transition probabilities

Suppose meanwhile that not only the ®rst two conditional moments (37) and (41)

but the conditional distribution itself is known. That is the situation when necessary

growth conditions on b and ó are satis®ed so that the solution of the SDE (36) is a

Markov process (see KARATZAS and SHREVE, 1991, section 5.4.C) which is

characterized by the transition densities p(t, x, y, è) known up to the parameter è
to be estimated from observations fX Ti

gi�0,1,..., n at certain instants 0 � T0 ,

T1 , � � � , Tn. We have for all t > 0, x 2 R and B 2 B (R):

P(X t 2 BjX 0 � x) �
�

B

p(t, x, y, è) dy:

Given X 0 � x0, the vector (X T1
, . . . , X Tn

) has the product density

(x1, . . ., xn) 7! p(T1 ÿ T0, x0, x1, è) � � � p(Tn ÿ Tnÿ1, xnÿ1, xn, è):

Hence the MLE è̂n for the parameter è renders the likelihood

è 7! Ln(è) :�
Yn

i�1

p(Ti ÿ Tiÿ1, X Tiÿ1
, X Ti

, è) (43)

as large as possible. To establish the consistency, asymptotic normality and

asymptotic ef®ciency of this estimator one can apply the classical theory of

statistical inference about ergodic Markov chains (see BILLINGSLEY, 1961), by

checking requirements on transition densities in terms of b and ó . For this purpose

DACUNHA-CASTELLE and FLORENS-ZMIROV (1986) study the relationship between

the diffusion X and the embedded Markov chain fX Ti
gi�0,1,..., n.

3.2.2 Pedersen's method

Consider the same estimation problem as in the preceding section, but now in a

more realistic situation in which the transition densities of the process X are

unknown. The matter becomes much more complicated. However, there are some

possibilities to treat it. In this section we will describe one particular approach

proposed by PEDERSEN (1995a, 1995b) and in the next section a different approach

by KESSLER (1997).

The theoretical part of PEDERSEN's (1995a) paper consists of constructing a certain

`approximate log-likelihood', an approximation to the log-likelihood l n(è) �
log Ln(è) of the previous section, cf. (43). This is based on the method developed by

KLOEDEN and PLATEN (1992) for constructing approximations to the transition

densities p(t, x, y, è). The procedure begins with discretizing the SDE (36) accord-
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ing to the so-called Euler scheme as follows: for ®xed N > 1, de®ne t k � k(t=N ),

for k � 0, . . ., N. Then the process Y N � fY N
t k
gk�0,..., N is de®ned recurrently by

Y N
0 :� x, Y N

t k�1
:� Y N

t k
� b(Y N

t k
, è)

t

N
� ó (Y N

t k
, è)(W t k�1

ÿ W t k
): (44)

The process Y N is called Euler approximation to the process fX sgs< t, under

Pè � Pè,x, see KLOEDEN and PLATEN (1992). Taking into consideration (44), we

see that the random variable Y N
t � Y N

t N
has a density y 7! pN (t, x, y, è) with

respect to the Lebesgue measure, given by

p1(t, x, y, è) � ö
yÿ xÿ tb(x, è)����

T
p

ó (x, è)

 !
(45)

and

pN (t, x, y, è) � Eè,x p1

t

N
, Y N

t Nÿ1
, y, è

� �
, N > 2, (46)

where ö is the standard normal density. These pN (t, x, y, è) are the desired

approximations to the respective transition densities p(t, x, y, è). Furthermore, the

corresponding approximate log-likelihood function

lN
n (è) �

Xn

i�1

log pN (Ti ÿ Tiÿ1, X Tiÿ1
, X Ti

, è) (47)

is such that lN
n (è)! ln(è) in Pè,x-probability, as N !1; see PEDERSEN (1995a)

for more details.

Surely, this is not enough to guarantee nice asymptotic properties of the approx-

imate MLE, a maximizer of (47), which should share the asymptotic properties of the

MLE of the previous section. Necessary arguments towards this conclusion can be

found in PEDERSEN (1995b) though in this part of his work only some particular

models are rigorously treated.

Finally, note that in practice we need to evaluate lN
n (è), hence expressions of type

pN (t ÿ s, X s, X t, è) have to be evaluated. For N � 1 the expression (45) is explicit,

so the problem arises for N > 2. But in the latter case we have (46). Taking this into

consideration, Pedersen suggests to simulate according to (44) a large number of

independent observations fYmgm�1,..., M of Y N
t Nÿ1

and then to form the average

1

M

XM

m�1

p1

t

N
, Ym, y, è

� �
that approaches, with increasing M , the desired expectation on the right hand side

of (46). Surely, this procedure is quite demanding numerically, since at every

evaluation of the function è 7! lN
n (è) the simulations are anew carried out.
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3.2.3 Kessler's method

Unlike the previous sections, we now consider the diffusion model with the drift

and diffusion coef®cients b and ó depending on two different parameters è and ç,

respectively. In KESSLER (1997) the method of estimating these parameters

á :� (è, ç) is suggested by maximizing a certain contrast functional of obser-

vations, that is a functional of the discretized trajectory fX t n
i
g0<i<n at equidistant

instants tn
i � ihn.

As in the previous section, the transition densities of the consecutive observations

are supposed to be unspeci®ed. This means, of course, that the ®rst two conditional

moments

m(X t n
iÿ1

, á) � Eá[X t n
i
jX t n

iÿ1
] (48)

and

m2(X t n
iÿ1

, á) � Eá[(X t n
i
ÿ m(X t n

iÿ1
, á))2jX t n

iÿ1
] (49)

are unspeci®ed as well, cf. (37) and (41). If these moments were speci®ed, one

would be able to utilize the following contrast function:Xn

i�1

(X t n
i
ÿ m(X t n

iÿ1
, á))2

m2(X t n
iÿ1

, á)
� log m2(X t n

iÿ1
, á)

" #
: (50)

The latter may be interpreted as a log-likelihood function, provided the unknown

transition densities are approximated by Gaussian densities with the parameters (48)

and (50).

In the case of unknown m and m2, Kessler suggests to substitute in (50) their

closed approximations. For instance, take into consideration (38) and (42) which

yield the following approximations

m(x, á) ' x� hnb(x, è) (51)

and

m2(x, á) ' hnó
2(x, ç): (52)

Upon this substitution, we get the contrastXn

i�1

(X t n
i
ÿ X t n

iÿ1
ÿ hnb(X t n

iÿ1
, è))2

hnó 2(X t n
iÿ1

, ç)
� log hnó

2(X t n
iÿ1

, ç)

" #
: (53)

The estimators ~án � (~èn, ~çn) for the parameters á � (è, ç) are then obtained by

maximizing the contrast (53). Note that with ç ®xed, the maximization of (53) with

respect to è leads to the same estimator ~èn as in section 3.1.2, de®ned as the zero

of (34).

Suppose now that the sample size n increases unboundedly, while the discretization

step hn tends to 0 in such a way that nhn !1. The situation then is similar to that

of section 3.1.2 and the maximum contrast estimators ~án � (~èn, ~çn) are consistent,

i.e. they converge in probability to the true value of the estimated parameters. If, in
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addition, nh2
n ! 0, then the estimators are asymptotically normal and asymptotically

ef®cient in the sense that
��������
nhn

p
(~èn ÿ è) and

p
n(~çn ÿ ç) are asymptotically indepen-

dent and distributed according to N (0, I(è)ÿ1) and N (0, I(ç)ÿ1), respectively. As

usual I(è) and I(ç) are the corresponding Fisher information quantities: I(è) is given

by (32), while

I(ç) � 1

2

�1
ÿ1

@

@ç
log ó 2(x, ç)

� �2

ðè(dx): (54)

For the exact formulation of this result, see KESSLER (1997), theorem 1 on p. 216,

and remark 2 on the same page concerning the Fisher information quantity (54); cf.

also GENON-CATALOT and JACOD (1993). This is in fact a simple particular case of

Kessler's theorem (which is in full agreement with the discussion in section 3.1.2 ±

recall (35)). The general assertion is much more complicated. We do not want to

carry the reader too far a®eld, therefore we restrict ourselves to a few remarks of a

general nature.

Note ®rst that the condition nh2
n ! 0 tells us how frequent the observations should

be. If the observations are less frequent so that only a less restrictive condition

nh p
n ! 0 with some p . 2 can be satis®ed, then the contrast (53) fails and one has to

construct ®ner approximation to (50). This construction, based on further expansion

of m and m2 in powers of hn (the above approximations (51) and (52) involve only

the ®rst order term), is quite cumbersome to be presented here; cf. KESSLER (1997).

We only note that the following result by FLORENS-ZMIROU (1989), lemma 1, plays a

key roÃle. Let Lá be the generator of the diffusion de®ned by

Lá f (x) � b(x, è)
@ f

@x
(x)� 1

2
ó 2(x, ç)

@2 f

@x2
(x)

and Lk
á its k th iterate. Besides, let L0

á be the identity operator. Then we get the

following power series expansion up to the power hl
n say, of the conditional

moments: for a suf®ciently smooth function f

Eá[ f (X t n
i
)jX t n

iÿ1
] '

Xl

j�0

h j
n

j!
L j
á f (X t n

iÿ1
) (55)

(for the remainder term, see FLORENS-ZMIROU (1989), formula (2.12)). Take, for

instance, f (x) � x to get by (48) and (55) the desired expansion

m(x, á) '
Xl

j�0

h j
n

j!
L j
á f (x)

where L0
á f (x) � x, L1

á f (x) � b(x, è), L2
á f (x) � b(x, è) _b(x, è)� 1

2
ó 2(x, ç)�b(x, è)

and so on.
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4 Inference for partially observed diffusion processes

4.1 Inference for continuous observations

Consider the situation where one deals with a bivariate diffusion process with only

one observable component. Then one has ®rst to replace the semimartingale

decomposition of the bivariate diffusion that is given w.r.t. some underlying

®ltration with the decomposition that is associated with the ®ltration generated by

the observed component. The speci®cation of the drift and diffusion coef®cients in

this decomposition (call them the ®ltered drift and ®ltered diffusion coef®cients)

belongs to the realm of (non-linear) ®ltering theory, see LIPTSER and SHIRYAYEV

(1977). The technical problem one is immediately faced with is the computation of

these coef®cients. This is only possible in rare circumstances of which the case,

where one observes a bivariate Gaussian process that is the solution of a linear

stochastic differential equation, is the most important. In this case the Kalman-Bucy

®lter applies, although still closed form solutions are not available.

If one wants to estimate parameters, an obvious next step is to give an expression

of the likelihood functional. This expression is similar to (31) and contains the

®ltered drift and diffusion coef®cients, so a maximum likelihood approach is not

straightforward.

In the next subsection we will focus our attention to the seemingly even more

complex situation in which the observed process is known at discrete time points

only. However, under conditions that ensure ergodicity, solutions to this inference

problem exist.

4.2 Inference for discrete observations

In this subsection we continue to investigate estimation problems for discretely

observed diffusions. The difference with subsections 3.1 and 3.2 is that we allow

the diffusion coef®cient (with the interpretation of volatility) of the observation

process to be a stochastic process itself, again a diffusion and moreover that this

volatility process itself is unobserved. So we ®nd ourselves in the framework

described at the beginning of this section.

In this part of the paper we focus on recent contributions by GENON-CATALOT et al.

(1998, 1999) to estimate parameters in such a situation. Consider the following

stochastic volatility model. For the log price process S we assume

dSt � ó t dBt, S0 � 0,

whereas

dVt � b(Vt, è) dt � a(Vt, è) dWt,

with Vt � ó 2
t , describes the evolution of the volatility. Here B and W are assumed

to be independent Brownian motions. Notice that this model is not capable of

incorporating the leverage effect discussed in section 2; for this one needs

correlated Brownian motions.

We moreover assume that V is an ergodic diffusion on (0, 1), with a stationary
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density ðè. The aim is to estimate the parameter è based on the observations

S0, Sh, . . . , Snh.

Before we are going to discuss how to approach this problem, we wish to make a

remark concerning the ®ltering problem that we brie¯y touched upon. Suppose,

contrary to what we stated above, we would have a continuous record of observations

from St, whereas Vt is still unobserved. In ®ltering one of the issues is to ®nd a

stochastic differential equation for the conditional density (assuming that it exists) of

Vt given Sô, ô 2 [0, t]. Now, since S is a Brownian martingale with (d=dt)hSi � Vt,

it follows that Vt is measurable w.r.t. the ó -algebra generated by Sô, ô 2 [0, t]. In

other words, along with S we also observe V . Hence the ®ltering problem in this

situation becomes degenerate and for the parametric inference problem we can in

principle use the methods of subsection 3.1.1. The situation with discrete observa-

tions of S that we introduced above is entirely different. There are interesting aspects

of ®ltering problems, see e.g. BRIGO and HANZON (1998) for a recent contribution. In

the present subsection ®ltering will not be considered anymore and we turn back to

the parameter estimation problem outlined above.

De®ne for k � 1, . . ., n the random variables

X k :� 1���
h
p (Skh ÿ S(kÿ1)h) � 1���

h
p
� kh

(kÿ1)h

ó t dBt:

Then, given F V
1, we ®nd that X k has a N (0, Vk) distribution, with

Vk � 1

h

� kh

(kÿ1)h

Vt dt:

Hence it holds for the characteristic function of Xk that

EeiuX k � EE[eiuX k jF V
1] � Eeÿ

1
2
u2 Vk , 8 u 2 R:

From this we see that for small h it holds that Vk � Vkh and hence we ®nd that the

characteristic function of Xk is approximately equal to

Eeÿ
1
2
u2 Vkh �

�
R�

eÿ
1
2
u2vðè(v) dv,

which is just the characteristic function of N
������
V0

p
, where N stands for a N (0, 1)

distributed random variable, independent of V0. For the density qè of N
������
V0

p
it

holds that

qè(x) �
�

R�

1��������
2ðv
p exp ÿ x2

2v

� �
ðè(v) dv, (56)

which yields the observation that X k has approximately an absolutely continuous

distribution with density qè, if h is small. Concerning the sampling time instants we

make the following assumption.

h � hn ! 0 and nhn !1: (57)
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Then it is shown in GENON-CATALOT et al. (1998) by means of an ergodic theorem

that under certain regularity conditions

1

n

Xn

k�1

ö(X k)!P
è
�
ö(x)qè(x) dx (58)

for all ö in a class of (vector-valued) functions.

If one imposes moreover that nh2
n ! 0, then one can show using a central limit

theorem for ergodic processes, that under Pè

��������
nhn

p 1

n

Xn

k�1

ö(X k)ÿ
�
ö(x)qè(x) dx

 !
!L N (0, Ó) (59)

where the covariance matrix Ó depends in a certain way on ö and ðè (see GENON-

CATALOT et al. (1999) for the relevant formulae).

These asymptotic results led GENON-CATALOT et al. (1999) to studying M-

estimators (also referred to as contrast estimators) that maximize a criterion of the

type

M n(è) � 1

n

Xn

k�1

m(è, X k)

or, alternatively, are zeros of such a criterion. The results of (58) and (59) imply

that these estimators enjoy desirable asymptotic properties like consistency and

asymptotic normality for hn ! 0, nhn !1 and nh2
n ! 0.

For example, based on the fact that X k approximately has density qè for small h,

Genon-Catalot et al. consider the estimator è̂n that maximizes

è 7! 1

n

Xn

k�1

log qè(X k): (60)

In this case, the criterion function depends on the parameter è only through the

stationary density ðè (see equation (56)). This implies in particular that only the

parameters that are evolved in ðè can be identi®ed by this criterion. Genon-Catalot

et al. apply this for instance to the model described in section 2.3 by equations (27)

and (28), with c � 0, b1 . 0 and 2b2 � ä2 . 0. As is mentioned in section 2.3, in

this case the stationary distribution of V is inverse gamma with parameters

è1 � 1� 2b2=ä2 and è2 � 2b1=ä2. In terms of the parameter è � (è1, è2) the

criterion (4.5) then takes the form

è 7! 1

n

Xn

k�1

è1 log è2 ÿ log
Ã(è1)

Ã(è1 � 1
2
)
ÿ è1 � 1

2

� �
log è2 � 1

2
X 2

k

� �" #
:

If (57) holds as n!1, the maximizer è̂n of this expression is a consistent

estimator of è. If moreover nhn ! 0 as n!1, the estimator is asymptotically

normal.
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In general an analytic expression for qè will not be available. But, since qè depends

on ðè through (56) and ðè depends on the known functions b(:, è) and a(:, è)

through (5), numerical integration and optimization can in principle be carried out.

The same remark applies to the alternative approach outlined below.

Another approach is to estimate the moments of the stationary distribution.

Observe that it follows from equation (56) that under the condition that ðè has a

®nite moment of order á�
x2áqè(x) dx � C2áDè(á), (61)

where C2á is the moment of order 2á of the N (0, 1) distribution and Dè(á) the

moment of order á of ðè. Then, if n!1 (57) it follows from (58) that

1

nC2á

Xn

k�1

X 2á
k !

Pè

Dè(á),

and consequently

D̂(á)n,h :� 1

nC2á

Xn

k�1

X 2á
k

is a consistent estimator of Dè(á), that is moreover asymptotically normal under the

condition that nh2
n !1. Because (58) and (59) are valid for vector-valued

functions ö, one is able to estimate several moments of ðè simultaneously with

consistent, asymptotically normal estimators. If the parameter è happens to be a

smooth function of some moments of ðè, then we can apply the delta-method to

®nd a consistent, asymptotically normal estimator of è if we de®ne è̂ as the same

smooth function of the sample moments.

5 Outside the Brownian world

As we have already mentioned in section 2, the Black±Scholes±Samuelson

framework has been proved to be too rigid to account for various phenomena that

have been observed in practice. In this section we focus on one of the alternatives/

relaxations of this model, although it should be said that there are plenty of

alternatives. Not only in stochastic modeling (stable processes, long range

dependence, fractionally integrated processes), but also in deterministic modeling

(dynamical systems, chaos).

The idea that we follow in this section, is to replace the Brownian motion with

another process, or rather a member of a class of processes of which Brownian

Motion is a member too, the LeÂvy processes. We like to point out at this stage that

the LeÂvy process that is going to be used (the hyperbolic LeÂvy motion) is not a

generalization of Brownian motion, since it has no Gaussian component, as we shall

see later on.
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Consider again the stock price evolution according to the SDE that describes S as

a geometric Brownian motion:

dSt � St(ì dt � ó dWt):

Alternatively, we have that log (St=Ss) follows a normal distribution with mean

(ìÿ 1
2
ó 2)(t ÿ s) and variance ó 2(t ÿ s) for all t . s, the log-returns are normally

distributed. Many attempts have been made to model these returns by means of

other distributions, e.g. Pareto distributions as suggested by MANDELBROT (1963).

These attempts were not always successful, but recently a new class of distributions

has enjoyed some popularity and promising results have been reported. This class is

that of the hyperbolic distributions and was introduced by Barndorff±Nielsen in a

context (turbulence theory) that is completely different from ®nancial modeling (see

e.g. BARNDORFF±NIELSEN (1986) In EBERLEIN and KELLER (1995) have made an

attempt to use this class to ®t ®nancial data. In the sequel we outline their

approach.

First we have to observe that typical path properties of Brownian motion are

invariant under time and space scaling. Hence Eberlein and Keller argue, that if one

uses Brownian motion as a vehicle to model stock prices, we should observe a similar

invariance under change of time scale. In particular, they looked at intradaily data,

and what one observes then is (not surprisingly of course) a piecewise constant

behaviour of stock prices. This is a ®rst indication to use jump processes for

modeling.

Eberlein and Keller used daily BASF and Deutsche Bank data to test the normality

hypothesis by different methods. Qualitatively, QQ-plots and density plots already

showed a large discrepancy between the empirical and ®tted normal distributions.

But also ÷2 tests and tests based on kurtosis and skewness rejected the normal

hypothesis at very small signi®cance levels. Therefore we have to look for alter-

natives, for instance á-stable distributions. As a reminder we mention that symmetric

á-stable distributions are those whose characteristic functions ö are of the form

ö(t) � exp(ÿ(cjtj)á), with c . 0 and 0 ,á < 2. Notice that for á � 2 we get a

normal and for á � 1 we get a Cauchy distribution. A survey of modeling with

Pareto and stable distributions and distributions with other stability properties can be

found in MITTNICK and RACHEV (1993).

One of the tests to see whether stable distributions are capable of explaining data is

based on the following observation. If X 1, . . . , X n are independent drawings from

the same á-stable distribution, then also linear combinations
Pn

i�1ai X i have a stable

distribution with same coef®cient á. What several authors have done is to base tests

on estimators of á that use sums of data of different lengths. It turned out that the

estimators of á had a tendency to grow with the sum length and quite often this

resulted in numerical values close to 2 for relatively moderate lengths, indicating that

(at least from this point of view) normality seems to be a reasonable assumption for

modeling data over longer time intervals.

We now turn to hyperbolic distributions. From the observation that the log density
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of the normal distribution is a parabola, the name of the hyperbolic distribution stems

from the fact that the log density is a hyperbola. Explicitly, the formula for this

density is given by����������������
á2 ÿ â2

p
2áäK1(ä

����������������
á2 ÿ â2

p
)

exp(ÿá
���������������������������
ä2 � (xÿ ì)2

p
� â(xÿ ì)):

In this expression K1 is the so-called modi®ed Bessel function of the third kind

with index 1 (a more precise description is not relevant for the present paper). The

parameters á and â satisfy the restriction á. â and are called the shape

parameters. The ä and ì are the location and scale parameters. One often uses a

different parametrization by leaving ì and ä unchanged and by using î �
(1� ä

����������������
á2 ÿ â2

p
)ÿ1=2 and ÷ � îâ=á. This has the advantage that the new shape

parameters î and ÷ are location and scale invariant. They satisfy the restrictions

j÷j, î, 1, describing the so called `shape triangle'. It follows from properties of

the Bessel function and the characteristic function of the hyperbolic distribution

that in the limit situations corresponding to the cases î! 0, î! 1, ÷! �î one

gets the normal distribution, the Laplace distribution and the generalized inverse

Gaussian distribution. This shows that hyperbolic distributions form a rather ¯exible

class of distributions, which already (partly) explains why good data ®t has been

found in a number of circumstances.

For future use we mention that hyperbolic distributions can be obtained as mixtures

of normals, where the mixing distribution (a generalized inverse Gaussian distribu-

tion) in¯uences both mean and variance of the normals.

Estimation of the parameters using the same data set that has been reported above

yielded the following conclusions. The estimated hyperbolic distribution was nearly

symmetric and the shape parameters were far from the values that correspond to

normality. The QQ and density plots corresponding to the ®tted hyperbolic distribu-

tion showed a remarkable ®t and using chi-square and Kolmogorov±Smirnov tests

the hypothesis that the underlying distribution was a hyperbolic one turned out to be

acceptable as well. Besides, larger data sets were used to carry out similar estimation

procedures and one of the conclusions was that for aggregation (or increasing the

time lags over which the returns were calculated) the ®tted hyperbolic distribution

was close to a normal one (estimated î and ÷ close to zero), in agreement with the

estimation results for the stability index of a stable distribution under temporal

aggregation that we mentioned above.

However one must take care with ®tting hyperbolic (or other light-tailed) distribu-

tions, especially when outliers have been observed, possibly caused by the fact that

the underlying distribution is heavy-tailed. In this case one still often gets a good ®t

of a such a distribution, especially when it has many parameters, in the center of the

observations, but in the tails it may be poor.

Having established the fact that hyperbolic distributions form a ¯exible class that

showed a good ®t to the data, the next step Eberlein and Keller undertook was to
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come up with a dynamical model that explains a hyperbolic distribution of the data.

Barndorff±Nielsen and Halgreen (see also HALGREEN (1979)) showed in®nite

divisibility of the generalized inverse normal distribution and this together with the

characterization of a hyperbolic distribution as a mixture of normals with the gen-

eralized inverse normal distribution as the directing one yields that also the

hyperbolic distributions are in®nitely divisible. This property calls for the use of

LeÂvy processes as a dynamical model.

To simplify things we will in view of the previously observed ®t of a symmetric

distribution henceforth assume that the hyperbolic distributions are centered around

the origin, so â � ì � 0. With æ � áä we get the following density

hypæ,ä(x) � 1

2äK1(æ)
exp ÿæ

�������������
1� x2

ä2

r !
:

Consider now the LeÂvy process Z (which by de®nition has stationary and

independent increments) that is such that Z0 � 0 and such that Z1 has the

hyperbolic density hypæ,ä. The choice of t � 1 as the time instant to impose the

hyperbolic distribution is motivated as follows. Observations come to us at

equidistant times. Then we normalize the time intervals such that they have unit

length. Hence all Z t ÿ Z tÿ1 now have a hyperbolic distribution and for integers

t 6� s the random variables Zs ÿ Zsÿ1 and Z t ÿ Z tÿ1 are independent; in particular

the conditional distribution of Z t ÿ Z tÿ1 given Z1, . . . , Z tÿ1 is the same as the

unconditional one. Notice that we now also determined the distribution of a (®nite)

sequence Z1, . . ., Z n for any n 2 N.

The process Z is called the hyperbolic LeÂvy motion. It can be shown that Z t has

moments of all orders, whereas only the distribution of Z1 belongs to the hyperbolic

ones. Another feature of this LeÂvy process is that it has no Gaussian part, so it is a

pure jump process.

It is possible (see EBERLEIN and KELLER (1995)) to give an expression for the

density g of the LeÂvy measure. This expression is rather complicated in that it

involves two more Bessel functions. But one can deduce that in a neighborhood of

the origin g(x) behaves like 1=x2, indicating that Z (like many other LeÂvy processes)

has in®nitely many small jumps in every time interval. This already shows that such

a LeÂvy process is a natural candidate to model ®nancial data that evolve in such a

way that small changes frequently occur.

In principle there are two natural candidate models for stock price evolution based

on a hyperbolic LeÂvy motion. The ®rst model arises when we replace the Brownian

motion in the Samuelson model by the hyperbolic LeÂvy motion, thus

dSt � rStÿ dt � Stÿ dZ t: (62)

The problem with this equation is that log-returns over intervals of unit length do

not have the hyperbolic distribution we started with and that S also takes on

negative values. So we need to use another model that does not have these

drawbacks. This happens for
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St � S0 exp(rt � Z t): (63)

Eberlein and Keller suggest to use this model, but they immediately point out a

drawback to use it. This model describes an incomplete market, in the sense that

there is no unique equivalent martingale measure and hence a problem arises if one

uses this model to price ®nancial derivatives like options. In EBERLEIN and KELLER

(1995) one particular equivalent martingale measure is constructed using so called

Esscher transforms and a pricing formula for a European call option is given. In

EBERLEIN and JACOD (1987) the whole set of possible option prices corresponding

to the set of equivalent martingales measures is characterized.

Not only hyperbolic LeÂvy motion as a background driving process results in

hyperbolic distribution of the returns. In BIBBY and SéRENSEN (1998) another model

is proposed to get hyperbolic distributions. They assume that the price process is

described by an ergodic diffusion, where the drift and diffusion coef®cients are such

that the invariant distribution is hyperbolic. To be explicit, we assume that

dSt � b(St) dt � ó (St) dWt:

Then as we mentioned in subsection 2.2, under certain stationarity and ergodicity

conditions, the solution has an absolutely continuous stationary distribution with

density proportional to

1

s(x)ó 2(x)
: (64)

What has to be done then, is to choose drift and diffusion terms in such a way that

(64) is the density of a hyperbolic distribution up to a normalizing constant. This

can be accomplished by choosing

b(x) � 1

2
v(x)

d

dx
log( f (x)v(x)) (65)

ó 2(x) � v(x), (66)

where f is a function proportional to the density of a hyperbolic distribution and v
is such that the conditions for ergodicity are satis®ed (which happens if

v(x) � f (x)ã for some ã 2 [0, 1]). With the special choice ã � 1 and estimated

parameters a good ®t of a hyperbolic distribution to prices of VW stock was found

in BIBBY and SéRENSEN (1998).
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