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Abstract

We derive an analytic approximation to the credit loss distribution of large portfolios
by letting the number of exposures tend to infinity. Defaults and rating migrations for
individual exposures are driven by a factor model in order to capture co-movements in
changing credit quality. The limiting credit loss distribution obeys the empirical stylized
facts of skewness and heavy tails. We show how portfolio features like the degree of
systematic risk, credit quality and term to maturity affect the distributional shape of
portfolio credit losses. Using empirical data, it appears that the Basle 8% rule corre-
sponds to quantiles with confidence levels exceeding 98%. The limit law’s relevance for
credit risk management is investigated further by checking its applicability to portfolios
with a finite number of exposures. Relatively homogeneous portfolios of 300 exposures
can be well approximated by the limit law. A minimum of 800 exposures is required
if portfolios are relatively heterogeneous. Realistic loan portfolios often contain
thousands of exposures implying that our analytic approach can be a fast and accurate
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alternative to the standard Monte-Carlo simulation techniques adopted in much of the
literature. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Increasingly, banks are using portfolio models to quantify the aggregate
credit risk they are exposed to through their loan and trading books. These
models generate the distribution of potential losses due to credit risk, as well as
summary statistics like standard deviations and percentiles. Loss distributions
are used by banks internally to measure the profitability of (subsets of)
transactions in relation to the risk they contribute to the portfolio. This in-
formation can result in either laying off certain exposures, for example through
securitization, or taking on additional exposures. Additionally, the loss dis-
tribution can be used to determine capital requirements (with a certain level of
confidence) against unexpected credit risk losses. Similarly, it is possible to use
the portfolio models to analyze portfolios of assets to be securitized.

The increased use of credit risk portfolio models by financial intermediaries
potentially has a significant impact on the pricing of credit-risky instruments in
financial markets. A parallel may be drawn with the relationship between eq-
uity returns and compensation for systematic risk, as established by the
Modern Portfolio Theory of Markowitz (1952) and the Capital Asset Pricing
Model of Sharpe (1964). One can also envisage far-reaching implications of
this development for the capital adequacy regime to which banks are subjected.
Since the introduction of the Basle Accord in 1988, see Basle Committee on
Bank Supervision (1988), capital charges are determined for individual assets.
These charges are summed to arrive at the capital required for a bank. The
Basle rules of 1988 ignore portfolio effects and levy the same capital charge for
corporate debtors of varying creditworthiness. As a result, banks have become
actively engaged in ‘regulatory arbitrage’ transactions. These transactions re-
duce the regulatory capital charge without decreasing the credit risk exposure
proportionally. This undermines the effectiveness of the capital adequacy ‘re-
gime. The shortcomings of the current regime also distort price signals in the
market; see ISDA (1998) and IIF (1998) for an overview of shortcomings of the
current regime. See also the new proposals to revise the 1988 capital accord,
Basle Committee on Bank Supervision (1999).

The general characteristics of the credit risk loss distribution resulting from
portfolio models are badly understood. It is often observed that this distri-
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bution is heavy-tailed and skewed, but the prominence of these properties
seems to depend on the composition of the specific portfolio under consider-
ation. The precise mechanism linking portfolio characteristics to skewness and
heavy tails is relatively unexplored. In this paper, we derive an efficient analytic
approximation to the loss distribution if the portfolio contains a large number
of exposures. This approximation enables us to study the sensitivity of the loss
distribution, and in particular the credit loss tail, to exposure characteristics
like credit quality, the degree of systematic risk, and the maturity profile. The
loss profile of portfolios with a realistic diversity in portfolio characteristics can
be approximated fairly well, even if they are medium-sized, containing say 300—
800 exposures. Compared to Monte-Carlo simulation of portfolio losses, our
approximation is much more efficient in practice.

The credit quality of individual exposures is usually expressed by their
ratings. These can be assigned either by external rating agencies such as
Standard & Poor’s and Moody’s, as is the case in Credit Metrics of J.P. Morgan
(1999), or by banks internally. Each debtor’s rating is associated with a certain
probability of default. An alternative route for estimating default probabilities
constitutes the option-theoretic framework pioneered by Merton (1974), and
later extended by Black and Cox (1976) and Longstaff and Schwartz (1995). In
this approach, the equity of a company is viewed as an option on its assets with
the strike price equal to the level of liabilities. The portfolio model of KMV
combines this approach with historical default statistics in order to assign
default probabilities to debtors, provided these have equity quoted on a stock
exchange, Kealhofer (1995).

Co-movements in credit quality changes for different debtors may be
triggered by some common, underlying macro-factors. For example, default
rates tend to rise during recessions, see also Jonsson and Fridson (1996) and
Fons (1991). The more a portfolio of exposures is diversified over different
countries and industries, the smaller the ‘average’ correlation will be in the
portfolio. We show that this diversification decreases the likelihood of ex-
treme portfolio credit losses. The correlation effect on the shape of the loss
distribution also depends on the initial credit quality of the portfolio. Zhou
(1997) shows that for a given correlation between the asset values of two
companies, the correlation between default events of both companies is
higher when the creditworthiness of both is lower. Our numerical results
confirm that for a given correlation a higher portfolio quality lowers extreme
credit loss quantiles.

To our knowledge, only Carey (1998) and Gordy (1999) have thus far
performed a systematic study of the tails of the credit loss distribution. The
former study uses historical data on exposures and credit losses stemming
from private placements by US life insurers. Exposures are sampled from
this large database to obtain portfolios with certain characteristics in terms
of initial credit quality. The actual loss experience is then analyzed for these
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sampled portfolios. Carey’s study yields insight into the effect of credit
quality, the size of the portfolio, and the state of the economy on the tails of
the loss distribution. His conclusions, however, are only valid as far as the
exposures in the database, and their aggregation into portfolios, are repre-
sentative of actual portfolios. Gordy (1999) studies credit loss tails for re-
alistic portfolios using two competing portfolio models, namely
CreditMetrics and CreditRisk™. He focusses on default losses only. We ex-
tend his results by incorporating losses due to credit rating migrations.
Moreover, we study the effect of bond maturity on extreme quantiles and
present analytical as well as numerical results on tail fatness in relation to
portfolio characteristics.

We describe our analysis from the perspective of portfolios with corporate
bonds and loans. This is also the perspective taken in the credit risk portfolio
models that are available in the market, such as CreditMetrics of J.P. Morgan
(1999), CreditRisk* of Credit Suisse (1999), PortfolioManager of KMV
(Kealhofer, 1995), and CreditPortfolioView of McKinsey (Wilson, 1997a,b).
Despite the apparent differences between these approaches, they exhibit a
common underlying framework, see Koyluoglu and Hickman (1998) and
Gordy (1999).

The paper is set up as follows. Our model, which follows the Koyluoglu and
Hickman (1998) set-up, is described in Section 2. In Section 3, we derive the
asymptotic loss distribution and its salient features. Section 4 investigates the
tail shape of the limiting distribution.

In Section 5, we study how the asymptotic loss distribution is altered when
the characteristics of the underlying exposures are altered. The °‘stylized’
portfolios we consider mimic typical bank portfolios in terms of: (i) the dis-
tribution of exposures over initial credit ratings, (ii) the sizes of exposures per
rating category, and (iii) the level and variability in systematic risk across ex-
posures. For a typical high quality corporate bond portfolio, we find that the
standard 8% capital charge from the Basle 1988 Accord corresponds to a 98%
or higher confidence quantile. It is also shown that the location of high-con-
fidence quantiles like the 99.9% quantile is quite sensitive to the choice of
distribution of the common risk factors.

Section 6 questions the number of exposures required to render the as-
ymptotic loss distribution a good approximation to the actual loss distribution.
In studying the convergence properties, we especially pay attention to the tail
behavior of the distribution. It is shown that the speed of convergence of the
actual credit loss quantiles to their analytic counterparts is influenced by the
degree of portfolio heterogeneity. For relatively homogeneous portfolios,
the approximation is already accurate for portfolios with 300 exposures or
more. Relatively heterogeneous portfolios should contain at least 800 expo-
sures in order to get a similar accuracy. Section 7 concludes the paper. Proofs
of all results in this paper are available upon request.
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2. Theoretical framework

Consider a credit portfolio that consists of exposures to n companies. Each
company j is characterized by a four-dimensional stochastic vector

(S/”kﬁgjan(ﬁkj’gj))- (1)

The first element S; represents a latent variable triggering defaults or rating
migrations. A prime candidate for S; is the company’s surplus, i.e., the dif-
ference between the market value of assets and liabilities. Default may then be
defined as a situation in which the surplus falls below a certain threshold. We
assume that the companies’ surplus variables are both driven by economy-wide
features (business cycle conditions, stock market fluctuations) and firm-specific
circumstances. This justifies the specification of a factor model for the surplus
variable

S;p=u+ ﬁij + &, (2)

where y1; € Ris a constant term, f§; € R a vector of factor loadings, f € R” the
vector of common factors, and ¢; € R is a scalar representing idiosyncratic
shocks. This set-up follows the model structure of, e.g., J.P. Morgan (1999).
Without loss of generality, we set u; = 0 for all j. For the time being, we assume
that the factor vector f and innovations ¢; (for all j) are normally distributed
with zero-mean. They have covariance matrix €, and variance w;, respectively.
We further assume that the idiosyncratic shocks are independent across firms
and that fand {e;} *, are independent. The proof of the limit law for portfolio
credit losses does not hinge upon the zero mean and normality assumption.
Thus, the limit law can be easily generalized. In Section 5, we investigate the
consequences of relaxing the normality assumption on the analytic credit loss
quantiles.

The above model structure implies that the surplus variables are correlated
across firms. As the S;s also trigger the default mechanism, correlation between
the S;s results in correlated default probabilities. In Sections 3 and 4, we show
that thls correlation induces the credit loss distribution to be heavy-tailed,
notwithstanding the normality assumption for the company’s surplus. A
company’s initial and end-of-period ratings are represented in (1) by k; and ¢,
respectively. We assume r rating categories, such that k;, ¢, € {1,...,r}. We
further assume that migrations are driven by a Markovian transition matrix P,

pu ... Pir
 FE (3)
Pri Prr

where p;, denotes the probability that a firm with initial rating k& switches to
rating ¢ over the time horizon considered (one year in this paper). For sim-
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plicity, we assume that the transition matrix is common to all firms. Note
that Pi. =1,, where 1, is an r-dimensional vector of ones. By setting
P =+ =p.,—1 =0and p, =1, we can identify the rth rating category as the
state of default. Numerous authors already calculated historical averages for
the migration probabilities in (3). We use the estimates provided by J.P.
Morgan (1999) on their website, see Section 5 for the numerical values.

For given values of pys, one can select constants sz, k=1,...,r and
£=0,...,r, such that syy = +o00 and s, = —oc for all k, and
Q(Sk[—l) — ¢(Skg) = Pk for all k and ¢ = 1, Lo Fy (4)

where @(-) is the standard normal cumulative distribution function (c.d.f.). The
end-of-period rating ¢; of company j (with initial rating k) is such that

_ T T _
Sikity = S\ @)+ B; QB < Si <1/ 0+ B; QB = sjng1- (5)

This is illustrated in Fig. 1. The support of the normal distribution of the
surplus §; is partitioned by means of the constants s, and the standard devi-
ation of S;. Each bin corresponds to a specific end-of-period rating. Note that
the locations of the bins depend on the company’s initial rating. For example,
highly rated companies (AAA) are less likely to default than low-graded ones
(CCO), such that from (4) s;,_; must be higher for bonds with an initial CCC

0.6

Fig. 1. Relation of the random variable S; and the end-of-period rating ¢; in an eight category
rating system. The initial rating of the company is k; = BBB. D denotes default, while s, equals
swe(w; + B 2 8)"2.
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than with an initial AAA rating. The fact that S; determines the end-of-period
rating ¢; makes ¢; a stochastic variable in the present set-up.

Note that the described model set-up is static in the sense that the transition
matrix is always nonrandom and the rating migration mechanism is solely
dictated by the factor model (2) and the bins (5). Extending the model to a
dynamic setting requires a random transition matrix. For example, one could
assume that the vector of common factors follows an autoregressive process of
order 1:

/‘; = 'Pflfl + 1, (6)

with 7, independent of ¢ for all s, z. By the dependence of f; on its own past, the
credit quality is randomized over time: defaults become more likely during,
e.g., recessions whereas upgrades may prevail in expansionary periods. These
effects can be captured by an appropriate choice of f;. In that case, the con-
ditional (given the history of f; up to time 7) expectation of f;,; can be negative
in times of recession and positive in expansionary periods. For the sake of
clarity, we will not deal with dynamics in this paper. More discussion on
stochastic migration rates can be found in, e.g., Credit Suisse (1999) and Belkin
et al. (1998b). Detailed simulations for multi-period models are left for further
research, see also Wilson (1997a,b).

A firm’s credit loss n(-) constitutes the final characteristic in (1). We assume
that the amount of credit loss depends on the loan’s initial («;) and final (¢;)
rating category. This is expressed by specifying n(j, k;,¢;) as a function of k;
and /;. By definition, a credit loss occurs either if a firm defaults or if the firm’s
rating deteriorates. The latter is due to differing credit risk spreads across rating
categories, maturities, and industries. This justifies the dependence of the credit
loss on the initial and end-of-period rating.

Using all the above definitions and symbols, the portfolio credit loss simply
is the sum of the # individual credit losses:

n

C, = Zﬁ(j,k_,yé/‘). (7)

j=1

Again note that this is a stochastic variable due to the dependence of the ¢;s on
the random variables S;.

3. The limiting distribution of portfolio credit losses

In this section, we establish the distribution of the portfolio credit loss C,
when the number of exposures becomes large. Before we proceed with the main
theorem, we need to make the following assumption.
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Assumption 1. sup; . | E[r(j, kj,éj)z\f] < oo (a.s.).

Assumption 1 states that the conditional expectations of individual squared
losses are bounded uniformly (almost surely). Most financial instruments sat-
isfy this technical condition. For bonds the condition is trivially satisfied be-
cause the maximum loss is the (discounted) value of the bond, which is finite.
The assumption can also be met under fairly general conditions for more
complicated instruments like derivatives with unbounded 7(-). For example, let
7(-) be the payoff on the pay-fixed end of a plain vanilla swap. In that case, n(-)
is unbounded in the interest rate, which we can incorporate in /. When interest
rates rise, the pay-fixed end of the swap becomes more valuable. Conditional
on f, however, n(-) is bounded such that Assumption 1 is met. Note that in-
dividual credit losses derive their randomness from the end-of-period ratings
Zj S {1,...,}"}.

The following limit law constitutes the heart of the paper.

Theorem 1. Define

/ w; + ﬁjTQfﬁj

as the R* of the factor regression model (2), i.e., the squared correlation between
S; and its *fit ﬂ]Tf Moreover, let

_TQI/Z
ol = ﬁfif (9)

J /ﬁ—j_r Qf ﬁj )

such that vl v; = 1. Define Y = Q;l/zf. Let

Sk/."g,l — Q/R?U;Y Sk/.,g — Q/R?U;Y
b= — == | — O — (10)

\1-R \1-R

denote the conditional (on f) probability of migrating from rating k; to rating ¢,
and define

B, :E[Cn|f] = iE[Tt(j,kj,f,)‘f] = zn: i@,{ﬂ?(j,kj,ﬁ). (11)

Then given Assumption 1 and the framework of Section 2, we have
n'C, —n'B, 550, (12)

with C, the portfolio credit loss as defined in (7) and > denoting almost sure
convergence.
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Note that C, in (12) is the average credit loss, whereas B, is the average
conditional (on f) expectation of credit losses, see (11). Therefore, C, depends
on (f,é,&,...), but B, depends on f only, see also Finger (1999). By using B,
rather than C,, we effectively average out all idiosyncratic risk just as in the
case of linear portfolio theory.

To illustrate the limit law, consider a bond portfolio where the migration
mechanism is triggered by a single factor (m = 1), where systematic risk is
equal across the exposures (RJ2 = p% p > 0), and where v; = 1. We allow for
only two end-of-period ratings ¢ = 1,2, the second rating category corre-
sponding to the default state. Moreover, assume that the exposure on each firm
has a face value of unity and that everything is lost in case of default. A similar
model is studied in Belkin et al. (1998a). Thus, the credit losses in the two
possible end-of-period rating states boil down to m(j,k;,1)=0 and

n(j,k;,2) = 1, respectively. Given these assumptions, B, as defined in (11)
simplifies to

qu;(%) (13)

such that

Cn/n—<p< S;f;)ﬁoj (14)

where s equals the default threshold for the surplus variable.

Fig. 2 plots the p.d.f. of the limiting credit loss C = lim,,_., C,,/n for various
values of p and s. We consider values for s corresponding with default prob-
abilities of 5% and 1%, respectively. The figure reveals that large credit losses
become more likely for higher correlations between the underlying surplus

5% default prob. 1% default prob.
45 . . . 180
—.30} 120
A =0.1 ~ : =0.1
kS, DU N =0.2 ° .\",/- \ =0.2
S15E NN =0.3 B B0 N[ =0.311
N =0.5 A A =0.5
PR R TN VI A
i N i) AR
olis Ssrremmoee ot
0.05 0.10 0.15 0.20 0.01 0.02 0.03 0.04 0.05
c c

Fig. 2. Asymptotic default loss densities for constant R% =p? and v; =1 in a one-factor model
(m = 1), see Theorem 1. There are only two rating categories, one of which corresponds to a state of

default. The constant s is chosen such that there is either a 5% (left-hand panel) or a 1% (right-hand
panel) probability of default.



1644 A. Lucas et al. | Journal of Banking & Finance 25 (2001) 1635-1664

variables S;. This feature seems to be independent of the choice of default
probability as specified through s. We also note that for smaller values of p the
credit loss distribution becomes more concentrated and bell-shaped. If p = 0,
the p.d.f. degenerates, i.e., the portfolio credit loss converges almost surely
towards the expected credit loss when the number of bonds in the portfolio
grows indefinitely.

Knowledge of the limit law’s analytic expression enables the credit risk
manager to calculate the loss distribution’s higher moments and quantiles
without resorting to simulation, at least for the one-factor case. Table 1 pre-
sents the moments of the credit loss distributions shown in Fig. 2. The standard
deviation, skewness, and kurtosis are all increasing in the degree of systematic
risk p. Moreover, skewness and kurtosis increasingly deviate from their
Gaussian values of 0 and 3 for higher values of p.

In order to calculate quantiles of C for the simplified one-factor example,
first note that B, is monotonically decreasing in Y. Take g(Y) = lim,_. B,/n,
then using the transformation-of-variables technique, see e.g., Hogg and Craig
(1970), the probability density of credit losses ¢ boils down to

b(g'(c))
lg'(g" ()]’
with ¢ denoting the standard normal density and g~'(-) and g’(-) denoting the

inverse and the first derivative of g(-), respectively. The trapezoid rule for
numerical integration

(15)

3 D 805" 907) + 801" $0y-)] 05— y-1), (16)

provides an easy approximation of, for example, the expected credit loss
(x = 1) or higher order moments, where —K =y < y; < --- < yy = K denotes
an appropriate partitioning of the interval [—K,K] for a sufficiently large
constant K > 0. The following chain of equalities shows that the computation

Table 1

Moments of credit loss distributions®
o s=0" (5%) s=07" (1%)

u a Skew Kurt u a Skew Kurt

0.1 5 1.0 0.50 3.40 1 0.3 0.71 3.87
0.2 5 2.1 1.01 4.62 1 0.6 1.52 6.98
0.3 5 33 1.54 6.73 1 0.9 2.49 13.93
0.5 5 6.1 2.70 13.77 1 1.8 5.10 47.47

#The table contains the expected (percentage) credit loss () and its standard deviation (o) as well as
the skewness and kurtosis of the credit loss distribution for different default probabilities and
different values of p. Moments are computed using numerical integration based on (16).
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of credit loss quantiles in this simple set-up is even easier than calculating the
distributional moments:

PC<e)=P(g(Y)<e)=P(Y 25 () = 1 - d(g ' (c) = 6
).

= c=g(-27'(9) (17)
Hence, the d-quantile can be obtained by a simple evaluation of g(-) in one
point. Analytic quantile calculations for multi-factor models are somewhat
more cumbersome, but there is still an advantage over pure simulation. Indeed,
the probability P(C <c¢) = P(g(Y) < ¢) can be evaluated by integrating over Y,
either by using numerical integration if Y is low-dimensional, or by simulation
if Y is high-dimensional. The latter may still be more efficient than full-fledged
simulation of the credit loss distribution because we do not need to simulate the
idiosyncratic shocks.

Before closing this section we focus upon some additional properties of the
limit law. First, note that the expression B, /n in Theorem 1 no longer depends
on the idiosyncratic risk factors ¢;, but only on systematic risk f. A similar
result is well known in /inear portfolio theory. Indeed, within the CAPM
model, only systematic risk persists when the number of assets increases.
Theorem 1 generalizes this feature to the nonlinear context of credit risk
management.

A second point to note is that we have expressed B,/n in terms of (vj,Rf)
rather than (f3;, ;). This mimics the conversion from Cartesian coordinates to
polar coordinates. The Rjz. directly reflect the magnitude of the impact of sys-
tematic risk fluctuations on the jth credit loss. The larger the value of R?, the
higher the influence of the systematic risk factors f'on the jth credit loss. On the
other hand, if Rjz. approaches zero the stochastic vector Y drops out of the jth
term of B,, making the jth term nonrandom. The vector v;, in contrast, de-
termines the directional sensitivity (rather than the magnitude) of the jth sur-
plus variable with respect to the systematic factors. As already noted, this
vector has unit length. For example, if m =1 such that (2) is a one-factor
model, we have v; = 1. The directional vector v; now indicates whether the
systematic risk factor f has a positive or negative impact on §;. A similar in-
terpretation holds for multi-factor models.

Finally, we like to stress that the proof of Theorem 1 does not hinge upon
the normality assumption for Y. Risk managers might have some idea about
the future development of Y in terms of its forecast distribution. The latter can
then be used in (12) to obtain simulations from the credit loss distribution that
are more relevant from an economic perspective. Alternatively, risk managers
might be interested in the effect of specific distributional assumptions for Y,
e.g., stress scenarios, in which case Y places discrete (or even unit) mass on
certain scenarios. Such distributional assumptions can be readily incorporated
to obtain simulations for credit losses that are relevant for the purpose at hand.
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In Sections 5 and 6, we study the sensitivity of the analytic credit loss quantiles
to using the fat-tailed Student ¢ rather than the normal distribution ' for f.

4. Tail behavior of credit losses

In Section 3, we found that a higher correlation between default risks in-
creases the likelihood of extreme portfolio credit losses, see also Fig. 2. The
increase in probability mass in the tails may partly be due to an increased
variance of the credit portfolio. However, we find that the properly rescaled
portfolio credit losses still exhibit more probability mass in the tails than a
normal distribution with identical mean and variance, see also Table 1. Dis-
tributions with this pattern of decay in tail probabilities are also called heavy-
tailed or fat-tailed distributions. The tails of the derived limit law decline to
zero at a lower than exponential rate. In this section, we investigate this rate of
decay using the statistical theory of extremes, see Embrechts et al. (1997) for a
nice introduction into extreme value theory with applications in finance. We
also reflect on the relationship between the rate of decay and the systematic risk
in the portfolio. A correct assessment of the tail behavior is important for risk
management. Indeed, if portfolio credit losses exhibit heavy tails, common
rules of thumb for computing loss quantiles based on the normal paradigm no
longer apply. For example, the 99.9% percentile may lie much more than three
standard deviations above the expected loss, which is the number one would
expect for the normal distribution, see Section 5.

The remainder of this section is built up as follows. We start in Section 4.1
by commenting on the main result from statistical extreme value theory that we
use in this section. We explain its relevance for credit losses. Next, in Section
4.2 we show for models with homogeneous v; = v (see Theorem 1) that the
credit loss distribution has polynomially rather than exponentially declining
tails. This limits the applicability of the normal distribution as an approxi-
mation to credit loss distributions. We also link the rate of tail decay (the so-
called tail index) to the portfolio’s characteristics. Exposures with the highest
idiosyncratic risk components dominate the extreme tail behavior of credit
losses and imply a high rate of tail decay. Less far out in the tails, however,
exposures with relatively less idiosyncratic risk may also influence the tail

! (i) Note that alternative distributional assumptions for Y require changes in the constants s ke 0
order for the unconditional rating migration probabilities to correspond to their long-term averages
from Table 2. (ii) The Creditrisk™ framework uses a Gamma-distribution for f. Checking the
sensitivity of our results with respect to the Gamma assumption is difficult in our framework,
however, because we consider losses due to both defaults and credit rating migrations. It is then
much less straightforward to synchronize the frameworks of CreditMetrics and Creditrisk™ as in
Gordy (1999).
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behavior significantly. In Section 4.3, we generalize our results to models with
heterogeneous v;. It turns out that such models (ceteris paribus) give rise to
higher rates of tail decay. Note that the analytic results of the present section
only concern the rate of tail decay. As will be explained in Section 4.1, char-
acterizing the complete tail behavior analytically using extreme value theory is
beyond the scope of this paper. Due to the detailed nature of the results, the
present section is somewhat more technical than the remainder of this paper.

4.1. Extreme value theory

Extreme value theory is concerned with the extreme tail behavior of statis-
tical distributions. The main result we use in this paper is that the credit loss
distribution has a tail expansion of the form

I—F(e)=(c—c)Lle—¢) ', (18)

where ¢ is the maximum credit loss, F(-) the credit loss distribution, and L(-) is
a slowly varying function, i.e., lim, . L(#x)/L(x) =1 for ¢ > 0. Typical ex-
amples of slowly varying functions are L(x) =k for some constant k, or
L(x) = In(x). Eq. (18) shows that near the maximum credit loss ¢ the dominant
factor of F() is (¢ — c¢)*. The larger o, the faster the tail decays to zero. By
inspecting o, we thus get an indication about the tail shape of the credit loss
distribution for large credit losses. In this section, we show how the tail index o
is related directly to the exposures’ characteristics. Note, however, that o de-
termines the tail behavior only in part, albeit the dominant part. In order to
derive the complete tail behavior of F(c¢) by means of extreme value theory, we
also need an explicit characterization of the slowly varying function L(-). This,
however, is very technical and beyond the scope of the present paper. In this
section, we only focus on the rate of decay of the tails, i.e., on o. The reader
should bear in mind that for two credit loss distributions Fi(-) and F(-) with
tail indices o and o, respectively, we may well have for some fixed value ¢ that
1 — Fi(c) < 1 — Fy(c) even though o < o,. This can be due to a larger value of
the slowly varying function L((¢ — ¢)") for distribution 2 at c.

4.2. Portfolios with homogeneous v;

First, we assume that the exposures are characterized by the same direc-
tional sensitivity vector v; = v, but possibly different R;s. As ||v|| = 1, note that
v'Y in (10) is also standard normally distributed for all j. Therefore, without
loss of generality we consider a one-factor model only (m = 1) and set v = 1.
Assume that the portfolio can be divided into two homogeneous groups. Each
group is characterized by a different value of Rjz, namely R? for group i = 1,2.
The arguments presented here carry over directly to situations with an arbi-
trary number of groups. For expositional purposes, we restrict attention here
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and in the following section to a setting with two rating categories only: de-
faulted or not defaulted. The results are equally valid, however, in settings with
multiple rating categories. The following theorem summarizes the tail behavior
for the sketched setting:

Theorem 2. Consider the one-factor model with v; = 1. Assume that a fraction
A € (0,1) of the firms has R? = R%, while the remaining firms have Rjz. = 1%% Then
the credit loss distribution has a tail expansion as in (18) with tail index
52\ / H2
ig%‘}(l R;)/R;. (19)

Clearly, the credit loss distribution has algebraically rather than exponen-
tially declining tails, as o < oo for R? > 0, see (18). For illustration, first con-
sider the special case of a completely homogeneous portfolio. In that case,
R? = R% = p?, such that « = (1 — p?)/p?. It is then easily seen that increases in
the degree of systematic risk (p?) cause a lower tail index, thus decreasing the
rate of tail decay. Using (19), we can explain the empirical stylized fact of fat-
tailed credit loss distributions from a micro-based approach to individual ex-
posures by allowing for common factors. Even if these exposures are driven by
normally distributed (and thus thin-tailed) systematic and idiosyncratic shocks,
the portfolio credit loss distribution exhibits polynomially declining tails.
Consequently, one should be very careful in using the normal distribution as an
approximation to the credit loss distribution. This holds especially if one is
interested in extreme quantiles, e.g., the 99.9th percentile, see also Section 5.

Theorem 2 also reveals that the exposures with the highest idiosyncratic risk
components, i.e., the smallest 12’1.2, dominate the extreme tail behavior and imply
a high rate of tail decay. The intuition for this is as follows. The limiting credit
loss distribution from Theorem 1 only uses systematic risk, as the idiosyncratic
risk can be diversified in large portfolios. If the portfolio now contains a sig-
nificant number of exposures with a dominant idiosyncratic risk component,
ie., low Iéiz, these exposures are less easily jointly pushed into default using
movements in systematic risk only. Consequently, credit losses near the max-
imum credit loss, which need to be triggered by both groups entering default
simultaneously, become less likely. The tail close to this maximum credit loss
will therefore be thinner.

4.3. Portfolios with heterogeneous v;

We now turn to models with varying directional factor sensitivities v;, in-
cluding both multi-factor and one-factor models. We restrict our attention to
portfolios that can be divided into a finite number #* of homogeneous groups,
cf. the previous subsection. Group i is characterized by a combination
(k?,ﬁi, ﬁj), = 1, . .,I’l*.
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To state the theorem, we need some additional notation. Let G C {I,...,n*}
be a set of indices characterizing which groups in the portfolio are to be
considered. Define

s — /R Y
2(r.G) =Y qo| VIS
i€G 71— f\’IZ

with J; the proportion of exposures in group i within G. The function g(Y, G)
gives the (limiting) credit loss of Theorem 1 for this special setting considering
the groups included in G only. We define the maximum possible credit loss as

T,

 =supg(y,{l,...,n"}).
JeR™

In the previous subsection, 7 was equal to the sum of all exposures due to the
homogeneity assumption for v;. We now consider the tail behavior near n*. To
do this, we need to characterize the parts of the portfolio that can result in the
maximum credit loss 7*. Define ¢ to be the family of subsets G of {1,...,n*}
such that sup, g(y, G) = n* and such that for all proper subsets G* of G one has
sup, g(v, G*) < n*. The collection % then defines parts of the credit portfolio
that satisfy two criteria: (i) considered in isolation part G can result in the
maximum credit loss, and (ii) there is no strict subset of this original part of the
portfolio that can result in the (same) maximum loss. For each part G, we
define ©; as a subset of the unit sphere {0 : ||0]| = 1}, consisting of the di-
rections for factor realizations f that push part G of the portfolio to the
maximum credit loss ©*. So @ contains the most unfavorable realizations of f
for part G. Every such f can be written as a0 for some 0 € @ and a € R".
Given all these definitions, we can prove the following theorem.

Theorem 3. In the factor model where each loan is characterized by a vector
(R?, 0y, 7;) with i € {1,...,n*}, the credit loss distribution has a tail expansion as
in (18) with tail index
52
min min max Al;R’z (20)
GeY 0O i€G R?(@TQ)

Theorem 3 is a clear extension of Theorem 2. The main difference is that we
take the smallest tail index in the sense of Theorem 2 over all parts of the
portfolio and corresponding unfavorable directions for f that can result in the
maximum credit loss. The intuition is as follows. If different realizations of
the common risk factor Y give rise to the same maximum credit loss, albeit
for different subsets of the portfolio, the tail behavior of portfolio credit losses
is a mixture of the tail behavior for each of these different subsets. The tail
behavior for each subset is determined by Theorem 2, which explains the
max;eg(1 — R?)/R? part in (20). Standard results on tail behavior then reveal
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that for a mixture of tails, the fattest tail dominates the extreme tail behavior,
see Ibragimov and Linnik (1971). In our context, the fattest tail has the lowest
tail index, explaining why the minimum over G € 4 and 0 € Oy is reached in
Theorem 3.

The tail decay rate o of the credit loss distribution for models with hetero-
geneous v; is generally not below that of corresponding models with homo-
geneous v;. This stems from the fact that both |0 =1 and ||v;]| = 1, and
therefore (Hij)z < 1. The intuition is that with heterogeneous v; we only
consider particularly unfavorable realizations f dictated by @ and relevant for
a subset G of the portfolio only. This restriction further reduces the likelihood
of ending up near the extreme credit loss n* and therefore makes the extreme
tail thinner, i.e., increases o.

To conclude this section, we stress once more that the analytic expressions
obtained for the tail index only partly characterize the actual tail behavior. For
a full characterization, one also needs expressions for the slowly varying
functions in (18). These are much more difficult to derive analytically. The tail
index, however, clearly reveals the rate of tail decay and therefore contains
useful information. For a complete characterization, one can also use the limit
law from Theorem 1 directly. This is done in the empirical illustrations of the
following section.

5. Examples based on empirical data

In Sections 3 and 4, we studied the behavior of the limiting default loss
distribution in the stylized setting of Belkin et al. (1998a) and somewhat more
general factor models. In this section, we investigate the behavior of credit loss
distributions in more detail. Credit losses comprise both losses due to default
and losses due to changes in the credit quality or credit rating of a firm. The
latter occur in a mark-to-market framework where credit spreads differ over
credit ratings (and possibly industries and maturities). We again focus on a
one-factor model for rating migrations but generalize the previous set-up by
allowing for differences in initial ratings, factor model fits, exposure sizes, and
bond maturities. We also consider thin-tailed and fat-tailed distributions for
the common risk factors f and show that minor changes in distributional as-
sumptions can have large effects on extreme credit loss quantiles. The sensi-
tivity analyses conducted in this section would be time-consuming with a
standard simulation approach. Using the efficient computation techniques
presented in this paper, however, we reduce this burden significantly.

In order to calculate empirical credit quantiles we need to know the rating
migration probabilities, the yields and yield spreads, the initial ratings of the
exposures in the portfolio, the credit loss functions m;(-), and the Rfs of the
factor model (2). We use a classification with seven rating categories: AAA,
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AA, A, BBB, BB, B, and CCC. In addition, default (D) can occur, see also
Fig. 1. The rating migration probabilities, yields, and yield spreads were
downloaded from the CreditMetrics website. The transition probability matrix
used is presented in Table 2. Default and rating migration probabilities are
then equal to long-term historical averages. The transition probabilities are
used to determine the binning constants s, through (4).

The table’s right-hand panel contains yield spreads for corporate bond
maturities of 1, 5, and 10 years. We also have observations (not displayed) for
maturities of 2, 3, and 7 years, to be used later on. The maturities are assumed
to be equal for all exposures within a given portfolio. This is because we were
unable to obtain detailed and reliable information on the distribution of ma-
turities across initial ratings, exposure sizes, and degrees of systematic risk. At
the outset, we start with bonds that are priced at par using the base yields and
credit spreads in the table. The spreads depend on the initial rating of the firm.
For the sake of convenience we assume that the term structure of yields is
constant over time. In this way, we fully concentrate on credit risk without the
interference of market risk. Required yields that are not observed directly are
computed by linear interpolation based on observed yields.

We also vary the portfolio credit quality. In order to have a realistic dis-
tribution of initial credit ratings for empirical work, we use the data in Gordy
(1999). His study provides the percentage exposure and number of obligors in
specific rating categories for typical bank portfolios. These data are based on a
bank survey by the Federal Reserve on the credit quality composition of bank
portfolios as well as on the private placements report by the Society of Actu-
aries (1998). We combine the numbers provided in Gordy (1999) to determine
the average size of an exposure for each rating category. The precise numbers
used in our study are provided in Table 3. We consider three portfolio quality
levels: high quality, average or benchmark quality, and low quality.

We also need a specification for the loss functions m;(-). As mentioned, we
abstract from changes in the yield curve over time in order to abstract from

Table 3
Typical bank portfolio characteristics®
Rating
AAA AA A BBB BB B CCC
High quality 4 6 29 36 21 3 1
Average quality 3 5 13 29 35 12 3
Low quality 1 1 4 15 40 34 5
Rel. exposure size 109 93 96 93 107 107 69

#The table contains the percentage of obligors in each rating category for a typical bank portfolio
of high, average, or low quality. The bottom line gives the mean size of the loan in each rating
category. The numbers are based on Gordy (1999).
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market risk. We assume that the portfolio consists of plain vanilla loans or
bonds only. Changes in the market value of a bond at any time are then caused
by changes in the yields only. As there is no time-variation in the yields, such a
change can only arise due to a credit rating migration and a shortening of the
maturity of the bond. Let y;,, denote the yield on a bond with initial rating
class k and maturity m. If the bond is initially evaluated at par, the bond value
for a unit principal at the planning horizon of one year is given by

m—1

(1 +yz,m71)7(”171> + Z(l “"y[,m—l)iiyk‘m

i=0

= 1 +yk,m - (1 - )}A—m) (1 - (1 +y£m71)7<m71))7

Yem—1
which follows by a straightforward discounting of present and future cash
flows. This only holds if there is no default. If the bond defaults, a fraction y of
the (unit) principal amount, the so-called recovery rate, can be recovered.
Summarizing, the individual credit loss function boils down to

n(j, k, €)

_ { Kl _yjfT]) (1 -1 +y/,m,1)7('"71)> —yk‘m}ej for ¢ =1,... ,r-1,

(I =17)e; for ¢ =r,

(21)
with e; the size of the jth principal amount. The values of e; depend on &; and
can be found in the bottom line in Table 3. Using recovery data at emergence
from S&P (1998), we set the recovery rate to 0.6.

Finally, in order to calculate the degrees of systematic risk or Rf we ran
CAPM regressions with the S&P500 as market index for the 1662 stocks in the
Research Top 2000 company list from DATASTREAM for which at least 5
years of data were available. Using regressions at a monthly, quarterly, and
annual frequency, we obtain three distributions of R*> depicted in Fig. 3. The
averages of these distributions are equal to 0.20, 0.27, and 0.35, respectively.

Given our available data set, we did not find any significant relationship
between R? values and firm ratings. We therefore impose the same distribution
of R?s per rating category. We also inspected the values of the directional
vectors v; of Theorem 1. In our one-factor set-up, we have v; =1 or v; = —1
depending on whether f8; > 0 or f8; < 0, respectively. For the vast majority of
firms in our sample, the estimated f§; was positive and none was found to be
significantly negative. Thus we can safely set v; =1 for all exposures in the
sample.

Using Theorem 1 and expression (17), we can now compute the credit loss
quantiles without resorting to simulations. The mean and variance of portfolio
credit losses can moreover be computed by numerical integration, see (16). We
consider 27 credit loss distributions corresponding to three maturities, three
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Fig. 3. R? values of factor model regressions using monthly, quarterly, and annual data. The data
are obtained from the Research Top 2000 list of DATASTREAM Inc. and comprise 1662 firms
observed over the period January 1980-December 1998. The factor model explains total return of

the firm by a constant and the total return on the S&P500. A minimum of 5 years of data is used for
the factor model regressions.

distributions for R?, and three portfolio quality levels. The boxplots in Fig. 4
summarize the results for normally distributed systematic (/) and idiosyncratic
(¢;) risk factors.

First, consider the effect of changing the degree of systematic risk (R?) in
Fig. 4. It is clear that more systematic risk leads to more prolonged tails. The
upper credit risk quantiles all shift to the right. Note, however, that the lower
quantiles may shift in the opposite direction. This stems from the fact that
credit rating upgrades will also be more correlated over the different exposures
in the portfolio. Especially for high-risk quantiles, the effects of a higher av-
erage R are substantial: for the 1 year bond and the average quality (B), the
99.9th percentile of credit losses shifts from about 5% (M — R?) of the notional
amount via 7% (Q — R*) to 10% (Y — R?).

The right-hand panels in Fig. 4 express the loss quantiles in terms of stan-
dard deviations in excess of the expected loss. If the R? distribution is kept fixed
and the portfolio’s initial quality is changed, the distributions with the most
prolonged tails in the left-hand panels appear to have the thinnest tails in the
right-hand panels. By contrast, if the portfolio’s initial quality is fixed and the
distribution of R? is changed, the ordering of tails in the left-hand and right-
hand panels remains unaltered. The 99.9th percentiles for all portfolios (indi-
cated by the top of the whisker) in the right-hand panels of the figure are
significantly larger than 3, the number one expects for a normal distribution
(@(3) =~ 99.9%). This illustrates that the normal approximation to credit loss
quantiles may be completely inappropriate. Instead of relying on the normal, it
is more appropriate to use the limiting distribution of Theorem 1 directly, see



A. Lucas et al. | Journal of Banking & Finance 25 (2001) 1635-1664 1655

the left-hand panels in Fig. 4. In any case, one should be careful when inter-
preting credit loss quantiles expressed in terms of standard deviations in excess
of expected loss.

Next, Fig. 4 clearly shows that low-quality portfolios have a worse credit
loss performance as upper credit loss quantiles shift to the right. Lower
quantiles may shift to the left as positive returns (through correlated upgrades)
also become more likely.

Finally, the bonds’ maturities have the expected effect on the credit loss
quantiles. For 1-year bonds, the only credit losses are those due to default. For
5-year and 10-year bonds, however, the effect of rating migrations and differing
credit spreads is also taken into account. These have a higher impact the longer
the maturity, i.e., the higher the duration or interest elasticity of the bond
portfolio. Therefore, upper quantiles are higher for longer maturities.

In order to check the robustness of the results somewhat further, we
conduct the following experiment. > Gordy (1999) notes that the distribution
of the systematic risk component f may be important for the location of
extreme credit loss quantiles. To check this, we deviate from the normality
assumption by allowing for fat tails in the common factor f. More specifi-
cally, we fit a Student ¢ distribution to the S&P return series, which is our
common factor in the CAPM regressions. Maximum likelihood estimation
reveals that the index return can best be described by a Student ¢ distribu-
tion with 5 degrees of freedom. Fig. 5 presents the normal and the (unit
variance) Student #(5) distributions in one graph. It is seen that although the
two distributions superficially look alike, their extreme quantiles differ quite
substantially. Using the Student #(5) instead of the normal as the distribu-
tion of f, we recomputed all credit loss quantiles. The results are presented in
Fig. 6.

As expected, given the large shift in extreme (99.9%) quantiles of f'in Fig. 5,
Fig. 6 reveals much larger credit loss quantiles than in the case of a normally
distributed f. For the 99.9th percentile, the increase varies from about 500 to
1000 basis points of the invested notional amount, see the top of the whiskers
in the boxplots. Also note that quantiles less far out in the tail are affected to a
much lesser extent. An important conclusion from this experiment, therefore, is
that one should pay more attention to the distributional specifications of the
risk factors f'and ¢; in (2) if one is interested in quantiles extremely far out in
the tail (e.g. 99.9%). Superficially minor changes in the distribution may result
in large shifts of the quantiles. A reliable estimate of the distribution of f may,
however, not be easily obtained given the data that are typically available.
Appropriate sensitivity analyses such as the one presented here are therefore a
prerequisite before any of these credit risk quantiles can be used to formulate

2 We are grateful to one of the referees for suggesting this type of experiment.
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Fig. 4. The figure summarizes the effect of differing maturities, systematic risk and portfolio quality
on the limiting credit loss distribution by means of boxplots. The plots express the credit loss either
as a fraction of the notional amount (left three panels), or in terms of the number of standard
deviations in excess of the expected loss (right three panels). Each row of two plots relates to
corporate bond portfolios of a given maturity. Each plot contains three panels for three different
distributions of systematic risk R?. The left, middle, and right panels are based on the distribution
of R%s using regressions with monthly (M-R?), quarterly (Q-R?*), and yearly (Y-R?) data, re-
spectively. See also Fig. 3. Within each of these panels, three boxplots are presented for portfolios
of high (H), average or benchmark (B), and low (L) quality, respectively. The initial rating dis-
tributions corresponding to these different levels of quality can be found in Table 3. Each box
represents the interquartile range of credit losses whereas the middle line indicates the median. The
whisker of the boxplot has four markings, relating to the 0.9, 0.95, 0.99, and 0.999 quantile of credit
losses. A recovery rate of y = 0.6 is used for all bonds. The risk factors f and ¢; are normally
distributed.
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distributions are symmetric around zero, we only plot the distributions on the positive halfline.
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Fig. 6. The figure contains the same information as Fig. 4, the difference being that fis now as-
sumed to follow a (unit variance) Student #(5) distribution instead of a normal.
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precise capital requirements. Such sensitivity analyses can be speeded up using
the analytic approach set out in the present paper.

To conclude, we comment on the Basle Committee on Bank Supervision
(1988) capital adequacy directives, i.e., the 8% capital requirement for corpo-
rate bonds and loans. Table 4 gives the probability in basis points (bp) of the
credit loss exceeding 8% of the notional amount over a one-year period for the
portfolios considered earlier. If the 8% rule would correspond to a 99.9%
confidence quantile, the entry in the table would thus be 10 (bp).

Clearly, the 8% guideline corresponds to a quantile with a confidence level
above 98% or higher, i.e., exceedance probabilities below 200bp. When the 8%
rule is expressed in terms of standard deviations in excess of the expected loss,
we obtain numbers between 2.8 and 25.9 (excess) standard deviations. This
again illustrates that expressing the 8% guideline in terms of the number of
standard deviations in excess of expected loss can be very misleading, as it
highly depends on the portfolio composition. Note that the 8% guideline and
the credit loss quantiles are not comparable directly. The 8% rule concerns a
requirement at the stzart of the planning period, while the quantiles relate to the
potential loss at the end of the same period. The two can be compared if one
agrees upon a discount rate for the credit loss quantiles in Fig. 4, e.g., the ap-
propriate risk free rate or an internal rate of return. Discounting the potential
credit loss quantiles makes the 8% guideline more conservative, i.e., decreases
the exceedance probabilities in Fig. 4. Also note the correspondence of the
exceedance probabilities between normally and Student 7 distributed f in the
upper and lower panels of the table, respectively. In most cases the lower panel
probabilities are somewhat lower than those in the upper panel. Resuming, the

Table 4
Probabilities of credit loss exceeding 8% over 1 year®

Maturity Credit quality

M-R? Q-R? Y-R?

H B L H B L H B L
Normal common factors f
1 year 0.04 0.8 16 0.5 6 53 4 20 113
S years 0.4 5 32 3 21 90 13 54 174
10 years 2 9 35 10 36 99 31 85 193
Student #(5) common factors f
1 year 0.01 0.4 15 0.08 3 47 0.3 9 96
5 years 0.2 4 31 1 15 87 4 38 169
10 years 1 8 34 6 31 99 18 71 196

#The table contains the probabilities in basis points of credit losses exceeding 8%. Results are
presented for high (H), medium (B), and low (L) portfolio quality, different bond maturities (1, 5,
and 10 years), and different distributions for systematic risk R?> (monthly (M), quarterly (Q), and
yearly (Y) frequency), see also the note to Fig. 4.
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results in this section suggest that banks and supervisory institutions should
take portfolio features such as the maturity, composition, quality, and sys-
tematic risk of the portfolio into account when setting capital requirements.

6. Speed of convergence

So far, we concentrated on calculating credit loss quantiles if the number of
exposures grows indefinitely. Actual portfolios, however, contain a finite (but
possibly large) number of exposures. In this section, we establish the required
portfolio size n such that the limit law’s upper quantiles are good approxi-
mations to the loss quantiles of finite portfolios. We obtain the latter by sim-
ulation, which is the dominant approach in the literature. We investigate to
what extent portfolio characteristics such as the degree of systematic risk or the
average portfolio quality slow down the speed of convergence of simulated
quantiles towards their analytic counterparts. A slower convergence may
hamper the applicability of our approach to actual portfolios.

The framework is the same as in the previous section. Preliminary simula-
tion evidence revealed that the bond’s maturity does not significantly alter the
convergence results. Therefore, we only present results for a maturity of 3
years. We simulated 36 finite credit portfolio distributions, i.e., for three dis-
tributions of R? (monthly, quarterly, yearly), three initial rating distributions
(high, benchmark, low), two distributions of f'(normal or Student #(5)) and 2
degrees of portfolio ‘dispersion’ (high and low). The portfolio dispersion, la-
beled as an integer v > 0, deserves some further clarification. If v = 0, we set ¢;
in (21) equal to the mean loan size for rating k;, see Table 3. If v > 0, we split
the portfolio segment with initial rating k into a fraction 1 — 1 /v with loan sizes
equal to the mean loan size, and a fraction 1/v with loans of size v times the
mean loan size. As a result, the large loans comprise a fraction of about 1/v of
the portfolio, while the remaining fraction of (v —1)/v consists of regularly
sized loans. The loan portfolio’s degree of dispersion v therefore relates to
heterogeneity in loan sizes. The heterogeneity increases in v. In our simulations,
we use v=0 and v =10. Thus, the portfolio with the highest dispersion
(v = 10) consists for 10% of bonds with a face value that is 10 times larger than
the other portfolio loans.

Note that for a finite number of exposures » in the portfolio the distribution
of R%s over the portfolio has to be discretized. Let Fj;'(-) denote the inverse
c.d.f. of the R%s corresponding to the p.d.f.’s provided in Fig. 3. Assume ny
exposures with initial rating k in a portfolio of size n. For these exposures, we
set the R? value equal to

FR‘21< :Ll) fori=1,....n. (22)

Ny
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This discretization implies an identical distribution of R?s across rating cate-
gories when the number of exposures becomes large. For finite 7, the R’s are
spread over the interval [0, 1] using the inverse c.d.f. For example, for the R?s
based on monthly data this implies that there will be relatively more low R?
values than high ones for every n. For positive degrees of portfolio dispersion
(v > 0) we slightly adapt the above procedure by assigning R>-values using (22)
per rating category and segment of loan size (large/small) instead of per rating
category only. In that case, n; has to be interpreted as the number of either
small or large loans with initial rating k, respectively.

We can now compute quantiles of the limiting credit loss distribution under
different scenarios for maturities, portfolio dispersion (v), R? distribution,
initial rating distribution, and number of exposures (n). These quantiles are
used as the benchmark in checking the convergence speed of the credit loss
distribution. For portfolios with a limited number of exposures we need to
resort to Monte-Carlo simulation. The resulting credit loss quantiles, however,
can be very unstable. We remedy this problem in the following way. For
portfolios of size n = 100,200, ...,1000, we first generate 20,000 simulations
from the factor model (2) using 10,000 pairwise antithetic draws. These sim-
ulations are used to obtain estimates of the 50th, 75th, 90th, 95th, 99th, and
99.9th percentile of credit losses. In order to further reduce the variability of
the simulated quantiles, this process is repeated 10 times. The final quantile
estimates are obtained by averaging the 10 replications. The discrepancies
between these averages and the limiting distribution’s quantiles are presented
in Fig. 7 for different parameter configurations. Results for other levels of
portfolio quality, distributions of R?, etc., appeared to be very similar and are
therefore omitted.

For the homogeneous portfolios (v = 0) with Gaussian f, the quantiles of the
limiting credit loss distribution generally lie very close to those of the finite
portfolio distribution, see Fig. 7. For portfolios with at least n = 300 exposures,
the difference lies in a 0.25% band of the invested notional amount. This cer-
tainly holds if we account for the sampling uncertainty in the quantile estimates
for finite portfolio sizes, see for example the instability of the estimated 99.9th
percentile in several panels of Fig. 7. The convergence is enhanced if annual
instead of monthly R?s are used. Note that the former has a higher mean, i.e., a
higher average degree of systematic risk. Finite portfolios with lower R’s, by
contrast, have more idiosyncratic risk. Such idiosyncratic risk is not captured by
the limiting result of our paper. This explains why the quantiles for small n
generally lie above the limiting quantiles (except for estimation error): the
simulation approach accounts for both the idiosyncratic and the systematic
risks, whereas the limiting distribution uses the latter only. The importance of
idiosyncratic risk, however, is negligible for empirically relevant portfolio sizes.

A higher loan size dispersion (v = 10) lowers the convergence speed, see the
second row in Fig. 7. Larger portfolio sizes are needed to obtain a similar
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Fig. 7. The figure presents the upper credit loss quantiles (90%, 95%, 99%, and 99.9%) as a per-
centage of the notional value for a portfolio consisting of » firms. Simulated quantiles are expressed
in deviation of the limiting distribution’s quantiles. The results are for a bond maturity of 3 years.
For v = 0 all exposures for a fixed rating category have the same size, while for v = 10, 10% of the
exposures (per rating category) have a size 10 times larger than that of the remaining 90% expo-
sures. The left and right columns contain the results for given degree of systematic risk (R?) based
on monthly (M) and annual (Y) CAPM regressions, respectively. The top four graphs are for
normally distributed systematic risk factors f, while the bottom four graphs are for f following a
Student #(5) distribution. Quantiles of the finite portfolios are based on averages over 10 estimates
of the appropriate quantiles, where each of these estimates is based on a Monte-Carlo experiment

of size 20,000.
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accuracy as in the first row of the figure, i.e., n should be at least 500 to make
the discrepancies smaller than 0.25% of the notional amount. Again we see that
the convergence sets in earlier for the annual compared to the monthly R?
distribution.

The convergence results for heavy-tailed (Student #(5)) systematic risk fac-
tors fare very similar to those for Gaussian f, compare the bottom four graphs
with the top four graphs. However, estimating extreme quantiles (like 99.9%)
becomes more complicated for finite portfolios if f has fat tails. The quantiles
emerging from our limiting approach are much more stable and, therefore,
preferable from a robustness point of view.

Summarizing, the limiting distribution fits the distribution for finite port-
folios very closely for reasonably sized homogeneous portfolios (n = 300). The
fit decreases if loan sizes are more dispersed. In that case, larger portfolio sizes
are needed, i.e., n > 500.

It is well known that there is a generic uncertainty surrounding some of the
input parameters of credit risk models, e.g., precise default probabilities and
recovery rates, the precise distribution of fand ¢;, as well as some of the output,
e.g., the estimated extreme quantiles like the 99.9th percentile. Given this un-
certainty, the discrepancies reported in Fig. 7 seem acceptable once one is
willing to adopt a simulation-based model for portfolio credit risk manage-
ment. The additional error caused by the use of a limiting distribution to ap-
proximate quantiles of finite portfolios appears limited for all practical
purposes if the portfolio size is sufficiently large.

7. Conclusions

In this paper, we studied the credit loss distribution of portfolios comprising
a large number of corporate bonds or loans. Our results, however, are also
applicable for more complicated financial instruments. The proposed approach
builds further upon the factor model approach to credit risk, see e.g., J.P.
Morgan (1999). We formally derived the portfolio credit loss distribution if the
number of exposures grows indefinitely. This distribution reveals that the tail
behavior of credit losses is highly influenced by the fit of the factor model
regressions, measured in terms of R2.

Using extreme value theory, we showed that the rate of tail decline of credit
losses is much lower than that of a normal distribution. We derived how the
tail decay rate evolves as a function of portfolio characteristics, both for one-
factor and multi-factor models. For the case of identical systematic risk across
exposures, we found that higher values of R? imply a slower rate of tail decay,
i.e., fatter tails. If, however, one allows for differing R?s over the exposures,
exposures with the highest idiosyncratic risk component ultimately dominate
the tail behavior. As idiosyncratic risk can be diversified, the contribution of
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these exposures to the limiting distribution of credit losses is small, making it
less likely that the maximum credit loss will be hit. This, in turn, implies that
the tail of the distribution is thinner.

Applying our limiting result to empirically realistic portfolios, we showed
that both increases in systematic risk and declines in portfolio quality (initial
rating distribution) shift the credit quantiles to the right. However, if one
expresses portfolio credit risk in terms of standard deviations in excess of the
expected credit loss, the ordering of riskiness compared to the direct mea-
surement of credit loss quantiles is reversed when considering the sensitivity
to changes in the overall portfolio credit quality. Thus, one should be careful
when expressing and interpreting credit losses in terms of standard devia-
tions.

The location of extreme credit loss quantiles is particularly sensitive to al-
tering the distributional assumptions for the common risk factors. Replacing
the normal distribution by the heavy-tailed Student #(5), the 99.9th percentiles
shift to the right by about 5-10% of the notional value.

Our quantile calculations also suggest that the Basle 8% capital requirement
corresponds to confidence levels above 98%, or even above 99% for portfolios
of average or high quality. If this exercise is repeated in terms of standard
deviations in excess of the expected loss, however, the resulting numbers vary
considerably with the portfolio characteristics. This illustrates that the latter
way of stating capital requirements should not be used if a certain confidence
level needs to be attained.

As shown by simulation, the derived limiting distribution may be a useful
tool for credit risk managers because it provides an approximation to the ‘true’
(finite portfolio) credit loss distribution. For medium-sized portfolios with
homogeneous loan sizes containing at least 300 bonds, the appropriate quan-
tiles of the limiting distribution depart by less than 0.25% of the notional
amount from the empirical credit loss quantiles. For highly dispersed loan
sizes, the required number of exposures per portfolio should be higher in order
to obtain a similar accuracy.

The paper suggests several strands of future research. First, our approach
can be extended to a dynamic setting along the lines suggested in Section 2.
Also, the model can be used to obtain a complete characterization of portfolio
risk, encompassing both market risk and credit risk.

Acknowledgements

We thank Laurens de Haan, Bernard Hanzon, Herbert Rijken, Ronald van
Dijk, and two anonymous referees for useful comments and suggestions. André
Lucas also thanks the Dutch Organization for Scientific Research (N.W.0.) for
financial support.



1664 A. Lucas et al. | Journal of Banking & Finance 25 (2001) 1635-1664

References

Basle Committee on Bank Supervision, 1988. International convergence of capital measurement
and capital standards. Report 4, Bank of International Settlements, Basle.

Basle Committee on Bank Supervision 1999. A new capital adequacy framework. Report 50, Bank
of International Settlements, Basle (June).

Belkin, B., Suchower, S., Forest, L., 1998a. The effect of systematic credit risk on loan portfolio
value-at-risk and loan pricing. CreditMetrics Monitor (1st Quarter), 17-28. http://www.cred-
itmetrics.com.

Belkin, B., Suchower, S., Forest, L., 1998b. A one-parameter representation of credit risk transition
matrices. CreditMetrics Monitor (3rd Quarter), 46-56. http://www.creditmetrics.com.

Black, F., Cox, J., 1976. Valuing corporate securities: Some effects of bond indenture provisions.
Journal of Finance 31, 351-367.

Carey, M., 1998. Credit risk in private debt portfolios. Journal of Finance 53 (4), 1363-1387.

Credit Suisse 1999. CreditRisk". http://www.csfp.csh.com.

Embrechts, P., Kliippelberg, C., Mikosch, T., 1997. Modeling Extremal Events. Applications of
Mathematics: Stochastic Modelling and Applied Probability. Vol. 33, Springer, Heidelberg.
Finger, C., 1999. Conditional approaches for CreditMetrics portfolio distributions. CreditMetrics

Monitor 1 (April), 14-33.

Fons, J., 1991. An approach to forecasting default rates. Moody’s Special Report (August).

Gordy, M., 1999. A comparative anatomy of credit risk models. Journal of Banking and Finance,
forthcoming.

Hogg, R., Craig, A., 1970. Introduction to Mathematical Statistics. MacMillan, New York.

Ibragimov, 1., Linnik, Y., 1971. Independent and Stationary Sequences of Random Variables.
Wolters-Noordhof, Groningen.

IIF, 1998. Recommendation of revising the regulatory capital rules for credit risk. Report of the
Working Group on Capital Adequacy of the Institute of International Finance (March).

ISDA, 1998. Credit risk and regulatory capital. International Swaps and Derivatives Association
(March).

Jonsson, J., Fridson, M., 1996. Forecasting default rates on high-yield bonds. Journal of Fixed
Income (June), 69-77.

J.P. Morgan, 1999. CreditMetrics 4th ed. http://www.creditmetrics.com.

Kealhofer, S., 1995. Managing default risk in derivative portfolios. Derivative Credit Risk:
Advances in Measurement and Management. Risk Publications, London.

Koyluoglu, H., Hickman, A., 1998. Reconcilable differences. Risk 56 (October), 56-62.

Longstaff, F., Schwartz, E., 1995. A simple approach to valuing risky and floating rate debt.
Journal of Finance 50, 789-819.

Markowitz, H., 1952. Portfolio selection. Journal of Finance 7, 77-91.

Merton, R., 1974. On the pricing of corporate debt: The risk structure of interest rates. Journal of
Finance 29, 449-470.

Sharpe, W., 1964. Capital asset prices: A theory of market equilibrium under conditions of risk.
Journal of Finance 19, 429-442.

Society of Actuaries, 1998. 1986-94 Credit Risk Loss Experience Study: Private Placement Bonds.
Society of Actuaries, Schaumburg (IL).

S&P, 1998. Ratings Performance 1997: Stability and Transition Report.

Wilson, T., 1997a. Portfolio credit risk: Part I. Risk (September), 111-117.

Wilson, T., 1997b. Portfolio credit risk: Part II. Risk (October), 56-61.

Zhou, C., 1997. Default correlation: An analytical result. Technical Report 1997-27, Board of
Governors of the Federal Reserve System. Finance and Economics Discussion Series.



Update

Journal of Banking and Finance
Volume 26, Issue 1, January 2002, Page 201-202

DOI: https://doi.org/10.1016/S0378-4266(01)00242-4



 https://doi.org/10.1016/S0378-4266(01)00242-4

Journal of
BANKING &

friselies FINANCE
ELSEVIER Journal of Banking & Finance 26 (2002) 201-202 —_—

www.elsevier.com/locate/econbase

Erratum

Erratum to “An analytic approach to
credit risk of large corporate bond and
loan portfolios™
[Journal of Banking and Finance 25, no. 9,
pp. 1635-1664]"

André Lucas *°, Pieter Klaassens *°, Peter Spreij ¢,
Stefan Straetmans **

& Department of Finance and Financial Management, Vrije Universiteit, De Boelelaan 1105,
NL-1081 HV Amsterdam, Netherlands
b Tinbergen Institute Amsterdam, Keizersgracht 482, NL-1017 EG Amsterdam, Netherlands
¢ ABN-AMRO Bank NV, Financial Markets Risk Management, P.O. Box 283,
NL-1000 EA Amsterdam, Netherlands
4 Korteweg-de Vries Institute, University of Amsterdam, Plantage Muidergracht 24,
NL-1018 TV Amsterdam, Netherlands

The Publisher regrets that Fig. 6 on page 1657 in this article is wrong. The
correct version of the figure is published on the next page.

* PII of original article S0378-4266(00)00147-3.
* Corresponding author. Tel.: +31-20-44-46039; fax: +31-20-44-46005.
E-mail address: alucas@econ.vu.nl (A. Lucas), pieter.klaassen@nl.abnamro.com (P. Klaassen),
sprejj@wins.uva.nl (P. Spreij), sstractmans@econ.vu.nl (S. Stractmans).

0378-4266/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved
PII: S0378-4266(01)00242-4



202

0.3

C quantiles
< e
—_ n

<
o

0.3

C quantiles
o o
—_ s}

e
o

=0.1

0.3

e
[N}

C quantiles
o©

o
o

-0.1

Erratum | Journal of Banking & Finance 26 (2002) 201-202

1Y Bond

IYRgond
M-R? Q-R? Y-R? ” M-R? Q- Y-R?
~N
g
|
: n
L
3
=}
i i 2 4 1 1 1
=] 4 4 4
o
o o e .
H = = = == = 0B
H B L H B L H B L -1 H B H B L H B
5Y Bond 5Y Bond
M-R? -R? Y-R? 14 M-R? Q- Y-R?
. H i
~
9
|
n
o
i :
o 4 4
=}
o'
: = 0 2=
H B L H B L H B L -1 H B H B L H B
10Y Bond 10Y Bond
M-R? -R? Y-R? 14 M-R? Q-R? Y-R?
b
~N
g
4 |
w
o
E
T o 4
=}
T o
= B
H B 1 H B T H B T -1 H B H B T H B




	Update

