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Abstract

We derive the exact loss distribution for portfolios of bonds or cor-
porate loans when the number of risks grows indefinitely. We show
that in many cases this distribution lies in the maximal domain of
attraction of the Weibull (Type I11) limit law. Knowledge of the dis-
tribution and its tail behavior is important for risk management in
order not to over- or underestimate the likelihood of extreme credit
losses for the portfolio as a whole. Conform to the credit risk litera-
ture, we assume that bond (or loan) defaults are triggered by a latent
variable model involving two stochastic variables: systematic and id-
iosyncratic risk of the bond. It is shown that the tail behavior of these
two variables translates into the tail behavior of the whole credit loss
distribution. Surprisingly, even if both variables are thin-tailed, the
credit loss distribution can have a finite tail index. Moreover, if id-
iosyncratic risk exhibits heavier tails than the systematic risk factor
the tail index of the credit loss distribution can become extremely
high, giving rise to a non-conventional shape of the credit loss distri-
bution.

Key words: credit risk; Value-at-Risk; tail events; tail index.

*Andre Lucas also thanks the Dutch Organization for Scientific Research (N.W.O.)
for financial support. Correspondence to: aucas@econ.vu.nl, sstrastmans@econ.vu.nl,
Pieter.Klaassen@nl.abnamro.com, or spreij@wins.uvanl.

IDept‘ Finance and Financia Sector Management, Vrije Universiteit, De Boelelaan
1105, NL-1081HV Amsterdam, the Netherlands

$Tinbergen Ingtitute Amsterdam, Keizersgracht 482, NL-1017EG Amsterdam, the
Netherlands

t ABN-AMRO Bank NV Financial Markets Risk Management, P.0.Box 283, NL-
1000EA Amsterdam, the Netherlands

IKorteweg-de Vries Intitute, University of Amsterdam, Plantage Muidergracht 24,
NL-1018TV Amsterdam, the Netherlands



1 Introduction

Extreme events play an important role in finandd risk management. Banks
and other financial institutions must be able to mest dl thar financid obli-
gaions even in dtuations of extremedy adverse maket conditions. As an
example, congder a penson fund that promises its members to pay a price
indexed amount per year from retirement until death. In order to finance
this scheme, the fund gathers contributions from the members and invests
these in docks and bonds. A popular optimdity criterion for choosing the
portfolio mix between stocks and bonds constitutes the minimizetion of the
expected cost (in terms of present and future contributions) subject to a con-
graint on risk. The risk congrant may be thought of condituting a bound
on the likdihood thata certain outflow of penson money is no longer sus
tanable due to eg. extremey and thus unexpectedly low returns on stocks
and bonds or high inflation. If the probability bound is chosen sufficiently
low in determining the pendon’'s optima asst mix, the later will be highly
influenced by the extreme tal behavior of the pendon fund's market risks
in portfolio. Smilar examples can be condructed for banks, which typicaly
have a portfolio of assets and lidbilities.

The likdihoods of extremd events are increesngly interpreted and used
as rik messures as the above example illudtrates, see Jorion (1997). In
particular, people often use a concept caled Vauea-Risk or VaR. VaR
IS an extreme quatile of the didribution of financid losses Typicdly, one
uses quantiles corresponding to probability levels between 5% and 0.1%. The
widespread use of VaR has been spurred by a least two factors. Fird, there
have been severd large losses involving more complex financid ingruments
cdled denivatives, see for example Jorion (1995). These losses have made
responsble managers aware of the fact that they need to have indght into
the riskiness of current. financid activities VaR is a smple way of mesting
this objective: it gives the maximum amount that can be log given a cetan
level of confidence. Due to its smplicity, VaR is commonly used in the
financid indudry,. even though there ae some conceptud problems with
it as a measure of risk, see Artzner, Delbaen, Eber, and Heath (1997). A
second reason for the widespread use of VaR is its acceptance by regulatory
authorities, see Bade Committee on Bank Supervison (1996). Regulators
require banks to conduct a sound risk management practice, including the
use of VaR as a quantitative risk management tool.

So far, we only discussed how to messure and manage the portfolio risk
evolving from maket rik, i.e, rik evoving form fluctuations in market
prices -and thus holding returns- of quoted financid assets The potentia
usefulness of extreme vaue theory for maket risk and the edimaion of



extreme quantiles has been demondgrated by, eg., Danidsson and de Vries
(1998a,b). Though the importance of market risk has been growing over the
last decades, credit risk is dill (and has been higoricdly) the most important
risk factor for banks. Credit risk may be defined as the likelihood that
obligors will not be able to repay the principd amount (and interet) of an
issued loan (default risk). It dso involves financid risks due to changes in
the creditworthiness of the obligor, see JP. Morgan (1999). In the present
paper, we will be mainly concerned with the default risk component of credit
rsk.

It is generdlv accepted that the digtribution of credit losses is skewed and
exhibits heavy tals. Because we ae interested in assessng the likedihood of
extreme credit losses for quantitative credit risk management, a correct spec-
ification of the didributiond tall is important. The framework we present
here enables one to derive the didribution of credit losses and its tall behav-
ior. More gpecificdly, we show tha highest order detidtics for credit loss
observetions lie in the domain of attraction of an extreme vdue digribution
of the Welbul type. Moreover, the framework enables one to pin down the
determinants of the tall index under a variety of assumptions. To be more
precise, we modd credit losses usng a laent variable approach inspired on
JP Morgan’s CreditMetrics, JP. Morgan (1999). The latent variables are
driven by two dochesic variddles reflecting the sysematic and idiosyncratic
rsk component of a given loan. Surprisngly we find that credit losses ex-
hibit a finite tal index even when the underlying vaiables that ‘trigger’ the
default mecahnism ae thintaled, eg., normd. Moreover, the tal index
can be ahbitrarily cdose to zero if idiosyncratic risk is sufficiently more thin-
tailed than the systematic risk component. Findly, we show tha the effect
of joint default behavior, as expressed by the systematic risk factor, on the
digributional tail depends on the reative probabilitv mass in the tals of the
systematic and idiosyncratic risk component.

The sat-up of the paper is as follows. In Section 2 we provide the basc
modding framework and derive the didribution of credit loss didributions for
large corporate loan or bond portfolios. We aso use this section to provide
some more background as to the different gpproaches used for modelling
credit loss didgributions. In Section 3, we derive expressons for the tall
index of credit losses for homogenous loan portfolios and a single factor. The
results are generalized in Section 4 to the case of heterogenous portfolios and
multi-factor modds. In Section 5, we make a fird dep in characterizing the
other charecterigtics of tal behavior gpat from the tal index. For a linear
Gaussan factor modd, we characterize the dowly vaying function that co-
determines the tal behavior. Section 5 suggest that there may be strong
biases in edimates of the tal index in finite samples, as the dowly varying
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function decreases to zero for extreme credit losses We invedtigate this issue
by means of smulation in Section 6. Section 7 concludes, while the Appendix
gathers dl the proofs.

2 Basic framework

We congder a portfolio containing n bonds or loans. Each bond has a specific
price which is determined by current interest rates, the bond's initid credit
rating, and its maurity. During the life time of the bond, its characteridics
can change, giving rise to changes in the market price of the bond. For
example, the firm issuing the bond may go bankrupt. In that case, the
price of the bond fdls to a leve guaranteed by, eg., the sde of the firm's
collateral, or even to zero if no guarantees are built into the bond contract.
To capture these festures, we characterize each bond j, where j =1, ... |n,
by a two-dimensond vector

(S, m5(S;))- (1)

The firg varigble is a latent variable that is crucid in triggering a company’s
default or a change in its credit rating. A prime candidate for S; is the com-
pany’'s ‘surplus, i.e, the difference in market vaue of assets and liabilities. If
this surplus fdls beow a certan threshold, default occurs. We assume that
the portfolio exposures are driven by a common factor sructure

S; = 95(f.¢€5), (2)

where f is the common factor, ¢; is a firm-specific risk factor, and gj(-, ® )de
fines the functiond form of the factor modd for the jth firm. The formulaion
in (2) comprises the usud factor modds from the literature. For example,
if we st g;(f, s = B;f + ¢; for some factor loading §; € R, we obtain the
formulation of CreditMetrics, see JP. Morgan (1999). If g;(f, €;) = €;/(8; f),
we obtain the Creditrisk* specification, at least up to first order, see Gordy
(1999) and Credit Suisse (1999). Throughout the present article, we consider
the onefactor model only, i.e, f € R'. This smplifies the derivations con-
Sderably while ill dlowing us to andyze a broad range of interesting prop-
eties of credit loss didributions. In Section 7, we comment on approaches
to genedize the results to a multi-factor setting.
We make the following assumption for the components in (2).

Assumption 1 (i) {51};11 is sequence of independent random variates that
is independent of f.



(i) gj( f, 5j) is monotonically increasing in f and ¢; for all j.

(i) Let F; () denote the (al most everywhere continuously differentiable) dis-
tribution function ofe;, and Fj(-) = 1—Fj(-). Moreover, let £ = inf{e|F(¢e) =
1} and £ = sup{e|F(¢) = O}. If € < o0, F;(-) has a right-hand tail expansion

Fi( =1/e) =1 exp(ps(e)) . Le(e) (3)
for ¢ sufficiently large, where p5(c) = 5. €% . (1 + o()) and L(-) is a slowly
varying function. Conversely, if & = oo, the tail expansion takes the same

form as in (8), but with the left-hand side replaced by F‘J(a) Analogous tail
expansions apply for Fy (), the distribution of f, with the expansion being
valid for the left-hand tail.

Pat (i) of the assumption is standard in the credit risk literature. It as-
sats that the surplus varidbles S;, which trigger a firms default, have a
systemdtic risk component f, and a 0 cdled firm-specific or idiosyncratic
risk component ¢;. The svstematic risk component dlows for defaults to
occur in clusers. For example, average default rates are much higher during
recessons than during booms of the economy. This can be modelled by let-
ting f have more mass in the lower tals during recessions. Part (ii) places
redrictions on the functiond form of the factor modd (2). In particular, we
only condder casss where we can dways uniquely retrieve an dement from
the vector (S;, f, €;) given the other two elements. Note that both the linear
CreditMetrics modd and the multiplicative CreditRiskt modd stidy this
criterion, see Gordy (1999) and the modd specifications presented ealier.
The focus on increasing g(-, -) iS not very redrictive per se. For example, if
g; (f . ;) is decreasing in f, we can transform variables and consder g;(f, ¢;)
with f = —f. Pat (iii) of the assumption places redrictions on the tal be-
havior of the idiosyncratic and systemeatic risk components. If p5(e) = 0, we
dlow for tals that lie in the domain of dtraction of a Fréchet or a Welbull
law, see Embrechts et d. (1997). We dso dlow for tals tha have an
exponentia  decav. Though our formulation is not as generd as that in The
orem 3.3.26 of Embrechts et a. (1997) , we 4ill cover dl distributions that
ae commonly used in empiricd exercises, eg., the normd and the Gamma
distributions.

The second characteristic of bond jin (1) is the credit loss 7; (-) associated
with bond j. The loss depends on severd factors. Firdt, the surplus variable
S; may trigger a credit event such as default or a credit raing migration.
This results in a monetary loss! The severity of the loss is determined by

1 we assume that the exposures are marked to market, such that a credit rating mi-
gration generally causes a change in market value due to a change in the (market) credit



(inter dia) the initid credit rating, as the reings are directly related to the
bond's market discount factors. The amount los may aso depend on the
date of the economy. This can be modeled by incorporating a common factor
pinm; (@ ). For exanple, the level and shape of the term structure of interest
rates may change over time, resulting in higher or lower loses in the event of
default. Smilarly, there mav be an additiond idiosvncratic risk component
n;, for example, if the bond' is a convertible bond. In the present paper we
refran from introducing the additiona complications of dependence of 7; ()
on 1 or n;. FAndly, the loss functions ;(-) may differ in generd over different
bonds or firms. Easy examples are cases in which the szes of the loans or
ther maturities differ over firms
We make the following assumption for the loss functions.

Assumption 2 sup; E [ 7;(S;)?| f] < oo almost surely.

The assumption mekes the application of a law of large numbers possble
a a laer stage. Note that the potentid loss 7;(-) may il be unbounded,
as long as the conditiond sguared expectation is bounded uniformly in j.
This comprises most cases of practicd interest, eg., portfolios of bonds,
convertible bonds, interest rate derivatives like swaps, etc. As mentioned,
for ressons of smplicity we do not dlow 7; (-) to depend on other stochastic
varidbles than S;. Such extensons can be useful if one wants to Study credit
risk and market risk in an integrated framework, see the remarks in Lucas,
Klaassen, Spreij, and Straetmans (1999).
The credit loss for a portfolio of Sze n is now given by

Cn= ij(sj)’ (4)

i.e, the sum of the individua losses Instead of conddering the didtribution
of C, directly, we follow Lucas et d. (1999) and consder the case n — oc.
Define

C = lim C,/n. (5)

n—oo

The advantage of conddering the didribution of credit losses for (infinitdy)
large portfolios only, is that the number of dochasiic components is limited
condderably. This facilitates the study of the tall behavior of credit losses.
As was shown in Lucss e d. (1999), empiricdly rdevant quantiles of C, eg.,
99% or 99.9%, can be used to construct good approximations to quantiles of
C, for n in the range 300-500 or larger. These values of n ae quite smdl

spread.



given the usudly large numbers of exposures in typical bank portfolios. We
have the following theorem.

Theorem 1 (Williams)
1 n

Jlim = (S, k) = E [m5(S;, k)| f1 550,
=1

Usng Assumption 2, the proof of this theorem follows directly from Theorem
12.13 of Williams (1991), see adso Lucas et d. ( 1999). Consequently, from
now on we only consider

CI%HEO%;E[WJ(SJ»kj)|f], (6)
which does only depend on one stochastic variable, f, and not on {¢;}%2,. As
argued in the introduction, we are especidly interested in the tal behavior of
C, as this is very important from a credit risk management perspective. The
most draightforward wav to sudy this behavior is by usng extreme vaue
theory. In the next two sections we dart by deriving the rate of tall decay
in the form of the tal index for portfolios of increesng complexity.

3 Tail index for homogenous portfolios

For expodtiond purposes, we firgd derive the tal index of the credit loss
digribution for a homogenous portfolio. This portfolio contains exposures
which exhibit the same systematic risk, initid credit raing, and credit loss
in case of default. In paticular, for dl j we set g; (f, €;) = g9(f, ¢;), Fj (E) =
F (), and 7;(S;) = 1(s,<s} (S;) for some relevant s € R, where 14( ) is the
indicator function for the set A. So dl bonds in the portfolio have the same
characterigtics. In case of default (S; < ), one money unit is lost, wheress
there is no loss if default does not occur. Usng this dylized portfolio, (6)
amplifies to

C=tim =S Ells<a(S)| fl= Plotfie) <sl f]. (0
1=1

Given the monotonicity conditions in Assumption 1, we can define the
patia inverse functions g~¢(f, S;) and g~/ (S;, ¢;) such that

9(f.97(f.5)) = 9(g7/(Sj,&;),65) = g(f.e5) = S;. (8)
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In addition to Assumption 1, we pogulae the following requirements for the
factor modd (2).

Assumption 3 (i) Let S;, 3, and &; denote the support of Sj, f, and ¢;
respectively. Then g¢g~¢(f, s) and gj“f(s, e;) are well defined for all j, s € Sj,
f €3, and ¢; € ;. Also,

{9;7°(f,9)|s € 8;} = ¢

for all f € 3 and
{o7/(s,E]) [seSj}=7F.

for all &; € &. (i) If p5(-)=0and pf(-) =0, limszln |g7/(s,€)|/1n |e] = C.
Else limsz 977/ (s, €) /e =¢.

Pat (i) of the assumption requires that the factor modd (2) is bdanced in
the systematic risk component f and the idiosyncratic risk &;. In particular,
any redizetion of f can be compensated by a suitable redization of ¢; to
produce the same vaue of S;. This implies thet if €; is pushed to the upper
end of its support, f has to be pushed to the lower edge of its support in
order to redize the same vaue of S;. The intuition in economic terms of this
condition is as follows. Consder the borderline case where a firm j is dmogt
pushed into bankruptcy. If the common risk factor f is extremey adverse
then firm specific conditions (¢;) have to be highly advantageous to prevent
the firm from going bankrupt. Typicad examples excluded by Assumption 3
ae when firms are pushed into bankruptcy for a given redization of f no
metter thar firm specific risk factor redization €;. Part (i) of the assumption
is agan a condition on the baancedness of the factor modd (2). In particular,
the rae a which systematic risk components have to change in order to
mantan a fixed leve . of surplus S; = s has to be related to the rate of
change of the idiosyncratic risk factor. Again, one can easly check tha the
condition is met for the linear and multiplicative factor modd Specifications
commonly studied in the credit risk literature. Also note that one can often
use a transformation of variables to achieve the required baancedness. For
exanple, ingead of considering f . exp(e;) one can condder f . €; with ¢; =
exp(e;). Such transformations can alter the tail behavior of the random
variates, such that one has to make sure that Assumption 1 is ill met.

The following theorem is proved in the Appendix.

Theorem 2 Let Assumptions 1 through 3 be satisfied.

o Ifpl()=p5(® )=0,C lies in the maximum domain of attraction of the

Weibull distribution with tail index ve = (v /v%.
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e Otherwise, if I/2f = 1/5, C lies in the maximum domain of the Weibull
T . o f
distribution with tail index v¢ = y{{'@/l/g.

Theorem 2 directly reveds how the tall index of the credit loss digtribution
depends on the tail indices of the latent factors (f and ¢;) and on the factor
mode g¢(-). The dependence on the factor modd only enters through (, which
is controlled by the badancedness condition (i) in Assumption 3. If the tals
of fand ¢; are of the Frechet or Weibull type, see Embrechts et d. (1997),
the theorem shows that the tal index of the credit loss digribution is directly
proportiond to the ratio of the tal index of f to that of ¢;. The tal index
of C can thus be very low if v£ is much higher then v;/ Put differently, the
tals of the credit loss didribution may be very fa if the idiosyncratic risk
is much lighter talled than the sysemetic risk, a least if both risks have
Frechet tvpe talls. This makes economic sense. If bad redizations of f occur
more often because f has fatter tals than €;, dmultaneous default of large
portions of the portfolio as opposed to isolaed firms is more likdy, resulting
in a higher probability of extreme redizations of C.

An interegting implication of the second pat of Theorem 2 is that the
tal index of credit losses can be finite even if the underlying risk factors f
and ¢; are both thin-tailed, see dso Lucas et d. (1999) and Figure 1 below.
As an example, teke the linear factor modd S; = Bf + €5, with f and ¢;
both standard normaly distributed and 8 > 0. Clearly, v = u{ = —-1/2,
Vs = u{ = 2, and ( = 372 As a result we obtan v = $72. This confirms
the results in Lucas e d. (1999). So higher sysematic risk in terms of a
higher 3 (and thus a lower ¢) trandforms into a lower tail index of C.

To illugrate dl the above findings, we present some credit loss didri-
butions with different tail indices. We consder the linear factor modd
S; = Bf + ¢;with § = 1. We further assume that f and ¢; follow a Student
t didribution and that the probability of default is 5%. The resulting tal
indices are given in Fgure 1.

The fird thing to see in Fgure 1 is that for vi > v{ the distribution
function of C approaches 1 for C 1 1 with increeang segpness. This implies
that the dendty of C will be increesng in C near the maximum credit loss
of 1. The fact that such phenomena have 0 far never been observed in the
literature is not surprisng. Up to now, the focus has only been on thin-
taled risk factors, eg., norma or Gamma The above results for fat-tailed
risk factors, therefore, conditute a new contribution to the literature. The
results dso have a practicd edge for credit risk management. The likdihood
of extreme credit losses is increased if the common risk factor has fatter tals
than the idiosyncratic risk factor. As it can be difficult to rdiadly edimate
the tal-fatness of f and €; from the empiricd data thet is typicaly available,
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Figure 1: Credit loss didributions with different tal indices

The figure contains the credit loss densities for a homogenous portfolio (top row)
and the log-exceedance probabilities for extreme credit losses. The underlying
factor model is linear, g( f, €;) = f + €, and the default probability is 5%. All

¢; are identicaly distributed. The risk-factors f and ¢; both follow a Student ¢
distribution with'ulf and v§{ degrees of freedom, respectively.
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a more consavative gpproach than that based on normdly distributed risk
factors can be warranted for prudent risk management.

4 Heterogenous portfolios

So far we have concentrated on a homogenous portfolios for a onefactor
modd. It is much more interesting, however, to study heterogenous portfolios
and multi-factor models. For smplicity, we focus on a portfolio congsiing of
m homogenous groups, where m can be arbitrarily large. Using (6), we have

C=3 N Plalfe)<slf=) N Rl (f9),

where, with a dight abuse of notation, we have replaced the firm index j by
the group index i. The condants )\; denote the ith exposure sze multiplied
by the fraction of firms present in group i.

In order to study extreme credit losses, we need severd additiona defini-
tions. First define the upper bound of the support of C. Let

—supr..ng fv ))7

feF =4

then C* defines our maximum credit loss. Note that C* does not equd the
maximum credit loss for a portfolio of finite Sze, as it may be the case that
Cc* < Z;’;l A;. FHrms can be pushed into default by ether the systemdic (f)
or the idiosyncrétic (g;) risk factors. Therefore, the maximum credit loss for
a portfolio of finite sze is dways Y .-, Ai. In the limit, however, the idiosyn-
cratic risk can be divadfied, meaning in ddidicd terms that Theorem 1
agoplies It is common to excdude the diversfidble risk from an andyss on
the management and pricing of risk, cf. Markowitz (1952). Therefore, we
concentrate on C* as the extremum of interest.
Let M be a collection of sets defined by

{M c {1,.. m}supr.. 9. 5(f, s) = C* N BM°c M,

1€M

M°® # M, such that supZA Fi(g (f,‘,:C*}, (9)

'fe]:zeMs

In words, M is the collection smdlest subsats of the portfolio that can give
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rise to the maximum credit loss C*.

Along with each set A4 € M, we défine a collection of (digoint) arcs
F(M) C F, such that for f dong ay f € F(M) the portfolio results in its
supremum  credit loss. The collection ]3'(M) is assumed to be complete in
the sense that for any arc f leading to C* for subgroup M, we have that dl
f-vdues dong the ac dso belong to an ac in i(M).

Along each arc f, we assume there exists indices ¢( f) and congtants ¢ (€, f)

such that
Fi(gi_e(fa S))
Frop (0. (F9))

for dl i € M, ¢ > 0 suffidently smdl, and f unifomly in f € f. We dso

assume 0 < (¢, f) < oo. The fact that ¢ depends on ¢ denotes that we only
consder that part of the arc f that brings the credit loss within a ¢ distance
of C* . We dso define ¢ ( f) = limg, inf ¢(€, f) @ the uniform upper bound

(infinitdly) dose to C*. Also define

:Z/\i'C(f)

1EM

< ¢(€, f)

To complete the set of definitions, let

f*(M, &) = ag ess s P N1 - Fp(07(f, )] < €| f| PIf
feF (M)

A

f1(M) =lim f*(M, ),

£lo
* = P ) ; - F f M ’
M () = arg ess}\/]sgje1 [/\L(f.(M))[l FL(f.(M) ]<§‘f ] [f*(M)]
and findly
M* = lim M*(c).
€10

Given dl these definitions, we can now present the following theorem
on the tal index of credit losses for heterogenous multi-factor modds. The
theorem is proved in the gppendix.

Theorem 3

. InP[C>c =& . lnP[L(f“(M‘)) (f, €)<S|

lim = [im

€10 Iné efe In[l - FL(f.(M. ))(5)]
The man result of this theorem is thregfold. First, the theorem dates

that in order to look a the extreme tail behavior of C we do not have to

(10)
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take the whole portfolio into account. Only subgroups M that can produce
the maximum credit loss matter. Second, given the focus on a paticular M,
we do not have to condder al possble redizations of the common factors f
that push subgroup M into default. Instead, we only have to consider one
citicd path, f*(M*) for one paticular M = AM*. Findly, given the critica
pah f*(M*) and the subportfolio characterized by M*, the extreme tail
behavior is only determined by one particular origind group of the portfolio,
charecterized bv i = «(f*(M*)). So a dudv of the tal behavior of C for
heterogenous multi-factor models after stepwise smplification boils down to a
dudy of the tall behavior of a homogenous singlefactor mode. Homogenety
is assured by the focus on the gspecific (homogenous) portfolio group | =
o(f *(M*))whil e a sngle-factor gpproach suffices because we only consider
redizations dong f* (M*).

It is easy to see that Theorem 3 comprises the result in Theorem 2. For a
homogenous portfolio and a snglefactor model, we can skip the subindex .
in (10). The numerator and denominator in (10) are then obvioudy directly
rdaed to the left-hand tall index of f and the right-hand tal index of e,
respectively. This corroborates the statements in Theorem 2 and leads to very
damilar expressons in case of multi-factor models and heterogenous portfolios.

Apat from its pogtive contribution in characterizing the extreme credit
loss tals, T'heorem 3 dso points to a potentid problem of the application
of extreme vaue theory to credit loss problems. The limiting credit loss is
determined by a sngle subgroup of the totd portfolio only. For example,
if a gpedfic group only conditutes an abitraily smdl portion of the totd
portfolio, it can ill be the case that this group completdly determines  the
extreme tal behavior. The andl sze of the group, however, makes it imma
terid for the tal shgpe of credit losses near empiricaly relevant quantiles
We discuss this issue and related issues pertaining to a cautious application
of extreme vaue theory in the credit risk context in the next two subsections.

o Specific example: complete tail behavior

The fact that the credit loss digribution for (infinitely) large portfolios lies
in the maximum domain of dtraction of a Webull lav might suggest that
extreme vaue theory can be very ussful for computing extreme credit loss
quantiles. As these quantiles are used in risk management exercises, they are
of clear economic interest.

One example of how extreme vaue theory can be useful is as follows. If
a gpecific quantile of the credit, loss didribution is required, one can Sm-
ulade from the undelying factor modd. These gmulaions transform into
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amulated credit losses through (4). Usng a set of N smulated credit losses,
the gth quantile can be edimated by the ¢gN-th sSmulated order datidtic.
A much more efficient edimaie can however be obtaned by exploiting the
precise tal shape of the credit loss didribution. Examples of such estimators
aegivenin .. .One usudly proceeds by edimating the rate of decay of the
tal of C udang only the extreme order ddidics. Subsequently, usng edi-
mates of scale and location condants, the tal can be inverted to arive at
the rdevant quantile

This brings us to an important point. Usudly, much atention is pad to
the type of tal behavior (Gumbe, Fréchet, Weibull) and to rdiable estima
tion of the tal index. Much less atention is pad to the scding condtants
that are needed to make the tal gpproximations operationd in empirica ap-
plications. A similar gpproach was taken in the present aticle. In Sections 3
and 4 we focused on obtaining closed-form expressons for the tal index for
a range of digributions for f and ¢;. In this section, we sudy the scaing
congants in more detall, as these are important for the practicd applicability
of extreme vdue theory.

As an asde, note that we showed in Section 4 that the rate of decay of the
tal may differ subgtantidly over different ranges of the credit loss support.
This may limit the gpplicability of extreme vdue theory, as different tall
shapes may dominate for different Szes of the credit loss. We come back to
this issue usng dmulations in Section 6.

In the present section, we use an anadytic gpproach indead of smulations.
We deive the complete tail behavior of credit losses for a specific example
and point out tail shape inhomogeneity over the support of credit losses even
in case of a homogenous portfolio and a snglefactor modd. This warrants
the cautious use of EVT, if it is to be used a dl.

We consder the Gaussan linear factor modd for a homogenous portfolio,
see dso Bdkin, Suchower, and Forest (1998). We have

Sj = pf + V1= p%;,

where f and ¢; are standard normal, and O < p < 1. This s&t-up has the basic
ingredients of the CreditMetrics gpproach. We only consider default loss, and
the default probability and bondloan sze is the same for dl exposures in
the portfolio. We normdize the loan szes by letting the maximum credit
lossc* = 1. We now have the following result.
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Theorem 4 Given the model above, C has a tail expansion of the form

PIC > 1-¢] = g0 A EF 2 8 SNV
C>1-€=¢ L s + ®-1(€) 1—p2|ex 207 p (1+0(1)),
for £ | 0. The leading terms in this tail expansion are (11)
PIC > 1-¢] = gi-r 2L ;%. e [_55;)5 _sy/ ln(fj))\/l p2}'(1+0(1)).
(12)

Note that exp( In(£)|Y/?) is dowly varying in the sense of Karamda, as

iy P (1 In(#) |1/2)
el0 exp( In(€)['/?)

1
= l - ln t In 1/2 =1.
513)1e>(p(2 /| In(&)[*7)

Define

1_2— \/ - 2
L(1/¢) :—111—26_82/(2’)2)(— 1n(27r§2))_?—3/ exp {%——e—\/—ln(%rfz) (140(1)),
—p
(13)
then L(-) is dowly varying and limg o L( I/r> = O for s < O, which is typicaly

the cae. We have

P[C > 1 - ¢ == [(1/¢),

with L(-) as in (13).

The dove reaults illudrate some of the potentid pitfals in the appli-
cation of extreme vaue theory for even smple homogenous credit portfo-
lios. By concentrating only on the rate of tal decay, i.e, the tal index,
we ae effectively concentrating on the factor £€(1-*)/¢* in (11). The dowly
varying function L(1/£), however, is dso important for characterizing the
complete tal behavior of C for empiricadly reevant quantiles. The fact tha
limg o L(1/€) = O dgnds that tal probebilities will be overestimated if we
only concentrate on £1-#/#*. The (neglected) presence of L( -) may aso
cause biaes in dandard edimates of the tal index, thus further limiting the
goplicebility of extreme vaue theory. To invedigate these issues in more
depth, we use smulations in the next section.
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6 Simulated examples: tail inhomogeneity

In this section we meke a fird sep in andyzing the ussfulness of extreme
vaue theory for credit loss didribution and credit risk management. As in
the previous sections, we concentrate on the estimation of the tal index. In a
future paper we plan to consder the fit of tall expansons based on extreme
vadue theory for typicd credit loss quantiles of empiricd intere, such as
95%, 99% or even higher.

In our smple smulation set-up, we focus on the linear factor modd of

CreditMetrics,
S = pif +4/1 - pej, (14)

where f and €; both have mean zero and unit variance. The factors ether
follow a thintalled Gaussan didribution or a fater-taled Student t(5) dis
tribution. The higher the value of p;, the larger the systematic risk. We
consder p; = 0.1,0.25,0.5. We assume a default probability of 1%, which
corresponds to a portfolio of BB rated bonds, see JP. Morgan (1999).

As seen in Sections 3 and 4, the tal index is determined by only one part
of the portfolio. It is therefore interesting to study the effect of the rdative
magnitude of different pats of the portfolio on the edimaed tal index.
To do this we consgder a portfolio condgting of two homogenous groups.
Each group is characterized by its velue of p?, o7 and pj for group 1 and
2, respectively. Furthermore, group 1 and 2 conditute 100A and 100(1 — A)
percent of the portfolio, respectively.

To edimate the tal index, severa edimaors can be thought of. We
concentrate on the one most wel-known, namdy the Hill esimator, see Hill
(1975). A cucid dep in edimating the tall index is the sdection of the
number of order datistics to be taken into account. As we have an ana
lytic expresson for the tal index and know the data generating process of
credit losses, we can choose the number of order deidics that minimizes
the mean-squared eror (MSE) of the tall index edtimator. This procedure
canot be implemented for empirica data, but gives an indication of what
one might best expect. A disadvantage of the Hill esimator is tha it was
origindly developed to edimate the tall index of didributions of type II, i.e,
digributions that lie in the maximum doman of atraction of a Fréchet law.
We have proved ealier that the credit loss digribution lies in the maximum
domain of atraction of a Webull. This might cause complications for the
vdidity of the Hill estimation procedure. To check this we compute the Hill
esimator both for the raw smulated credit losses, C, and for the transformed
credit losses (1 = C)~!. If C lies in the maximum doman of atraction of a
Weibull with index o, (1 = C)7! lies in the maximum domain of attraction
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of the Fréchet with the same index a.

The results of our smulation experiment are presented in Table 1. The
note below the table describes the smulation set-up in more detail.

We firgd concentrate on the tal index edimaes of the untransformed
credit losses C. For Gaussan factors, the Hill estimator generdly underes-
timaes the true tal index. The discrepancy is sndler for smdler vaues of
the tall index. Based on Section 4 one can prove that for Gaussan factors
the tail index is given by max;—;o( 1 — p?)/p?. By inspecting the entries in
Table 1, we see that the bias in the Hill estimator is larger for smdler szes of
that part of the portfolio charecterized by the smdlest p?. This is intitively
clear. If the portion of the portfolio determining the extreme tall behavior is
only smdl, the tall shgpe governed by the remaning exposures in the port-
folio will heavily influence the less extreme tals thus influencing the Hill
edimates for finite sample Szes. The biasss ae much less noticegble if the
smdler pat of the portfolio has a larger p?.

If the factors follow a Student t(5) didribution, the true tal index is
generdly lower. The bias in the Hill edtimaor is dso genedly lower for
p? equal to 025 and 0.50. For less systematic risk, p? = 0.10, the bias is
dill about 30% if the tal behavior is determined by the smalest pat of the
portfalio.

A pecdliar finding of the present Imulaion experiment is seen if we
consider the transformed credit losses. As mentioned, (1 - C)~! has Pareto
type tals. With a few exceptions for the Student t(5), however, the Hill
edimates are dl too high, both for Gaussan and Student t factors. At first
sght, one might be tempted to explain this from the presence of the dowly
vaying function in the expresson for the tal. As proved in Section 5 for
the Gaussan case, this function decreases to zero, probably causing a hias
towards thinner tails in finite samples. It is then uncdear, however, why the
same reasoning does not aoply for the untransformed credit losses where a
downward rather than an upward bias was seen. Clearly, more research has
to be put in sudying the behavior of different tal index edtimators for credit
loss didributions in order to understand these results more thoroughly.

7 Concluding remarks

In this paper, we followed the conditiona approach to credit risk manage-
ment. Usng a latent factor modd, we (nonlinearlv) decompose credit risk
into a svstematic and an idiosyncratic risk factor. We dlow for different tal
behavior of both risk components and a generd factor sructure. With these
ingredients, we prove that under a wide variety of circumstances, the distri-
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Table 1: Hill Esimates of the Credit Loss Tal Index

) Tail C Tail (1 - C)!
Gaussian  factors Student t(5) factors Gaussian  factors Student t(5) factors
& (a) a (a a (a) a (a) a (a) a (a) a (a) a (a) a (a) a (a) & (a) a (a)
P [ 4 [ P; Py [ Pz
10 25 50 10 25 50 10 25 50 10 50
10 6.2(9.0) 5.3(9.0) 5.5(9.0) " 10 3.1(3.0) 1.8(3.0) 1 19(3 0) 10 84.2(9.0) 27.5(9.0) 9.4(9.0) 10 56.6(3.0) 108(3 0) 2.6(3.0)
L 25 6.5(9.0) 26(3.0) 2.6(30) 2 5 3.1(3.0) 1.8(1.7) 1.4(17) 2 5 80.9(9.0) 27.9(30) 9.2(3.0) 25 50.6(3.0) 12.0( 1.7) 23(17)
5 0 6.1(9.0) 2.8(3.0)1.0( 1.0) 5 0 3.1(3.0) 1.8(1.7) 1.1(1.0) 50 79.5(9.0) 27.4(3.0)  9.1(L0) 5 0 50.0(3.0) 13.1( L.7) 1.9( 1.0)
o [ o o ol r3 P} 03
10 25 50 10 25 50 10 25 50 10 75 50
10 5.7(9.0) 6.2(9.0) 4.5(9.0) 10 3.1(3.0) 1.9(3.0) 2.0(3.0) 10 83.0(9.0) 28.3(9.0) 10.2(9.0) 10 60.3(3.0) 11.8(3.0) 3.3(3.0)
10 25 61(90) 2.8(30) 2.7(3.0) 2 5 29(3.0) 1.8(1.7) 1.6(1.7) 2 5 68.0(9.0) 29.5(30  8.9(3.0) 2 5 345(3.0) 9.4(17) 2.3(17)
5 0 5.9(9.0) 3.0(3.0]1.0( 1.0) . 50 26(3.0) 1.7(1.7) 1.1(1.0 5 0 48.6(9.0) 22.8(3.0)  9.1(1.0) 5 0 21.7(3.0) 8.0(L17) 2.9( 1.0)
ot % o} 3 ot o3 ot 12
TU 25 50 10 25 50 10 25 50 10 25 50
10 6.2(9.0) 5.9(9.0)" 4.5(9.0)° ~10 3.1(3.0) 2.3(3.0) 2.2(3.0 10 84.2(9.0) 42.8(9.0) 17.0(9.0) 0 57.2(3.0)" 16.7(3.0)" 6.3(3.0)
50 25 5.8(9.0) 2.7(3.0) 2.7(3.0) 2 5 23(3.0) 1.8(17) 1.4(17) 2 5 41.7(9.0) 27.7(3.0) 14.1(3.0) 2 5 21.4(3.0) 10.3(1.7) 4.4(17)
5 0 5.6(9.0) 2.7(3.0) 1.0( 1.00 50 1.7(3.0) 1.4(1.7) 1.1(10) 50 18.2(9.0) 12.7(3.0) 82( 1.00 50  6.4(30  4.5(17) 2.3( 1.0
o} o3 ot [ o2 [ o} 1%
1o 75 50 10 25 50 10 25 50 10 25 50
10 6.4(9.0) 54(9.0) 5.9(9.0) 3.1(3.0) 2.9(3.0) 2.6(3.0) 10 85.1(9.0) 72.9(9.0) 52.8(9.0) 10 57.4(3.0) 44.2(3.0) 21.6(3.0)
90 25 5.6(9.0) 2.6(30) 2.7(3.0) 25  1.9(3.0) 1.8(L7) 1.7(1.7) 25 28.6( 9.0) 27.2(3.0) 234( 3.00 25 10.0(3.0) 10.5(17)  8.5(1.7)
50 4.9(9.00 2.7(3.0) 1.0(10 5 0 2.0(3.0) 1.4(17) 1.1( 1.00 50 9.8(9.0) 85(30  8.3(L.0) 50  2.6(3.0) 2.6(1.7)  2.3(1.0
p} o3 o} 0} o} p} o} 0}
10 25 50 10 25 50 10 25 50 10 25 50
10 6.1(9.0) 6.1(9.0) 5.9(9.0) 10 3.1(3.0) 3.1(3.0) 3.0(3.0) 10 85.5(9.0) 79.9(9.0) 79.4(9.0) 10 51.9(3.0) 52.7(3.0) 51.5(3.0)
99 25 5.1(9.0) 2.8(30) 2.7(3.0) 25 1.8(3.0) 1.8(17) 1.8(1.7) 2 5 27.5(9.0) 28.2(30) 27.6(3.0) 25  11.0(3.0)  9.7(1.7) 10.7(1.7)
50 4.5( 9.0) 2.6(3.0) 1.0(L0) 5 0 20(3.0) 1.6(17) 10( 10) 50 9.8(9.0) 87(3.0) 83(10) 50  2.5(3.0) 24(17)  2.1(10

The table contains estimates of the taill index of the credit loss distribution based on the Hill estimator. The factor

model is linear,

Sy =9;f (1 - p?)l/zej, and the factors f and ¢; either have a standard normal, or a unit variance Student t(5) distribution. The
values of p? /100 instead of p? are presented in the table. The loan portfolio consists of 2 groups, where group 1 (characterized by pf)
constitutes \% of the portfolio. The tail index estimates are obtained as follows. For a series of 1000 observations, we compute the Hill
estimator as a function of the number of order statistics. This is repeated 100 times to obtain an estimate of the variance of the Hill
estimator. As we know the tail index analytically, we can compute the mean-squared error (MSE) as a function of the number of order
statistics using the estimated variance (mentioned earlier) and the squared bias. The latter is computed using the average of the Hill
estimates (per number of order statistics) over the 100 replications. The final estimate is the average Hill estimate for the number of
order statistics that minimizes the MSE. As the Hill estimator is typically for Fréchet laws and we have a distribution in the maximum
domain of attraction of a Weibull, we estimate the index using the origina credit losses (tail C) and transformed credit losses (tail

(1 - ©)71), where we note that (1 — C)~! has Fréchet tails if C has Weibull tails.



bution of portfolio credit losses lies in the maximum doman of atraction
of a Welbull law. For a homogenous portfolio and a single factor, the tall
index is relaed directly to the factor modd dructure and the tal indices
of systematic and idiosyncratic risk. For multi-factor modes and heteroge-
nous portfolios, the expresson for the tal index is much more involved. The
key result, however, is that only an abitrarily smal subset of the complete
portfolio determines the extreme tall behavior. Moreover, only one partic-
ular redization of the systemdic risk factors maiters for the tal index. In
words, the thickness of the extreme tal is determined by the redization of
risk factors that in a sense produces the worst possible culmination of poten-
tid losses. If the idiosyncratic risk is much thinner talled than the systematic
rsk, the tall index of credit losses is very smdl. In paticular, the dengty of
credit losses may then be increasing towards the upper end of its support. In
some circumgtances, the increesng pat of the dendty dready darts before
extreme quantiles of empiricd interest, eg., 99%. This means that very ex-
treme credit losses may show up with a much larger probability than based
on a factor modd with both Gaussan systematic and idiosyncratic risk.

For a specid case of a linear Gaussan factor modd, we were able to de-
teemine the tall behavior andyticdly in more much detal. We proved that
in the setting dudied the dgebracaly declining tall shgpe has to be comple-
mented by a dowly varying function that decreases to zero. As a redult, in
finite samples tails may appear to be more rapidly declining than the in fact
ae. To dudv the magnitude of the potential bias, we conducted a small-scae
simulation experiment. Some of the theoretical findings were supported in
the experiment. Tal index edimaes ae generdly biased, and the bias is
larger if the pat of the portfolio that determines the tal index is smdler.
The dmulation experiment aso produced some interesting topics for further
rescarch. It turned out that the tall index edimators behaved completey
differently if the credit- losses were transformed or not. The transformation
consdered was that which makes the extreme tall shgpe of credit losses lie in
the maximum domain of atraction of the Fréchet rather than the Wabull.
Though one would expect intuitively that the Hill edimator, which is de
dgned to edimate the tall index of “a tvpe Il limiting law, peforms better
for the transformed credit losses, it turned out that the edtimates for the
untransformed losses were much closer their true vaues.

Several interesting topics for future research remain. First, a further
dudy into the propertties of different tall index estimators for different trans
formations of credit losses seems warranted. This will dso be a fird dep
for the second topic of research, namely an assessment of the adequacy of
extreme quattiles edimated usng extreme vaue theory. Though the biases
and properties in generd of tal indices are interesting in themsdves, the fit
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of extreme tals and quantiles based on extreme vaue theory seems more
important from a practicd point of view. This boils down to sudying the
goplicability and relevance of extreme vdue theory for practicd credit risk
management.

Appendix: Proofs

We first prove the following lemma for the homogenous portfolio of Sections 3.

Lemma Al Given Assumptions 1 through 3, we have
. WmP[C>1-¢ . In[Fy(g7/(s, €))]
lim ————— > = Al
im — b — T R ] (A1)

Proof: First note that g=¢ (f, ) is decreasing in f. Moreover, the inverse of g—¢(f, s) with
respect to f is given by g-f (s, ¢;). From (7), we have

C=Ple; <g~(f,s)lf] = Fe [97°(£,9)] (A2)
where the inequality is preserved because g( f, ¢;) is increasing in ¢;. Therefore,
P[C>1-£] = P[g‘e(fvs)>Fe_l(l-§)]

Plf < g7'(s, FT' (1 = ¢))]
Fylg™/(s, F7' (1= ¢))), (A3)

where the inequality is reversed because g~¢( f, s) is decreasing inf. Using the substitution
e= F~1 (1 - £) we obtain the desired result. '

The importance of this lemma lies in the fact that it alows us to compute the tail
index of the distribution of C. From Corollary 3.3.13 of Embrechts, Kliippelberg, and
Mikosch (1997) it follows that if (Al) equals v # O, then C lies in the maxima domain
of attraction of a Weibull law with (right) tail index vc.

Proof of Theorem 2: We first prove the first half of the theorem. If = o0, we have
from the tail conditions in Assumption 1 and the result in Lemma Al that

Cmpe>1-g) . B[N L (5e)]
lim lim .
€40 In¢ etoo In[e=1 . L.(e)]

= o/,

where ¢ = limteo Infg™7 (s, €)]/ In[e].
Smilarly, if € < o0,

W[P(C>1-9] _
= he = M mEcoT LE=a
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where ¢ now equals limq1o, In[f = g~/ (s, €)]/ In[g - €].
For the second half of the theorem, note that for € = oo

i BPC>1-0) . vf(gf(s.) _ vi(
€40 In¢ etoo  ViEYS Y

if 5= v5,and 0 or oo if v > v§ and v{ < v5, respectively. A similar derivation can be
set up for the case of finite . .

To prove Theorem 3, we first introduce the following lemma.

Lemma A2 For any Mi, My € M, My # M, define

Fo={fI Y N F(g5(f8) > C* - ¢€) (A4)
1€M,;
and
Fo={fl D \-Filg;"(f,9)>C" - ¢} (A5)
1€ Mo

Then limuo P(FH ﬁfg) =0.

Proof: Let My,My € M, M; # M,. If the lemma is fase, then for a given ¢ with
¢ sufficiently small, there exists a region F* C 3 such that F* Cc F;, F* C F3, and
P(f € F*) > 0. As M, is the smallest subset of the portfolio giving rise to the maximum

credit loss,
Y NLF(g7(f,9) >

1€EM,; \M2

for all f € F* and some constant k > 0. Using this and (A5), we have

> N-FR(g7(f,9) > C - € +k,

tEM UM,

fordl f € F*. As £ can be chosen arbitrarily small, this contradicts the definition of (C*
as the supremum credit loss and thus proves the lemma. '

Proof of Theorem 3: Given Lemma A2, we have to consider

>/

MeM

Y MlI-Filg=(fis)] <€

1EM

f] p(f)df, (A6)
which follows by noting that

P |5 M. Fi(g7°(f9) >C‘—€1 {ll: 1= Filg " (f,9))] < §| - (A7)
ieM

Conditional an a given arc f € S(M), the uniform boundedness in the definition of L(f)
ensures that the term with ¢ = ¢(f) dominates the other terms for £ | 0. As a result, we
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can replace the sum over ; by the single term indexed L(f). A similar argument can be
repeated, leading us to select the arc f* and subset M* that produce the fattest tail in
(A6). The proof is completed by noting that

In P sl = Fugoomep (05 (FrNI <] _ ) lnP[g‘f(f,s)>F;;.(M.),(l-f)]

lim

€40 In¢ £40 In ¢
o P (s> 90, Fih ey (1= ©)]
= 1m
€10 In¢
- lim In P [gE)l‘,e) < ] ’ (A8)
efe ln[l - FL(f‘(M‘))(E)]
which proves the theorem. =
Proof of Theorem 4: Using the fact that for £ | —oco we have ®(z) = ¢(z)/|z|(1

O( |z|~2)), we obtain

PC > 1- g = ¢<s+®‘l(§)\/1—l’2)

P

5+271 (§)y/1-p?
o=

[s+@-1(§)\/1-p?|
p

2

N Ve Il—"% =
- P p |‘I> 1ol | |s+<I> ‘(s Vi-0%|
32 S‘I>_l / 2 21 (1 p
P P |s+<I> 5)\/1 -p?| .

Let &(z) = ¢(z)/|zl, then
§-1(6) = = XPLALW (/@)
¢ Vo

with LW (-) the Lambert-W function, i.e., the solution to

LW(z). exp[LW (z)] =
For large positive z, we have asymptotically that
LW(z) = In(z) - In(In(x)) + o(In(In(x))),

such that
&-1(¢) ¥ -/~ In(2re?). (A10)

Substituting ®~1(£) in (A9) by (A10), we obtain the desired result. '
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