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ABSTRACT We propose an affine macro-finance term structure model for interest rates that
allows for both constant volatilities (homoskedastic model) and state-dependent volatilities (het-
eroskedastic model). In a homoskedastic model, interest rates are symmetric, which means that
either very low interest rates are predicted too often or very high interest rates not often enough.
This undesirable symmetry for constant volatility models motivates the use of heteroskedastic
models where the volatility depends on the driving factors.

For a truly heteroskedastic model in continuous time, which involves a multivariate square root
process, the so-called Feller conditions are usually imposed to ensure that the roots have non-
negative arguments. For a discrete time approximate model, the Feller conditions do not give this
guarantee. Moreover, in a macro-finance context, the restrictions imposed might be economically
unappealing. It has also been observed that even without the Feller conditions imposed, for a
practically relevant term structure model, negative arguments rarely occur.

Using models estimated on German data, we compare the yields implied by (approximate)
analytic exponentially affine expressions to those obtained through Monte Carlo simulations of
very high numbers of sample paths. It turns out that the differences are rarely statistically
significant, whether the Feller conditions are imposed or not. Moreover, economically, the
differences are negligible, as they are always below one basis point.

KEY WORDS: Macro-finance models, affine term structure model, expected inflation, ex ante
real short rate, Monte Carlo simulations

1. Introduction

In this article we propose a two-factor heteroskedastic macro-finance affine term

structure model (ATSM). A term structure model in general involves one or more

driving factors, which are usually assumed unobservable. In the macro-finance mod-

els, the driving factors involve macro-economic variables, for instance, the inflation

rate, and have a direct economic interpretation. Most macro-finance term structure
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models encountered in the literature are homoskedastic, a constant volatility for the

driving factors is assumed, see for instance Campbell and Viceira (2002), Ang and

Piazzesi (2003), Ang and Bekaert (2004), Dewachter et al. (2004, 2006), Fendel (2005),

Bernanke et al. (2005), Dewachter and Lyrio (2006), Hördahl et al. (2006), Wu (2006)

and Rudebusch and Wu (2007).1 This, however, implies that interest rates are assumed

symmetric, which means that either very low interest rates are predicted too often or
very high interest rates not often enough. Especially in a low interest rate environment,

this characteristic also means that the probability of drawing negative interest rates in

a simulation exercise is substantial. Rudebusch (2010) therefore stated: ‘‘In the future,

developing versions of the affine arbitrage-free model that prevent interest rates from

going negative will be a priority’’. Our article is one of the first attempts for this in the

macro-finance context.

The undesirable symmetry for constant volatility models motivated us to include

heteroskedasticity by making the volatility dependent on the driving factors. We opt in
the first place for a continuous time ATSM driven by a multidimensional Brownian

motion. In such a model the volatility involves square roots of affine functions of the

state factors. Note that such a model also encompasses the aforementioned homo-

skedastic models because a constant volatility is a special case of it. These affine

models form, as a consequence, a more flexible class than those in which the volatility

is constant.

At the same time, the use of affine models naturally imposes restricting conditions

on parameter values, because the arguments of the square roots have to be non-
negative. These conditions, the multivariate Feller conditions, have originally been

introduced in Duffie and Kan (1996), see also Piazzesi (2005). Alternatively, they are

also known as admissibility conditions, see Duffie et al. (2003). On a technical note and

from a mathematical point of view, these conditions imply more than merely non-

negative arguments of square roots. It is known, see Duffie and Kan (1996), that the

underlying stochastic differential equations (SDE2) admit strong solutions (this topic

is only remotely relevant for this study), and they also imply that closed form expres-

sions for bond prices can be obtained. Violation of these conditions has therefore
unappealing consequences, at least from a technical point of view. On the contrary, as

we shall show, maintaining these conditions may sometimes result in unattractive

implications from an economic macro-finance point of view, as they then describe

untenable relations between certain macroeconomic quantities. Therefore, there is a

potential conflict between a mathematical requirement and the adopted economic

theory.

In practice, one often works with discrete time models, which, for instance, can be

obtained by discretizing a continuous time model. If the continuous time model is
driven by a Brownian motion, its discrete time counterpart will contain normally

distributed error terms. For the affine models that we consider, also in discrete time

approximations, the volatility factor will contain square roots of affine functions of the

state variables. In a first approach it is therefore natural to impose multivariate Feller

conditions again. However, their usefulness is debatable in a discrete time setting.

These conditions are insufficient to guarantee that the square roots always have non-

negative arguments. Indeed, the standard normally distributed errors, which are used

as inputs in these discrete time models, imply that at each time instant there is a positive
probability that one or more of the arguments of the square roots become negative,
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regardless whether the Feller conditions are satisfied or not.2,3 Despite of all this, it is

still not uncommon to impose the Feller conditions on discrete time models, as they

serve as approximations of continuous time models. However, one might also ques-

tion the necessity of these conditions, as indicated by the following empirical study.

We consider a two-dimensional factor process in discrete time. In Figure 1 we show a

typical simulated trajectory, obtained for parameter values that do not satisfy the Feller

conditions. In this setting, with a single volatility factor (denoted v), one of the Feller
conditions imposes that foreverypointonthe linev¼0, thedeterministicpartof theprocess

(the drift) is such that the volatility becomes positive again. Although it is clear that this

condition is necessary in a univariate setting, its significance in a multivariate setting is not

obvious as the interaction between the factors limits the part of the line v¼ 0 that is actually

approached. We conclude from Figure 1 that although the line v¼ 0 is crossed once, this

happens in the area where the drift of the volatility process is positive, an impossibility in a

continuous time model. In other words, the fact that v also assumes negative values is

because of the discretization of the model, not because the Feller conditions are violated.
Combined with the potential conflict that may arise with certain principles prescribed

by the economic theory whether the Feller conditions are imposed, this observation

motivates a study that sheds some light on the necessity to impose these conditions.

We will work with a two-dimensional ATSM, with the macro-economic quantities

ex ante real short rate and expected inflation as state variables.These models allow for

state-dependent (heteroskedastic) volatility models as well as a more traditional
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Figure 1. Example of a sample path of a discrete time ATSM for which the Feller conditions are
not satisfied.
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homoskedastic constant volatility model. Estimation is performed by maximum like-

lihood for both the homoskedastic model and different types of heteroskedastic affine

models, which will be referred to as models with independent volatilities, dependent

volatilities and proportional volatilities. Each of these models will be estimated, with

and without the Feller conditions imposed. In a pure latent variable model, it is usual to

impose these conditions by assuming a canonical form, as in Dai and Singleton (2000). In
such a canonical form, the volatility factors are equal to some of the state factors.

However, we cannot do this for a macro-finance model as ours, because none of the

factors can be taken as a volatility factor a priori. Therefore, we need and extract explicit

parameter restrictions from the Feller conditions for our non-latent variable model. The

estimation is complicated by the fact that expected inflation is an unobservable. We use

the Kalman filter combined with a likelihood approach to estimate the involved para-

meters. We compare the obtained results for the different heteroskedastic models to

results obtained for a homoskedastic model. We will see that heteroskedastic models
outperform a constant volatility model.

Having executed the estimation, we compare two consecutive approaches to validate

bond prices. In the first one, we calculate the bond prices directly given the estimated

parameters, using the discrete time Riccati equations (thereby ignoring the cut-off of

volatility at zero for the affine models). In the second approach, we perform a high

number of Monte Carlo simulations of the trajectories of the factors, whereby volatility is

restricted to be non-negative. The mean of these simulations gives a second approxima-

tion of the bond price. Moreover, we can measure the approximation error with
(sampled) confidence intervals. We will show that the differences between Monte Carlo

results and the values obtained from the exponential affine formula are almost always

negligible, both economically and statistically, whether the Feller conditions are imposed

or not. From an economic point of view, the difference in implied yields between the two

methods is hardly relevant, as it is at most one basis point. Statistically, the difference is

only significantly different from 0 for some maturities for the dependent and independent

volatility models without Feller conditions. For the proportional volatility models (and

the constant volatility model), there is never a problem.
The rest of this article is organized as follows. In Section 2 we review general model2

and ATSM2 in continuous time, mainly with the aim to set the notation for the

sections to follow. Then we discretize a continuous time model and show that the

discretized model leads to the same expression for bond prices as the discretized

version of formula for bond prices in continuous time. In Section 3 we present and

estimate our models. The explicit expressions for the Feller conditions for our model,

which is not given in canonical form, are given in Appendix A, which contains further

technical derivations. In Section 4 we use the estimated models of Section 3 to price
bonds by Monte Carlo methods and compare the obtained results with those obtained

by analytic methods. Finally in Section 5 we summarize our findings and draw some

conclusions.

2. Affine Term Structure Models

Although we propose an ATSM for discrete time, we first discuss continuous time

models. The reason for this is that the mathematical theory for ATSM 2 was initially
developed for continuous time models (Duffie and Kan, 1996), whence in this respect it
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is natural to regard the equations governing the discrete time model as discretizations

of the continuous time equations.

2.1 Short-Rate Term Structure Models

Let us first concisely review some general theory of short-rate term structure models,
see Hunt and Kennedy (2000), Musiela and Rutkowski (1997) or Brigo and Mercurio

(2006) for details. The formulas below will be used in subsequent sections. We assume

that all relevant expressions are well defined.

In a short-rate term structure model, the price Dt,T of a zero-coupon bond at time t

maturing at T is based on the dynamics of the short-rate r through the formula

Dt;T ¼ E Q exp �
Z T

t

rsds

� �
F tj
!
;

 
(1)

with Q the risk-neutral measure and F t the underlying filtration.

Typically, in a short-rate model one chooses r to be a function of a (possibly multi-

dimensional) process X which satisfies an SDE

dXt ¼ mðt;XtÞdtþ sðt;XtÞdW Q
t ;

with W Q a multivariate Brownian motion under the risk-neutral measure Q and one

writes rt ¼ rðXtÞ.
Under rather general conditions, there exists a strong solution X to this

equation which is Markov. In this case the bond-price can be written as

Dt;T ¼ E Q ðexpð�
R T

t
rðXsÞdsÞjXtÞ ¼: Fðt;XtÞ for some function F (with T fixed). If

F is smooth enough, then it solves the fundamental partial differential equation

(PDE), also called term structure equation (see Musiela and Rutkowski (1997,

Chapter 12) or Vasicek (1977), where the latter terminology was introduced)

@

@t
Fðt; xÞ þ LFðt; xÞ � rðxÞFðt; xÞ ¼ 0; FðT ; xÞ ¼ 1; (2)

with

L ¼
X

i

mi

@

@xi

þ 1

2

X
i;j

ðss> Þij
@2

@xi@xj

;

the generator of X, where s> means the transpose of s.

The physical measure P is on FT equivalent to the risk-neutral measure Q and

related through a density process L by Lt ¼ dP
dQ F t
j . The process L can often be written

as an exponential process EðY �W Q Þ for some Y, that is,

Lt ¼ exp

 Z t

0

Y >
s dW Q

s �
1

2

Z t

0

Y >
s Ysds

!
; (3)
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where Ys is usually called the market price of risk. According to Girsanov’s theorem

W P
t ¼W Q

t �
R t

0
Ysds is a P-Brownian motion, see Karatzas and Shreve (1991,

Section 3.5) for details on absolutely continuous measure transformations. Using

these relations, one can write the SDE for X under the physical measure P:

dXt ¼ ðmðt;XtÞ þ sðt;XtÞYtÞdtþ sðt;XtÞdW P
t : (4)

2.2 ATSM2 in Continuous Time

ATSMs are examples of short-rate models and were introduced by Duffie and Kan

(1996). In an ATSM the short-rate r is an affine function of X, that is, r ¼ �0 þ �> X for

some �0 2 R , � 2 R n, and X satisfies under Q an n-dimensional affine square root SDE

dXt ¼ ðaXt þ bÞdtþ �
ffiffiffiffiffiffiffiffiffiffiffi
vðXtÞ

p
dW Q

t : (5)

Here W Q is an n-dimensional Brownian motion, vðXtÞ is a diagonal matrix with on

its diagonal the elements of the vector

diag ½vðXtÞ� ¼ aþ bXt; (6)

with a 2 R n�1, b 2 R n�n (so viiðxÞ ¼ ai þ bix, with bi the i-th row vector of b). We will
call these elements volatility factors and we write Vt :¼ vðXtÞ and Vi;t :¼ viðXtÞ. For

brevity, we denote by
ffiffiffiffiffi
Vt

p
the matrix with on the diagonal the square roots

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vi;t _ 0

p
,

that is the square root of the maximum of Vi,t and 0. We will also use the notation

Vt _ 0 for the diagonal matrix with elements Vi;t _ 0. Notice that ð
ffiffiffiffiffi
Vt

p
Þ2 ¼ Vt _ 0.

Existence and uniqueness of a strong solution can be established when the volatility

factors stay strictly positive. Conditions for the latter are derived in Duffie and

Kan (1996) and are often called multivariate Feller conditions. We discuss these in

Appendix A.1.
The practical benefit of ATSM2 is that bond prices are determined by a closed form

expression. Duffie and Kan (1996) showed that for positive volatility factors the term

structure Equation (2) is solved by

Fðt; xÞ ¼ expðAðT � tÞ þ BðT � tÞ>
xÞ; (7)

for t 2 ½0;T � and x 2 D :¼ fx 2 Rn: viðxÞ � 0;"ig, where A and B satisfy the Riccati

ordinary differential equations (ODEs)4

A0 ¼ b> Bþ 1

2
a> ð�> BÞ�2 � �0; Að0Þ ¼ 0; (8)

B0 ¼ a> Bþ 1

2
b> ð�> BÞ�2 � �; Bð0Þ ¼ 0: (9)
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Hence the bond prices can be calculated by

Dt;T ¼ expðAðT � tÞ þ BðT � tÞ>
XtÞ;

provided the volatility factors stay positive (for which the aforementioned Feller

conditions are sufficient).

In ATSM2, it is often desired that the process X also satisfies an affine square root

SDE under the physical measure P, which considerably restricts the choice for the

market price of risk Y. We only consider the so-called completely affine model, which

means that we take Yt ¼
ffiffiffiffiffi
Vt

p
l with l 2 R n, and we refer to Duffee (2002) (essentially

affine models) and Cheridito et al. (2007) (extended affine models) for other options.

In a completely affine model, the SDE (4) takes the form

dXt ¼ ðaXt þ bþ �ð
ffiffiffiffiffi
Vt

p
Þ2lÞdtþ �

ffiffiffiffiffi
Vt

p
dW P

t : (10)

Under the condition that Vt � 0 (elementwise on the diagonal), it holds that ð
ffiffiffiffiffi
Vt

p
Þ2 ¼

Vt and Equation (10) reduces to

dXt ¼ ðbaXt þ bbÞdtþ �
ffiffiffiffiffi
Vt

p
dW P

t ; (11)

with ba ¼ aþ �ðb� lÞ, bb ¼ bþ �ða� lÞ. The affine structure of (5) thus carries over

to (11) for positive volatility factors.

2.3 ATSM2 in Discrete Time

In this section we take Equations (1), (5), (7), and (11) as our point of departure and

transform them into their discrete time counterparts, using the Euler method (Kloeden

and Platen, 1999). Next we investigate whether the resulting equations are consistent

with each other.

In order not to complicate notation, we assume a discretization factor equal to 1. We

write Pn,t for the bond price at time t maturing at time t þ n (which corresponds to
Dt;tþn in continuous time). Basically, all continuous time formulas are translated to

discrete time by replacing integrals by sums and substituting � for d. By the properties

of the Brownian motion, we have �W Q
t ¼W Q

tþ1 �W Q
t ,Nð0; IÞ for each t, and all

these increments are mutually independent. Therefore, we write eQ
tþ1 instead of �W Q

t ,

with eQ
tþ1 i.i.d. standard normal variables under the risk-neutral measure Q . For the

filtration we choose the natural filtration F t ¼ sðeQ
k : k ¼ 1; . . . ; tÞ. We assume that Q

and the physical measure P on F t are related by dP ¼ L
t

Q , with L the discretized

exponential process

~L t ¼ expð
Xt�1

k¼0

l> ffiffiffiffiffiffi
Vk

p
eQ

kþ1 �
1

2

Xt�1

k¼0

l> ðVk _ 0ÞlÞ:

In the continuous time case, W P defined by dW P ¼ dW Q
t �

ffiffiffiffiffi
Vt

p
ldt is a Brownian

motion under P according to Girsanov’s theorem. Analogously, in discrete time, one
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can show that the eP
t defined by eP

tþ1 ¼ eQ
tþ1 �

ffiffiffiffiffi
Vt

p
l are i.i.d. standard normal variables

under P. Therefore, we replace dW P
t in Equation (11) with eP

tþ1.

Application of the above substitutions enables us to transform the continuous time

model into a discrete time model. The two SDE2 (5) and (11) under Q and P,
respectively, transform into

Xtþ1 ¼ ðI þ aÞXt þ bþ �
ffiffiffiffiffi
Vt

p
eQ

tþ1; (12)

Xtþ1 ¼ ðI þ baÞXt þ bbþ �
ffiffiffiffiffi
Vt

p
eP

tþ1: (13)

Note that the existence of a unique strong solution is not an issue here, so in this respect

positive volatility factors are not necessary. The bond price formula (1) becomes

Pn;t ¼ E Q

�
expð�

Xn�1

k¼0

rtþkÞjF t

�
: (14)

Finally, the closed form expression (7) for the bond price in continuous time corre-
sponds to ~Fðn;XtÞ ¼ expðAn þ B>

n XtÞ in discrete time, with n ¼ T � t and An and Bn

the Euler discretizations of the solutions of the ODEs (8) and (9). The latter means that

An and Bn satisfy the Riccati recursions

Anþ1 ¼ An þ b> Bn þ
1

2
a> ð�> BnÞ�2 � �0; A0 ¼ 0; (15)

Bnþ1 ¼ ðI þ aÞ>
Bn þ

1

2
b> ð�> BnÞ�2 � �; B0 ¼ 0; (16)

which are equivalent to

Anþ1 ¼ An þ ðbb� �ða� lÞÞ>
Bn þ

1

2
a> ð�> BnÞ�2 � �0; A0 ¼ 0; (17)

Bnþ1 ¼ ðI þ ba� �ðb� lÞÞ>
Bn þ

1

2
b> ð�> BnÞ�2 � �; B0 ¼ 0: (18)

Now that we have derived the discrete time equations, it is important to note that it

is impossible to prevent the volatility factors Vt,i from becoming negative, because the

noise variables are normally distributed. So in this respect it is useless to impose the

Feller conditions. The possibility of negative volatility factors can lead to consistency

problems for our discrete time model. We saw that in continuous time positive

volatility factors implied that ð
ffiffiffiffiffi
Vt

p
Þ2 was equal to Vt, which enabled us to write

Equation (10) as Equation (11), an affine square root SDE under the physical measure.

As in discrete time Vt can always become negative, in this case it does not hold true that
ð
ffiffiffiffiffi
Vt

p
Þ2 ¼ Vt, which implies that the dynamics of X given by Equations (12) and (13)

are not consistent with each other. Recalling the definition of eP, we see that there are
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two possibilities to solve this problem, either we keep Equation (12) and replace

Equation (13) by

Xtþ1 ¼ ðI þ aÞXt þ bþ �ðVt _ 0Þlþ �
ffiffiffiffiffi
Vt

p
eP

tþ1; (19)

or we keep Equation (13) and replace Equation (12) by

Xtþ1 ¼ ðI þ baÞXt þ bb� �ðVt _ 0Þlþ �
ffiffiffiffiffi
Vt

p
eQ

tþ1: (20)

We opt for the latter, because an attractive expression under the physical measure is

preferable in view of estimation of the parameters, which is the topic of the next

section.

Positive volatility factors in continuous time were also needed to solve the term

structure Equation (2) to obtain a closed form expression F for the bond price.

There is no discrete time analogue of a term structure equation. However, using

induction and the properties of a log-normal variable, we can algebraically derive a

closed form expression for the bond price in discrete time, and, just as in contin-

uous time, we need positiveness of the volatility factors for this, see Proposition 1,

whose proof is deferred to Appendix A.2. It is remarkable is that this leads to the

same expression as ~F , the discretization of the closed form expression F in con-
tinuous time.

Proposition 1. Let X satisfy Equation (12). Then for Pn,t given by Equation (14) it

holds that

Pn;t � ~Fðn;XtÞ ¼ expðAn þ BT
n XtÞ; (21)

with equality if Vt � 0 almost surely for all t. The scalars An and vectors Bn satisfy the

Riccati recursions (15) and (16).

As noted before, the probability that Vt gets negative is positive for all t, so Pn,t is not

equal to ~Fðn;XtÞ. However, from a heuristic point of view, if Vt gets negative with very

small probability, Equations (12) and (20) are ‘‘almost’’ equivalent and the inequality

in Equation (21) is ‘‘almost’’ an equality. This suggests that ~F might be a good

approximation for P. Indeed, under the Feller conditions, for the time discretization

step converging to zero, the discrete time process X converges to its continuous time

counterpart, which produces non-negative volatilities. So in the limit case, Equation

(21) becomes an equality. In the remaining sections we implement and estimate the
discrete time model for two dimension using real data and we investigate how well in

this case ~F approximates P. This is done by comparing ~F with Monte Carlo

computations for the bond price P, based on Equations (14) and (20).
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3. Implementation and Estimation of the Discrete Time ATSM

In this section, we investigate two-factor models with the ex ante real short-term rate

and expected inflation as state variables, the nominal short rate being the sum of these

two factors. We use affine models with three different volatility profiles, as specified in

Appendix A.1, and a homoskedastic one with constant volatility, as classically used in

the macro-finance literature, that serves as a benchmark.

We have chosen to take the ex ante real short-term rate and expected inflation as

factors, because the short rate is dominated by monetary policy which in turn is

affected most by expected inflation. Moreover, the interaction between interest rates

and inflation is important for several reasons. For instance, most pension funds have
the intention to give indexation, whereas index-linked bonds are hardly available.

3.1 Specification of the Model

Let X1,t denote the ex ante real short-term rate at time t and X2,t the expected inflation.

We use our dynamic model for quarterly data, so time is measured in quarters.
Consequently, rt as used in the pricing formulas for bonds is given in ordinary fractions

per time unit, in our case per quarter. For numerical and readability reasons, however,

we want to express X in percentages per year. Therefore, we have rt ¼ ðX1;t þ X2;tÞ=400.

With respect to inflation, we are primarily interested in the ex ante expectation and

not so much in past realizations. Let ptþ1 denote the inflation rate from t to tþ 1 (also

in percentages per year), and X2,t, its ex ante expectation at date t. The observed

processes are the short nominal rate rt and pt. Because the inflation rate exhibits a

seasonal pattern, we also include a seasonal contribution St in the model.
Apart from the dynamics of the state process as given in Equation (13), our model is

further described by the following equations, which relate the state variables to the

observations.

rt ¼ ðX1;t þ X2;tÞ=400; (22a)

ptþ1 ¼ X2;t þ Stþ1 þ op
ffiffiffiffiffiffiffiffiffiffiffiffi
V2;t�1

p
xp;tþ1; (22b)

Stþ1 ¼ �St � St�1 � St�2 þ os

ffiffiffiffiffiffiffiffiffiffiffiffi
V2;t�1

p
xs;tþ1; (22c)

where xp,t and xs,t are standard normally distributed error terms, which are indepen-
dent under the physical measure of eP

t (the error term in the equation for Xt).

The data we are using for estimation are the observed longer maturity yields

(denoted by rn,t, measured in fractions per quarter). These are modelled by the

exponential affine expression for the bondprice plus a measurement error, which is

assumed to be independently identically distributed among maturities:

rn;t :¼ � An þ BnXtð Þ=nþ �0 þ �1

ffiffiffiffiffiffiffiffiffiffiffiffi
V1;t�1

p
þ �2

ffiffiffiffiffiffiffiffiffiffiffiffi
V2;t�1

p� �
xn;t; (23)

under the restrictions �i � 0, and where xn;t,Nð0; IÞ.
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Having fully specified the models, we turn to the estimation procedure. A compli-

cating matter is that both factors are not observed. Therefore, the extended Kalman

filter (Harvey, 1989) is used to estimate the models.5 In principle, all parameters can be

estimated simultaneously. In practice, however, a one-step procedure tends to lead to

unrealistic expected inflation predictions as the best fit for the bond prices is not

necessarily achieved for the most realistic expected inflation estimates. As an appro-
priate modelling of the time series dynamics of interest rates and inflation is considered

more important than the lowest measurement error for bond prices, we prefer a two-

step procedure. In the first step, the parameters for system (22) are estimated, com-

bined with the dynamics (13) for Xt and its volatility (6). In the second step, the system

is augmented by the equations for the long-term yields (23), and we estimate l and �,

using the Riccati recursions (17) and (18), conditional on the first-step parameters.

3.2 Estimation Results

The models are estimated with quarterly German data over the sample period of 1959

to 2007. To estimate the dynamics between interest rates and inflation correctly, a long

sample period is preferred. On the contrary, prices of zero coupon bonds are only

available for a relatively short sample period, especially for longer maturities.

Therefore, an unbalanced panel was used, with the short rate and inflation data
starting in the last quarter of 1959, 1-, 2-, 4-, 7- and 10-year rates starting the third

quarter of 1972, the 15-year rate from 1986:02, and the 30-year rate from 1996:01 on.

Table 1 shows the estimation results for the constant volatility and for the state-

dependent volatility models without the Feller conditions imposed. As in the latter case

only the conditional covariance matrix of the noise terms, which is given by �ðVt _ 0Þ�> ,

is identifiable, we fix �11¼ 1 in all models, we take �12¼ 0 in the proportional model and

�22 ¼ 1 in the independent model. By definition, b1 ¼ b2 in the proportional and

dependent models. For the constant volatility model, Vt is an identity matrix and we
choose a Choleski decomposition of the covariance to identify �. As the free estimate of

the impact of expected inflation on the real interest rate ( â12 ) became unrealistically

high in the constant volatility model, we restricted this impact to be at most 0.125.

For all four models, the mean real short rate is about 2.4% per year, whereas the mean

inflation rate is just over 3%, the values in the first row of Table 1. With respect to the

interaction between the short real rate and expected inflation, the lagged response ( â ) is

in accordance with economic theory. Higher expected inflation leads to higher real rates

(â12 > 0), whereas higher real rates depress future inflation (â21 < 0), especially for the
constant volatility model. The latter effect is far from significant though. With respect to

volatility, both higher real rates and higher expected inflation lead to significantly higher

variances, because the elements of b are all positive.

To illustrate the problem with the constant volatility model, Figure 2 compares the

empirical cumulative distribution function of the short-term interest rate over our

sample with the equilibrium one according to both the constant volatility and the

proportional volatility models without Feller conditions. The constant volatility model

results in a symmetric distribution for the state variables, and thereby for the short-term
interest rate. In reality, however, the distribution of interest rates is asymmetric,

whereby extremely low values are less likely than extreme high ones. Because of the
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Figure 2. Cumulative distribution function short-term interest rate.

Table 1. Estimation results without the Feller conditions imposed.

Constant
volatilities

Proportional
volatilities

Dependent
volatilities

Independent
volatilities

�ba�1bb� �> 2:39 3:06

ð5:5Þ ð5:3Þ

	 

2:36 3:05

ð2:9Þ ð4:5Þ

	 

2:39 3:03

ð3:0Þ ð6:3Þ

	 

2:33 3:12

ð2:0Þ ð5:2Þ

	 

I þ ba 0:865 0:125

ð16:3Þ ð�Þ
�0:073 0:972

ð1:5Þ ð23:2Þ

2664
3775

0:926 0:087

ð26:5Þ ð1:7Þ
�0:002 0:938

ð0:1Þ ð24:0Þ

2664
3775

0:948 0:111

ð26:3Þ ð2:8Þ
�0:026 0:950

ð0:9Þ ð25:5Þ

2664
3775

0:946 0:102

ð24:4Þ ð2:2Þ
�0:006 0:940

ð0:2Þ ð24:3Þ

2664
3775

a` 1 1

ð�Þ ð�Þ

	 

�0:377 �0:377

ð2:3Þ ð2:3Þ

	 

�0:373 �0:165

ð12:2Þ ð1:4Þ

	 

�0:377 �0:081

ð3:2Þ ð1:5Þ

	 

b 0 0

ð�Þ ð�Þ
0 0

ð�Þ ð�Þ

2664
3775

0:105 0:230

ð2:3Þ ð2:9Þ
0:105 0:230

ð2:3Þ ð2:9Þ

2664
3775

0:108 0:194

ð4:7Þ ð10:4Þ
0:108 0:194

ð4:7Þ ð10:4Þ

2664
3775

0:117 0:193

ð2:9Þ ð3:3Þ
0:015 0:091

ð1:4Þ ð2:6Þ

2664
3775

� 0:665 0
ð6:5Þ ð�Þ
�0:096 0:461

ð0:6Þ ð3:6Þ

2664
3775

1 0
ð�Þ ð�Þ
�0:257 0:639

ð1:5Þ ð5:3Þ

2664
3775

1 �0:260
ð�Þ ð1:7Þ

0:052 0:547

ð0:5Þ ð4:2Þ

2664
3775

1 �0:526
ð�Þ ð3:0Þ

0:041 1

ð0:3Þ ð�Þ

2664
3775

l` �0:122 �0:187

ð0:5Þ ð1:5Þ

	 

0:105 �0:129

ð0:7Þ ð1:3Þ

	 

0:108 �0:136

ð0:6Þ ð1:4Þ

	 

0:0524 �0:209

ð0:3Þ ð1:1Þ

	 


Note: Estimation sample 1959:IV–2007:II. Absolute two-step consistent t-values in parenthesis.
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assumed symmetric distribution, a constant volatility model produces a relatively high

probability of negative interest rates (here about 1.5%). At the same time, the constant

volatility model cannot reproduce the relatively high number of extremely high interest

rates. The proportional volatility model (or any of the other heteroskedastic models) is

much better capable to reproduce the empirical distribution function and thus shows in

this superior behaviour as compared to the homoskedastic constant volatility model.6

Table 2 shows the results for the models that are restricted to fulfil the Feller

conditions. The resulting constraints on the parameters, when performing the estima-

tion procedure, for each of the three subcases are those as given in Appendix A.1. In

the independent volatility model, initially obtained estimates for �21, b21 and â21 were

practically zero. Therefore, a zero value was subsequently imposed to increase accu-

racy of the other parameters. In this model, higher inflation now has a negative

(though not significant) impact (â12 < 0) on future short-term interest rates, which is

contrary to the economic theory, whereas in the previous case when the Feller condi-
tions were not imposed, we found for this coefficient a positive value. In the other

models, the impact of inflation on lagged real rates (â21 > 0) is now positive, which is

also in contrast with economic theory, see also Appendix A.1 for a theoretical exposi-

tion. We conclude that imposition of the Feller conditions may yield a conflict with the

realistic economic principles.

Table 2. Estimation results with Feller conditions imposed.

Proportional volatilities Dependent volatilities Independent volatilities

�ba�1bb� �T 2:34 3:04

ð2:4Þ ð4:3Þ

	 

2:36 3:04

ð1:9Þ ð3:3Þ

	 

2:91 2:83

ð2:4Þ ð3:8Þ

	 

I þ ba 0:924 0:083

ð25:0Þ ð1:5Þ
0:016 0:925
ð0:9Þ ð25:0Þ

2664
3775

0:933 0:061

ð22:2Þ ð1:2Þ
0:021 0:936
ð1:1Þ ð28:7Þ

2664
3775

0:974 �0:009

ð52:4Þ ð0:4Þ
0 0:958
ð�Þ ð47:9Þ

2664
3775

a` �0:412 �0:412

ð2:3Þ ð2:3Þ

	 

�0:098 �0:062

ð5:7Þ ð1:4Þ

	 

0:020 �0:108

ð0:7Þ ð4:5Þ

	 

b 0:108 0:252

ð2:2Þ ð2:9Þ
0:108 0:252
ð2:2Þ ð2:9Þ

2664
3775

0:028 0:049

ð1:5Þ ð1:6Þ
0:028 0:049
ð1:5Þ ð1:6Þ

2664
3775

0:071 �0:044

ð2:6Þ ð1:2Þ
0 0:100
ð�Þ ð5:7Þ

2664
3775

� 1 0

ð�Þ ð�Þ
�0:292 0:640

ð1:8Þ ð5:6Þ

2664
3775

1 �1:620

ð�Þ ð3:1Þ
1:116 0:915

ð1:9Þ ð2:0Þ

2664
3775

1 0:615

ð�Þ ð3:4Þ
0 1

ð�Þ ð�Þ

2664
3775

l` 0:0050 �0:124

ð0:0Þ ð1:1Þ

	 

�0:153 0:667

ð1:3Þ ð1:6Þ

	 

�0:397 �0:125

ð1:2Þ ð0:1Þ

	 


Note: Estimation sample 1959:IV–2007:II. Absolute two-step consistent t-values in parenthesis.
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4. Monte Carlo Results

Figure 3 shows the approximation errors made by the analytical expressions, in terms

of yields, for each of the seven cases as presented in Tables 1 and 2. The Monte Carlo
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Figure 3. Mean and 99% confidence interval of the difference between simulated and analytical
yields if starting state variables are in equilibrium.
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simulations are based on one million sample paths (containing 200 quarters) for the

state variables. The yields are computed assuming that the initial state variables are at

their equilibrium values, which were a real short rate of about 2.4% and expected

inflation of just over 3%.

For the constant volatility model, the analytical expression does not contain an

approximation, so the result should be very accurate. In this respect, the one million
sample paths seem to be sufficient as the 99% confidence interval is less than half a

basis point. For the other models, ignoring the fact that volatilities are cut-off at zero

does not seem to be very important, though the confidence bands are somewhat larger.

The 99% confidence band for the maximum approximation error in terms of yields

stays still within plus and minus one basis point (0.01%) for all models. It does not

make much difference whether the Feller conditions are imposed (second column) or

not (first column). Zero is almost always included in the confidence band, except for

some maturities for the dependent and independent volatility models without Feller
conditions imposed. For the proportional volatility model, there is never a problem,

whether the Feller conditions are imposed or not.

It might be the case that these good approximations are due to the fact that the

approximation errors are calculated for the equilibrium yield curve. If the initial state

variables imply a volatility closer to zero, ignoring the cut-off at v ¼ 0 might be more

serious. Therefore, we also calculated the approximation errors for those state vari-

ables for which volatility was the lowest in the past. Figure 4 shows the worst result we

found. Indeed, for maturities up to 15 years, the simulated yields are significantly
higher than the analytical ones. The reason is that for the initial state variables, the

volatility is cut-off at zero. As the state variables evolve according to Equation (20),
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Figure 4. Mean and 99% confidence interval of the difference between simulated and analytical
yields. Dependent volatility model without Feller conditions, starting from a volatility of zero.
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whereas the formulas underlying the formulas assume Equation (12), systematic

differences arise. Moreover, as the simulated yields are almost deterministic for

short maturities, the confidence band is extremely small. In economic terms, the

approximation error is still negligible though (at most one basis point).

Finally, as the Feller conditions do not guarantee positive volatilities in the discrete

time model, imposing them does not preclude statistically significant approximation
errors from arising either. Indeed for both the dependent and independent volatility

models with Feller conditions, we found starting conditions for which significant

negative approximation errors for maturities up to 17 years occur. However, as the

maximum magnitude of these errors is at most 0.5 basis point, the economic relevance is

again negligible.

5. Conclusions

We have proposed a two-factor ATSM, where the factors (ex ante real short-term

interest rate and expected inflation) are modelled as a square root process. These

models allow for state-dependent volatilities as well as constant volatilities. As we

want to allow volatilities to depend on both state variables, the models are not

estimated in canonical form.

The Feller conditions, restrictions on the model parameters, are imposed on a

continuous time multivariate square root process to ensure that the roots have non-
negative arguments. For a discrete time approximate model, the Feller conditions

loose part of their relevance. Because the noise involves standard normal errors, there

is always a positive probability that arguments of square roots become negative.

Nevertheless, keeping in mind the idea that a discrete time model is an approximation

of a continuous time model, it is natural to still impose the Feller conditions. On the

contrary, it has also been observed that even without the Feller conditions imposed,

for a practically relevant model, negative arguments rarely occur. Because the models

are not given in canonical form, we also explicitly presented the Feller conditions for
square root models not in canonical form.

Three different models with time-varying volatilities have been used that have been

referred to as models with proportional, dependent and independent volatilities, either

with or without the Feller conditions on the parameters. For comparison reasons, a

traditional homoskedastic model is also analysed. The parameters of each of the

underlying models have been estimated using quarterly German data. The restrictions

involved in imposing the Feller conditions resulted in unappealing economic results. In

the proportional and dependent volatility models, the restrictions imply a positive
impact of interest rates on inflation, whereas in the independent volatility model,

inflation now leads to lower interest rates. Both elements are contrary to the accepted

economic theory.

For these seven cases, we have compared the resulting yields that are obtained either

by (approximate) analytic exponentially affine expressions or through Monte Carlo

simulations of very high numbers of sample paths. It turned out that the approxima-

tion errors in analytical yields were rarely statistically significant, and never economic-

ally relevant, as they were always below one basis point. In particular, a proportional
volatility heteroskedastic model without the Feller conditions imposed already gave

very good results, significantly outperforming a traditional constant volatility model.
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Notes

1An exception is Spencer (2004), who specifies a 10-factor model for the US yield curve, including one

heteroskcedasticity factor that is a linear combination of several macroeconomic variables.
2This has already been observed in Backus et al. (2001, p. 290) (one of the first papers with an affine model in

discrete time) for a one-dimensional process, although curiously enough, in the same paper it is claimed that

the multivariate Feller conditions are sufficient for non-negative arguments.
3An alternative would be to assume a Poisson mixture of Gamma distributions (Dai et al. 2005) for the

volatility factor instead. For a macro-finance model, this is problematic, however, as volatility is an

unknown linear function of the underlying data. Imposing the volatility factor to be equal to one of the

driving factors (for instance, expected inflation) has the disadvantage that this factor is not allowed to be

influenced by the other factors (for instance, the real short-term interest rate).
4The Hadamard product � denotes entry-wise multiplication, that is, ðv� wÞij ¼ vijwij for m� n matrices v

and w. We abbreviate v� v to v�2. Furthermore, we use the Hadamard product also when v is an m-

dimensional vector (instead of an m� n matrix) and w an m� n matrix (and vice versa), so ðv� wÞij ¼ viwij

(or ðv� wÞij ¼ vijwi in the other case).
5The extension is due to the variance equation that includes state variables. Consequently, the true variance

process is not known exactly but has to be estimated as well. The resulting inconsistency does not seem to be

very important, though in short samples the mean reversion parameters are often biased upwards, see Lund

(1997), Duan and Simonato (1999), De Jong (2000), Bolder (2001), Chen and Scott (2003), Duffee and

Stanton (2004) and De Rossi (2006).
6We used the estimated proportional volatility model to simulate the trajectory of Figure 1.
7In Duffie and Kan (1996) it is assumed that c ¼ 0, but it is not hard to see that we can take c . 0 as well.
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Appendix A: Technical Results

A.1 Multivariate Feller Conditions in Two Dimensions

In this section we present the multivariate Feller conditions as given in Duffie and Kan

(1996) and work them out in two dimensions.

Proposition 2. (Duffie and Kan, 1996). Let X be a solution to the affine square root

SDE (5). Then Xt 2 D;"t � 0 holds almost surely under Q if the multivariate Feller

conditions hold, that is for all i, j we have7

bi�
j ¼ 0 or vi ¼ vj þ c for some c � 0 ; (A1)

biðaxþ bÞ >
1

2
bi��`b`

i for all x 2 @Di : (A2)

where we write D :¼ fx 2 R n : viðxÞ > 0; i ¼ 1; . . . ; ng, @Di :¼ fx 2 R n : viðxÞ ¼ 0;
vjðxÞ � 0;"j � ig and �j for the j-th column vector of �.

In a pure latent variable model, the Feller conditions can be imposed by assuming

a canonical form for SDE (5), as shown by Dai and Singleton (2000). In such a

canonical form the volatility factors are equal to some of the state factors. However,

we cannot do this for macro-finance models as requiring one of the factors to be the

volatility factor is overly restrictive. Therefore, we need to extract explicit parameter

restrictions from the Feller conditions to impose them for a non-latent variable
model. The resulting expressions for two dimension are given below. In the empirical

analysis of Section 3, these expressions are crucial.

Let X be a solution to the SDE (5) for n ¼ 2. We distinguish three cases: proportional

(linear dependent) volatilities, linearly dependent but non-proportional volatilities and

linearly independent volatilities. The first case is characterized by v2 ¼ kv1 for some k� 0,
the second case corresponds to v2 ¼ kv1 þ c with k � 0, c . 0 and in the third case one

has det b � 0. For the first and second case we take k¼ 1, that is, k is absorbed in �, so

that we can apply the above proposition. For future reference we also introduce �1 ¼
ð�b12; b11Þ and �2 ¼ ðb22;�b21Þ, where the bij are the elements of the matrix b.

Proportional volatilities: As we take v2 ¼ kv1 with k ¼ 1, condition (A1) is auto-

matically satisfied. Hence, for Proposition 2 to hold, we only have to impose (A2).

Note that x 2 @D1 ¼ @D2 if and only if x ¼ � a1

jb1j2
b`

1 þ y�`
1 ; for some y 2 R ; where

|b1| denotes the Euclidean norm of the vector b1. Equation (A2) for i ¼ 1 becomes

b1ð� a1

jb1j2
ab`

1 þ ya�`
1 þ bÞ> 1

2
b1��`b`

1 for all y 2 R : This reduces to the following

set of conditions

� a1

jb1j2
b1ab`

1 þ b1b>
1

2
b1��`b`

1 ; (A3)

b1a�`
1 ¼ 0: (A4)
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It is worth noting that the latter condition is in contrast with certain economic

principles for the two-factor model of interest rate and inflation (as presented in

Section 3). These principles are as follows:

l a12 . 0: the interest rate will be raised by the Central Bank when the inflation gets
too high

l a21 , 0: prices will fall when the interest rate is high, causing a decrease of the

inflation

l b11 . 0, b12 . 0: the market becomes more volatile when both the values of interest

rates and inflation increase.

Under these conditions together with the empirical observation that 0 . a22 . a11 (i.e.

real interest rates display stronger mean reversion than expected inflation, see the

estimation results in the second column of Table 1), it holds that

b1a�`
1 ¼ a12b

2
11 � a21b

2
12 þ ða22 � a11Þb11b12 > 0;

which indeed contradicts (A4).

Dependent but unproportional volatilities: In this case v2 ¼ v1 þ c, with c . 0. Then

condition (1) is automatically satisfied for i ¼ 2, j ¼ 1, but for i ¼ 1, j ¼ 2 we have to

impose the extra condition

b1�2 ¼ 0: (A5)

Note that @D2 ¼ Ø, so for condition (A2) we only have to consider the case i ¼ 1. The

analysis is completely the same as for the case of proportional volatilities. Hence the

conditions of Proposition 2 are equivalent to the set of conditions (A3), (A4) and (A5).

Independent volatilities: Suppose det b � 0, then b-1 exists. Obviously neither v2 ¼
v1 þ c nor v1 ¼ v2 þ c holds true for some positive c, so for condition (A1) to hold, we

need to impose the restrictions

b1�2 ¼ 0; (A6)

b2�1 ¼ 0: (A7)

Note that x 2 @D1, respectively x 2 @D2, if and only if aþ bx 2 f0g � R�0�, respec-
tively, aþ bx 2 R�0 � f0g. Hence condition (A2) is satisfied if and only if

b1 ab�1 0
w

� �
� a

� �
þ b

� �
>

1

2
b1��`b`

1 ; for all w � 0; (A8)

b2 ab�1 v

0

� �
� a

� �
þ b

� �
>

1

2
b2��`b`

2 ; for all v � 0: (A9)

As
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b�1 ¼ 1

detb

b22 �b12

�b21 b11

0@ 1A ¼ 1

detb
�`

2 �`
1

� �
;

we can reduce the restrictions (A8) and (A9) to

w
b1a�`

1

detb
þ b1b� b1ab�1a >

1

2
b1��`b`

1 ; for all w � 0:

v
b2a�T

2

detb
þ b2b� b2ab�1a >

1

2
b2��`b`

2 ; for all v � 0:

These hold true if and only if

b1a�`
1

detb
� 0; (A10)

b2a�`
2

detb
� 0; (A11)

b1b� b1ab�1a>
1

2
b1��`b`

1 ; (A12)

b2b� b2ab�1a>
1

2
b2��`b`

2 : (A13)

The first two are necessary because v and w can be chosen arbitrarily large, while the

latter two follow by choosing v¼w¼ 0. In conclusion we can say that the requirements

in Proposition 2 are met, if the conditions (A6), (A7) and (A10)–(A13) hold.
It is worth noting that Xt 2 D;"t 2 ½0;T � holds almost surely under Q if and only if

it holds almost surely under P, by the equivalence of Q and P. Furthermore, X solves

(5) if and only if it solves (10), and under the conditions of the proposition it also solves

(11). Hence one can rephrase the conditions of the proposition by using the parameters

of (11) instead of those of (5), which gives the alternative to (A2), but under (A1)

equivalent, condition

biðbaxþ bbÞ> 1

2
bi��`b`

i ; for all x 2 @Di : (A14)

Consequently, under P the Feller conditions are also fulfilled under restrictions

(A3)–(A13), with a and b replaced by â and b̂.

A.2 Proof of Proposition 1

Proof We give a proof by induction. For n ¼ 0 it holds that Pn;t ¼ P0;t ¼ 1, so the

statement holds true with A0 ¼ B0 ¼ 0. Now suppose Pn�1;t � expðAn�1 þ B`
n�1XtÞ for

all t and for a certain n 2 N . We write
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Pn;t ¼ E Q exp �
Xn�1

k¼0

rtþk

 !�����F t

" #
¼ E Q Pn�1;tþ1e�rt jF t

� 

;

and use the induction hypothesis to get

Pn;t � E Q ½expðAn�1 þ B`
n�1Xtþ1 � �0 � �`XtÞjF t�

¼ E Q ½expðAn�1 þ B`
n�1ððI þ aÞXt þ bþ �

ffiffiffiffiffi
Vt

p
eQ

tþ1Þ � �0 � �`XtÞjF t�
¼ expðAn�1 þ B`

n�1b� �0 þ ððI þ aÞ`Bn�1 � �Þ`XtÞE Q ½expðB`
n�1�

ffiffiffiffiffi
Vt

p
eQ

tþ1ÞjF t�

� expðAn�1 þ B`
n�1b� �0 þ ððI þ aÞ`Bn�1 � �Þ`Xt þ

1

2
B`

n�1�Vt�
`Bn�1Þ

¼ expðAn�1 þ B`
n�1b� �0 þ

1

2
a`ð�`Bn�1Þ�2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

An

þððI þ aÞ`Bn�1 � � þ
1

2
b`ð�`Bn�1Þ�2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Bn

Þ`XtÞ;

where we have used that (with , ¼ �`Bn�1)

E Q ½expð,`
ffiffiffiffiffi
Vt

p
eQ

tþ1ÞjF t� ¼ expð1
2

,`ðVt _ 0Þ,Þ � expð1
2

,`Vt,Þ (A15)

and

,`Vt, ¼ ,`ða� ,Þ þ ,`ðbXt � ,Þ ¼ a`ð,� ,Þ þ ðbXtÞ`ð,� ,Þ ¼ a`,�2 þ X `
t b`,�2

¼ a`,�2 þ ðb`,�2Þ`Xt:

If Vt � 0 then the inequality in Equation (A15) is an equality. This proves the

assertion.
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