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PREFACE 
 
In 2014, our two-day international “Actuarial and Financial Mathematics Conference” was 
organized in Brussels for the seventh time. As for the previous editions, we could use the 
facilities of the Royal Flemish Academy of Belgium for Science and Arts.  The organizing 
committee consisted of colleagues from 6 Belgian universities, i.e. the University of Antwerp, 
Ghent University, the KU Leuven and the Vrije Universiteit Brussel on the one hand, and the 
Université Libre de Bruxelles and the Université catholique de Louvain on the other hand. 
The conference included 8 invited lectures, 9 selected contributions and a poster session with 
10 posters. As for the scientific committee, we were happy that we could rely on leading 
international researchers, and just as in the previous years, we could welcome renowned 
international speakers for the invited lectures. 
 
There were 130 registrations in total, with 75 participants from Belgium, and 55 participants 
from 17 other countries from all continents. The population was mixed, with 70% of the 
participants associated with a university (PhD students, post doc researchers and professors), 
and with 30% working in the banking and insurance industry, from home and abroad. 
 
On the first day, February 6, we had 9 speakers, with 4 international and eminent invited 
speakers, alternated with 5 interesting contributions selected by the scientific committee.  
In de morning, the first speaker was Prof.dr. Martijn Pistorius, from Imperial College London 
(U.K.), with a lecture entitled “Distance to default, inverse first-passage time problems & 
counterparty credit risk”; afterwards Prof.dr. Tahir Choulli, University of Alberta (Canada) 
gave a well-received talk about “Viability Structures under Additional Information & 
Uncertainty”. These two lectures were followed by 2 presentations by researchers from 
Germany and France. 
In the afternoon, we heard Prof.dr. Christian Gouriéroux, University of Toronto (Canada) & 
CREST (France), who presented new research results about “Pricing default events: surprise, 
exogeneity and contagion”, and Prof.dr. Matthias Scherer, TU München (Germany), with his 
paper on “Consistent iterated simulation of multi-variate default times: a Markovian 
indicators characterization”. As in the morning, these two lectures were alternated now by 3 
presentations, with one speaker from France, one from Germany and one from Japan. 
 
During the lunch break, we organized a poster session, preceded by a poster storm session, 
where the 10 different posters were introduced very briefly by the researchers. The posters 
remained in the main meeting room during the whole conference, so that they could be 



 
 

consulted and discussed during the lunches and coffee breaks. We were pleased with the lively 
interaction between the participants and the posters’ authors, with very useful suggestions to 
the younger researchers.  
 
Also on the second day, February 7, we had 8 lectures, again with 4 keynote speakers and 4 
selected contributions. The first speaker was Prof.dr. Pierre Devolder, Université Catholique 
de Louvain (Belgium), with a lecture on “Some actuarial questions around a possible reform 
of the Belgian pension system”. Afterwards, Prof.dr. Enrico Biffis, Imperial College London 
(U.K.) presented his research on “Optimal collateralization with bilateral default risk”. In the 
afternoon, we could listen to Prof.dr. Marcus Christiansen, Universität Ulm (Germany), about 
“Deterministic optimal consumption and investment in a stochastic model with applications in 
insurance”. Prof.dr. Ralf Korn, TU Kaiserslautern (Germany) was the last invited speaker, 
with a nice lecture entitled “Save for the bad times or consume as long as you have? Worst-
case optimal lifetime consumption!”. The other 4 presentations were again selected from a 
substantial number of submissions by the scientific committee; the speakers came from 
France, the Netherlands, Canada and Germany. 
 
In these proceedings, you can find one paper of an invited speaker co-authored with a 
contributed speaker, four articles related to contributed talks, and six extended abstracts 
written by the poster presenters of the poster sessions, giving an overview of the topics and 
activities at the conference. 
 
We are much indebted to the members of the scientific committee, H. Albrecher (University 
of Lausanne, Switzerland), C. Bernard (University of Waterloo, Canada), J. Dhaene 
(Katholieke Universiteit Leuven, Belgium), E. Eberlein (University of Freiburg, Germany), M. 
Jeanblanc (Université d'Evry Val d'Essonne, France), R. Norberg (SAF, Université Lyon 1, 
France), Ludger Rüschendorf (University of Freiburg, Germany), S. Vanduffel (Vrije 
Universiteit Brussel, Belgium), M. Vellekoop (University of Amsterdam, the Netherlands) and 
the chair G. Deelstra (Université Libre de Bruxelles, Belgium). We appreciate their excellent 
scientific support, their presence at the meeting and their chairing of sessions. We also thank 
Wouter Dewolf (Ghent University, Belgium), for the administrative work. 
We are very grateful to our sponsors, namely the Royal Flemish Academy of Belgium for 
Science and Arts, the Research Foundation ─ Flanders (FWO), the Scientific Research 
Network (WOG) “Stochastic modelling with applications in finance”, le Fonds de la 
Recherche Scientifique (FNRS), KBC Bank en Verzekeringen, the BNP Paribas Fortis Chair 
in Banking at the Vrije Universiteit Brussel and Université Libre de Bruxelles, and exhibitors 
Cambridge, Springer and NAG. Without them it would not have been possible to organize 
this event in this very enjoyable and inspiring environment. We are also grateful for the 
support by the ESF Research Networking Programme Advanced Mathematical Methods for 
Finance (AMAMEF). 
 
The continuing success of the meeting encourages us to go on with the organization of this 
contact-forum, in order to create future opportunities for exchanging ideas and results in this 
fascinating research field of actuarial and financial mathematics. 
 
The editors: 
Griselda Deelstra, Ann De Schepper, Jan Dhaene, Wim Schoutens, Steven Vanduffel, 
Michèle Vanmaele, David Vyncke 
The other members of the organising committee: 
Michel Denuit, Karel In ‘t Hout 
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MINIMIZATION OF HEDGING ERROR ON ORLICZ SPACE

Takuji Arai† and Tahir Choulli§

†Department of Economics, Keio University, 2-15-45 Mita, Minato-ku, Tokyo, 108-8345, Japan
§Mathematical and Statistical Sciences Department, University of Alberta, Edmonton, Alberta,
T6G 2G1, Canada
Email: arai@econ.keio.ac.jp, tchoulli@ualberta.ca

Abstract

Minimization problems on hedging error in the Orlicz space framework are discussed. In this
paper, we deal with general forms of such problems as follows:

inf
v2V

E[�(|H � v|)], inf
v2V

N
�

(H � v), inf
v2V

kH � vk
�

,

where � is a Young function, N
�

and k · k
�

are norms on the Orlicz space L�, H is a random
variable, V is a convex subset of L�. We aim to investigate relationships among the three
problems. We focus on, firstly, properties of the first problem, and study its relationships to
the others. Moreover, we prove that there exist solutions to the three when L� is reflexive.

1. INTRODUCTION

In mathematical finance, it is very important to study pricing and hedging problem for contingent
claims. If the underlying market is complete, any contingent claim H , given by a random variable,
is represented as a stochastic integral with respect to underlying asset price process S, which is a
semimartingale, that is, there exist a constant c and an Rd-valued S-integrable predictable process
# such that

H = c+

Z T

0

#tdSt, (1)

where T is the maturity of our market. Under the no-arbitrage condition, the fair price of H must
be given by the initial cost to replicate H , that is, the constant c in (1), and # is regarded as a self-
financing replicating strategy. On the other hand, in the case of incomplete markets, there is no
pair (c,#) satisfying (1), unfortunately. Instead of the replicating strategy, we should look for an
optimal pair (c,#) in an appropriate sense. There are, in fact, many ways to define optimality, say,
mean-variance hedging (Schweizer (2001), Schweizer (2010)), risk minimizing hedging (Föllmer

3
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and Schweizer (2010), Schweizer (2001),), utility indifference valuation (Becherer (2010), Hen-
derson and Hobson (2008)), and so forth. In this paper, we focus on problems finding a pair (c,#)
so that c +

R T

0

#tdSt is as near to H as possible, that is, optimization problems on hedging er-
ror

���c+
R T

0

#tdSt �H
���. For example, mean-variance hedging is defined as the optimal strategy

minimizing its hedging error in the L2-sense, that is, a solution to the following:

min

c2R,#2⇥
E

"✓
c+

Z T

0

#tdSt �H

◆
2

#
, (2)

where ⇥ is a set of Rd-valued S-integrable predictable processes. In order to discuss various
types of minimization problem on hedging error in a unified way, we try to extend mean-variance
hedging to general Orlicz space setting, that is, we consider

min

c2R,#2⇥
E


�

✓����H � c�
Z T

0

#tdSt

����

◆�
, (3)

where � is a Young function, that is, a continuous increasing convex function defined on [0,1)

with starting at 0. Incidentally, we can rewrite (2) as

min

c2R,#2⇥

����c+
Z T

0

#tdSt �H

����
L2

.

Now, a question arises; we wonder if we can rewrite (3) similarly as follows:

min

c2R,#2⇥
N
�

✓
H � c�

Z T

0

#tdSt

◆
, (4)

and

min

c2R,#2⇥

����H � c�
Z T

0

#tdSt

����
�

, (5)

where N
�

(·) and k · k
�

are norms on the Orlicz space induced by �, whose definitions will be
introduced in the sequel.

Remark 1.1 We can regard the three problems (3), (4) and (5) as purely mathematical problems.
More precisely, these are projections of a random variable on a space of stochastic integrations.
Thus, we can say that results obtained in this paper would be important not only for mathematical
finance, but also for both stochastic analysis and functional analysis.

The aim of this paper is to investigate relationships among the three problems (3), (4) and (5),
and to give sufficient conditions under which all the three admit solutions. Note that we rewrite the
three problems into general forms, and treat them throughout this paper. Model description and
mathematical preliminaries are given in section 2. In section 3, we study the relationship among
the three problems. In particular, we investigate properties of solutions to (3), and its relations to
the two other problems. In section 4, we prove that, if the based Orlicz space is reflexive, then the
existence of solutions to the three are guaranteed.
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2. PRELIMINARIES

Let (⌦,F , P ;F = {Ft}t2[0,T ]

) be a filtered probability space with a right-continuous filtration
F such that F

0

is trivial and contains all null sets of F , and FT = F . Consider an incomplete
financial market composed of one riskless asset and d risky assets. Suppose that the price of the
riskless asset is 1 at all times, that is, the interest rate of our market is assumed to be 0. Note that
T > 0 is the maturity. Let � be a continuous nondecreasing convex function defined on [0,1)

with starting at 0, which is called a Young function. Remark that � is differentiable a.e. and
its left-derivative � satisfies �(x) =

R x

0

�(u)du. Note that � is left continuous, and may have at
most countably many jumps. Define  (y) := inf{x 2 (0,1)|�(x) � y}, which is called the
generalized left-continuous inverse of �. We define  (y) :=

R y

0

 (v)dv for y � 0, which is a
Young function and called the conjugate function of �. Now, we define the Orlicz space and the
Orlicz heart for �, and norms on them as follows:

Definition 2.1 We define two spaces of random variables for a Young function �:
(Orlicz space) L� := {X 2 L0|E[�(c|X|)] < 1 for some c > 0},
(Orlicz heart) M�

:= {X 2 L0|E[�(c|X|)] < 1 for any c > 0},
where L0 is the set of all FT -measurable random variables. In addition, we define two norms:
(Luxemburg norm) kXk

�

:= inf

�
� > 0|E

⇥
�

���X
�

���⇤  1

 
,

(Orlicz norm) N
�

(X) := sup{E[XY ]| kY k
 

 1}.

Remark that M� ⇢ L� and both spaces L� and M� are linear. Moreover, the norm dual of
(M�, k · k

�

) is given by (L , N
�

(·)), since � is finite. For more details on Orlicz space, see Edgar
and Sucheston (1992) and Rao and Ren (1991). Henceforth, we fix arbitrarily a Young function �
satisfying the following assumptions:

Assumption 2.1 (1) �(x) > 0 for any x > 0,
(2) limx!1

�(x)/x = +1.

Example 2.1 Typical examples of �s satisfying all conditions mentioned are �(x) = ex � 1,
ex � x � 1, (x + 1) log(x + 1) � x and xp/p for p > 1. On the other hand, �(x) = 0 if x < 1;
= (x� 1)

2 if x � 1 and �(x) = ax for a > 0 are excluded in this paper.

Letting S be an Rd-valued semimartingale describing the fluctuation of risky assets, problems
(3), (4) and (5) can be regarded as minimization problems on the space

⇢
c+

Z T

0

#tdSt|c 2 R,# 2 ⇥
�

or
⇢Z T

0

#tdSt|# 2 ⇥
�
, (6)

where ⇥ is a set of Rd-valued S-integrable predictable processes. Although we do not specify the
definition of ⇥, we assume the convexity of ⇥, that is, the space (6) forms a convex set. Thus, we
can rewrite problems (3), (4) and (5) as the following general forms:

Problem 2.2 minv2V E[�(|H � v|)] or infv2V E[�(|H � v|)],

Problem 2.3 minv2V N�(H � v) or infv2V N�(H � v),
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Problem 2.4 minv2V kH � vk
�

or infv2V kH � vk
�

,

where V is a convex subset of L�. As mentioned in section 1, we can regard these problems as
the L�-projections of a random variable H on a convex set V . We shall investigate relationships
among Problems 2.2–2.4, and the existence of solutions. We suppose, throughout the paper, that
H 2 L�. Since we are not interested in the case where H 2 V , we assume H /2 V . For all
unexplained notation, we refer to Dellacherie and Meyer (1982).

3. RELATIONSHIPS AMONG THE THREE PROBLEMS

3.1. Relationships on finiteness

First of all, we can see the following proposition:

Proposition 3.1 (1) infv2V kH � vk
�

= +1 , infv2V N�(H � v) = +1.
(2) infv2V kH � vk

�

= +1 ) infv2V E[�(|H � v|)] = +1.

Proof. These are clear by Theorem 2.2.9 of Edgar and Sucheston (1992). 2

Actually, the relationship between Problems 2.2 and 2.4 (as well as 2.2 and 2.3) is not simple as
the case of between Problems 2.3 and 2.4. The reverse assertion of (2) does not hold in general.
We introduce a counterexample.

Example 3.1 We consider a one period model. Let X and Y be two independent random variables
following the exponential distribution with parameter 1 and 1/2, respectively. The asset price
process S is given by S

0

= 0 and S
1

= X � 1. Let � be �(x) = ex � 1 and H given by X + Y . V
is assumed to be given by {#S

1

|# 2 R}. Then, we have, for any # � 1,

E[�(|H � #S
1

|)] =

Z
1

0

Z
1

0

e|x+y�#x+#|e�x e
�y/2

2

dydx� 1

�
Z #

#�1

0

Z
1

0

ex+y�#x+#e�x e
�y/2

2

dydx� 1

� e#
Z #

#�1

0

Z
1

0

ey/2

2

dye�#xdx� 1

= +1.

Moreover, for any # < 1,

E[�(|H � #S
1

|)] =

Z
1

0

Z
1

0

e|x+y�#x+#|e�x e
�y/2

2

dydx� 1

�
Z

1

#

#�1_0

Z
1

0

ex+y�#x+#e�x e
�y/2

2

dydx� 1

� e#
Z

1

#

#�1_0

Z
1

0

ey/2

2

dye�#xdx� 1

= +1.
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Thus, we obtain infv2V E[�(|H � v|)] = +1. On the other hand, letting # = 0 and � > 2, we
have

E


�

✓
|H � #S

1

|
�

◆�
=

Z
1

0

Z
1

0

e
|x+y�#x+#|

� e�x e
�y/2

2

dydx� 1

=

Z
1

0

Z
1

0

e
x+y

� e�x e
�y/2

2

dydx� 1

=

1�
1� 2

�

� 1�
1� 1

�

� � 1.

Substituting � = 6, E
h
�

⇣
|H�0S1|

6

⌘i
= 4/5  1. Hence, we have at least kH � 0S

1

k
�

 6, that
is, infv2V kH � vk

�

< +1. 2

3.2. Properties of solutions to Problem 2.2

Even though Problems 2.2–2.4 all have solutions, they do not necessarily coincide. Roughly speak-
ing, if V is cone, and v

3

2 V is a solution to Problem 2.4, v
3

/c is a solution to Problem 2.4 with
respect to H/c for any c > 0, that is, we can say that Problem 2.4 has the conicality. On the other
hand, when v

1

is a solution to Problem 2.2 with respect to H , v
1

/c is not necessarily a solution to
the problem with respect to H/c. We introduce such a counterexample.

Example 3.2 We consider a simple one-period model with ⌦ = {!
1

,!
2

,!
3

}, and
P ({!i}) = 1/3 for i = 1, 2, 3. Moreover, S

0

= 0, S
1

is given by

S
1

(!i) =

8
<

:

2, i = 1,
0, i = 2,
�1, i = 3.

Supposing that H = 1

{!1} and �(x) = ex � 1, and V = {#S
1

|# 2 R}, we have

E[�(|H � #S
1

|)] =

1

3

�
e|1�2#|

+ 1 + e|#|
 
� 1

=

1

3

�
e|1�2#|

+ e|#|
 
� 2

3

.

Thus, the optimizer is given by 1/2.
Next, letting H = 21

{!1}, we have

E[�(|H � #S
1

|)] =

1

3

�
e|2�2#|

+ 1 + e|#|
 
� 1

=

1

3

�
e|2�2#|

+ e|#|
 
� 2

3

.

Thus, the optimizer is given by log 2+2

3

. Hence, Problem 2.2 does not have the conicality. 2
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Before stating relationships among solutions to the three problems, we study properties of
solutions to Problem 2.2. In the rest of this section, we assume that

� is differentiable,

for simplicity.

Proposition 3.2 Assuming that there exists a v⇤ 2 V such that

min

v2V
E[�(|H � v|)] = E[�(|H � v⇤|)], (7)

and there exists a c > 1 such that E[�(c|H � v⇤|)] < +1. We have the following two conditions:

1. For any v 2 V , E[�(|H � v⇤|)|H � v⇤|]  E[�(|H � v⇤|)|H � v|].

2. For any v 2 V , E[�(|H � v⇤|) sgn(H � v⇤)(v⇤ � v)] � 0.

Moreover, if v⇤ 2 V satisfies E[�(|H � v⇤|)|H � v⇤|] < +1 and either the above condition, then
v⇤ satisfies (7).

To prove Proposition 3.2, we need some preparations. We define the Gâteaux derivative DF as

DF (u
1

, u) := lim

t!0

1

t
E[�(|u

1

+ tu|)� �(|u
1

|)], for any u, u
1

2 L�.

Proposition 3.3 Let v
1

2 V and u 2 L� such that E[�(c|H � v
1

|)] < +1 and E
⇥
�

�
2c
c�1

|u|
�⇤

<
+1 for some c > 1. Then, we have

DF (H � v
1

, u) = E[�(|H � v
1

|) sgn(H � v
1

)u].

Proof. For any t 2 (0, 1), we have

1

t
{�(|H � v

1

|+ t|u|)� �(|H � v
1

|)}

=

�(|H � v
1

|+ t|u|)� �(|H � v
1

|)
t|u| |u|

 �(|H � v
1

|+ t|u|)|u|
 �(|H � v

1

|+ (1 + t)|u|)� �(|H � v
1

|+ t|u|)
 �(|H � v

1

|+ (1 + t)|u|)

 1

c
�(c|H � v

1

|) +
✓
1� 1

c

◆
�

✓
1 + t

1� 1

c

|u|
◆

 1

c
�(c|H � v

1

|) +
✓
1� 1

c

◆
�

✓
2c

c� 1

|u|
◆

2 L1

The dominated convergence theorem then implies that

DF (H � v
1

, u) = lim

t!0

1

t
E[�(|H � v

1

+ tu|)� �(|H � v
1

|)]

= E


lim

t!0

�(|H � v
1

+ tu|)� �(|H � v
1

|)
t

�

= E[�(|H � v
1

|) sgn(H � v
1

)u].
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This completes the proof of Proposition 3.3. 2

Proof of Proposition 3.2. Condition 1: Let v 2 V be fixed arbitrarily. Denoting X = |H � v|
and X⇤

= |H � v⇤|, we define f(↵) := E[�(↵X⇤

+ (1� ↵)X)] for any ↵ 2 [0, 1]. Under (7), we
have

f(↵) � E[�(|H � ↵v⇤ � (1� ↵)v|)] � f(1)

for any ↵ 2 [0, 1], which implies that, for any ↵ 2 [0, 1)

0 � f(↵)� f(1)

↵� 1

=

1

↵� 1

E [�(↵X⇤

+ (1� ↵)X)� �(X⇤

)] .

In fact, we can prove that the right hand side converges to E[�(X⇤

)(X⇤ � X)] as ↵ tends to 1,
which from Condition 1 follows.

Now, we shall prove the above convergence. To see it, we have only to prove the existence
of ↵

0

2 [0, 1) such that, for any ↵ 2 [↵
0

, 1), there exists a random variable Z, independent of ↵,
satisfying

����
1

↵� 1

(�(↵X⇤

+ (1� ↵)X)� �(X⇤

))

����  Z 2 L1,

since the rest is proved by the dominated convergence theorem. Note that ↵
0

depends on X . We
have

����
1

↵� 1

(�(↵X⇤

+ (1� ↵)X)� �(X⇤

))

����

=

1

1� ↵
(�(X⇤

)� �(↵X⇤

+ (1� ↵)X))1

{X⇤>X}

+

1

1� ↵
(�(↵X⇤

+ (1� ↵)X)� �(X⇤

))1

{X>X⇤
}

=: I
1

+ I
2

.

Now, we remark that there exists a c > 1 such that �(cX⇤

) 2 L1 by the assumption. We have then,
for any ↵ 2 (0, 1),

I
1

=

�(X⇤

)� �(X⇤ � (1� ↵)(X⇤ �X))

(1� ↵)(X⇤ �X)

(X⇤ �X)1

{X⇤>X}

 �(X⇤

)(X⇤ �X)1

{X⇤>X}

 �(X⇤

)X⇤

 1

c� 1

(�(cX⇤

)� �(X⇤

)) 2 L1.

Next, we prove that there exists a random variable Z
2

, which is independent of ↵, such that I
2


Z

2

2 L1. Since X 2 L�, there exists an " > 0 such that �("X) 2 L1. We may assume that " < 1.
We take a sufficient small � 2 (0, 1) to satisfy 1��"

1��
< c. Set ↵

0

:= 1 � �". For any ↵ 2 [↵
0

, 1),
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denoting ↵ = 1� �", which means �  �, the convexity of � implies that

I
2

=

�(↵X⇤

+ (1� ↵)X)� �(X⇤

)

1� ↵
1

{X>X⇤
}

=

�((1� �")X⇤

+ �"X)� �(X⇤

)

�"
1

{X>X⇤
}


(1� �)�

⇣
1��"
1��

X⇤

⌘
+ ��("X)� �(X⇤

)

�"
1

{X>X⇤
}

 (1� �)(��(cX⇤

) + (1� �)�(X⇤

)) + ��("X)� �(X⇤

)

�"
1

{X>X⇤
}

=

�(1�")
c�1

�(cX⇤

) + {(1� �)(1� �)� 1}�(X⇤

) + ��("X)

�"
1

{X>X⇤
}


1�"
c�1

�(cX⇤

) + �("X)

"
2 L1,

where � = �(1�")
(c�1)(1��)

. Note that, since c�1 > �(1�")
1��

, we have � = �(1�")
(c�1)(1��)

< �(1��)
�(1��)

 �(1��)
�(1��)

=

1, �c + (1 � �) = 1 + (c � 1)� = 1 +

�(1�")
1��

=

1��"
1��

, and (1 � �)� =

�(1�")
c�1

. Thus, Condition 1
follows.

Condition 2: Suppose that there exists a v 2 V such that E[�(|H � v⇤|) sgn(H � v⇤)(v⇤ �
v)] < 0. Now, we take a sufficient small constant " > 0 satisfying E

⇥
�

�
2c"
c�1

|v⇤ � v|
�⇤

< +1.
Proposition 3.3 yields DF (H�v⇤, "(v⇤�v)) < 0. On the other hand, we have DF (H�v⇤, "(v⇤�
v)) � 0 for any v 2 V by the definition of the Gâteaux derivative and the optimality of v⇤. This is
a contradiction! Hence, Condition 2 holds.

The second assertion: First, we suppose Condition 1. By Young’s inequality (Theorem 2.1.4
of Edgar and Sucheston (1992)) and Condition 1, we have

E[�(|H � v⇤|)] = E[�(|H � v⇤|)|H � v⇤|]� E[ (�(|H � v⇤|))]
 E[�(|H � v⇤|)|H � v|]� E[ (�(|H � v⇤|))]
 E[�(|H � v|)]

for any v 2 V , from which v⇤ satisfies (7). Note that  is R
+

-valued.
Next, we suppose Condition 2. We can rewrite Condition 2 as follows:

E[�(|H � v⇤|) sgn(H � v⇤)(H � v⇤)]  E[�(|H � v⇤|) sgn(H � v⇤)(H � v)]

for any v 2 V . Theorem 2.1.4 of Edgar and Sucheston (1992) implies that

E[�(|H � v⇤|) sgn(H � v⇤)(H � v⇤)] = E[ (�(|H � v⇤|))] + E[�(|H � v⇤|)].

and
E[�(|H � v⇤|) sgn(H � v⇤)(H � v)]  E[ (�(|H � v⇤|))] + E[�(|H � v|)]

for any v 2 V . Hence, v⇤ satisfies (7). 2

Remark 3.1 If V ⇢ M� and H 2 M�, then we have E[�(c|H � v|)] < +1 for any c > 0 and
any v 2 V . Thus, in such a case, we can get rid of any condition on the existence of c > 1 from the
statements in Propositions 3.2 and 3.3.



Minimization of hedging error on Orlicz space 11

3.3. Relationship on solutions

We investigate in this subsection relationships among Problems 2.2–2.4. The first is relationships
between Problems 2.2 and 2.4.

Proposition 3.4 We consider the following two conditions:

1. There exists a v
1

2 V such that

min

v2V
E[�(|H � v|)] = E[�(|H � v

1

|)] = 1. (8)

2. There exists a v
2

2 V such that

min

v2V
kH � vk

�

= kH � v
2

k
�

= 1. (9)

Then, we have 1)2, and (9) holds for v
1

. Moreover, if V ⇢ M� and H 2 M�, then the reverse
direction also holds and (8) holds for v

2

.

Proof. We prove the first assertion. Under condition 1, two assertions (2) and (3) in Proposition
2.1.10 of Edgar and Sucheston (1992) provide kH�v

1

k
�

= 1. Again, Proposition 2.1.10 of Edgar
and Sucheston (1992) implies that kH � vk

�

> 1 whenever E[�(|H � v|)] > 1. Thus, we have
minv2V kH � vk

�

= kH � v
1

k
�

= 1.
Next, we prove the second assertion. By Proposition 2.1.10 (4) of Edgar and Sucheston (1992),

we have E[�(|H � v
2

|)] = 1. Moreover, we have kH � vk
�

> 1 ) E[�(|H � v|)] > 1 by
Proposition 2.1.10 (3) of Edgar and Sucheston (1992). This completes the proof. 2

In the above proposition, the inclusion 2)1 does not hold in general. We exemplify it as follows:

Example 3.3 We consider a one-period model. Only one risky asset is tradable. Its price process
(St)t=0,1 is given as follows: S

0

= 0 and S
1

is expressed by X � 2, where X is a random variable
whose probability density function fX is given by:

fX(x) =

⇢
e�x

Dx2 , x � 1,
0, x < 1,

where D :=

R
1

1

e�x

x2 dx. The underlying contingent claim H follows the same distribution as X , but
is independent of X . Suppose that V = {#S

1

|# 2 R}. Let�(x) := a(ex�1), where 0 < a < D
1�D

.
For any # 2 R, we have

E[�(|H � #S
1

|)] = a

⇢Z
1

1

Z
1

1

e|y�#(x�2)|

e�y

Dy2
e�x

Dx2

dydx� 1

�
.

In particular, when # = 0, we have

E[�(|H � #S
1

|)] = E[�(|H|)] = a

⇢Z
1

1

e|y|
e�y

Dy2
dy � 1

�

= a

⇢Z
1

1

dy

Dy2
� 1

�
= a

1�D

D
.
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Thus, inf#2R E[�(|H � #S
1

|)]  a1�D
D

. Noting that a < D
1�D

, inf#2R E[�(|H � #S
1

|)] < 1.

Next, we consider, for any � > 0, E
h
�

⇣
|H�#S1|

�

⌘i
. Note that

E


�

✓
|H � #S

1

|
�

◆�
= a

⇢Z
1

1

Z
1

1

e
|y�#(x�2)|

�

e�y

Dy2
e�x

Dx2

dydx� 1

�
.

When � < 1 and #  0, we have
Z

1

1

Z
1

1

e
|y�#(x�2)|

�

e�y

Dy2
e�x

Dx2

dxdy

� e
2#
�

Z
1

1

e(
1
�

�1

)

y

Dy2
dy

Z
1

2

e�(
#

�

+1

)

x

Dx2

dx = +1.

Besides, when � < 1 and # > 0, we have
Z

1

1

Z
1

1

e
|y�#(x�2)|

�

e�y

Dy2
e�x

Dx2

dydx

�
Z

1

1

Z
1

#(x�2)_1

e
y�#(x�2)

�

e�y

Dy2
e�x

Dx2

dydx = +1.

Thus, for any # 2 R, kH � #S
1

k
�

� 1. On the other hand, if # = 0, E[�(|H � #S
1

|)] < 1. We
can conclude that min#2R kH � #S

1

k
�

= kH � 0S
1

k
�

= 1. 2

We state a result with respect to relationships between Problems 2.2 and 2.3.

Proposition 3.5 Assume that there exists an element v⇤ 2 V satisfying E[ (�(|H � v⇤|))] = 1

and E[�(c|H � v⇤|)] < +1 for some c > 1. The following are then equivalent:

1. E[�(|H � v⇤|)] = minv2V E[�(|H � v|)].

2. N
�

(H � v⇤) = minv2V N�(H � v).

Proof. 1)2: By the definition of N
�

(·), Young’s inequality and the assumption of this propo-
sition, we have N

�

(H � v⇤) � E[�(|H � v⇤|)|H � v⇤|] = E[�(|H � v⇤|)] + 1. Moreover,
Theorem 2.2.9 of Edgar and Sucheston (1992) yields N

�

(H � v⇤)  E[�(|H � v⇤|)] + 1. Thus,
N
�

(H� v⇤) = E[�(|H� v⇤|)|H� v⇤|] = E[�(|H� v⇤|)]+1. By Proposition 3.2, for any v 2 V ,
we have

N
�

(H � v⇤) = E[�(|H � v⇤|)|H � v⇤|]
 E[�(|H � v⇤|)|H � v|]  N

�

(H � v).

Thus, v⇤ is also a solution to minv2V N�(H � v).
2)1: Note that  is finite by Assumption 2.1 (2). Thus, Proposition 2.2.8 (3) of Edgar and

Sucheston (1992) implies that, for any v 2 V and any " > 0, there exists a u 2 M with kuk
 

 1
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such that N
�

(H�v)  E[|H�v||u|]+". In addition, we have E[�(|H�v⇤|)]+1 = N
�

(H�v⇤)
by the aforementioned argument. Hence, we obtain that

E[�(|H � v⇤|)] + 1 = N
�

(H � v⇤)  N
�

(H � v)

 E[|H � v||u|] + "

 E[�(|H � v|)] + E[ (|u|)] + "

 E[�(|H � v|)] + 1 + ",

from which E[�(|H � v⇤|)]  E[�(|H � v|)] follows for any v 2 V , since " > 0 is arbitrary. 2

4. EXISTENCE OF SOLUTIONS TO MINIMIZATION PROBLEMS

Our aim of this section lies in obtaining sufficient conditions under which solutions to Problems
2.2–2.4 exist. Throughout this section, we assume

V is a closed convex subset of L�.

Although the closedness of V is essential, we need some additional conditions to ensure the exis-
tence of solutions. We consider the case where L� is reflexive.

Remark 4.1 Supposing that �(x) = xp/p for p > 1, the space L� is reflexive. More generally,
the space L� is reflexive, if both � and  satisfy the following �

2

-condition: there exist an x
0

2
(0,1) and a K > 0 such that �(2x) < K�(x) for any x � x

0

. Thus, ex � 1, ex � x � 1 and
(x + 1) log(x + 1) � x are not the case. For more details, see Corollary 2.2.12 of Edgar and
Sucheston (1992) and Theorem IV.1.10 of Rao and Ren (1991).

Proposition 4.1 Let L� be reflexive. Then, Problems 2.2–2.4 all have solutions.
Proof. As for Problems 2.3 and 2.4, we can prove them easily by consulting with Proposition
II.1.2 of Ekeland and Témam (1999). For example, as regards Problem 2.4, letting F (v) :=

kH � vk
�

, F is a lower semi-continuous convex function. Moreover, since F (v) � kvk
�

�kHk
�

for any v 2 V , F is coercive. Thus, there exists a solution to Problem 2.4.
It remains to show the assertion with respect to Problem 2.2. Before proving it, we should

remark that L� = M� whenever L� is reflexive. See Theorem IV.2.10 of Rao and Ren (1991). We
denote F (v) := E[�(|H � v|)] and d⇤ := infv2V F (v). Remark that we are interested in only the
case where d⇤ < +1; otherwise every v 2 V becomes a solution. Let (vn)n�1

be a minimizing
sequence, that is, F (vn) ! d⇤ as n ! 1.

For any v 2 V satisfying (d⇤ )F (v)  d⇤ + 1, we have, by Theorem 2.2.9 of Edgar and
Sucheston (1992),

kvk
�

 N
�

(v)  N
�

(H) +N
�

(H � v)  N
�

(H) + F (v) + 1

 N
�

(H) + d⇤ + 2.

Consequently, we have infv2V F (v) = infv2A F (v), where A := {v 2 V|kvk
�

 N
�

(H)+d⇤+2}.
We can then extract a minimizing sequence (vn) within A. Since L� is reflexive, (vn) converges
to some v⇤ 2 A in the weak topology �(M�, L ) by extracting a subsequence if need be.
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Letting w⇤

:= sgn(H � v⇤)�(|H � v⇤|), we have

E[ (|w⇤|)] = E[ (�(|H � v⇤|))]
= E[|H � v⇤|�(|H � v⇤|)]� E[�(|H � v⇤|)]
 E[�(2|H � v⇤|)]� 2E[�(|H � v⇤|)] < +1,

since H � v⇤ 2 M�. Thus, w⇤ 2 L follows. Moreover, we have

F (v⇤) = E[�(|H � v⇤|)] = E[(H � v⇤)w⇤

]� E[ (|w⇤|)]
= lim

n!1

E[(H � vn)w
⇤

]� E[ (|w⇤|)]

 lim inf

n!1

E[�(|H � vn|)] + E[ (|w⇤|)]� E[ (|w⇤|)]

= lim inf

n!1

F (vn).

Consequently, v⇤ is a solution to Problem 2.2. 2
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Stéphane Crépey‡ and Tuyet Mai Nguyen‡
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Abstract

In this paper, we model credit portfolios by continuous-time Markov chains with some form of
spatial homogeneity, so that direct Monte Carlo Greeks estimates, without resimulation, can be
derived. We implement our results in two specific credit models: the shock model of Bielecki
et al. (2012), where the spatial homogeneity is straightforward, and the group model of section
11.2 in Crépey (2013), where spatial homogeneity can be recovered by a change of measure
and tools of Malliavin calculus. The direct Monte Carlo Greek estimates are competitive with
previously developed simulation/regression estimates, but they are also unbiased, and there is
some evidence that they would be less impacted by the curse of dimensionality.

Keywords: Markov chains, portfolio credit risk, Greeks, Monte Carlo simulation, Malliavin calcu-
lus, Clark-Ocone formula.

1. INTRODUCTION

Though CDO issuances have become quite rare since the crisis, there is still a huge amount of
outstanding CDO contracts which need to be marked to market and hedged up to their maturity
dates. Moreover, the issue of valuation and hedging of counterparty risk on credit portfolios is
very topical since the crisis. With these motivations in mind, we develop in this paper Monte
Carlo Greeking schemes without resimulation for continuous-time models of portfolio credit risk.
Without resimulation means that all the Greeks (and there are many of them in the case of large

1This research benefited from the support of the “Chaire Marchés en Mutation”, Fédération Bancaire Française.
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portfolios) are estimated based on a single set of model trajectories. Simulation/regression es-
timates were proposed in the section 11.2 of Crépey (2013) (cf. also Crépey and Rahal (2013)
for a short version in article form focusing on CVA applications), but these are biased by con-
struction. Here we propose unbiased estimates under a suitable spatial homogeneity condition on
the Markov chain. As in Crépey (2013) (for comparison purposes), we illustrate our approach in
the shock model of Bielecki et al. (2012), where spatial homogeneity is straightforward, and in
a group model where spatial homogeneity does not hold in the first place but can be recovered
under a changed probability measure, using tools of Malliavin calculus for jump processes. The
practical performances of our estimates are competitive with those of Crépey (2013) (but, again,
our estimates are unbiased, as opposed to those of Crépey (2013)). Moreover, in the shock model,
where exact formulas can be used for benchmarking our results, the performance of our estimates
doesn’t deteriorate with the dimension. This yields one more example of the abilities of simulation
schemes to deal with high-dimensional problems , by exploiting the degeneracies of the underlying
factor processes, when deterministic schemes are banned by the curse of dimensionality (see also,
e.g., Crépey and Rahal (2012)).

Sect. 2 presents the approach in general. Sect. 3 and 4 study its applicability in the shock and
in the group model, respectively.

2. GENERAL SETUP

We consider a risk neutral pricing model (Ω,F ,P, (Ft)t∈[0,T ]) where T ≥ 0 is a fixed time hori-
zon and (Ft)t∈[0,T ] is the natural filtration of a continuous-time d-variate Markov chain N =
(N1, · · · , Nd) with components in Nν = {0, 1, · · · , ν − 1}, for some fixed integer ν. So N
lives in the state space I = Nd

ν . The cumulative default process Nt on a credit risk portfolio
is modeled as Nt = ϕ(Nt), for some integer valued loss function ϕ, e.g. ϕ(ı) =

∑d
k=1 ik, for

ı = (i1, · · · , id) ∈ I. Given a credit derivative payoff ξ = π(NT ) = π(ϕ(NT )) = φ(NT ), where
φ = π ◦ ϕ, we have the corresponding price process, by the Markov property of N assuming zero
risk-free rate for simplicity:

Πt = E[ξ|Ft] = E[φ(NT )|Ft] = E[φ(NT )|Nt] = u(t,Nt), for t ∈ [0, T ], (1)

for some pricing function u(t, ı), t ∈ [0, T ], ı ∈ I.We are interested in the sensitivity of the pricing
function with respect to events Y (specified in later sections), which can be represented as

δuY (t, ı) = u(t, ıY )− u(t, ı),

where ı and ıY represent the state of the chain right before and after the event Y . Since

u(t, ı) = E[φ(NT )|Nt = ı] and u(t, ıY ) = E[φ(NT )|Nt = ıY ],

in general, computing δuY (t, ı) by Monte Carlo implies resimulation (conditionally given Nt = ı
and then given Nt = ıY , and this for each Y ). However, this is unnecessary under the following
spatial homogeneity condition on N (since then E[φ(NT )|Nt = ıY ] = E[φ(ϕY (NT ))|Nt = ı]
above).
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Definition 2.1 The Markov chainN is said to be spatially homogeneous if for every event Y , there
exists a deterministic function ϕY such that

(NT |Nt = ıY )
L
= (ϕY (NT )|Nt = ı).

Example: If Nt = Nt is a Poisson process capped at n and Y represents a Poisson jump, then N
is spatially homogeneous with ϕY (i) = min(i+ 1, n).

In the following sections we use the above results to greek CDO contracts in two specific
Markov chain models of credit portfolio. For the prerequisites of the CDO pricing problem, see
e.g. Crépey and Rahal (2013). The nominal on each credit name is set to 100 and all the recovery
rates are set to 40%.

3. SHOCKMODEL

First we describe briefly the shock model of Bielecki et al. (2012) (or, in extended book form,
Chapter 8 in Crépey et al. (2014)). We consider n reference credit names, indexed from 1 to n.
With respect to the general setup, this corresponds to a case where d = n and N l, l = 1, · · · , n
stands for the default indicator process of name l. The state space I is equal to {0, 1}n. First, we
define a family Y of “shocks”, i.e. subsets Y of obligors, typically the singletons (or “idiosyn-
cratic shocks”) {1}, . . . , {n} and a small number of “common (or systemic) shocks” I1, . . . , Im
representing simultaneous defaults. For every Y ∈ Y , we define

τY =
EY
λY

,

where the EY are i.i.d. standard exponential random variables and the λY > 0 are constant shock
intensities. At last, we define for each obligor l

τl =
∧

{Y ∈Y;l∈Y }

τY , N
l
t = It≥τl .

The idea is that the advent of the shock Ij at time t triggers the default of all the surviving names in
Ij at t, which corresponds to a kind of “instantaneous” credit contagion in the form of simultaneous
defaults. As shown in Chapter 8 of Crépey et al. (2014), N = (N l)1≤l≤n is a Markov process and
the greeks needed for hedging are the δuY (t, ı) = u(t, ıY ) − u(t, ı), where, for ı ∈ I and Y ∈ Y ,
ıY represents ı with coordinates in Y replaced by one (when not already so).
Proposition 3.1 (Spatial homogeneity in the shock model) For every ı ∈ I and Y ∈ Y ,

(NT |Nt = ıY )
L
= (N Y

T |Nt = ı). (2)
Proof. This can be verified on the explicit formula that is available for the conditional joint sur-
vival probability in the shock model (see Proposition 2.1 in Bielecki et al. (2012)).

As a consequence,
δuY (t, ı) = E

[

φ(N Y
T )− φ(NT )

∣

∣Nt = ı
]

and, in particular,
δuY (0, 0) = E[φ(N Y

T )]− E[φ(NT )].
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3.1. Numerical Results

In this section we use the above results to greek CDO contracts on n=30, 60, 90 or 120 underlying
names. We use a nested structure of common shocks Ij , j = 1, . . . ,m = 4, so that I1, I2 and
I3 respectively correspond to the 8%, 16% and 32% riskiest names (riskiest in the sense of the
corresponding CDS spreads at time 0) and I4 is the “Armageddon” shock corresponding to all
names. We consider equity and junior mezzanine CDO tranches (the tranches the most important
to hedge) insuring the buyer of protection against the first 5% of underlying credit losses and
against losses from 5% to 10%, respectively. We use m = 5 × 105 simulations. Figures 1 and 2
illustrate the absolute and relative errors of the simulated deltas as compared with the exact values,
visible in Table 1, computed by recursive algorithms described in Chapter 8 of Crépey et al. (2014).
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Figure 1: Absolute errors of the simulated deltas in the shock model.

The results show that our method can efficiently deal with high dimensional problems. The errors
don’t explode with the dimension (number of names).

4. GROUP MODEL

In the group model, the n names of the pool are shared into d groups of ν − 1 =
n

d
obligors

(taking n a multiple of d). The cumulative default processes Nk, k = 1, · · · , d in the different
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Figure 2: Relative errors of the simulated deltas in the shock model.

Equity δ̄ δ1 δ2 δ3 δ4

n = 30 53.27896 93.54673 109.27821 109.27821 109.27821

n = 60 56.92980 205.88311 205.88311 205.88311 205.88311

n = 90 57.27941 290.14565 292.97392 292.97392 292.97392

n = 120 57.36067 369.74917 369.74917 369.74917 369.74917

JMezz δ̄ δ1 δ2 δ3 δ4

n = 30 5.05002 22.18655 148.04106 148.04106 148.04106

n = 60 1.25017 82.18569 298.04551 298.04551 298.04551

n = 90 0.74252 111.03935 440.11343 447.40568 447.40568

n = 120 0.47938 200.12579 593.64953 596.48387 596.48387

Table 1: Exact values of the idiosyncratic deltas averaged over all names (column 2) and of the
four systemic deltas (columns 3 to 6).
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groups are jointly modeled as a continuous-time d-variate Markov chain N = (N1, · · · , Nd) with
components in Nν = {0, 1, · · · , ν − 1}. The state space I = Nd

ν . We assume no simultaneous
default, so the cumulative default processes Nk never jump together. The intensity of jump in the
group k is given in the form

λk(t, ı) = (ν − 1− ik)λ̃
k(t, ı),

where ı = (i1, · · · , id) ∈ I represents the current state of N , ik is the number of defaults in group
k and λ̃k : [0, T ]×I → R+ is a (measurable and bounded) pre-default individual intensity function
for an obligor in group k. The compensated process

Mk
t = Nk

t −

∫ t

0

λk(s,Ns)ds

is an F-martingale under P. Since the intensity processes depend on the state of the Markov chain,
we do not have homogeneity under P. But we can always view a Markov chain with intensities
λk(t,Nt) under P as a measure-changed homogeneous Markov chain. More precisely, let us con-
sider a Markov chain N under a probability measure P̂ where all the counting processes Nk have
intensity 1. We define the process (Γt)t∈[0,T ] such that

dΓt

Γt−
=

d
∑

k=1

(λk(t,Nt−)− 1)dM̂k
t , Γ0 = 1, (3)

where M̂k
t = Nk

t − t is the compensated martingale of the process Nk
t under P̂. Hence Γt is a

P̂-martingale, playing the role of a Radon-Nikodym density in the change of measure, explicitly
given by Doléan-Dade exponentials as

Γt =
d
∏

k=1

E

(
∫ t

0

(λk(s,Ns−)− 1)dM̂k
s

)

=
d
∏

k=1

e
∫
t

0 (1−λk(s,Ns))ds
∏

τk≤t,Nk

τk
%=Nk

τk−

λk(τ k,Nτk−) (4)

= e
∫
t

0
(d−λ(s,Ns))ds

d
∏

k=1

∏

τk≤t,Nk

τk
%=Nk

τk−

λk(τ k,Nτk−) (5)

where λ(s,Ns) =
∑d

k=1 λ
k(s,Ns) is the intensity of jump of N at time s. In (4), for each k, the

second product runs over all jump times of the process Nk up to t. In (5), the double product runs
over all jump times of the process N up to t. By defining a change of measure

dP

dP̂
= ΓT ,

we obtain processes Nk
t with intensity λk(t,Nt) under P:

Lemma 4.1 For every k = 1, · · · , d, Mk
t is a P-martingale.
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Proof. We have

d(Mk
t Γt) = Mk

t−dΓt + Γt−dM
k
t + d[Mk,Γ]t

= Mk
t−dΓt + Γt−(dN

k
t − λk(t,Nt)dt) + Γt−(λ

k(t,Nt−)− 1)dNk
t

= Mk
t−dΓt + Γt−λ

k(t,Nt−)dM̂
k
t ,

whereMk and Γ are bounded, soMkΓ is a P̂-martingale, henceMk is a P-martingale.

In the group model, the martingale representation has the form

Πt = Π0 +
d

∑

k=1

∫ t

0

δuk(s,Ns−)dM
k
s , (6)

where δuk(t, ı) = u(t, ık) − u(t, ı), in which ık represents the state ı with component k increased
by one.

Proposition 4.2 For every t ∈ [0, T ] such that Γt− '= 0 and λk(t,Nt−) '= 0,

δuk(t,Nt−) =
1

λk(t,Nt−)
E

[

ε+
t,0k(ΓT ξ)

ΓT

|Ft

]

− E[ξ|Ft], (7)

where ε+t,z, so-called creation operator (see lemma III.3 of Bouleau and Denis (2013)), adds a jump
of size z at t in the process N . In particular,

δuk(0,N0) =
1

λk(0,N0)
E

[

ε+0,0k(ΓT ξ)

ΓT

]

− E[ξ]. (8)

Proof. The group model N can be represented as

Nt =
Nt
∑

i=1

Zi, (9)

where Nt =
∑d

k=1N
k
t is the cumulative default process and the Zi are the successive jump sizes

of N in

Z = {01 := (1, 0, · · · , 0), 02 := (0, 1, 0, · · · , 0), · · · , 0d := (0, · · · , 0, 1)} ⊂ N
d.

Under the probability P̂, N has the form (9), where Nt is a homogeneous Poisson process of
intensity d and (Zi)i≥0 are i.i.d. with uniform distribution U on Z . Hence, N is a compound
Poisson process under P̂. The jump counting measure ν of N is a Poisson random measure on
R+ × Z with intensity measure µ(dt, dz) = ddt⊗ U(dz) and with compensated random measure
ν̃(dt, dz) = ν(dt, dz)− µ(dt, dz). The Clark-Ocone formula for the random variable ΓT ξ under P̂
yields (see Di Nunno et al. (2008)):

ΓT ξ = Ê[ΓT ξ] +

∫ T

0

∫

Z
Ê[Ds,z(ΓT ξ)|Fs]ν̃(ds, dz),



24 S. Crépey and T.M. Nguyen

where Ds,z(ΓT ξ) is the Malliavin derivative of ΓT ξ at (s, z) (and for a predictable version of the
conditional expectation process Ê[Ds,z(ΓT ξ)|Fs], s ≥ 0). Hence,

ΓtΠt = ΓtE[ξ|Ft] = Ê[ΓT ξ|Ft] = Ê[ΓT ξ] +

∫ t

0

∫

Z
Ê[Ds,z(ΓT ξ)|Fs]ν̃(ds, dz)

and

d(ΓtΠt) = Ê[Dt,z(ΓT ξ)|Ft]ν̃(dt, dz) =
d

∑

k=1

Ê[Dt,0k(ΓT ξ)|Ft]dM̂
k
t . (10)

Moreover, from (3) and (6), we obtain

d(ΓtΠt) = Γt−dΠt + Πt−dΓt + d[Π,Γ]t

= Γt−

d
∑

k=1

δuk(t,Nt−)dM
k
t + Πt−Γt−

d
∑

k=1

(λk(t,Nt−)− 1)dM̂k
t

+Γt−

d
∑

k=1

δuk(t,Nt−)(λ
k(t,Nt−)− 1)dNk

t

= Γt−

d
∑

k=1

[δuk(t,Nt−)λ
k(t,Nt−) + Πt−(λ

k(t,Nt−)− 1)]dM̂k
t . (11)

By identifying (10) and (11) we get

Γt−[δu
k(t,Nt−)λ

k(t,Nt−) + Πt−(λ
k(t,Nt−)− 1)] = Ê[Dt,0k(ΓT ξ)|Ft].

But by properties of the Malliavin derivative and of the creation operator ε+ (see lemma III.3 of
Bouleau and Denis (2013)), we have Dt,0k(ΓT ξ) = ε+

t,0k(ΓT ξ)− ΓT ξ, and

Ê[Dt,0k(ΓT ξ)|Ft] = Ê[ε+
t,0k(ΓT ξ)− ΓT ξ|Ft] = Ê[ε+

t,0k(ΓT ξ)|Ft]− Γt−Πt−

(for a predictable version of the conditional expectation Ê[ε+
t,0k(ΓT ξ)|Ft]). Therefore,

Γt−λ
k(t,Nt−)[δu

k(t,Nt−) + Πt−] = Ê[ε+
t,0k(ΓT ξ)|Ft] = Γt−E

[

ε+
t,0k(ΓT ξ)

ΓT

|Ft

]

, (12)

with the convention that the ratio equals to 0 when ΓT = 0, hence also ε+
t,0k(ΓT ξ) = 0, in the right

hand side. In the case where Γt− '= 0 and λk(t,Nt−) '= 0, we deduce

δuk(t,Nt−) + Πt− =
1

λk(t,Nt−)
E

[

ε+
t,0k(ΓT ξ)

ΓT

|Ft

]

.

Now we consider the problem of min-variance hedging an equity or senior CDO tranche by the
underlying credit index. Let Π and P (resp. u and v) denote the price processes (resp. pricing
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functions) of a tranche and of the index. By application of the formula (11.14) in Crépey (2013),
we can min-variance hedge a tranche by the index and the riskless (constant) asset by using the
strategy ζ in the index defined by

ζt =

∑d
l=1 λ

l(δul)(δvl)
∑d

l=1 λ
l(δvl)2

(t,Nt−) =
d

∑

l=1

wl

(

δul

δvl

)

with wl =
(δvl)2

∑d
j=1 λ

j(δvj)2
, for t ∈ [0, T ],

(13)
where δul and δvl can be represented in the form (7) (or, at time 0, (8)). In case of a local intensity
model (d = 1), the martingale representation (6) yields

dΠt = δu(t,Nt−)dMt, dPt = δv(t,Nt−)dMt.

Therefore,
dΠt = δtdPt, where δt = δ(t,Nt−) =

u(t,Nt)− u(t,Nt−)

v(t,Nt)− v(t,Nt−)
. (14)

In this case, it is thus possible to replicate the tranche by the index using the strategy δt defined by
(14), which coincides with the min-variance hedging strategy ζt in (13).

4.1. Numerical Results

We estimate, by Monte Carlo based on (8) using m = 104 or m = 106 simulations, the deltas of
the equity tranche and of the senior tranche with maturity T = 5 and “strike” k = 45% (equity
tranche [0, 45%] and senior tranche [45%, 100%] with pricing functions denoted by u+ and u−,
respectively). The nominal is set to 1. The results are compared with the exact values computed
by matrix exponentiation and with the simulation/regression estimates of section 11.2 in Crépey
(2013) (note that these are based onm = 4× 104 simulations).

One group This is the special case where d = 1. For tractability of the matrix exponentiation
method that is used for validating our simulation results, we consider a small portfolio of n = 8
obligors. The pre-default individual intensity function is taken as

λ̃(i) =
1 + i

n
.

The results are displayed in Table 2.

k = 45% val δ err δ̂11 err δ̂1s err δ̂2s

Eq 0.41513 0.29196 -7.97263 -0.08968

Sen 0.58487 -0.20723 5.65883 0.06365

Table 2: One group: Exact values (column 2) and percentage relative errors for δ = δu±
0
(0)

δv0(0)
es-

timated by simulation/regression with m = 104 (column 3) or by simulation based on spatial
homogeneity withm = 104 (column 4) orm = 106 (column 5).
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Two groups This time the n = 8 names are divided into d = 2 groups. The pre-default individual
intensity function in each group is given by

λ̃k(ı) =
k(1 + ik)

n
.

We keep the other parameters as in the local intensity model. The results are displayed in Table 3.

k = 45% val δ err δ̂11 err δ̂1s err δ̂2s

Eq1 0.39453 0.05174 3.22293 0.45355

Eq2 0.53172 -6.3304 14.88279 0.34204

Sen1 0.60547 -0.03372 -2.10011 -0.29554

Sen2 0.46828 7.18803 -16.89909 -0.38838

Table 3: Two groups: Exact values (column 2) and percentage relative errors for δ = δ1u±

δ1v
(0, 0, 0)

or δ2u±

δ2v
(0, 0, 0) estimated by simulation/regression with m = 104 (column 3) or by simulation

based on spatial homogeneity withm = 104 (column 4) orm = 106 (column 5).

Note that δ̂11 in tables 2 and 3 is the best simulation/regression estimate of Crépey and Ra-
hal (2013) (the indices mean that the regression is affine in time and restricted to the scenarios
where the first default takes place before T1 = 1 year). The error of this estimate, as of simu-
lation/regression estimates in general, varies a lot with the parameters of the simulation, whereas
our estimates δ̂s seem more robust. Moreover, unlike δ̂11 , our estimates are unbiased and have a
guaranteed convergence rate in 1√

m
(compare the errors of δ̂1s and δ̂2s ).
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S. Crépey. Financial Modeling: A Backward Stochastic Differential Equations Perspective.
Springer Finance Textbooks. Springer, 2013.
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Abstract

We investigate a Merton-type investment-consumption problem under the threat of a market
crash, where the interest rate of the savings account is stochastic. Inspired by the recent work
of Desmettre et al. (2013), we model the market crash as an uncertain event (⌧, l). While the
stock price is driven by a geometric Brownian motion at times t 2 [0, ⌧) [ (⌧,1], it loses a
fraction l of its value at the crash time ⌧ . We maximize the expected discounted logarithmic
utility of consumption over an infinite time horizon in the worst-case scenario, and solve the
problem by separating it into a post- and a pre-crash problem. We determine the optimal
post-crash strategy by means of classical stochastic optimal control theory. Finally, based on
the martingale approach, developed by Seifried (2010), we characterize the optimal pre-crash
strategy.

1. INTRODUCTION AND MOTIVATION

The classical Merton-type model for determining optimal rules for investment and consumption on
a complete market with constant market parameters was solved by Merton (1969) using Dynamic
Programming. Since then, several generalizations, such as stochastic volatilities of the stock price,
transaction costs or acting on an incomplete market were considered in a wide-ranging body of
literature. Moreover, in contrast to the classical work of Merton, for example, Fleming and Pang
(2004) and Pang (2006) considered a model where the market parameter r, which represents the
interest rate, is an ergodic Markov diffusion process. The authors motivated this by the fact that
even for money in the bank, the interest rate may fluctuate over time. On the other hand, the fluc-
tuations of the stock price were generalized to model market crashes. The standard approach often
used in the literature is to replace the geometric Brownian motion by a jump diffusion process,
which requires distributional assumptions on the jumps. However, Korn and Wilmott (2002) pro-
posed modeling a market crash as an uncertain event and optimized the expected discounted utility
of consumption in the worst-case scenario.

29
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This paper combines both of these aspects in a model with a stochastic interest rate and the threat
of a market crash modeled as an uncertain event. We are interested in finding the infinite horizon
optimal investment and consumption behavior of an investor with a logarithmic utility function in
the worst-case scenario with respect to a market crash. As in Desmettre et al. (2013), we model the
market crash as an uncertain once-in-a-lifetime event (⌧, l), where ⌧ denotes the random crash time
and l indicates the crash size. The advantage of this method is that no distributional assumptions
about price jumps are needed.
After explaining the investment-consumption model in Section 2, we apply the worst-case opti-
mization theory to our model with a stochastic interest rate. In Section 3 we solve the worst-case
optimization problem for two different models of interest rates. Therein, we proceed in three
steps. First, we can solve the post-crash problem by standard stochastic optimal control theory
(Section 3.1) for both a Vasicek interest rate model and a Cox-Ingersoll-Ross (CIR) model. Then,
in Section 3.2, we reformulate the worst-case problem into a pre-crash problem that we reduce to a
controller-vs-stopper game. Finally, we can determine the optimal pre-crash strategy by applying
a martingale approach by Seifried (2010).

2. THE WORST-CASE OPTIMIZATION PROBLEM

Let us consider a financial market with one risky asset and a savings account with a stochastic inter-
est rate. Throughout the paper, we consider a complete probability space (⌦,F ,P) with filtration
F = (F

t

)

t�0. As in Desmettre et al. (2013), we are interested in finding the optimal investment
and consumption behavior of an investor under the threat of a market crash (⌧, l), which is defined
as follows. The event (⌧, l) consists of the crash time ⌧ and the crash size l. The crash time ⌧ is
a [0,1]-valued stopping time. At time ⌧ , the risky asset loses a fraction l of its value, where l is
an F

⌧

-adapted random variable with 0  l  l⇤ and l⇤ < 1 denotes the maximal crash size. We
abbreviate the set of all crash scenarios briefly by

C := {(⌧, l) : ⌧ 2 [0,1], stopping time, l 2 [0, l⇤]F
⌧

- measurable random variable}.

Moreover, we assume at normal times t 2 [0, ⌧)[(⌧,1] that the asset price P
t

follows a geometric
Brownian motion

dP
t

= P
t

[µ dt+ �1 dw1,t], P0 = p0,

where µ, �1 > 0 are constant, and w1 = (w1,t)t�0 is a standard Wiener process. At the crash time
⌧ , we have

P
⌧

= (1� l)P
⌧� .

Our model and the model considered in Desmettre et al. (2013) differ in the interest rate modeling.
Here, we assume that the interest rate, denoted by r = (r

t

)

t�0, follows a stochastic process. We
consider two different interest rate models in this paper. On the one hand, we consider an interest
rate r = rV that follows a Vasicek process after the market crash

rV
t

=

(

r
c

: t  ⌧

r
c

e�a(t�⌧)
+ r

M

�

1� e�a(t�⌧)
�

+ �2e
�at

R

t

⌧

easdw̃
s

: t > ⌧
, (1)
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and on the other hand, we consider an interest rate r = rC that follows a CIR process after time ⌧

rC
t

=

(

r
c

: t  ⌧

r
c

e�a(t�⌧)
+ r

M

�

1� e�a(t�⌧)
�

+ �2e
�at

R

t

⌧

p

rC
s

easdw̃
s

: t > ⌧
, (2)

where a, r
M

, �2 > 0 and w̃ = (w̃
t

)

t�0 denotes a Wiener process, correlated with w1 by a correlation
coefficient ⇢ 2 [�1, 1]. Assuming model (1) or (2), the interest rate before the market crash is given
by a positive constant r

c

with µ� r
c

> 0. After the market crash, the interest rate follows an affine
linear stochastic process, of either Vasicek- or CIR-type, with a speed of reversion a to the long-
term mean level r

M

. If we require 2ar
M

> �2
2 , then we have rC

t

> 0 for all t � 0. This property
is an advantage of the CIR model over the Vasicek interest rate. In the text below, we use the
universal notation r

t

for the interest rate if it makes no difference which model is considered.
We denote the ratio of investor’s wealth invested in the risky asset by k

t

, while c
t

is the ratio of
wealth consumed at time t. Below, we separate the problem into a pre- and a post-crash problem.
Thus, we denote the pre-crash strategy, valid for t  ⌧ , by (k

t

, c
t

), and the post-crash strategy,
valid for t > ⌧ , by (k

t

, c
t

).
Now, the investor’s wealth at time t � 0 is denoted by X

t

and it is defined by the following
stochastic differential equations:

X0 = x0 > 0,

dX
t

= X
t

[r
c

+ (µ� r
c

)k
t

� c
t

] dt+X
t

�1k
t

dw1,t, on [0, ⌧),
X

⌧

= (1� lk
⌧

)X
⌧� ,

dX
t

= X
t

⇥

r
t

+ (µ� r
t

)k
t

� c
t

⇤

dt+X
t

�1kt

dw1,t, on (⌧,1],

where, as mentioned above, we can write the post-crash interest rate for model (1), denoted by r
t

,
in the form

dr
t

= a(r
M

� r
t

) + �2(⇢ dw1,t +

p

1� ⇢2 dw2,t), on (⌧,1], (3)
r
⌧

= r
c

.

If we consider (2), we find that:

dr
t

= a(r
M

� r
t

) + �2

p
r
t

(⇢ dw1,t +

p

1� ⇢2 dw2,t), on (⌧,1], (4)
r
⌧

= r
c

.

Given these assumptions, the investor aims to maximize the expected discounted logarithmic utility
of consumption over an infinite time horizon in the worst-case crash scenario. Thus, we formulate
the following worst-case optimization problem:

sup

(k,c)2⇧
inf

(⌧,l)2C
E
✓

Z 1

0

e�"t

ln(c
t

X
t

) dt

◆

, (5)

where " > 0 denotes the discount factor and ⇧ is the admissible control space defined below.

Definition 2.1 (Admissible control space ⇧) An investment and consumption portfolio (k, c) :=
(k, c, k, c) belongs to the admissible control space ⇧, if the following conditions hold:
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1. (k
t

, c
t

) and (k
t

, c
t

) are F
t

-adapted for all t � 0,

2. E
⇣

R

t

0 k
2
s

ds
⌘

< 1, 8 t � 0,

3. 0  c
t

 C < 1 for all t � 0, where C > 0 is a sufficiently large constant,

4. lim

T!1 e�"TE
R

T

0 k
2
t

dt = 0,

5. k
t

< 1
l

⇤ for all t � 0 and k is right continuous.

Remark 2.1 Condition 2 in Definition 2.1 has to be fulfilled for both the pre-crash strategy (k, c)
and the post-crash strategy (k, c), respectively. Conditions 3 and 4 are assumed in order to apply
a verification theorem when identifying the optimal post-crash strategy (see Section 3.1 below).
Note that the admissible control space contains strategies k with values in (�1,1). Negative
values of k correspond to short-selling. Condition 5 ensures that the wealth at the crash time ⌧
stays positive.

The aim of the next section is to determine the optimal worst-case strategy (k⇤, c⇤) for problem
(5). It turns out that we can apply the same main steps as in Desmettre et al. (2013) to solve the
worst-case optimization problem under a stochastic interest rate.

3. THE SOLUTION BY A MARTINGALE APPROACH

First, in Section 3.1 we can find an optimal post-crash strategy (k
⇤
, c⇤) by solving a classical

stochastic optimal control problem. Using the special structure of the resulting post-crash value
function, we can reformulate problem (5) into a pre-crash problem. This will be done in Sec-
tion 3.2. Finally, in Section 3.3 we identify the optimal pre-crash strategy (k⇤, c⇤) by solving a
constrained stochastic optimal control problem.

3.1. The optimal post-crash strategy

In this section we consider the optimization problem that the investor faces at the crash time ⌧ .
In fact, the investor is faced with a classical stochastic optimal control problem over an infinite
time horizon because, at the crash time, he knows that no further crash can occur. Equipped with a
wealth x and an observed interest rate r at the crash time, the investor has to maximize the expected
discounted utility of consumption. Because the interest rate after the crash is stochastic, we have
to consider a two-dimensional state process (X

t

, r
t

). Let us define the post-crash value function:

V (x, r) = sup

(k,c)2⇧
Ex,r

✓

Z 1

0

e�"t

ln(c
t

X
t

) dt

◆

(6)

with respect to the post-crash dynamics:

dX
t

= X
t

⇥

r
t

+ (µ� r
t

)k
t

� c
t

⇤

dt+X
t

�1kt

dw1,t, X0 = x, (7)
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where the post-crash interest rate r
t

in the Vasicek and the CIR model is given by (3) and (4),
respectively.

Remark 3.1 The post-crash value function V (x, r) depends on the initial values of the post-crash
dynamics, given by arbitrary x 2 R+ and r 2 R, that will represent the wealth and the interest
rate at the crash time, respectively. Note that the starting point 0 takes the role of the crash time ⌧ .

Vasicek model. We can use the result in (Pang 2006, Chp.5) to obtain the optimal post-crash
strategy for (6) with the post-crash interest rate of Vasicek-type (see (3)). Pang solved this infinite
horizon stochastic control problem by Dynamic Programming Principle. Thus, we obtain the
optimal post-crash strategy

k
⇤
t

= k
⇤
(r

t

) =

µ� r
t

�2
1

, c⇤
t

⌘ "

and an explicit form of the post-crash value function:

V (x, r) =
1

"
ln(x) + f(r), f(r) = ↵2r

2
+ ↵1r + ↵0 (8)

where ↵
i

(i = 1, 2, 3) are given by

↵2 =

1

2"�2
1("+ 2a)

,

↵1 =

1

"("+ a)



ar
M

+ ("+ 2a)(�2
1 � µ)

�2
1("+ 2a)

�

,

↵0 =

1

"



�2
2

2�2
1"("+ 2a)

+

ar
M

"("+ a)



ar
M

+ ("+ 2a)(�2
1 � µ)

�2
1("+ 2a)

�

+

µ2

2�2
1"

+ ln(")� 1

�

.

Moreover, by reducing the Hamilton-Jacobi-Bellman (HJB) equation, we know that f 2 C2
(R)

solves the differential equation

�2
2

2

f
rr

+ a(r
M

� r)f
r

� "f + ln(")� 1 +

1

"



(µ� r)2

2�2
1

+ r

�

= 0, 8 r 2 R. (9)

In order to prove that the solution of the HJB equation V (x, r) is indeed equal to the post-crash
value function, Pang also required conditions 1-4 in Definition 2.1. Hence, we also included these
requirements. The same requirements are needed for the solution of problem (6) under the post-
crash interest of CIR-type (see (4)).

CIR model. In contrast to the Vasicek model, as far as we know, no previous work exists that
solves problem (6). Here, we can also determine the optimal post-crash strategy by applying the
Dynamic Programming Principle. In this case, the HJB equation for the value function V (x, r) is
given by

"V = sup

k



(µ� r)kxV
x

+

1

2

�2
1k

2
x2V

xx

+ ⇢�1�2k
p
rxV

xr

�

+ rxV
x

+a(r
M

� r)V
r

+

1

2

�2
2rV rr

+ sup

c�0

⇥

�cxV
x

+ ln(cx)
⇤

.
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Using the standard approach V (x, r) = A ln(x)+ g(r) with A =

1
"

and g 2 C2
(R), we can reduce

the HJB equation to

"g =

1

"
sup

k2⇧



(µ� r)k � 1

2

�2
1k

2
�

+

r

"
+ a(r

M

� r)g
r

+

1

2

�2
2rgrr + sup

c2⇧



�c

"
+ ln(c)

�

.

The optimal post-crash strategy is then given by

k
⇤
t

= k
⇤
(r

t

) =

µ� r
t

�2
1

, c⇤ = ", (10)

where r
t

is given by (4). We verify this result in the verification theorem below. Inserting these
optimal candidates, we obtain the differential equation for g 2 C2

(R)

�2
2

2

r g
rr

+ a(r
M

� r)g
r

� "g + ln(")� 1 +

1

"



(µ� r)2

2�2
1

+ r

�

= 0, 8 r 2 R. (11)

In contrast to equation (9), the coefficient of g
rr

is linear in r. Nevertheless, since the last term is
quadratic in r, we suppose that g(r) = �2r

2
+ �1r + �0. Comparing the coefficients, we obtain

�2 =

1

2"�2
1("+ 2a)

,

�1 =

1

"("+ a)

"

ar
M

+ ("+ 2a)(�2
1 � µ) +

�

2
2
2

�2
1("+ 2a)

#

,

�0 =

1

"

"
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M

"("+ a)

"

ar
M

+ ("+ 2a)(�2
1 � µ) +

�

2
2
2

�2
1("+ 2a)

#

+

µ2

2�2
1"

+ ln(")� 1

#

.

In order to show that the candidates in (10) are in fact optimal for the stochastic control problem
(6), we can prove the following verification theorem.

Theorem 3.1 (Verification theorem) Suppose g(r) = �2r
2
+ �1r + �0 is a classical solution of

(11) and define
˜V (x, r) :=

1

"
ln(x) + g(r). (12)

If

k
⇤
(r

t

) =

µ� r
t

�2
1

, c⇤(r
t

) ⌘ ",

where r
t

is given by (4), then (k
⇤
, c⇤) 2 ⇧ and

˜V (x, r) = Ex,r

✓

Z 1

0

e�"t

ln(c⇤
t

X
⇤
t

) dt

◆

,

where X
⇤
t

denotes the process that solves (7) corresponding to (k⇤, c⇤). That means, ˜V (x, r) =

V (x, r), where V (x, r) is defined by (6) under the CIR interest rate.
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Proof. We prove the result by rather standard arguments. By the definition of ˜V and by apply-
ing Ito’s formula, we obtain for arbitrary (k, c) 2 ⇧ that ˜V (x, r) � Ex,r

�R1
0 e�"t

ln(c
t

X
t

) dt
�

.
Afterwards, we get (k⇤

, c⇤) 2 ⇧, and by the above calculation we have

k
⇤ 2 argmax

k



(µ� r)kx ˜V
x

+

1

2

�2
1k

2
x2

˜V
xx

+ ⇢�1�2kx
p
r ˜V

xr

�

,

c⇤ 2 argmax

c�0

h

�cx ˜V
x

+ ln(cx)
i

.

Using Ito’s formula and the explicit form of the first and second moment of r
t

, we are able to show
that

˜V (x, r)  E
✓

Z 1

0

e�"t

ln(c⇤
t

X
⇤
t

) dt

◆

= V (x, r).

Thus, the assertion holds.

Remark 3.2 Due to the stochastic interest rate r
t

after the market crash, the optimal post-crash
strategy is a feedback control depending on the stochastic interest rate r

t

, given by a Vasicek
process and a CIR process, respectively.

At the crash time, the investor has an amount of wealth of x = (1� lk
⌧

)X
⌧

and the interest rate at
the crash time is r = r

⌧

. These values are the initial values of the post-crash problem and can be
inserted in the post-crash value function V (x, r). From now on, we write for the post-crash value
function:

V (x, r) =
1

"
ln(x) +W (r),

where W (r) stands for f(r) in the Vasicek case and for g(r) in the CIR case. Thus, we can
reformulate the worst-case optimization problem into a pre-crash problem.

3.2. Reformulation of the worst-case optimization problem

From the post-crash analysis in the previous section we know that the performance of the optimal
post-crash strategy at time ⌧ is given by the post-crash value function at x = (1 � lk

⌧

)X
⌧

and
r = r

⌧

, namely V ((1� lk
⌧

)X
⌧

, r
⌧

). Since V (x, r), given by (8) and (12), is monotone increasing
in x, we obtain

V ((1� lk
⌧

)X
⌧

, r
⌧

) � V ((1� l⇤k+
⌧

)X
⌧

, r
⌧

),

where k+
:= max{0, k}. Thus, we can conclude that the worst-case crash size is realized for

l = l⇤. Because we assumed a constant interest rate r
c

before and including the crash time, we
have r

⌧

= r
c

. Now, we discount V ((1 � l⇤k+
⌧

)X
⌧

, r
c

) to the starting time 0 by e�"⌧ and we
reformulate the worst-case problem (5) into the following pre-crash problem:

sup

(k,c)2⇧
inf

⌧2C
E
✓

Z

⌧

0

e�"t

ln(c
t

X
t

) dt+ e�"⌧V ((1� l⇤k+
⌧

)X
⌧

, r
c

)

◆

(13)

with respect to the pre-crash dynamics

dX
t

= X
t

[r
c

+ (µ� r
c

)k
t

� c
t

] dt+X
t

�1k
t

dw1,t, X0 = x0 > 0.
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Note that the pre-crash problem is considered with respect to the pre-crash dynamics. Because of
constant interest rates before the crash, we have to consider only the state equation for the pre-crash
wealth. In the pre-crash problem (13) the infimum is only taken over the crash time ⌧ , because we
already identified the worst-case crash size by l⇤. From now on, we write (k, c) instead of (k, c)
for the pre-crash strategy and therefore, by (13), the worst-case problem (5) reduces to a controller
vs. stopper game of the form

sup

(k,c)2⇧
inf

⌧

E
�

Mk,c

⌧

�

, (14)

where

Mk,c

t

:=

Z

t

0

e�"s

ln(c
s

X
s

) ds+ e�"tV ((1� l⇤k+
t

)X
t

, r
c

), t � 0.

Such a controller vs. stopper game is also explained in Seifried (2010). Here, we also try to solve
this kind of a stochastic game, where the investor controls Mk,c by choosing (k, c) and the stopper,
namely the market, decides on the duration of the game ⌧ 2 C. In the text below, we see that we
can apply the concept of Indifference and Indifference Optimality Principle, developed in Seifried
(2010) and Desmettre et al. (2013) to identify the optimal pre-crash strategy for the stochastic
game (14). Analogously, we define an indifference strategy as follows.

Definition 3.1 (Indifference Strategy, cf. (Seifried 2010, p.566)) A pre-crash strategy (

ˆk, ĉ) is
called indifference strategy if

E(M k̂,ĉ

⌧1
) = E(M k̂,ĉ

⌧2
) (15)

for stopping times ⌧1 6= ⌧2.

The idea here is that the investor chooses an indifference strategy before the crash, such that the
performance of this choice does not depend on the crash time ⌧ . After formulating a sufficient con-
dition for a strategy to be an indifference strategy, we can use the notion of an Indifference Frontier
and an Indifference Optimality Principle to identify the worst-case optimal pre-crash strategy.

Proposition 3.2 (Indifference Condition) Let (ˆk, ĉ) be a constant pre-crash strategy such that
H(

ˆk, ĉ) = 0, where

H(k, c) := ln(c)� ln(1� l⇤k+
) +

1

"
[r

c

+ (µ� r
c

)k � c]� �2
1

2"
k2 � "W (r

c

). (16)

Then (

ˆk, ĉ) 2 ⇧ is an indifference strategy, which means E(M k̂,ĉ

⌧1
) = E(M k̂,ĉ

⌧2
).

Proof. The proof is similar to that in Desmettre et al. (2013) and it is divided into two steps.
First, we show that M k̂,ĉ is a uniformly integrable martingale. In the second step we apply Doob’s
Optional Sampling theorem and the assertion follows.
By the definition of Mk,c and for arbitrary (k, c), we have

dMk,c

t

= e�"t

ln(c
t

X
t

) dt+ d
⇥

e�"tV ((1� l⇤k+
t

)X
t

, r
c

)

⇤

.
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Now, we restrict ourselves to constant pre-crash strategies. With V (x, r) = 1
"

ln(x) + W (r) (see
section 3.1) and by applying Ito’s formula, we obtain

dMk,c

t

= e�"t

⇢

ln(c)� ln(1� l⇤k+
) +

1

"
[r

c

+ (µ� r
c

)k � c]� �2
1

2"
k2 � "W (r

c

)

�

dt (17)

+e�"t

1

"
�1k dw1,t.

Let (ˆk, ĉ) be a constant pre-crash strategy such that H(

ˆk, ĉ) = 0, then

dM k̂,ĉ

t

= e�"t

1

"
�1
ˆk dw1,t.

Since ˆk is assumed to be constant, it is easy to check that M k̂,ĉ

t

=

R

t

0 e
�"s

1
"

�1
ˆk dw1,s is a uniformly

integrable martingale. By (Protter 1990, Thm. 12), we find that the uniformly integrable martingale
M k̂,ĉ is closed by the random variable M k̂,ĉ

1 := lim

t!1 M k̂,ĉ

t

. Then, by applying Doob’s Optional
Sampling Theorem (for example, see (Protter 1990, Thm.16)), we obtain (15). By Definition 3.1,
it follows that (ˆk, ĉ) is an indifference strategy. Finally, it follows that a constant (ˆk, ĉ) with ĉ � 0

is an admissible strategy.

Remark 3.3 In our model it is essential that the interest rate before the crash is constant. This
leads to the fact that the dt-coefficient in (17) does not depend on ! 2 ⌦. Moreover, due to the
infinite time horizon, the indifference strategy does not depend on time t. By these arguments it is
sufficient to consider constant pre-crash strategies.

Now, having a sufficient condition for a pre-crash strategy to be an indifference strategy, we can
apply the Indifference Optimality Principle stated in Seifried (2010) and Desmettre et al. (2013).
Let (ˆk, ĉ) be an indifference strategy and (k, c) 2 ⇧ be an arbitrary admissible pre-crash strategy.
Then, by (Desmettre et al. 2013, Lemma 4.3), we can improve the worst-case performance for
(k, c) by cutting off at the strategy (

ˆk, ĉ). In detail, they showed that

inf

⌧

E(M k̃,c̃

⌧

) � inf

⌧

E(Mk,c

⌧

), (18)

where
˜k
t

=

(

k
t

: t < ⌘
ˆk : t � ⌘

c̃
t

=

(

c
t

: t < ⌘

ĉ : t � ⌘
,

and ⌘ := inf{t � 0 : k
t

> ˆk}. The application of (Desmettre et al. 2013, Lemma 4.3) is possible
for our model, because of the required right continuity of the pre-crash strategy k

t

and the fact that
the post-crash value function V (x, r) is also monotone increasing in x for the log-utility function.
Thus, for details of the proof of (18) we refer to the literature.

By (18), we can restrict our considerations on strategies that are dominated by an indifference
strategy because all other strategies would provide worse performances. In order to do this, we
abbreviate the set of such strategies by

A(

ˆk) :=
n

(k, c) 2 ⇧ : k
t

 ˆk, 8t � 0

o

.
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Next, we apply the Indifference Optimality Principle (see (Desmettre et al. 2013, Proposition 5.1))
to identify a worst-case optimal pre-crash strategy for our model with a stochastic interest rate.
This principle provides us a sufficient condition for a pre-crash strategy (k⇤, c⇤) to be optimal
in the worst-case scenario: An indifference strategy (

ˆk, ĉ) = (k⇤, c⇤) is the worst-case optimal
investment consumption strategy for (5), if it is optimal in the no-crash scenario {⌧ = 1} in the
class of all strategies respecting the associated indifference frontier. Thus, our task in the next
Section is to identify an indifference strategy (k⇤, c⇤), which fulfills the condition:

E(Mk,c

1 )  E(Mk

⇤
,c

⇤

1 ) 8 (k, c) 2 A(k⇤
). (M)

3.3. Identification of the optimal pre-crash strategy

The aim of this Section is to identify the optimal pre-crash strategy by applying the Indifference
Optimality Principle. We are done if we can find (k⇤, c⇤) 2 ⇧ which fulfills the Indifference
Condition of Proposition 3.2 and the Indifference Optimality Condition (M).

Theorem 3.3 Let k⇤ < m := min

n

1
l

⇤ ,
µ�rc

�

2
1

o

be the unique root of the function H(k, "), where H

is defined in (16). Then, the optimal pre-crash strategy for the worst-case problem (5) is given by

k⇤
t

⌘ k⇤, c⇤
t

⌘ ".

Proof. We divide the proof into two steps. First, we show that there exists a uniquely determined
k⇤, such that H(k⇤, ") = 0. In a second step we show that (k⇤, ") is optimal in the no-crash scenario
in the class of strategies that respect the Indifference Frontier (k⇤, "). Finally, we can conclude that
(k⇤, ") is the optimal pre-crash strategy.

Step 1.
By definition of H in (16), we have

@

@k
H(k, ") =

(

� 1
(1�l

⇤
k

+) · (�l⇤) + 1
"
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)� �2
1k) : 0  k < m

1
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1k) : k < 0

.

It follows that H(k, ") is strictly monotone increasing for k < m. If m =

1
l

⇤ , it holds
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� 1 +

1

2"

(µ� r
c

)

2

�2
1

� "W (r
c

) > 0

because W (r
c

) is given in Section 3.1 and we can choose " > 0 large enough such that the last
inequality holds.
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Moreover, we get

lim

k!�1
H(k, ")

= ln(")� lim

k!�1
ln

�

1� l⇤k+
�

+

r
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"
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"
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✓

(µ� r
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)k � �2
1

2
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◆

� 1� "W (r
c

) = �1.

Because of the fact that H(k, ") is strictly monotone increasing for k < m, H(m, ") > 0 and
lim

k!�1 H(k, ") < 0, we know that there exists a uniquely determined k⇤ such that H(k⇤, ") = 0.
Thus (k⇤, ") is an indifference strategy, and the first step of the proof is complete. Now, it remains
to show the second step.

Step 2.
Here, we consider the constrained optimization problem

sup

(k,c):kk

⇤
E
✓

Z 1

0

e�"t

ln(c
t

X
t

) dt

◆

with respect to the pre-crash dynamics

dX
t

= X
t

[r
c

+ (µ� r
c

)k
t

� c
t

] dt+X
t

�1kt dw1,t, X0 = x0 > 0. (19)

We solve this problem by separating the investment and consumption decisions. This separation
is possible due to the logarithmic utility function (see Korn and Seifried (2013) for more details).
This separation leads, on the one hand, to an optimal consumption strategy c⇤ = ", and on the
other hand to the remaining problem for determining k⇤

sup

kk

⇤
E
✓

Z 1

0

e�"t

ln("X"

t

) dt

◆

, (20)

where X"

t

denotes the solution of (19) controlled by c
t

= ". By Ito’s formula, we have

E (ln(X"

t

)) = ln(x0
) + E

Z

t

0

�(k
s

) ds� "t, �(k
s

) := (µ� r
c

)k
s

� �2
1

2

k2
s

+ r
c

.

Thus, the maximization of (20) is reduced to the maximization of � over k  k⇤. Obviously, � is
strictly monotone increasing for k < µ�rc

�

2
1

. Since k⇤ < m, the maximum is attained for k = k⇤.
Thus, (k⇤, ") fulfills (M). Finally, the application the Infifference Optimality Principle proves the
assertion.

4. CONCLUSIONS

The optimal investment and consumption behavior consists of determining a constant investment
control k⇤ such that H(k⇤, ") = 0 and c⇤ = ". It is important to note that determining k⇤ de-
pends on the interest rate model being considered. In contrast to the pre-crash strategy, the optimal
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post-crash investment depends on the stochastic interest rate, whereas the optimal post-crash con-
sumption strategy is again equal to the discount factor ". The latter point is not surprising for the
case of a logarithmic utility function because the investment and consumption decisions can be
separated. This will certainly not be the case if we consider, for example, a power utility function.
Thus, the case of more general utility functions is left for future research.
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Abstract
One common approach in stochastic modeling of (rare) events (for example company de-

faults or natural catastrophes) is to assume that those events are triggered as soon as a stochastic
risk process falls below a constant barrier. In this paper, we model this risk process as a regime
switching Brownian motion, a process that allows to incorporate many of the cyclical patterns
that either naturally arise (i.e. seasons, rainfall) or result from peoples’ interactions (i.e. busi-
ness cycles). Two numerical examples demonstrate the flexibility of a regime switching risk
process: Stress testing option prices on exchange rates and the pricing of CAT bonds.

1. INTRODUCTION

Recently, first-passage time problems for regime switching models have earned considerable at-
tention. One reason for this increased interest is that first-passage time problems occur in many
different areas of science, for example:

• In Biology, they can be used as a tool in population modeling to, for example, estimate
extinction probabilities for species. Food-supply is usually regime-dependent.

• In Insurance, companies have to provide enough capital to pay any claim that results out of
their insurance policies. The claim arrival intensity is often regime-dependent; it might – for
example – be coupled to weather (sunny, rain) or season.

• In Finance, economic cycles (boom, recession) influence many financial time series. Regime
switching models reflect the tendency of financial markets to often change their behavior
abruptly and persistently. First-passage time problems have to be solved if one wants to
price certain exotic options, i.e. American, barrier, lookback, or digital options (see, e.g.,
Guo (2001b), Buffington and Elliott (2002), Elliott et al. (2005), Jobert and Rogers (2006),
Boyle and Draviam (2007), Jiang and Pistorius (2008), Hieber and Scherer (2010), and many
others).
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Another reason for the popularity of regime switching models is the fact that – conceptionally –
they are rather simple (conditional on the regimes, the distribution is normal) and thus analytically
tractable. Nevertheless, they can generate many non-linear effects like heavy tails or volatility
clusters.

In this paper, we want to focus on applications of first-passage time problems under regime
switching. In two numerical examples on the pricing of first-touch options and of CAT bonds, we
demonstrate that this rather simple (but very tractable) model has several nice features that cannot
be captured by a Lévy process.

The paper is organized as follows: In Section 2, we introduce notation and regime switching
Brownian motion. Section 3 recalls some of the results on the first-passage time of regime switch-
ing models (see also Guo (2001a), Jiang and Pistorius (2008), Hieber (2013a)). Then – the main
part of this paper – is the application of those results to Finance and Insurance (see Section 4).

2. MODEL DESCRIPTION

On the filtered probability space (⌦,F,F ,P), we consider the process B = {B
t

}
t�0 described by

the stochastic differential equation (sde)

dB

t

= µ

Ztdt+ �

ZtdWt

, B0 = x, (1)

where µ

Zt 2 R, �
Zt > 0, Z = {Z

t

}
t�0 2 {1, 2, . . . ,M} is a time-homogeneous Markov chain

with intensity matrix1
Q0, and W = {W

t

}
t�0 an independent Brownian motion. The initial value

is B0 = x 2 R. The filtration F = {F
t

}
t�0 is generated by the pair (W,Z), i.e. F

t

= �{W
s

, Z

s

:

0  s  t}. The time to a state change from the current state i is an exponential random variable
with intensity parameter Q0(i, i). The probability of moving to state j 6= i is �Q0(i, j)/Q0(i, i).
The model is fully determined if an initial state (or, more generally, an initial distribution ⇡0 :=�
P(Z0 = 1),P(Z0 = 2), . . . ,P(Z0 = M)

�
on the states) is defined.

The first-passage time on a lower barrier b < B0 = x is defined as

T

b

:=

(
inf {t � 0 : B

t

 b} , if such a t exists,
1, else.

(2)

The one-sided Fourier transform of the first-passage time is given by

 

b

(u) :=

1

⇡

Z 1

0

exp

�
iuT

b

�
dT

b

. (3)

3. FIRST-PASSAGE TIME RESULTS

This section recalls some of the results on the first-passage time of regime switching models. For
proofs and a more detailed review, we refer to Hieber (2013a). First, Theorem 3.1 presents the
Fourier transform of the first-passage time contingent on the solution of a matrix equation.

1An intensity matrix has negative diagonal and non-negative off-diagonal entries. Each row sums up to zero.
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Theorem 3.1 (First-passage times) We denote the class of irreducible M⇥M generator matrices
(non-negative off-diagonal entries and non-positive row sums) by Q

M

. The Fourier transform of
the first-passage time on a lower barrier b < B0 = x is given by

 

b

(u, x) = ⇡0 exp

�
Q�(x� b)

�
1, (4)

where exp( · ) denotes the matrix exponential, ⇡0 2 R1⇥M is the initial distribution on the states,
and 1 a vector of ones of appropriate size. The tuple (Q+, Q�), Q+, Q� 2 Q

M

, is for u > 0

defined via the two unique solutions ⌅(�Q+) = ⌅(Q�) = 0 of

⌅(Q) :=

0

@
�

2
1 0 . . .

0 . . . 0

. . . 0 �

2
M

1

A Q

2

2

+

0

@
µ1 0 . . .

0 . . . 0

. . . 0 µ

M

1

A
Q+Q0 +

0

@
iu 0 . . .

. . . iu 0

. . . 0 iu

1

A
. (5)

Proof. For a proof, we refer to Rogers (1994), Jiang and Pistorius (2008), and the references
therein.

Similar results have been derived in the more general case of regime switching exponential
jump-diffusion models and in the case of two barriers, see, e.g., Jiang and Pistorius (2008). The
first-passage time problems then rest on solving matrix equations similar to Equation (5).

For 2 and 3 regimes and in the case where µ
Zt/�

2
Zt

is constant over time, closed-form solutions
for Equation (5) are available, see, e.g., Hieber (2013a). Theorem 3.2 recalls the 2-regime case.

Theorem 3.2 (2-state model: Matrix Wiener–Hopf factorization) Consider the regime switch-
ing model as defined in Equation (1) with M = 2 states and q11q22 6= 0. The tuple (Q+, Q�) that
solves Equation (5) is given by

Q+ =

0

BBB@

��3,u�4,u+
2(q11�u)

�2
1

�3,u+�4,u+
2µ1
�2
1

� 2q11
�2
1

�3,u+�4,u+
2µ1
�2
1

� 2q22
�2
2

�3,u+�4,u+
2µ2
�2
2

��3,u�4,u+
2(q22�u)

�2
2

�3,u+�4,u+
2µ2
�2
2

1

CCCA
, Q� =

0

BBB@

�1,u�2,u� 2(q11�u)

�2
1

�1,u+�2,u+
2µ1
�2
1

2q11
�2
1

�1,u+�2,u+
2µ1
�2
1

2q22
�2
2

�1,u+�2,u+
2µ2
�2
2

�1,u�2,u� 2(q22�u)

�2
2

�1,u+�2,u+
2µ2
�2
2

1

CCCA
,

where q11 := Q0(1, 1), q22 := Q0(2, 2), and �1,u, �2,u, �3,u, and �4,u are the unique roots of the
Cramér–Lundberg equation given by

⇣
1

2

�

2
1�

2
+ µ1� + q11 + iu

⌘⇣
1

2

�

2
2�

2
+ µ2� + q22 + iu

⌘
� q11q22 = 0 , (6)

where �1 < <(�1,u) < <(�2,u) < 0 < <(�3,u) < <(�4,u) < 1.

Proof. For a detailed proof, see Hieber (2013a).

The Fourier transform of the first-passage times is then a straightforward implication of Theorem
3.1. Exploiting the fact that the matrix exponential for 2⇥ 2 matrices can be derived explicitly, the
one-sided first-passage time result can be further simplified, see Theorem 3.3.
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Theorem 3.3 (2-state model: First-passage time) Consider the regime switching model as de-
fined in Equation (1) with M = 2 states and q11q22 6= 0. The Fourier transform of the first passage
time on a lower barrier b < B0 = x, is given by

 

b

(u) =

�1,ue
�2,u(x�b) � �2,ue

�1,u(x�b)

�1,u � �2,u

+

e

�1,u(x�b) � e

�2,u(x�b)

�1,u � �2,u

 
⇡

�1,u�2,u +
2u
�

2
1

�1,u + �2,u +
2µ1

�

2
1

+ (1� ⇡)

�1,u�2,u +
2u
�

2
2

�1,u + �2,u +
2µ2

�

2
2

!
,

where �1 < <(�1,u) < <(�2,u) < 0 < <(�3,u) < <(�4,u) < 1 are the roots of Equation (6)
and ⇡0 = (⇡, 1� ⇡) := (P(Z0 = 1),P(Z0 = 2)) is the initial distribution on the states.

Proof. See, e.g., Guo (2001a), Hieber (2013a), Hieber (2013b).

Similarly, one can treat M = 3 regimes and the case of two barriers. In both cases there are still
closed-form expressions for the Fourier transform of the first-passage time, see Hieber (2013a).
For more than three states one has to rely on numerical schemes, see Rogers and Shi (1994) for a
comparison of several approaches.

However, as discussed above, more than three states translate into a large number of param-
eters. That is why, sometimes a reduction in the number of parameters might be useful. In the
following, we assume that the quotient µ

Zt/�
2
Zt

is constant over all states (see, e.g., Eloe et al.
(2009)). One can then easily solve Equation (5), see Theorem 3.4.

Theorem 3.4 (µ
Zt/�

2
Zt

constant: Matrix Wiener–Hopf factorization) Consider the regime switch-
ing model (1) with µ1/�

2
1 = µ2/�

2
2 = . . . = µ

M

/�

2
M

=: c 2 R. Equation (5) can then be solved
to

Q± =

0

@
±c . . . . . .

0 . . . . . .

. . . 0 ±c

1
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0
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c

2
. . . . . .
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2
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. . . 0 c

2

1
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0
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2
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2
1
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2
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1

CA

0

@
Q0 �

0

@
u 0 . . .

0 . . . 0

. . . 0 u

1

A

1

A
.

Proof. See Hieber (2013a).

In this special case, one can represent model (1) as a time-changed Brownian motion. In the case
of two barriers this allows one to avoid Fourier inversion and to compute the first-passage time
probability by a rapidly converging infinite series, see, e.g., Hieber and Scherer (2012), Hieber
(2013a).

4. APPLICATIONS IN FINANCE AND INSURANCE

The main goal of this paper is to apply the theoretical results on the first-passage time probabilities
to demonstrate the flexibility of regime switching models. First, we deal with the pricing of CAT
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bonds whose payoff depends on whether a risk index (for example coupled to temperatures or
rainfall) falls below a threshold. We observe that a state change has a similar effect as a jump in
the risk index: It leads to a sudden jump in the first-passage time probabilities. Secondly, we use
the first-passage time results to price first-touch options. Here, we exploit another advantage of
regime switching models: The inclusion of additional (probably distressed) regimes allows us to
stress test our option prices.

For an implementation of the first-passage time probabilities, the Fourier transforms in Theo-
rem 3.1 have to be inverted to yield the first-passage time probability P(T

b

 T ). One possibility
to implement this inversion is to numerically evaluate

P
�
T

b

 T

�
=

 

b

(0)

2

� 1

⇡

Z 1

0

e

�iuT

 

b

(u)

iu

du . (7)

4.1. PRICING CAT BONDS

Pricing CAT bonds is similar to pricing corporate bonds; the difference being that instead of default
risk, we now deal with insurance risk (see, e.g., Vaugirard (2003)). The bondholders accept to lose
part of their investment if a risk index I

t

– for example coupled to temperatures or the accumulated
rainfall – falls below a constant threshold b. More specifically – at a fixed maturity T – the CAT
bondholders receive the face value F if this threshold is not hit, and (1 � R)F , for 0  R  1,
otherwise. The risk index is modeled as a regime switching Brownian motion, i.e. – under the
risk-neutral measure Q

dI

t

= 

Ztdt+ �

ZtdWt

, I0 = x , (8)

where 

Zt 2 R and �

Zt > 0. Independent of {I
t

}
t�0, we assume that the risk-free interest rate

follows an Ornstein-Uhlenbeck process, i.e.

dr

t

= ⇠({ � r

t

)dt+ k d

˜

W

t

, r0 > 0, (9)

where ⇠, {, and k are positive constants; { ˜

W

t

}
t�0 a one-dimensional Brownian motion. We can

now price CAT bonds as

B(0) = EQ

h
exp

⇣
�
Z

T

0

r

t

dt

⌘�
1{TbT} (1�R)F + 1{Tb>T} F

�i

= D

T

�
F �RF Q(T

b

 T )

�
, (10)

where the bond can be priced as

D

T

:=EQ

h
exp

⇣
�
Z
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0

r
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dt

⌘i
= exp

�
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�
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Table 1 gives a numerical example of a 2-state regime switching risk process. The parameters
of the risk process are chosen as

I0 = 0,

✓
1

2

◆
=

✓
10%

�10%

◆
,

✓
�1

�2

◆
=

✓
10%

20%

◆
, Q0 =

✓
�1.0 1.0

0.5 �0.5

◆
. (12)

Z0 = 1 Z0 = 2

b = �0.05 0.7204 0.5597
b = �0.10 0.8225 0.6373
b = �0.20 0.9131 0.7766
b = �0.25 0.9370 0.8329

Table 1: Prices B(0) of CAT bonds in a 2-state regime switching model for several thresholds b.
The remaining parameters are set as follows: F = 1, R = 0.5, ⇠ = 2, { = 3%, k = 0.02, r0 = 2%,
T = 1 (year).

We observe large price differences if the current state is Z0 = 1, respectively Z0 = 2. Thus, if
there is a state change in the risk process, we observe a sudden jump in CAT bond prices, a very
convenient feature in stochastic modeling.

4.2. OPTION PRICING

We now turn to financial mathematics and work on the pricing of options on exchange rates. Em-
pirically, the existence of regimes in exchange rates is strongly confirmed (see, e.g., Bollen et al.
(2000), Cheung and Erlandsson (2005)). We model the Canadian Dollar (CAD) – Euro (EUR)
exchange rate as a regime switching geometric Brownian motion {S

t

}
t�0

dS

t

S

t

= �

Zt dWt

, S0 > 0. (13)

A 2-state model is chosen using the following set of parameters2

✓
�1

�2

◆
=

✓
9.5%

6.3%

◆
, Q0 =

✓
�1.34 1.34

0.56 �0.56

◆
. (14)

The steady state of this parameter set is 30% (state 1) and 70% (state 2). Regime-switching models
can easily be used for stress-testing by adding additional regimes. To demonstrate this capability,
a third regime �3 = 16.0% is included in the ongoing analysis to assess the effect of a (possibly
appearing) volatility increase that cannot be observed historically. Therefore, a second parameter
set is introduced:

0

@
�1

�2

�3

1

A
=

0

@
9.5%

6.3%

16.0%

1

A
, Q0 =

0

@
�1.34 1.20 0.14

0.50 �0.56 0.06

1.45 1.24 �2.69

1

A
. (15)

2It is not the goal of this paper to discuss calibration, we therefore refer to the literature (e.g. Henriksen (2011) and
the references therein). The given parameter set fits to the annualized historical volatility of the CAD-EUR exchange
rate in the period 2000-2012.
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The steady state of this parameter set is (29%, 68%, 3%). The first two states are the same as in
parameter set (14).

In the following, we price digital first-touch options on the CAD-EUR exchange rate. Accord-
ing to Carr and Crosby (2010), those kind of options are the “most liquid and actively traded”
exotic options on foreign exchange markets. We price a first-touch option that pays 1 at maturity T

if the exchange rate stays above a barrier B < S0. Under the risk-neutral measure Q with risk-less
interest rate r, this contract can be priced as

FT (0) = exp(�rT )

�
1� P(T

b

 T )

�
, (16)

where we set b = log(B/S0), S0 = 1, and µ

Zt = ��

2
Zt
/2.

no third state �3 = 12.0% �3 = 16.0% �3 = 20.0%

B = 0.6 0.9913 0.9892 0.9861 0.9813
B = 0.7 0.9353 0.9262 0.9177 0.9074
B = 0.8 0.7455 0.7336 0.7218 0.7091
B = 0.9 0.4022 0.3932 0.3851 0.3767

Table 2: Prices FT (0) of digital first-touch options for different magnitudes of risk in the third state
(crisis state). The left column shows the result if there are only two states (parameter set (14)); the
other three columns add a third state with different volatilities �3 (parameter set (15)). Several
thresholds B are chosen. The remaining parameters are set as follows: S0 = 1, b = log(S0/B),
r = 0%, x = log(S0) = 0, T = 6 (years), and P(Z0 = 1) = 1.

Table 2 examines the effect of the turbulent third regime to first-touch option prices. Although
this regime is very unlikely (on average 3% of the time is spent in this third regime), there is an
apparent effect on option prices. Being aware of unforeseeable turbulent periods thus seems to be
important for the pricing and risk management of digital options.

5. CONCLUSION

In this paper, we discussed applications of first-passage time problems under regime switching.
The possibility of changing the state space is a possibility to stress test option prices by adding
possibly distressed economic regimes. Similar to jump models, state changes can lead to sudden
and significant changes in, for example, bond prices.
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Abstract
In this paper we derive explicit representations for cost-efficient puts and calls in financial
markets which are driven by a Lévy process and where the pricing of derivatives is based on
the Esscher martingale measure. Whereas the construction and evaluation of the efficient self-
quanto call is a straightforward application of the general theory, the pricing of an efficient self-
quanto put is more involved due to the lack of monotonicity of the standard payoff function.
We show how to circumvent these difficulties and arrive at numerically tractable expressions.
The potential savings of the cost-efficient strategies are illustrated in market models driven by
NIG- and VG-processes using estimated parameters from German stock market data.

1. INTRODUCTION

The task of determining cost-efficient strategies is to construct resp. derive a payoff function which
provides a predetermined payoff distribution at minimal costs. In other words, a cost-efficient
strategy should provide the same chances of gaining or losing money as a given asset or derivative,
but has a lower price than the latter one. This problem was first introduced by Dybvig (1988a,b) in
the case of a discrete and arbitrage-free binomial model. Bernard and Boyle (2010), Bernard et al.
(2014) give a solution of the efficient claim problem in a fairly general setting. They calculate in
explicit form efficient strategies for several options in Black–Scholes markets.

In v. Hammerstein et al. (2014), their results are applied to certain classes of exponential Lévy
models driven by Variance Gamma and Normal inverse Gaussian distributions. Under the assump-
tion that the Esscher martingale measure is used for risk-neutral pricing, they investigate the im-
pact of the risk-neutral Esscher parameter on the cost-efficient strategies and associated efficiency
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losses and derive concrete formulas for a variety of efficient options such as puts, calls, forwards,
and spreads. Moreover, they consider the problem of hedging and provide explicit formulas for the
deltas of cost-efficient calls and puts. Built on these results, we show in this paper how to obtain
and price cost-efficient versions of self-quanto calls and puts and illustrate the theoretical results
with a practical example using German stock market data.

The paper is structured as follows: Section 2 summarizes some basic definitions and results
on cost-efficient payoffs in Lévy models. The self-quanto call and its efficient counterpart are
discussed in Section 3, and formulas for the efficient self-quanto put are derived in Section 4.
Explicit results based on real data from the German stock market are presented in Section 5, and
Section 6 concludes.

2. GENERAL SETUP, BASIC NOTATION AND RESULTS

We assume to be given a filtered probability space (⌦,F , (F
t

)

t2[0,T ], P ) satisfying the usual con-
ditions with finite trading horizon [0, T ], T 2 R+, on which the risky asset price process (S

t

)0tT

is defined and adapted to the filtration. Further, we suppose that there exists a constant risk-free in-
terest rate r and a risk-neutral measure Q with dQ

dP

��
Ft

= Z

t

. A European style option with terminal
payoff X

T

= h(S

T

) for some payoff function h then has the initial price (or cost)

c(X

T

) = e

�rT

E

⇥
Z

T

X

T

⇤

where we denote here and in the following with E[·] = E

P

[·] the expectation w.r.t. P .

Definition 2.1 (Cost-efficient and most-expensive strategies)

a) A strategy (or payoff) X
T

⇠ G is called cost-efficient w.r.t. the payoff-distribution G if any
other strategy X

T

that generates the same payoff-distribution G costs at least as much, i.e.

c(X

T

) = e

�rT

E[Z

T

X

T

] = min

{XT⇠G}

e

�rT

E[Z

T

X

T

]. (1)

b) A strategy (or payoff) X
T

⇠ G is called most-expensive w.r.t. the payoff-distribution G if
any other strategy X

T

that generates the same payoff-distribution G costs at most as much:

c(X

T

) = e

�rT

E[Z

T

X

T

] = max

{XT⇠G}

e

�rT

E[Z

T

X

T

]. (2)

c) The efficiency loss of a strategy with payoff X
T

⇠ G at maturity T is defined as

c(X

T

)� c(X

T

).

Since the distribution F

ZT of Z
T

and the payoff distribution G have to be kept fixed, it can easily
be seen that the problem of minimizing the cost is equivalent to finding a strategy X

T

⇠ G such
that the covariance Cov(X

T

, Z

T

) is minimized which can be achieved by constructing X

T

in such
a way that it is countermonotonic to Z

T

. Analogously, the most-expensive payoff X
T

has to be
chosen comonotonic to Z

T

. This general result was first obtained in Bernard and Boyle (2010).
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To obtain a more explicit representation of cost-efficient resp. most-expensive payoffs, we fur-
ther suppose that the asset price process (S

t

)0tT

= (S0e
Lt
)0tT

is of exponential Lévy type and
that the risk-neutral measure Q is the Esscher martingale measure. This approach is widespread
and has been well established since the last two decades. Further information on the use of expo-
nential Lévy processes in financial modeling can be found in the books of Schoutens (2003), Cont
and Tankov (2004), and Rachev et al. (2011). For a more detailed description of Lévy processes
themselves, we refer the reader to the book of Barndorff-Nielsen et al. (2001) and the monographs
of Sato (1999), and Applebaum (2009). The Esscher transform of a probability measure has orig-
inally been introduced in actuarial sciences by Esscher (1932) and was first suggested as a useful
tool for option pricing in the seminal paper of Gerber and Shiu (1994). A more precise analysis
of the Esscher transform for exponential Lévy models is given in (Raible 2000, Chapter 1) and
Hubalek and Sgarra (2006). For the Esscher martingale measure to be well-defined in our setting,
the Lévy process (L

t

)

t�0 has to fulfill the

Assumption 2.1 The random variable L1 is nondegenerate and possesses a moment generating
function (mgf) M

L1(u) = E[e

uL1
] on some open interval (a, b) with a < 0 < b and b� a > 1.

This condition is necessary (but not always sufficient) for the existence of the risk-neutral Esscher
measure. Sufficient conditions were first given in (Raible 2000, Proposition 2.8).

Definition 2.2 We call an Esscher transform any change of P to a locally equivalent measure Q

✓

with a density process Z✓

t

=

dQ

✓

dP

|
Ft of the form

Z

✓

t

=

e

✓Lt

M

Lt(✓)

, (3)

where M

Lt is the mgf of L
t

as before, and ✓ 2 (a, b).

It can easily be shown that (Z✓

t

)

t�0 indeed is a density process for all ✓ 2 (a, b), and (L

t

)

t�0 also is a
Lévy process under Q✓ for all these ✓ (see, for example, (Raible 2000, Proposition 1.8)). However,
there will be at most one parameter ¯

✓ for which the discounted asset price process (e�rt

S

t

)

t�0 is
a martingale under the so-called risk-neutral Esscher measure or Esscher martingale measure Q

✓̄.
This ¯

✓ has to solve the equation

e

r

=

M

L1(
¯

✓ + 1)

M

L1(
¯

✓)

. (4)

With these preliminaries, the general results of (Bernard et al. 2014, Proposition 3) can be refor-
mulated in the present framework as follows (see (v. Hammerstein et al. 2014, Proposition 2.1)):

Proposition 2.1 Let (L
t

)

t�0 be a Lévy process with continuous distribution function F

LT at matu-
rity T > 0, and assume that a solution ¯

✓ of (4) exists.

a) If ¯✓ < 0, then the cost-efficient payoff X
T

and the most-expensive payoff X
T

with distribu-
tion function G are a.s. unique and are given by

X

T

= G

�1
(F

LT (LT

)) and X

T

= G

�1
(1� F

LT (LT

)). (5)



52 E. A. v. Hammerstein et al.

Further, the following bounds for the cost of any strategy with terminal payoff X
T

⇠ G hold:

c(X

T

) � E

⇥
e

�rT

Z

✓̄

T

X

T

⇤
=

1

M

LT (
¯

✓)

Z 1

0

e

✓̄F

�1
LT

(1�y)�rT

G

�1
(1� y) dy,

c(X

T

)  E

⇥
e

�rT

Z

✓̄

T

X

T

⇤
=

1

M

LT (
¯

✓)

Z 1

0

e

✓̄F

�1
LT

(1�y)�rT

G

�1
(y) dy.

b) If ¯✓ > 0, then the cost-efficient and the most-expensive payoffs are a.s. unique and given by

X

T

= G

�1
(1� F

LT (LT

)) and X

T

= G

�1
(F

LT (LT

)). (6)

The bounds in a) hold true with F

�1
LT

(1� y) replaced by F

�1
LT

(y).

From the previous proposition one can easily deduce the following characterization of cost-efficien-
cy in exponential Lévy models where the notions increasing and decreasing have to be understood
in the weak sense.

Corollary 2.2 Let (L
t

)

t�0 be a Lévy process with continuous distribution F

LT at maturity T > 0,
and assume that a solution ¯

✓ of (4) exists.

a) If ¯✓ < 0, a payoff X
T

⇠ G is cost-efficient if and only if it is increasing in L

T

.

b) If ¯✓ > 0, a payoff X
T

⇠ G is cost-efficient if and only if it is decreasing in L

T

.

For the most-expensive strategy, the reverse holds true.

Let us remark that the sign of the risk-neutral Esscher parameter ¯✓ not only plays an essential role
for the construction of cost-efficient strategies, but also characterizes the current market scenario.
More specifically, a negative ¯

✓ < 0 corresponds to a bullish market, and in case of ¯✓ > 0 we have
a bearish market behaviour. A more detailed formulation and proof of this fact can be found in
(v. Hammerstein et al. 2014, Proposition 2.2).

For the practical applications in Section 5 we shall consider two specific exponential Lévy mod-
els which we shortly describe in the following. Both are based on special sub- resp. limiting classes
of the more general family of generalized hyperbolic (GH) distributions which was introduced in
Barndorff-Nielsen (1977). A detailed description of uni- and multivariate GH distributions as well
as their weak limits is provided in (v. Hammerstein 2011, Chapters 1 and 2).

Normal inverse Gaussian model. The Normal inverse Gaussian distribution (NIG) has been
introduced to finance in Barndorff-Nielsen (1998). It can be obtained as a normal mean-variance
mixture with an inverse Gaussian mixing distribution. This in particular entails that the infinite
divisibility of the mixing inverse Gaussian distribution transfers to the NIG mixture distribution,
thus there exists a Lévy process (L

t

)

t�0 with L(L1) = NIG(↵, �, �, µ). The density and mgf of an
NIG distribution are given by

dNIG(x) =
↵�e

�

p
↵

2
��

2

⇡

K1

�
↵

p
�

2
+ (x� µ)

2
�

p
�

2
+ (x� µ)

2
e

�(x�µ)
, MNIG(u) =

e

uµ+�

p
↵

2
��

2

e

�

p
↵

2
�(�+u)2

. (7)
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The parameter ✓ of the risk-neutral Esscher martingale measure Q

✓, i.e., the solution of (4) (if it
exists) is given by

¯

✓NIG = �1

2

� � +

r � µ

�

s
↵

2

1 + (

r�µ

�

)

2
� 1

4

. (8)

We have

d

✓̄

Lt
(x) =

e

✓̄x

MNIG(↵,�,�t,µt)(
¯

✓)

dNIG(↵,�,�t,µt)(x) = dNIG(↵,�+✓̄,�t,µt)(x) (9)

which implies that (L
t

)

t�0 remains a NIG Lévy process under the risk-neutral Esscher measure
Q

✓̄, but with skewness parameter � replaced by � +

¯

✓.

Variance Gamma model. Similar to the NIG distributions, a Variance Gamma distribution (VG)
can be represented as a normal mean-variance mixture with a mixing Gamma distribution. Sym-
metric VG distributions were first defined (with a different parametrization) in Madan and Seneta
(1990), the general case with skewness was considered in Madan et al. (1998). Again, the infinite
divisibility of the Gamma distribution transfers to the Variance Gamma distribution V G(�,↵, �, µ)

whose density and mgf are given by

d

V G

(x) =

(↵

2 � �

2
)

�|x� µ|�� 1
2

p
⇡(2↵)

��

1
2
�(�)

K

�

(↵|x�µ|)e�(x�µ)
, M

V G

(u) = e

uµ

✓
↵

2 � �

2

↵

2 � (� + u)

2

◆
�

. (10)

Here the condition 2↵ > 1 is sufficient to guarantee a unique solution ¯

✓ of equation (4) which is
given by

¯

✓

V G

=

8
>><

>>:

�1
2 � �, r = µ,

� 1

1�e

� r�µ
�

� � + sign(r � µ)

s
e

� r�µ
��

1�e

� r�µ
�

�2 + ↵

2
, r 6= µ.

(11)

Similar as above, we have

d

✓̄

Lt
(x) =

e

✓̄x

M

V G(�t,↵,�,µt)(
¯

✓)

d

V G(�t,↵,�,µt)(x) = d

V G(�t,↵,�+✓̄,µt)(x), (12)

hence under Q✓̄

(L

t

)

t�0 again is a VG process, but with skewness parameter � +

¯

✓ instead of �.

3. STANDARD AND EFFICIENT SELF-QUANTO CALLS

A quanto option is a (typically European) option whose payoff is converted into a different currency
or numeraire at maturity at a pre-specified rate, called the quanto-factor. In the special case of a
self-quanto option the numeraire is the underlying asset price at maturity itself. The payoff of a
long self-quanto call with maturity T and strike price K therefore is

X

sqC
T

= S

T

· (S
T

�K)+ = S0e
LT

(S0e
LT �K)+
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Applying the risk-neutral pricing rule, together with equation (4), we obtain the following formula
for the time-0-price of a self-quanto call:

c(X

sqC
T

) = e

�rT

E

⇥
Z

✓̄

T

S

T

· (S
T

�K)+

⇤

=

M

LT (
¯

✓)

M

LT (
¯

✓ + 1)

E

"
e

✓̄LT

M

LT (
¯

✓)

S0e
LT
�
S0e

LT �K

�
1(ln(K/S0),1)(LT

)

#

= S

2
0

M

LT (
¯

✓ + 2)

M

LT (
¯

✓ + 1)

E

⇥
Z

✓̄+2
T

1(ln(K/S0),1)(LT

)

⇤
�KS0 E

⇥
Z

✓̄+1
T

1(ln(K/S0),1)(LT

)

⇤

From equations (7) and (9) resp. (10) and (12) we can derive more explicit formulas for the NIG
and VG models:

c(X

sqC
T

)

=

8
<

:
S

2
0
e

µT+�T
p

↵2�(�+✓̄+1)2

e

�T
p

↵2�(�+✓̄+2)2
¯

FNIG(↵,�+✓̄+2,�T,µT )

�
ln(K/S0)

�
�KS0

¯

FNIG(↵,�+✓̄+1,�T,µT )

�
ln(K/S0)

�

S

2
0e

µT

⇣
↵

2
�(�+✓̄+1)2

↵

2
�(�+✓̄+2)2

⌘
�T

¯

F

V G(�T,↵,�+✓̄+2,µT )

�
ln(K/S0)

�
�KS0

¯

F

V G(�T,↵,�+✓̄+1,µT )

�
ln(K/S0)

�

where ¯

F (x) = 1 � F (x) denotes the survival function of the corresponding distribution. For
0  t  T , the time-t-price c(XsqC

T,t

) of the self-quanto call is obtained from the preceding formulas
by replacing S0 by S

t

and T by T � t.
The payoff XsqC

T

of a self-quanto call obviously is increasing in L

T

and therefore not cost-
efficient if ¯✓ > 0 by Corollary 2.2. According to Proposition 2.1 b), its efficient counterpart XsqC

T

is given by G

�1
sqC (1� F

LT (LT

)). To derive the corresponding distribution function GsqC = F

X

sqC
T

,
observe that the positive solution S

⇤

T

of the quadratic equation S

2
T

�KS

T

= x, x > 0, is given by

S

⇤

T

=

K

2 +

q
K

2

4 + x, hence

GsqC (x) = P

�
X

sqC
T

 x

�
=

8
><

>:

0 , if x < 0,

F

LT

✓
ln

✓
K
2 +

q
K2

4 +x

S0

◆◆
, if x � 0.

The inverse then can easily be shown to equal

G

�1
sqC (y) = S0e

F

�1
LT

(y)�
S0e

F

�1
LT

(y) �K

�
+
, y 2 (0, 1),

consequently the cost-efficient strategy for a long self-quanto call in the case ¯

✓ > 0 is

X

sqC
T

= G

�1
sqC (1� F

LT (LT

)) = S0e
F

�1
LT

(1�FLT
(LT ))�

S0e
F

�1
LT

(1�FLT
(LT )) �K

�
+
. (13)

A comparison of the payoff functions XsqC
T

and X

sqC
T

of a standard resp. efficient self-quanto call
on ThyssenKrupp with strike K = 16 and maturity T = 22 days can be found in Figure 1 below.
The estimated NIG parameters for ThyssenKrupp used to calculate the efficient payoff profile can
be found in Table 1 in Section 5.

Observe that in contrast to the standard payoff X

sqC
T

= hsqC (ST

) =

˜

hsqC (LT

), the payoff
function ˜

hsqC (LT

) of the efficient self-quanto call depends on the time to maturity because so do
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Figure 1: Payoff functions of a standard and efficient self-quanto call on ThyssenKrupp. The initial
stock price is S0 = 15.25, the closing price of ThyssenKrupp at July 1, 2013.

the distribution and quantile functions F
LT resp. F�1

LT
. However, if an investor buys an efficient self-

quanto call, its payoff profile is fixed at the purchase date and will not be altered afterwards. Once
bought or sold, the payoff distribution of a cost-efficient contract only equals that of its classical
counterpart at the (initial) trading date, but no longer in the remaining time to maturity. To calculate
the price c(XsqC

T,t

) of an efficient self-quanto call with a payoff function fixed at time 0 at some later

point in time t > 0, one has to resort to the fact that S
T

= S0e
LT

d

= S0e
Lt+LT�t

= S

t

e

LT�t and
thus replace L

T

= ln(S

T

/S0) in (13) by ln(S

t

e

LT�t
/S0), that is,

X

sqC
T,t

= S0e
F

�1
LT

(1�FLT
(ln(Ste

LT�t
/S0)))

�
S0e

F

�1
LT

(1�FLT
(ln(Ste

LT�t
/S0))) �K

�
+
.

The time-t-price of an efficient self-quanto call initiated at time 0 then can be calculated by

c(X

sqC
T,t

) = e

�r(T�t)
S0

Z
a

�1

e

F

�1
LT

(1�FLT
(y+ln(St/S0)))

�
S0e

F

�1
LT

(1�FLT
(y+ln(St/S0))) �K

�
d

✓̄

LT�t
(y) dy

(14)
where a = F

�1
LT

(1� F

LT (ln(K/S0)))� ln(S

t

/S0). If t = 0, one can alternatively use the general
formula of Proposition 2.1, together with the representation of G�1

sqC given above.

4. STANDARD AND EFFICIENT SELF-QUANTO PUTS

The payoff of a long self-quanto put with maturity T and strike price K is

X

sqP
T

= S

T

· (K � S

T

)+ = S0e
LT

(K � S0e
LT

)+

and similar as in the call case, we find the time-0-price of a self-quanto put to equal

c(X

sqP
T

) = KS0 E
⇥
Z

✓̄+1
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⇥
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which can be specialized in the NIG and VG models to

c(X

sqP
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)

=

8
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:
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�

Again, the time-t-price of the self-quanto put for 0  t  T is obtained from the above equations
by replacing S0 by S

t

and T by T � t.
The payoff function X

sqP
T

= hsqP(ST

) of a self-quanto put is a parabola which is open from
below and has the roots 0 and K as well as a maximum at S

T

=

K

2 . Hence, it is neither increasing
nor decreasing in S

T

and therefore not in L

T

= ln(S

T

/S0) either, so Corollary 2.2 implies that a
self-quanto put can never be cost-efficient unless ¯

✓ = 0.
The lack of monotonicity also makes the determination of the distribution function GsqP of the

self-quanto put payoff and its inverse a little bit cumbersome. To derive them, first observe that the
corresponding payoff function ˜

hsqP(x) = (S0Ke

x � S

2
0e

2x
) · 1(�1,ln(K/S0)) is strictly increasing

on (�1, ln(K/(2S0))) and strictly decreasing on (ln(K/(2S0)), ln(K/S0)), and has a maximum
at x = ln(K/(2S0)) with value ˜

hsqP

�
ln(K/(2S0))

�
=

K

2

4 . For y 2 (0, ln(K/S0)) we have

˜

hsqP(x) = y () x = ln
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p
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from which we obtain

GsqP(x) = P

�
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4 > x > 0,
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LT
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�
for x = 0,

0 for x < 0.

The shape of the payoff function here leads to two summands in the representation of the pay-
off distribution GsqP on the interval (0, K2

4 ), therefore its inverse G

�1
sqP needed to construct the

cost-efficient self-quanto put payoff XsqP
T

according to Proposition 2.1 can only be evaluated nu-
merically (using some suitable root-finding algorithms), but not given in closed form.

If ¯✓ < 0, then we have X

sqP
T

= G

�1
sqP(FLT (LT

)) = G

�1
sqP(FLT (ln(ST

/S0)), and from the above

representation of GsqP we conclude that G�1
sqP(FLT (ln(ST

/S0)) = 0 if S
T

 S0e
F

�1
LT

(1�FLT
(ln(K/S0)))

resp. L
T

 F

�1
LT

(1�F

LT (ln(K/S0))). Otherwise, the payoff is positive and tends to K

2

4 if S
T

resp.
L

T

tend to infinity.
If ¯

✓ > 0, then X

sqP
T

= G

�1
sqP(1 � F

LT (LT

)) = G

�1
sqP(1 � F

LT (ln(ST

/S0)) which is zero if
S

T

� K resp. L
T

� ln(K/S0) and tends to K

2

4 if S
T

! 0 resp. L
T

! �1. Hence, for ¯✓ > 0 the
efficient self-quanto put payoff shows just the opposite behaviour as for ¯✓ < 0. This is in line with
Corollary 2.2 which states, in other words, that a cost-efficient payoff must alter its monotonicity
properties if the sign of the risk-neutral Esscher parameter ¯

✓ changes. The two different payoff
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Figure 2: Left: Payoff functions of a standard and efficient self-quanto put on ThyssenKrupp
(¯✓ > 0). The initial stock price is S0 = 15.25, the closing price of ThyssenKrupp at July 1, 2013.
Right: Payoff functions of a standard and efficient self-quanto put on Deutsche Post (¯✓ < 0). The
initial stock price is S0 = 19.31, the closing price of Deutsche Post at July 1, 2013.

profiles that can occur for an efficient self-quanto put are visualized in Figure 2 above. The esti-
mated VG parameters for ThyssenKrupp and Deutsche Post that are used to calculate the efficient
payoffs can be found in Table 1 in Section 5. As can be seen from the latter, the efficient payoff
for ThyssenKrupp corresponds to the case ¯

✓ > 0, whereas the efficient payoff for Deutsche Post
has the typical shape for ¯✓ < 0.

For the time-t-price of an efficient self-quanto put that is issued at time 0, one obtains, with the
same reasoning as in Section 3,

c(X

sqP
T,t

) = e

�r(T�t)
E

⇥
Z

✓̄

T�t

X

sqP
T,t

⇤

=

8
>><

>>:

e

�r(T�t)

Z
1

a�

G

�1
sqP

�
F

LT (y + ln(S

t

/S0))
�
d

✓̄

LT�t
(y) dy =: c

�

t

(S

t

) if ¯✓ < 0,

e

�r(T�t)

Z
a+

�1

G

�1
sqP

�
1� F

LT (y + ln(S

t

/S0))
�
d

✓̄

LT�t
(y) dy =: c

+
t

(S

t

) if ¯✓ > 0,

(15)

where a

�

= F

�1
LT

(1 � F

LT (ln(K/S0))) � ln(S

t

/S0) and a+ = ln(K/S

t

). Due to the necessary
numerical determination of G�1

sqP(x), the integrals in (15) have to be truncated in practical applica-
tions to obtain sensible and stable results from a numerical evaluation. The inequalities
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which hold for all z
�

> a

�

resp. z+ < a+ allow to well control the error caused by the truncation.
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5. APPLICATION TO REAL MARKET DATA

In this section we want to apply the theoretical results obtained so far to some real data and pa-
rameters to get an impression how large the potential efficiency losses of the standard options can
be. For our calculations, we use NIG and VG parameters estimated from two German stocks,
ThyssenKrupp and Deutsche Post. We used data from a two-year period starting at June 1, 2011,
and ending on June 28, 2013, to estimate the parameters from the log-returns of both stocks. The
stock prices within the estimation period are shown in Figure 3, and the obtained parameters are
summarized in Table 1. The interest rate used to calculate ¯

✓ is r = 4.3838·10�6 which corresponds
to the continuously compounded 1-Month-Euribor rate of July 1, 2013.

Observe that the risk-neutral Esscher parameters ¯

✓NIG and ¯

✓

V G

are negative for Deutsche Post
and positive for ThyssenKrupp, therefore a self-quanto call can only be improved for ThyssenKrupp,
for Deutsche Post it already is cost-efficient. For the former, we calculate the prices of standard
and efficient self-quanto calls with strike K = 16 which are issued on July 1, 2013, and mature
on July 31, 2013, so the time T to maturity is 22 trading days. The results are shown in Table 2.
Apparently, the differences in prices and hence the efficiency losses are quite large, the standard
self-quanto call costs almost twice as much as its efficient counterpart.
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Figure 3: Daily closing prices of Deutsche Post and ThyssenKrupp used for parameter estimation.

Deutsche Post � ↵ � � µ

¯

✓

NIG -0.5 75.059 1.758 0.019 0.000306 -3.4787
VG 1.942 126.266 3.719 0.0 -0.000165 -3.5220

ThyssenKrupp � ↵ � � µ

¯

✓

NIG -0.5 53.065 -0.491 0.037 -0.001101 1.5823
VG 2.659 87.894 -0.613 0.0 -0.001025 1.6080

Table 1: Estimated parameters from daily log-returns of Deutsche Post and Volkswagen for the
NIG- and the VG-model.
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ThyssenKrupp c(X

sqC
T

) c(X

sqC
T

) Efficiency loss in %
NIG 8.3288 4.2251 49.27
VG 8.2629 4.1609 49.64

Table 2: Comparison of the prices of a self-quanto call on ThyssenKrupp with strike K = 16 and
T = 22, and its cost-efficient counterpart in the NIG and VG models. The initial stock price is
S0 = 15.25, the closing price of ThyssenKrupp on July 1, 2013.

In contrast to the self-quanto call, the standard self-quanto put is—at least theoretically—
inefficient for both stocks since the risk-neutral Esscher parameter ¯

✓ is different from zero in all
cases. In our example we assume that the standard and efficient self-quanto puts on ThyssenKrupp
and Deutsche Post have the same issuance day and maturity date as the self-quanto calls above,
and the strikes are again K = 16 for ThyssenKrupp and K = 20 for Deutsche Post. The obtained
results are listed in Table 3. Whereas the efficiency losses for Deutsche Post are of compara-
ble magnitude as in the call example, one surprisingly does not save anything by investing in the
efficient self-quanto put on ThyssenKrupp.

This becomes clearer if we take a look back on the corresponding payoff function X

sqP
T

. Recall
that the risk-neutral Esscher parameters for ThyssenKrupp are always positive, therefore the left
plot of Figure 2 applies here. If ¯

✓ > 0, then obviously X

sqP
T

and X

sqP
T

are almost identical for
S

T

2 (

K

2 ,1) and only differ significantly if S

T

2 (0,

K

2 ). But if the risk-neutral probability
Q

✓̄

(0 < S

T

<

K

2 ) is very small, then it is intuitively evident that the prices c(XsqP
T

) and c(X

sqP
T

)

should nearly coincide. This is the case here. The strike K is very close to the initial stock price
S0, and the risk-neutral measure Q✓̄ is more right-skewed than the real-word one P (under the risk-
neutral Esscher measure, only the skewness parameter � of the NIG and VG distributions changes
to � +

¯

✓), so under Q✓̄ it becomes even more unlikely that S
T

<

K

2 .
The evolution of the prices c(XsqC

T,t

), c(XsqC
T,t

) of the standard and efficient self-quanto call on
ThyssenKrupp as well as that of the prices c(XsqP

T,t

), c(XsqP
T,t

) of the self-quanto puts on Deutsche
Post in the NIG models during the lifetime of the options is shown in Figure 4. The prices of
the efficient options always roughly move in the opposite direction of that of the standard options
which reflects the reversed resp. altered monotonicity properties of the underlying payoff profiles.

ThyssenKrupp c(X

sqP
T

) c(X

sqP
T

) Efficiency loss in %
NIG 16.1541 16.1541 0.0
VG 16.1226 16.1226 0.0

Deutsche Post c(X

sqP
T

) c(X

sqP
T

) Efficiency loss in %
NIG 17.6912 10.2613 42.00
VG 17.6593 10.2152 42.15

Table 3: Comparison of the prices of standard and efficient self-quanto puts on ThyssenKrupp and
Deutsche Post with strikes K = 16 resp. K = 20, and T = 22, in the NIG and VG models. The
initial stock prices are S0 = 15.25 for ThyssenKrupp and S0 = 19.31 for Deutsche Post, which are
the closing prices on July 1, 2013.
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Figure 4: Left: Stock price of ThyssenKrupp from July 1, 2013, to July 31, 2013, and the prices
c(X

sqC
T,t

), c(XsqC
T,t

) of the associated standard and efficient self-quanto calls. Right: Stock price
of Deutsche Post from July 1, 2013, to July 31, 2013, and the prices c(X

sqP
T,t

), c(XsqP
T,t

) of the
associated standard and efficient self-quanto puts.

6. SUMMARY AND CONCLUSION

We applied the concept of cost-efficiency to self-quanto puts and calls in exponential Lévy models
where the risk-neutral measure is obtained by an Esscher transform. Whereas one can arrive—
at least in principle—at closed-form solutions in the call case, things become more involved for
the self-quanto put because of the lacking monotonicity properties of the corresponding payoff
function. Nevertheless, the arising expressions and integrals remain numerically tractable and can
be evaluated in an efficient and stable way which we demonstrated in a practical application using
estimated parameters and real data from the German stock market. The observed efficiency losses
are often quite large. However, the prices of the cost-efficient options are not always significantly
lower than their classical counterparts. For efficient self-quanto puts that are issued at the money,
the potential savings are negligible if the risk-neutral Esscher parameter is positive.

The evolution of the prices of standard and efficient options over time shows that they move in
opposite directions: If the standard option expires worthless, its efficient counterpart typically ends
up in the money, and vice versa. This should remind the reader that although cost-efficient options
provide a cheaper way to participate in a certain payoff distribution, they are still speculative
instruments which bear the risk of a total loss of one’s investment.
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PRICING PARTICIPATING PRODUCTS UNDER REGIME-SWITCHING
GENERALIZED GAMMA PROCESS

Farzad Alavi Fard
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We propose a model for valuing participating life insurance products under a regime-switching
generalized gamma process. The Esscher transform is employed to determine an equivalent mar-
tingale measure in the incomplete market. The results are further manipulated through the utiliza-
tion of the change of numeraire technique to reduce the dimensions of the pricing formulation. Due
to the path dependency of the payoff of the insurance product and the non-existence of a closed-
form solution for the PIDE, the finite difference method is utilized to numerically calculate the
value of the product. To highlight some practical features of the product, we present a numerical
example.

1. INTRODUCTION

Participating life insurance products are a popular class of equity linked insurance products around
the world. In these policies the insured not only receives the guaranteed annual minimum benefit,
but also receives proceeds from an investment portfolio. Grosen and Jorgensen (2000) provided a
comprehensive discussion on different contractual features of participating policies.

In this article, we propose a model for valuing participating life insurance products under a
regime-switching generalized gamma process, which is an extension of Fard and Siu (2013). Read-
ers, may refer to this article for extended discussions for similar models and calculations.

2. MODELING FRAMEWORK

Consider a financial market, where an agent can either invest in a risk-free money market account
or choose from a range of risky assets. All the parameters of the risk-free asset, as well as the risky
assets, vary as the economy switches regimes, a process governed by a Markov-chain. We fix a
complete probability space (�,F ,P), where P is the real-world probability measure. Let T denote

65
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the time index set [0, T ] of the economy. Let {Xt}t2T on (�,F ,P) be a continuous-time Markov
chain with a finite state space S := (s

1

, s
2

, · · · , sN). The state space of the process {Xt}t2T is a
finite set of unit vectors {e

1

, e
2

, · · · , eN}, where ei = (0, · · · , 1, · · · , 0) 2 RN .
Let Q(t) = [qij(t)]i,j=1,2,...,N , t 2 T , denote a family of generators, or rate matrices, of the

chain {Xt}t2T under P. Then, as in Elliott et al. (1995):

Xt = X
0

+

Z t

0

QXsds+Mt, (1)

where Mt is a RN -valued martingale with respect to the filtration generated by {Xt}t2T . In this
article, any parameter ⌥ modulated by the Markov chain Xt is denoted by ⌥t, and defined as
follows

⌥t := ⌥(t,Xt) := h⌥, Xti =
NX

i=1

⌥ihXt, eji, t 2 T , (2)

where ⌥ := (⌥

1

,⌥
2

, · · · ,⌥N) with ⌥j > 0 for each j = 1, 2, · · · , N and h., .i denotes the inner
product in the space RN .

Let (T ,B(T )) denote a measurable space, where B(T ) is the Borel �-field generated by the
open subsets of T . Let X denote T ⇥R+, then (X ,B(X )) is a measurable space. Let NXt(., U)

denote a Markov-switching Poisson random measure on the space X . Write NXt(dt, dz) for the
differential form of measure NXt(t, U). Let ⇢Xt(dz|t) denote a Markov-switching Levy measure
on the space X depending on t and the state Xt; ⌘ is a �-finite (nonatomic) measure on T . First,
as in James (2005), consider the following Markov-modulated completely random measure

µXt(dt) :=

Z

R+

h(z)NXt(dt, dz),

which is a kernel-biased. The generalized gamma (GG) process is a special case of the kernel-
biased completely random measure and can be obtained by setting the kernel function h(z) = z.
In this paper we are seeking a specific class of the GG processes that assist us in describing the
impact of the states of an economy on the jump component. Hence, we use a MGG process, whose
compensator switches over time, according to the states of the economy. Following, we present
how to derive the intensity process for different classes of the MGG process.

Let ↵ � 0 and bt denote the shape parameter and the scale parameter of the MGG process,
defined according to (2). Then,

⇢Xt(dz|t)⌘(dt) =

1

�(1� ↵)z(1+↵)

NX

i=1

e�bizhb, Xtidz⌘(dt). (3)

When ↵ = 0, the MGG process reduces to a Markov modulated weighted gamma(MWG)
process. When ↵ = 0.5 the MGG process becomes the Markov modulated inverse Gaussian
(MIG) process.

Let {Wt}t2T denote a standard Brownian motion, and eNXt(dt, dz) denote the compensated
Poisson random measure. Further, let rt be the instantaneous market interest rate, and µt and �t
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denote the drift and volatility of the market value of the reference asset, respectively, all defined as
per (2). Then, consider a generalized jump-diffusion process A := {A(t)|t 2 T }, such that

dAt = At�

"
µtdt+ �tdWt +

Z

R+

z eNXt(dt, dz)

#
, (4)

where A
0

= 0. We assume under P the price process {St}t2T is defined as St := exp(At).
For each time t 2 T , let Rt and Dt denote the book value of the policy reserve and the bonus

buffer, respectively. Rt is considered as the policyholder’s account balance. Let St denote the
market value of the asset backing the policy, so that St = Rt + Dt, t 2 T . The funds are
distributed between two components of liability over time according to the bonus policy described
by the continuously compounded interest rate credited to the policy reserve cR,

dRt = cR(S,R)Rtdt.

Definition 2.1 Let g(S,R,X, T ) denote the terminal payoff of the policy. Then the fair value

V (ST , RT , XT ) = RT + �P
1T � P

2T , (5)

where � is the terminal bonus distribution rate, P
1T := max(↵pST �RT , 0) is the terminal bonus

option, P
2T := max(RT � ST , 0) is the terminal default option, and RT is the guaranteed benefit.

FAIR VALUATION OF THE PARTICIPATING POLICY

Define Gt for the �-algebra FX
t _ FA

t for each t 2 T . For each ✓t defined as in (2) write
(✓.A)t :=

R t

0

✓(u)dA(u) such that ✓ is integrable with respect to the return process. Let M(✓)t :=
E[e(✓.A)t |FX

t ] be a Laplace cumulant process. Denote also in the following ⌘0(t)dt := ⌘(dt). Then,
let {⇤t}t2T denote a G-adapted stochastic process

⇤t := e(✓.A)t .M(✓)�1

t , (6)

= e
R t
0 ✓s�sdWs� 1

2

R t
0 ✓2s�

2
sds+

R t
0

R
R+ ✓sz eNXs (dz,ds)�

R t
0

R
R+ (e✓sz�1+✓sz)⇢Xs (dz|s)⌘(ds).

Proposition 2.1 ⇤t is P martingale w.r.t. Gt.

Definition 2.2 For each ✓ 2 L(A) define P✓ ⇠ P on G(T ) by the Radon-Nikodym derivative
dP✓

dP

��
G(T )

:= ⇤T .

Proposition 2.2 For each t 2 T , let the discounted price of the risky asset at time t be eS(t) :=

e�rtS(t). Then, eS := {eS(t)|t 2 T } is a P✓-local-martingale if and only if ✓t satisfies :

✓t�
2

t +

R
R+

�
e✓tz(ez � 1)� z

 
⇢Xt(dz|t)⌘0(t) = rt � µt. (7)
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Proposition 2.3 SupposefWt = Wt�
R t

0

�s✓sds is a P✓-Browning motion, ⇢✓Xt
(dz|t) := e✓sz⇢Xt(dz|t)

is the P✓ compensator of N ✓
Xt
(dz, dt) then

dAt =

�
µt + 2✓t�

2

t �
1

2

�2

t

�
dt+ �tdfWt +

Z

R+

z
�
1� e�✓tz

�
⇢✓Xt

(dz|t)⌘(dt) +
Z

R+

z eN ✓
Xt
(dz, dt).

As in Hansen and Jorgensen (2000), we choose an alternative numeraire to reduce the number
of state variables. Define a new state variable Z := ln(

S
R), so that CZ(Z) = CR(S,R,X, t). Then,

under P✓ we define

E(t) := exp

 
�
Z t

0

(rs �
1

2

�2

s)ds

!
St

S
0

(8)

We notice that E(t) is martingale w.r.t. Gt (Oksendal and Sulem (2005), chapter 1).

Definition 2.3 Define Q ⇠ P✓ on G(T ) by the Radon-Nikodym derivative dQ
dP✓

��
G(T )

:= E(T ).

Also, define WQ
t :=

fWt�
R t

0

�sds, and NQ
Xt
(dz, dt) := N ✓

Xt
(dz, dt)�f(z, ✓)⇢✓Xt

(dz|t)⌘(dt), where
f(z, ✓t) := e✓tz(ez � 1) � z for convenience in presentation. Then by a version of the Girsanov
theorem

dSt = (rt +
1

2

�2

t )dt+ �tdW
Q
t +

R
R+

⇣
e✓tz(ez � 1)� z

⌘
eNQ
Xt
(dz, dt).

Consequently, by Ito’s lemma, the dynamic of Z under Q is

dZt =

⇣
rt � CZ(Zt)

⌘
dt+ �tdW

Q
t +

Z

R+

ln(1 + f(z, ✓t)) eNQ
Xt
(dt, dz),

+

Z

R+

⇣
ln(1 + f(z, ✓t))� f(z, ✓t)

⌘
⇢QXt

(dz|t)⌘(dt). (9)

Where, ⇢QXt
(dz|t)⌘(dt) is defined under Q for eNQ

(dt, dz).

Proposition 2.4 The valuation of Vt using the process Z under Q, is equivalent to that from pro-
cess S under P✓.

Proof. Let EQ and E✓ be the expectation operator under Q and P✓, respectively. Then, by Bayes’
rule

Vt = E✓


exp

⇣
�
Z T

t

rsds
⌘
V (S,R,X, T )

���Gt

�

= StE
Q
h
e�ZTVZ(Z,X, t)

���(Zt, Xt) = (Z,X)

i
.

We call ¯VZ(Z,X, t), S-denominated value of the contract; that is

¯VZ(Z,X, t) = EQ
h
e�ZTVZ(Z,X, T )

���(Zt, Xt) = (Z,X)

i
.
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Corollary 2.5 (Zt, Xt) is a two-dimensional Markov process with respect to the filtration Gt.

Corollary 2.6 The S-denominated value of the participating product ¯VZ(Z,X, t) is Q martingale.

Further, write ¯Vi for ¯V (Z, ei, t), where i = 1, 2, ..., N and V̄ := { ¯V
1

, ¯V
2

, ..., ¯VN}. Then, as in
Buffington and Elliot (2002), V̄ satisfies the following N PIDEs:

LZ,ei(
¯Vi) + hV̄,Qeii = 0, i = 1, 2, ..., N, (10)

where LZ,ei(
¯Vi) is the differential operator. Further, as a result of the Corollary2.6, we have

d ¯VZ(Z,X, t) =

Z

R+

⇢
¯VZ

⇣
Zt� + ln(1 + f(z, ✓t))

⌘
� ¯VZ(Zt�)

�
eNQ
Xt
(dt, dz)

+

@ ¯VZ

@Z
(Z,X, t)�dWQ

t + hV̄,QXtidt.

With the auxiliary condition ¯VZ(Z,X, T ) = e�ZT
+ �max(↵� e�ZT , 0) + max(e�ZT � 1, 0).

3. NUMERICAL ANALYSIS

There is no known analytical solution to (10). We employ the explicit finite difference method
to approximate the solution numerically. Let [0, Zmax

] ⇥ [0, T ] denote the finite computational
domain, where the width of the spatial interval is chosen to be sufficiently large. The derivatives
of the value function V (Z,X, t) in equations (10) can be replaced by the finite differences and the
integral terms are approximated by using the trapezoidal rule at first. The computational domain
is discretized into a finite difference mesh, where �Z and �t are the step-width and time step,
respectively. In order to approximate the integral term, we adopt the trapezoidal rule with the same
spatial grids. By the explicit finite difference scheme, we start from the terminal values, and move
backwards in time so that we can calculate the value function.

Assume an economy with two states, namely, where Xt = 1 and Xt = 2 represent ’Good’
and ’Bad’ economies, respectively. Let P(t) = [pij] be the transition probability matrix for time t.
Note that in Section 2, we characterize the Markov chain using the matrix of transition rates, Q, so
P(t) must be calculated by solving (1), first. To illustrate our model, we assume p

11

= p
22

= 0.40,
r
1

= 0.035, r
2

= 0.015, b
1

= 200.00, b
2

= 500.00, � = 0.5, �
1

= 0.2, �
2

= 0.2, µ
1

= 0.10,
µ
2

= 0.05, S
0

= 100 and � = 0.7. The term to maturity of the contract is T = 20 years, �t is
assumed to be one trading day (�t = 1/252). For the Merton jump diffusion model, we consider
the drift and the dispersion of the reference portfolio as well as the risk-free rate to be equal to the
corresponding parameters in the no-regime-switching version of the model. In addition, we assume
the intensity parameter of the model to be 60%, and the jump size of the compound Poisson process
follows a normal distribution of N(�0.05, 0.49).

Figure 1 presents the impact of ↵ on the fair values of the participating policy, calculated
with the above model specifications. The graph shows a meaningful difference between the fair
values of the policy, with and without switching regimes. For example, when ↵ = 0.2, the fair
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Figure 1: The fair value of the participating policy, with general (M)GG processes.

value calculated without regime-switching is 16.01% lower than the fair value of the contract with
regime-switching. This difference is as high as 73.33% for the fair values under the two scenarios
with ↵ = 0.9. We also document the significant effect of ↵ on the values of the contracts for both
cases.
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When modelling insurance claim counts data, the actuary often observes overdispersion and excess
of zeros that may be caused by the unobserved heterogeneity. A common approach for account-
ing for overdispersion is to consider models with some overdispersed distribution as opposed to
Poisson models. Zero-inflated, hurdle and compound frequency models are usually applied to in-
surance data to account for such features of the data. A natural way to allow for overdispersion is
to consider mixtures of a simpler model. In this paper, we consider a K-finite mixture of Poisson
and Negative Binomial regressions. This approach has interesting features: first, the zero-inflated
model represents a special case; and second, it allows for an elegant interpretation based on the
typical clustering application of finite mixture models. These models are applied to an automobile
insurance claims data set in order to analyse the consequences for risk classification.

1. INTRODUCTION AND MOTIVATION

Risk classification based on generalized linear models is usually accepted. A regression component
is included in the claim count distribution to take the individual characteristics into account.

In insurance data sets, for claim count modelling purposes, the Poisson regression model is
usually rejected because of the presence of overdispersion. This rejection may be interpreted as
the sign that the portfolio is heterogeneous.

In automobile insurance, the problem of unobserved heterogeneity is caused by the differences
in driving behaviour among policyholders that cannot be observed or measured by the actuary (i.e.
driving ability, driving aggressiveness, obedience of traffic regulations). The omission of these
important classification variables may be the reason for the overdispersion detected. Meanwhile,
the presence of excess of zeros can be also seen as a consequence of unobserved heterogeneity.

Many attempts have been made in the actuarial literature to account for such features of the
data. Compound frequency models, zero-inflated models and hurdle models are usually applied
to insurance claim count data. Boucher et al. (2007) present and compare different risk classifica-
tion models for the annual number of claims reported to the insurer: Poisson-Gamma (or Nega-
tive Binomial) model, Poisson-Inverse Gaussian model, Poisson-Log Normal model, Zero-inflated
models and Hurdle models.
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In the bivariate setting, in a recent paper, Bermúdez (2009) used bivariate Poisson regression
models for ratemaking in car insurance to account for the dependence between two different types
of claims, including zero-inflated models to account for the excess of zeros and the overdispersion
in the data set. In Bermúdez and Karlis (2012), these models were revisited in order to consider
alternatives, proposing a 2-finite mixture of bivariate Poisson regression models to demonstrate
that the overdispersion in the data requires more structure if it is to be taken into account and that
a simple zero-inflated bivariate Poisson model does not suffice.

In this paper, to account for overdispersion and excess of zeros in the univariate setting, we
consider a K-finite mixture of Poisson and Negative Binomial (NB) regressions. The finite mix-
tures of Poisson or NB regression models are especially useful where count data were drawn from
heterogeneous populations as Park and Lord (2009) show for vehicle crash data analysis.

2. K-FINITE MIXTURE OF REGRESSION MODELS

Let Y be the number of claims for automobile insurance, we consider the K-finite mixture of
Poisson or NB regressions as

P (Yi = yi) =
KX

j=1

pjP (yi;µij) or P (Yi = yi) =
KX

j=1

pjNB(yi;µij, ✓j)

respectively, where pj > 0 (j = 1, . . . , K) are the mixing proportions with
P

pj = 1.
For the NB regression model, we assume

NB(y;µ, ✓) =
�(✓ + y)

�(✓)y!

✓
µ

✓ + µ

◆y ✓ ✓

✓ + µ

◆✓

, µ, ✓ > 0, y = 0, 1, . . .

i.e. the probability function of a NB with mean µ and variance µ+

µ2

✓ .
Furthermore, in both cases, we assume for the mean of the j-th components that it relates to

some covariate vector, namely we assume that

log(µij) = xi�j

where xi is the vector of covariates related to the i-th individual and �j is the vector of regression
coefficients for the j-th component.

This modelling has some interesting features: first of all, the zero inflated model is a special
case; secondly, it allows for overdispersion; and thirdly, it allows for a neat interpretation based on
the typical clustering usage of finite mixture models.

We fitted the model by a using standard EM algorithm. For the NB mixture, at the E-step we
estimated the weights wij as

wij = pjNB(yi;µij, ✓j) /
KX

j=1

pjNB(yi;µij, ✓j)
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and during the M-step we update �j by fitting a standard NB regression model with response y,
covariates x and weights wj = (w1j, . . . , wnj).

Initial values for K = 2 were selected by perturbing a simple NB regression model. Namely
we fitted a single NB regression and keeping the fitted values, we split them in two components
with mixing probabilities 0.5 each one and means equal to 1.2 and 0.8 of the fitted values. Then
in order to fit a model with K + 1 components we used the solution with K components and a
new component at the center (that of a single NB regression), with mixing probability 0.05. The
rest mixing probabilities were rescaled to sum to 1. Extensive simulation have shown that this
approach works well to locate the maximum.

3. APPLICATION

The data contains information for 80,994 policyholders from a major insurance company operat-
ing in Spain. Twelve exogenous variables were considered plus the annual number of accidents
recorded. The description of the explanatory variables is presented in table 1.

We have fitted models of added complexity to this data set, starting from a simple Poisson
regression model. We have used AIC to select the best among a series of candidate models. All
models were run in R. In table 2 we have compared the fitted models, resulting that the best fit
was obtained with the 2-Finite NB mixture model. Finite mixture models with K > 2 were also
fitted, but no improvement in terms of AIC were achieved. In table 3 the results for the 2-Finite
NB mixture model are summarized.

Variable Definition
V1 equals 1 for women and 0 for men
V2 equals 1 when driving in urban area, 0 otherwise
V3 equals 1 when zone is medium risk (Madrid and Catalonia)
V4 equals 1 when zone is high risk (Northern Spain)
V5 equals 1 if the driving license is between 4 and 14 years old
V6 equals 1 if the driving license is 15 or more years old
V8 equals 1 if the client is in the company for more than 5 years
V9 equals 1 of the insured is 30 years old or younger
V10 equals 1 if includes comprehensive coverage (except fire)
V11 equals 1 if includes comprehensive and collision coverage
V12 equals 1 if horsepower is greater than or equal to 5500cc

Table 1: Explanatory variables used in the models
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Model Log-lik Parameters AIC
Poisson -24172.5 12 48369.00
Negative Binomial -22442.8 13 44911.60
Poisson-IG -22464.0 13 44954.00
Poisson-LN -22509.7 13 45045.46
ZIP -22515.4 13 45056.86
ZIPIG -22464.0 14 44956.00
ZINB -22442.8 14 44913.60
Hurdle Poisson -22554.2 13 45134.38
Hurdle NB -22489.8 14 45007.60
2-Finite Poisson mixture -22493.2 25 45036.46
2-Finite NB mixture -22419.0 27 44892.06

Table 2: Information criteria for selecting the best model for the data

variable 1st component 2nd component
coef. s.e. p-value coef. s.e. p-value

const. -3.0017 0.7981 0.0002 -1.8786 0.6391 0.0033
V1 -0.2562 0.1119 0.0220 0.1363 0.0566 0.0160
V2 -0.0002 0.0744 0.9984 -0.0698 0.0385 0.0700
V3 0.1091 0.0847 0.1978 -0.0267 0.0463 0.5641
V4 0.1230 0.0928 0.1851 0.1972 0.0468 < 0.0001

V5 1.2946 0.5298 0.0145 -2.0342 0.9584 0.0338
V6 -5.5294 11.7203 0.6371 -0.2416 0.2635 0.3593
V8 0.0076 0.0845 0.9279 0.2290 0.0553 < 0.0001

V9 0.1558 0.0839 0.0634 -0.0523 0.2585 0.8398
V10 -0.0690 0.1128 0.5407 0.0997 0.0537 0.0636
V11 0.0918 0.0735 0.2121 0.0504 0.0416 0.2262
V12 -0.2065 0.0944 0.0287 0.1533 0.0492 0.0018
✓ 0.3040 0.2130 0.3270 0.2460
p 0.4788 0.5212

Table 3: 2-Finite mixture of NB regression model
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4. CONCLUSIONS

In this paper, we have proposed the use of a 2-finite mixture of Poisson and Negative Binomial
regressions to allow for the overdispersion and the excess of zeros usually detected in automobile
insurance dataset. Assuming the existence of two type of clients described separately by each
component of the mixture improves the modelling of the dataset. The idea is that the data consist
of subpopulations for which the regression structure is different. The model corrects for zero
inflation and overdispersion.

The existence of “true” zeros assumed by zero-inflated or Hurdle models may be a too strong
assumption in some cases. However, the 2-finite mixture of Poisson or Negative Binomial regres-
sion does not make this somewhat strict assumption and allows mixing with respect to both zeros
and positives. This idea is more flexible than zero-inflated and Hurdle models and it holds better
in our case. As it can be seen in figure 1, the group separation is characterized by low mean for the
first component (“good” drivers) and high mean with higher variance for the second one (“bad”
drivers).

Figure 1: Boxplots of the fitted means for each of the two components

Finally, as it seems that the data set may have been generated from two distinct subpopulations,
the model allows for a net interpretation of each cluster separately. Note that different regression
coefficients can be used to account for the “observed” heterogeneity within each population.
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1. INTRODUCTION

Expected Exposure (EE) is one of the key elements in Credit Value Adjustment (CVA) (Gregory
2012). In credit risk management, the Potential Future Exposure (PFE) is another important indi-
cator. It indicates the maximum expected exposure at some level of confidence. Valuation of either
EE or PFE of path-dependent derivatives has the additional difficulty that some event may happen
at any time over the entire path, either earlier or later than the valuation time.

A Bermudan option is an option where the buyer has the right to exercise at a set of times,
which we may call watch times. If the option is exercised, the exposure disappears as the holder
has realized the value of the option; otherwise, the holder will lose the current value of the option
if the counterparty defaults. With simulated scenarios, the option value at each exercise time can
be calculated; when a large number of scenarios is available, we can get an empirical distribution
of the option value at each time point. It is easy to get the EE and PFE when the distribution of the
exposure is known.

In de Graaf et al. (2014), three computational techniques for approximation of counterparty
exposure for financial derivatives are presented. This abstract focuses on the introduction on one
of them: the Stochastic Grid Bundling method (SGBM). We will show that the EE and PFE are
natural by-products when pricing a Bermudan option applying SGBM. The Greeks of the exposure
can be calculated at the same time without additional computational costs.

The COS method in Fang (2010) also offers an efficient way for pricing a Bermudan option
under the Heston model. We extend it for pricing the exposure values of the Bermudan options.
We use the results of the COS method as the reference value.

COS and SGBM are fundamentally different: one is aimed to recover the conditional density
from the characteristic function based on Fourier-cosine expansion while the other employs regres-
sion to approximate the conditional distribution based on bundling and simulation. Monte Carlo
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simulation is needed for generating the scenarios/the stochastic grid. We apply the QE scheme
(Andersen 2007) with a martingale correction for generating the paths under the Heston model.

2. BERMUDAN OPTIONS AND THE HESTON MODEL

A Bermudan option is defined as an option where the buyer has the right to exercise at a set number
of (discretely spaced) times. The exercise time set is denoted by

T = {t1, t2, . . . , tM}, (1)

where M denotes the number of exercise times, and the time difference is �t. At initial time t0
exercising is not allowed.

The dynamics of the Heston stochastic volatility model (Heston 1993) are given by
8
><

>:

dSt = rStdt+
p
vtStdW 1

t ,

dvt = (⌘ � vt)dt+ �
p
vtdW 2

t ,

dW 1
t dW

2
t = ⇢dt,

(2)

where

• W 1
t and W 2

t are two Wiener processes correlated by ⇢;

•  is the mean-reversion speed;

• ⌘ the mean reversion level;

• � the so-called volatility of volatility;

• r the risk-free interest rate.

Knowing the market condition (Sm, vm) at time tm, the immediate exercise and the continuation
value for the Bermudan option at time tm are, respectively, defined as:

g(Sm) = max(�(Sm �K), 0) with � =

(
1, for a call
�1, for a put

, (3)

c(Sm, vm, tm) = e�r�tE

U(Sm+1, vm+1, tm+1)

����(Sm, vm)

�
, (4)

where U(Sm+1, vm+1, tm+1) is the option value at time tm+1.
The holder of the option will exercise when the exercise value is higher than the continuation

value, and then the contract terminates. At maturity tM , the option value is equal to the exercise
value. The following recursive scheme based on dynamic programming can be set up to price a
Bermudan option:

U(Sm, vm, tm) =

8
><

>:

g(SM), for m = M ;

max [c(Sm, vm, tm), g(Sm)] , for m = 1, 2, · · · ,M � 1;

c(S0, v0, t0), for m = 0.

(5)



Two efficient valuation methods of the exposure of Bermudan options 79

By definition of exposure, the Bermudan option exposure at time tm can thus be formulated as:

E(tm) =

(
0, if exercised,
c(Sm, vm, tm), if not exercised,

m = 1, 2, · · · ,M � 1. (6)

In addition, E(t0) = c(S0, v0, t0) and E(tM) = 0.
CVA can be seen as the price of counterparty credit risk, while PFE is a measure for the

potential loss (Gregory 2012). In other words, CVA depends on the EE, while PFE is the loss
given a fixed confidence interval. Both measures depend on the future distribution of exposure.
The key problem becomes how to determine the exposure distribution along the time horizon. in
particular, it is a difficult task to calculate the continuation value at each exercise time.

3. STOCHASTIC GRID BUNDLING METHOD

The Stochastic Grid Bundling method (SGBM) is based on simulation, bundling and regression
for pricing Bermudan options. It consists of the following steps:

Step 1: (forward) simulation Generating forward scenarios/paths by Monte Carlo simulation. It
is the stochastic grid on which we will make the calculation. The QE method (Andersen
2007) is applied to generate paths.

Step 2: (backward) bundling At time tm, m = M � 1, . . . , 1, all paths are clustered into � bun-
dles; the bundle set at time tm is denoted by {Bp,m}�p=1. There are several schemes available
to make bundles, and we choose the recursive bifurcation method (Jain and Oosterlee 2013).
Figure 1 shows how the bundles are made at time tM�1.
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Figure 1: Bundling at time tM�1.

Step 3: (backward) regression Regression is used to calculate the continuation value at time tm,
m = 0, . . . ,M � 1. The essential idea of SGBM is that the option value can be written
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as a linear combination of a set of basis functions. We choose the set of the basis func-
tions {gk(S, v)}Bk=0 in such a way that analytic formulas of their conditional expectations
are available. The basic idea is the same as the Longstaff-Schwarz method (Longstaff and
Schwartz 2001).
However, there is an important difference between SGBM and the Longstaff-Schwartz method.
In SGBM, the coefficients are different among each bundle. We assume that, for paths in
the p-th bundle Bp,m at time tm, a set of coefficients {↵p,m

k }Bk=0 exists, so that for the option
values of these paths at time tm+1, the following relationship holds

U (Sm+1, vm+1, tm+1) ⇡
BX

k=0

↵p,m
k gk(Sm+1, vm+1), (7)

where the coefficient set {↵̂p,m
k }Bk=0 can be approximated by regression when the option

values U (Sm+1, vm+1, tm+1) at the stochastic paths have been determined.
Equation (7) can be substituted into (4), which gives us:

c(Sm, vm, tm) = e�r�tE

U(Sm+1, vm+1, tm+1)

����(Sm, vm)

�

⇡ e�r�tE
"

BX

k=0

↵̂p,m
k gk(Sm+1, vm+1)

����(Sm, vm)

#

= e�r�t
BX

k=0

↵̂p,m
k fk(Sm, vm), (8)

where fk(Sm, vm) represents the conditional expectations of the basis functions gk(Sm+1, vm+1).
Consequently, we can approximate the option and exposure value of each path at time tm.

We repeat Steps 2 and 3 backwards in time, until the initial time t0.
Moreover, the sensitivity of EE w.r.t. S0 can be obtained directly from (8), as:

�(Sm, vm, tm) =

(
0, if exercised,
e�r�t

PB
k=0 ↵̂

p,m
k

@fk(Sm,vm)
@Sm

· @Sm
@S0

, if not exercised,
(9)

where m = 1, 2, · · · ,M � 1, and for calculation of the @Sm
@S0

term, we note that at time ⌧

S⌧ = S0e
(r� 1

2v⌧ )⌧+
p
v⌧W 1

⌧ , (10)

as the variance follows CIR dynamics, we can write the derivative of S⌧ w.r.t S0 as

@S⌧

@S0
= e(r�

1
2v⌧ )⌧+

p
v⌧W 1

⌧
=

S⌧

S0
. (11)

At time t0, the sensitivity of EE w.r.t. S0 is then given by

�(S0, v0, t0) = e�r�t
BX

k=0

↵̂0
k

@fk(S0, v0)

@S0
. (12)

Notice that there is no need for bundling at time t0.
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4. NUMERICAL RESULTS

In this paper, we choose the basis functions as

constant(1), log(S), (log(S))2, (log(S))3, (log(S))4. (13)

We choose the set of parameters presented in Table 1.

Parameter Value

Spot (S0) 100.0
Strike (K) 100
Interest (r) 0.04
Variance (v0) 0.0348
Tenor (T ) 0.25
Mean Reversion () 1.15
Mean Variance (⌘) 0.0348
Vol of Var (�) 0.459
Correlation (⇢) 0

Table 1: Parameter set for test.

The COS method is used to get the reference value. The results of exposure and sensitivity of
a Bermudan put option based on the parameter set with 5 exercise times is presented in Figure 2.
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Figure 2: Comparison between SGBM and COS.

We compare the results under the Black-Scholes model and the Heston model separately and
see the impact of the stochastic volatility. The constant variance level in the Black-Scholes model
is made equal to the mean reversion level in Heston model. Figure 3 shows that the PFE is more
effected by a stochastic volatility compared to EE. It is because that the exposure distribution under
stochastic volatility give rise to a fatter right tail.
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Figure 3: Impact of the stochastic volatility: comparison between results under the Black-Scholes
model and the Heston model.

5. CONCLUSION

SGBM is a quite efficient method with high accuracy. There are some similarities with the well-
known Longstaff-Schwartz method, but fundamentally different from it in the following ways:

• All the paths are used for regression instead of only ’in the money’ paths;

• The optimal stopping strategy and cash flow is merely a by-product of SGBM;

• By applying bundling, the approximation of the regression coefficients is optimized locally;

• Information from the dynamics is included by using the analytic formulas for the expectation
of the basis functions.

Comparison between the results under the Black-Scholes model and the Heston model indi-
cates that the stochastic volatility has a strong impact on PFE.
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Copulas are known to provide a flexible tool for describing possible nonlinear relations among risk
factors. Except for several examples, however, copulas are mainly concerned with the static prob-
lems, not with the time-dependent processes. Here, we review our recent studies on the evolution
of copulas, which assumes that a copula itself evolves according to the time variable, and consider
its slight generalization in discrete processes. Possible applications of our evolution of copulas are
also discussed.

1. INTRODUCTION

A copula is a well-employed tool for investigating the dependence structure among risk factors.
Copulas make a link between multivariate joint distributions and univariate marginal distributions.
Because of their flexibility, copulas have been extensively studied and applied in a wide range of
areas concerning the problem of dependence relations, which include, to name a few, actuarial and
insurance mathematics, financial mathematics, hydrology, seismology, and so on. For a general
reference on the theory of copulas, we refer to the book by Nelsen (2006).

Copulas, however, are concerned mainly with the stationary situation and not with the time-
dependent circumstance. There exist of course a few attempts which deal with the time variable in
the copula theory. We recall the study on copulas with Markov processes by Darsow et al. (1992),
and also on dynamic copulas by Patton (2006).

In our research, we introduce the concept of the evolution of copulas both in continuous and
discrete time, which proclaims that a copula itself evolves according to the time variable. To
start with the continuous processes, let {C(u, v, t)}t�0 be a time parameterized family of bivariate
copulas, which satisfy the heat equation:

@C

@t
(u, v, t) =

⇣ @2

@u2
+

@2

@v2

⌘
C(u, v, t). (1)

By the definition of a copula, C(·, ·, t) verifies the following conditions:

(i) C(u, 0, t) = C(0, v, t) = 0, C(u, 1, t) = u and C(1, v, t) = v;
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(ii) For every (ui, vi, t) 2 I2 ⇥ (0,1) (i = 1, 2) with u1  u2 and v1  v2, it follows that
C(u1, v1, t)� C(u1, v2, t)� C(u2, v1, t) + C(u2, v2, t) � 0. Here, we write I := [0, 1].

It is proved in Ishimura and Yoshizawa (2011) that for any given bivariate copula C0 as
the initial condition, there exists a family of copulas {C(u, v, t)}t�0, which satisfy (1), with
C(u, v, 0) = C0(u, v). Moreover, we have

C(u, v, t) �! ⇧(u, v) := uv as t ! 1.

Remark that the product copula ⇧ is also a steady solution of (1) and thus it is customarily called
a harmonic copula.

From a practical point of view, however, the discrete version of the above evolution may be
much more useful. In this short note, we deal with the evolution of multivariate copulas in discrete
processes and discuss the possibility of applications. First, we clarify the notion of evolution of
copulas in discrete time.

Definition 1.1 A discretely parameterized family of functions {Cn}n2N defined on Id := [0, 1]d

and valued in I is called the evolution of copulas in a discrete process if the following three
conditions are satisfied:

(i) For every n 2 N, Cn
(u1, u2, . . . , ud) is increasing in each component ui.

(ii) For every n 2 N and i 2 {1, 2, . . . , d} with ui 2 I ,

Cn
(u1, . . . , ui�1, 0, ui+1, . . . , ud) = 0 and Cn

(1, . . . , 1, ui, 1, . . . , 1) = ui.

(iii) (d-increasing condition) For every n 2 N and (u1i, u2i, . . . , udi) 2 Id with u1i  u2i (i =
1, 2),

2X

i1=1

· · ·
2X

id=1

(�1)

i1+i2+···+idCn
(u1i1 , u2i2 , . . . , udid) � 0.

In the next section, we exhibit the construction of such a family of copulas.

2. EVOLUTION OF COPULAS IN DISCRETE PROCESSES

We now turn our attention to the investigation of the evolution of copulas in discrete processes,
with the intention to undertake a slight generalization of Ishimura and Yoshizawa (2012).

Let d � 2 and assume that N � 1 and 0 < h ⌧ 1. We define

�u1 = �u2 = · · · = �ud :=
1

N
and �t := h,

such that

� :=

�t

(�ui)
2
= hN2

(i = 1, 2, . . . , d),
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and for i = 1, 2, . . . , d, we have

ui,ki := ki�ui =
ki
N
, (ki = 0, 1, . . . , N).

A family of copulas {Cn
(u1, u2, . . . , ud)}n2N is now defined as follows.

The initial condition is defined by

C0
(u1, u2, . . . , ud) := C0(u1, u2, . . . , ud),

where C0 denotes a given initial copula.
Let Cn

k1,k2,...,kd
:= Cn

(u1,k1 , u2,k2 , . . . , ud,kd), where {(u1,k1 , u2,k2 , . . . , ud,kd)}k1,k2,...,kd=0,1,...,N

denote the lattice points. Its values for k1, k2, . . . , kd = 1, 2, . . . , N �1 are governed by the system
of difference equations

Cn+1
k1,k2,...,kd

= ↵nC
n
k1,k2,...,kd

+ �ni

dX

i=1

(Cn
k1,...,ki�1,ki+1,ki+1,...,kd

+ Cn
k1,...,ki�1,ki�1,ki+1,...,kd

). (2)

Here, we postulate that

↵n > 0, �ni > 0 (i = 1, 2, . . . , d) and ↵n + 2

dX

i=1

�ni = 1.

If for some j, kj = N , then the j-th term in the sum of the right hand side of (2) should be replaced
by

Cn
k1,...,kj�1,N+1,kj+1,...,kd

+ Cn
k1,...,kj�1,N�1,kj+1,...,kd

�! 2Cn
k1,...,kj�1,N,kj+1,...,kd

.

If for some j, kj = 0, then

Cn
k1,...,kj�1,1,kj+1,...,kd

+ Cn
k1,...,kj�1,�1,kj+1,...,kd

�! 2Cn
k1,...,kj�1,0,kj+1,...,kd

= 0.

Given these adjustments, we see that the boundary condition
(
Cn

k1,...,ki�1,0,ki+1,...,kd
= 0

Cn
N,...,N,ki,N,...,N = ui,ki ,

for ki = 0, 1, . . . , N (i = 1, 2, . . . , N)

is properly imposed.
For a point (u1, u2, . . . , ud) 2 Id other than {(u1,k1 , u2,k2 , . . . , ud,kd)}k1,k2,...,kd=0,1,...,N , the

value Cn
(u1, u2, . . . , ud) is provided by interpolation; that is, if

u1,k1  u1  u1,k1+1, u2,k2  u2  u2,k2+1, . . . , ud,kd  ud  ud,kd+1,

then we define

Cn
(u1, u2, . . . , ud) =

1X

j1=0

· · ·
1X

jd=0

S(k1 + j1, k2 + j2, . . . , kd + jd)(u1 � u1,k1)
j1
(u2 � u2,k2)

j2 · · · (ud � ud,kd)
jd ,

(3)
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where we have

S(k1 + j1, k2 + j2, . . . , kd + jd) =
j1X

l1=0

· · ·
jdX

ld=0

(�1)

j1+···+jd+l1+···+ldCn
k1+l1,k2+l2,...,kd+ld

.

We remark that the values S(k1 + j1, k2 + j2, . . . , kd + jd) are all non-negative by virtue of the
d-increasing condition above, which makes Cn

(u1, u2, . . . , ud) indeed a copula. We also note
that if Cn

k1+l1,k2+l2,...,kd+ld
=

Qd
i=1 ui,ki+li for all values, which means that the product copula is

concerned, then Cn
(u1, u2, . . . , ud) reduces to

Qd
i=1 ui for u1,k1  u1  u1,k1+1, u2,k2  u2 

u2,k2+1, . . ., ud,kd  ud  ud,kd+1.
It is easy to check that a sequence of copulas {Cn

(u1, u2, . . . , ud)}n2N is well defined and gives
the evolution of copulas in discrete time. Furthermore, the difference scheme is stable and we infer
that

max

(u1,u2,··· ,ud)2Id

�����C
n
(u1, u2, . . . , ud)�

dY

i=1

ui

�����  K✓n,

for some constants K and ✓ with 0 < ✓ < 1. In summary, we can state the next theorem.

Theorem 2.1 Let d � 2. For any initial copula C0 of dimension d, there exists an evolution of
copulas {Cn

(u1, u2, . . . , ud)}n2N in discrete time, which satisfies the system of difference equations
(2) at every {(u1,k1 , u2,k2 , . . . , ud,kd)}k1,k2,...,kd=0,1,...,N and are bridged by the interpolation (3).
Additionally, we have

Cn
(u1, u2, . . . , ud) !

dY

i=1

ui uniformly on Id as n ! 1.

We may omit the details of the proof and other properties.

Remark 2.1 The difference scheme (2) originally comes from the discretization of the heat equa-
tion; e.g. Ishimura and Yoshizawa (2012) deals with

Cn+1
k1,k2,...,kd

� Cn
k1,k2,...,kd

�t

=

dX

i=1

Cn
k1,...,ki�1,ki+1,ki+1,...,kd

� 2Cn
k1,...,ki�1,ki,ki+1,...,kd

+ Cn
k1,...,ki�1,ki�1,ki+1,...,kd

(�ui)
2

.

Our current scheme (2) is thus regarded as a slightly generalized version.

3. DISCUSSIONS

We have developed the concept of time-dependent copulas, and in particular, the evolution of
copulas in discrete processes. Compared to other time-related copulas, in our notion, a copula



Evolution of copulas 89

evolves according to the time variable. It may be employed in certain inference on the time-
varying deformation of structures among random events. Since the dependence between random
factors usually changes in time, one can expect that a mathematical modeling with some evolution
system has a place to be involved. We hope that such a description is realized with the use of our
theory.

A major drawback of our evolution, however, is that every copula converges to the simplest
copula, the product copula. The relation between random variables, which is described by our
system, is gradually becoming simple in a sense. It may be challenging to bypass this difficulty.
A possible way would be to presume that it is rather suitable to invoke the backward type of the
scheme (2); we assign the maturity state and consider the backward evolution which starts from this
maturity. We believe that other good applications of the evolution of copulas are still unexplored
and we continue to make an effort on finding a relevant example.
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The paper deals with the valuation of employee stock options within the stochastic volatility model
of Heston (1993). We introduce personal market perspectives into the model and apply a two-
dimensional tree algorithm to value the options for both subjective and objective beliefs. Pseudo
code that illustrates the valuation principle is presented.

1. INTRODUCTION AND MOTIVATION

Employee stock options (ESOs) are a popular part of employee remuneration. Typically these
options are non-tradable calls on the company’s stock and are given to an employee as part of
her compensation. Often they last as long as ten or fifteen years, are issued at-the-money and are
inaccessible during the vesting period, an interval of variable length after grant. After vesting, the
options can be exercised at any time, however, when the employee quits the job during the vesting
period, the ESOs forfeit worthless.

In the literature, three values arise when pricing employee stock options. The first one is the
subjective value, which is the price the employee assigns to the option. Due to her trading restric-
tions, she tends to exercise the ESO sub-optimally from market perspectives. Mathematically this
is incorporated into the model through subjective market beliefs and risk aversion. The second
value is the objective price, that equals the costs for setting up a hedging portfolio of the stock and
the riskless asset that exactly mimics the subjective exercise policy. Since the company can act as
an unconstrained market player, the portfolio follows the risk-neutral processes. The third option
price equals the value an unrestricted market participant is willing to pay, i.e. it is determined under
risk neutrality and optimal exercise.

The structure of the paper is as follows. Section 2 introduces the model framework in the
context of the stochastic volatility model of Heston (1993) and sets up the refined tree model.
Pseudo code as well as implementation details are given in Section 3. Section 4 shows numerical
results, Section 5 concludes and gives an outlook.

Parts of this work are included in the PhD thesis of Tilman Sayer, see Sayer (2012).
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2. CONTINUOUS AND TREE MODEL

Here, we briefly describe the stochastic volatility model of Heston (1993) and the tree algorithm
proposed in Ruckdeschel et al. (2013). The company’s stock is assumed to follow stochastic
volatility and further, option specific characteristics like e.g. early exercise, can easily be incorpo-
rated when employing the tree to value the ESO.

Throughout the paper, we consider the probability space (Ω, (Ft)t≥0,P) where P denotes the
risk-neutral probability measure, obtained through calibration of the model to market data. The
dynamics of the stock price and variance process respectively are given by

dSt = (r + µ− d)Stdt+
√

VtStdW
S
t , S0 = s0 > 0 , (1)

dVt = κ (θ − Vt) dt+ η
√

VtdW
V
t , V0 = v0 > 0 , (2)

with constant interest rate r ≥ 0, dividend yield d ≥ 0 and subjective excess return µ. Due to
the trading restrictions and the resulting conceivably sub-optimal exercise, subjective expectations
of the stock return are essential when determining the personal value of the option, compare for
instance Kulatilaka and Marcus (1994). Further, κ > 0 denotes the speed of mean reversion to the
long-term variance level θ > 0 and η > 0 is the volatility of the variance. The Brownian motions
W S

t andW V
t are correlated with constant correlation ρ ∈ [−1, 1].

Our first step in the generation of the approximating tree model is to build a recombining
binomial tree V̂ that approximates the variance process. Based on its nodes, we approximate the
stock price process by a recombining trinomial tree. Then, both separate trees are joint by defining
transition probabilities that properly incorporate the correlation structure between the Brownian
motions, i.e. without obtaining negative weights. To ensure weak convergence of the tree model
to the continuous one, we employ the concept of moment matching. In particular, we employ
Lemma 1 of Ruckdeschel et al. (2013) for the continuous values. In the following, let T , N and
∆ = T/N represent the investment horizon, the number of discretisation steps and the step size,
respectively.

Due to the heteroscedasticity of the variance process, a naively constructed tree would not
recombine and the number of generated nodes grows exponentially. Computationally, this results
in an inefficient approximation. To construct an efficient tree, we employ Itô’s Lemma on the
transformation Zt = 2

√
Vt/η to obtain

dZt =

[(

2κθ

η2
−

1

2

)

1

Zt

−
κ

2
Zt

]

dt+ dW V
t , Z0 =

2
√
V0

η
.

Since Zt features constant variance, its binomial tree approximation Ẑ recombines and we obtain a
recombining tree model V̂ by employing the inverse transformation on the nodes of Ẑ. In order to
obtain proper transition probabilities, for each variance node, we choose the subsequent successor
nodes as nodes surrounding the drift. Due to the mean reverting property of (2) this might result in
multiple jumps, as detailed in Figure 1. Let v1 and v2 be the nodes that respectively result from a
down and up jump. The probabilities PV (v1) and PV (v2) = 1−PV (v1) are determined by matching
the tree moments against the continuous ones.

The trinomial stock price tree is built for the growth adjusted logarithmic state space transfor-
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Figure 1: Binomial tree V̂ . Due to mean reversion and heteroscedasticity of dVt, the approximating
tree is self-truncating with unevenly spaced nodes.

mation of (1), i.e. we consider the process

dXt = d log
(

Ste
−(r+µ−d)t

)

= −
Vt

2
dt+

√

VtdW
S
t , X0 = log (S0) ,

and its tree approximation X̂ . Yet, the diffusion
√
Vt of dXt depends on Vt and consequently on

the nodes of V̂ . As a result, the jump heights of X̂ depend on the variance nodes and the tree
would in general not recombine. We circumvent this by defining the distance between two nodes
of X̂ as

√
α∆ for a given value α. By putting the variance nodes of V̂ into relation with α, we

respectively determine multipliers of this spacing that are needed in order to produce jumps wide
enough to account for the instantaneous variance nodes. For a particular tree node, let x1, x2 and
x3 denote its successor nodes, where x1 and x3 respectively label the nodes that result from a down
and up jump. The node x2 lies between x1 and x3 and results from a pure horizontal jump. Again,
we obtain the transition probabilities PX(x1), PX(x2) and PX(x3) = 1 − PX(x1) − PX(x2) by
matching the tree moments against the ones of the limit distribution.

For ρ = 0, the joint tree model is obtained by defining the product probabilities

P (xi, vj) = PX (xi)PV (vj) , i = 1, 2, 3 , j = 1, 2 .

For correlated Brownian motions, we modify these probabilities in a way that both the already
matched marginal moments are maintained and the match between tree and model correlation is
optimised.

With this tree model, we can describe the movement of the company’s stock and employ it
to value the option. In general, a risk-averse employee compensated with the ESO chooses the
exercising time τ such that her expected utility

E
[

U
(

e−rτ (Sτ −K)+
)]

is maximised, where K is the strike price, (Sτ −K)+ is the payout of the ESO at τ and U(.) is a
utility function. Intuitively, as soon as the option is vested, the employee either exercises the ESO
and invests the profit in the riskless asset or continues to hold the option for the subsequent period.
Naturally, she decides for the strategy with the greater utility. Let U0 be the expected utility the
employee assigns to the ESO at grant date. The monetary amount I = e−rTU−1(U0) corresponds
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to the subjective price of the ESO and is typically interpreted as an indifferent payment, i.e. as the
particular value for which the employee is neutral between I and the ESO. Given the exercise pol-
icy of the employee, the value of the hedging portfolio is calculated respectively, even if exercising
the option is sub-optimal from market perspectives. Its value at grant date defines the objective
value of the ESO.

3. IMPLEMENTATION DETAILS

The tree model is implemented using Matlab programming language. Pseudo code that illustrates
the option pricing by backward induction is given in Figure 2, where we consider the subjective
and objective value. Let n denote a node in the joint tree. In the code, n.Ssub and n.Sobj

Input: parameters % relevant market, option & tree parameters
Output: sub, obj % subjective & objective value
( 1) for t = T, T - ∆, ..., 0 do
( 2) N = getRelevantNodes(t); % obtain active tree nodes
( 3) sub_e = 0;
( 4) obj_e = 0;
( 5) for each n in N do
( 6) if (isESOVested) % exercise values from subjective & market perspectives
( 7) sub_e = U(exp(r * (T - t)) * max(0, n.Ssub - K));
( 8) obj_e = max(0, n.Sobj - K);
( 9) end
(10) if (t == T)
(11) n.sub = sub_e;
(12) n.obj = obj_e;
(13) else
(14) (n1, ..., n6, P1, ..., P6) = getNodesAndWeights(n);
(15) sub_h = P1 * n1.sub + ... + P6 * n6.sub;
(16) obj_h = P1 * n1.obj + ... + P6 * n6.obj;
(17) n.sub = max(sub_h, sub_e);
(18) if (n.sub == sub_h) n.obj = exp(-r * ∆) * obj_h;
(19) else n.obj = obj_e;
(20) end
(21) end
(22) end
(23) end
(24) sub = exp(-r * T) * InvU(n.sub); % subjective value
(25) obj = n.obj; % objective value
(26) return sub, obj;

Figure 2: Pseudo code illustrating the backward induction and the calculation of the subjective and
objective value. The functions U(.), InvU(.) and getNodesAndWeights(.) respectively
return utility, inverse utility and the successor nodes as well as the corresponding transition proba-
bilities. At each time step, the active nodes are obtained through getRelevantNodes(.).

label the stock price from subjective and market perspectives. Furthermore, n.sub and n.obj
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denote the subjective and objective option value at node n. Since the marginal trees V̂ and X̂ as
well as the correlated transition probabilities P(xi, vj) for i = 1, 2, 3 and j = 1, 2 do not depend
on the current time step, these values can be determined before running the backward induction,
i.e. before valuing the tree from its leafs to the root. Lines (7) and (8) determine the exercise values
for subjective and market beliefs. The values for holding the ESO are obtained between lines (14)
and (16). Depending on the subjective policy of the employee, i.e. the maximum value of sub h
and sub e, the hedging portfolio mimics her decision in the lines (18) to (20), where the objective
value of node n is set. Finally, line (24) determines the indifferent payment.

4. NUMERICAL RESULTS

The relation between I and the price of the hedging portfolio is illustrated in Figure 3 for different
values of µ and for a spot price range from 20 to 300. The remaining parameters are r = 5%,

50 100 150 200 250 300
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0.8

1
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io

 

 

µ = −3%
µ = 0%
µ = 3%

Figure 3: Relation between the subjective and objective option value for varying subjective excess
return µ and spot value.

d = 0%, v0 = θ = 4%, κ = 2, η = 20% and ρ = −0.85. We further assume power utility
U(x) = x1−γ/(1 − γ) with γ = 0.25. The option lives for two years and vests after six months.
The strike is set to 100, N = 200 and α = 2%. For µ = 0%, the subjective and market beliefs
coincide. Since the employee acts risk-averse, she exercises sub-optimally, hence waives option
value. As the spot increases, this reduction becomes irrelevant, i.e. the particular ratio tends to
one. For µ = −3%, the effect of waiving option value is further stressed due to the pessimistic
subjective beliefs. In the case of µ = 3%, the optimistic personal perceptions cause the employee
to delay her exercise decision. Further, the indifferent payment I even exceeds the value of the
portfolio, despite risk aversion.

5. CONCLUSION AND OUTLOOK

In this paper, we have introduced subjective excess returns in the stochastic volatility model of
Heston (1993) and modified a recombining tree model to value employee stock options accord-
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ingly. Due to the structure of the tree, many specific characteristics of ESOs can easily be incor-
porated. We determined price ratios between subjective and objective option values, where we
focused on the excess returns. Future work could for instance cover further ESO specifications or
employ the tree to value similar sophisticated derivative types.
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1. INTRODUCTION

This paper extends derivative pricing based on multivariate affine processes to affine models with
Markov switching drift and diffusion coefficients. In the economic and finance literature, models
with Markov switching parameters are often said to be regime switching.

In many economic and finance applications, processes fall prey to changes in regime. Regimes
are time periods between which the dynamics of these processes are substantially different (Hamil-
ton 1989). E.g. the mean returns, correlations and volatilities of stock prices are different in bull
and bear markets, and the mean reversion level of interest rates may be lower in crisis scenarios.
Based on this observation, the pricing of derivatives should account for the existence of different
regimes.

Furthermore, many financial products benefit from multidimensional analysis. The price of
a European call option is better modeled by allowing for stochastic interest rates and stochastic
volatility. Also other products require multidimensional analysis directly through their structure.
The price of a credit default swap (CDS) is derived from the dynamics of the interest rate and the
hazard rate of default of the underlying. When we want to adjust to a price of a derivative for the
creditworthiness of its seller, an additional process for the hazard rate of the seller enters into the
game. This is known as a credit valuation adjustment (CVA), and together with a similar adjust-
ment for the buyer’s creditworthiness, the debit valuation adjustment (DVA), these are common
and increasingly important drivers of multivariate analysis (Hull and White 2013).

In this paper, we consider the popular and broad class of multivariate affine processes that is
often used to jointly model time series such as interest rates, stochastic volatility, hazard rates and
log-asset prices (Duffie et al. 2003). Affine processes include the Vasicek and Cox-Ingersoll-Ross
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short rate models as special univariate cases. The primary advantage of affine processes over gen-
eral multivariate processes in general is that the price of many derivatives has a closed form or
is implicit in a system of ordinary differential equations (ODEs). ODE solutions are markedly
more tractable than the partial differential equations (PDEs) that multivariate processes produce.
We generalize multivariate affine processes to include Markov switching drift and diffusion co-
efficients. Our resulting Markov switching- (MS-)affine process maintains the property of ODE
pricing solutions.

There is a rather restraint body of literature on this problem. Elliott and Mamon (2002) consider
pricing a bond based on a short rate that follows a univariate Vasicek model with Markov switching
mean reversion level. Elliott and Siu (2009) extend this result to bond prices based on a short rate
that follows a univariate affine process with Markov switching mean reversion level and (in the
Vasicek case) diffusion.

We take a more formal approach and follow the line of argumentation of Filipović (2009,
Chapter 10). We derive the characteristic function of the MS-affine process and show that it can
be expressed using the solutions of two systems of ODEs. We also prove that these solutions exist
and are unique, provided that the parameters of the process are admissible in some sense. The
characteristic function is the basis to price a wide variety of payoffs.

Effectively, our main theorem extends all pricing ODEs for affine processes to MS-affine pro-
cesses. These include CVA and DVA adjustments, CDSs, exchange options, and many more.
Moreover, for all these derivatives we may have regime dependent payoffs. The regime dependent
payouts are used, for example, when the payoff of a derivative relies on the rating of a counterparty,
and for this counterparty we have a rating migration matrix. Each rating (e.g. AAA, AA, etc.) can
be seen as a regime in which the dynamics of the processes are different. Another example is
when the dynamics of the affine process are different after some policy is introduced, but we are
unsure when this policy takes effect. The different regimes would be the different states that the
development and implementation of this policy can be in.

This remainder of this paper is outlined as follows. First we define the MS-affine process and
the admissibility of its parameters. Then we provide two theorems that can be used for derivative
pricing. We conclude with a simple example on how to apply these theorems to a bond price.

2. MODEL AND ANALYSIS

Let W
t

be a d-dimensional Brownian motion with filtration {G
t

}. Let S
t

be a continuous time
Markov chain with state space S = {1, . . . , h}, filtration {H

t

} and generator Q that switches
between the regimes in S . W

t

and S

t

are independent and defined on a filtered probability space
h⌦,F , {F

t

},Pi, where F
t

= G
t

_H
t

.

Definition 2.1 We call the process X on the canonical state space X = Rm

+ ⇥Rn, m � 0, n � 0,
m+ n = d � 1, MS-affine if

dX

t

= µ

St(Xt

)dt+ �

St(Xt

)dW

t

, (1)
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where

�

s

(x)�

>

s

(x) = a

s

+

dX

i=1

x

i

↵

i

, µ

s

(x) = b

s

+

dX

i=1

x

i

�

i

= b

s

+ Bx (2)

for some d⇥ d-matrices a
s

and ↵

i

, and d-vectors b
s

and �

i

, with B =

⇥
�1 · · · �

d

⇤
.

Hence only a

s

and b

s

are regime dependent, not ↵
i

and �

i

.1

X

t

may stack all sorts of financial variables. For example, if r

t

is the short rate, A
t

some
asset price, V

t

the stochastic volatility of the stock price, and h

t

the hazard rate of default of the
counterparty, then X

t

= (r

t

, lnA

t

, V

t

, h

t

) models these processes jointly. For financial applications
this model is usually under the risk neutral measure. This implies (among other things) that the
drift of lnA

t

is r
t

� 1
2Vt

.
For ease of notation, we write Z

t

= e

St 2 {0, 1}h, a vector of zeros with S

t

-th entry one. Z is
the state space of Z

t

. Then by Elliott (1993),

dZ

t

= QZ

t

dt+ dM

t

, (3)

where M

t

is a martingale. Without proof we assume throughout this text that for every x 2 X ,
z 2 Z there exists a unique solution (X,Z) = (X

x

, Z

z

) of (1) with X0 = x and Z0 = z.
To ensure that the process does not escape X we need some admissibility conditions on the

parameters in (2). In what follows, we denote I = {1, . . . ,m} and J = {m+ 1, . . . , d}. Also, for
any sets of indices M and N , and vector v and matrix w, v

M

= [v

i

]

i2M

and w

MN

= [w

ij

]

i2M,j2N

are the corresponding sub-vector and sub-matrix.

Definition 2.2 We call X an MS-affine process with admissible parameters if X is MS-affine and

a

s

,↵

i

are symmetric positive semi-definite,
a

sII

= 0 for all s 2 S (and thus a
sIJ

= a

>

sJI

= 0),
↵

j

= 0 for all j 2 J,

↵

i,kl

= ↵

i,lk

= 0 for k 2 I\{i}, for all i, l 2 {1, . . . , d},
b

s

2 X for all s 2 S,
B
IJ

= 0,

B
II

has nonnegative off-diagonal elements.

We now state our main contribution. diag(F

s

) refers to the (block) diagonal matrix from the
regime specific matrices F1, . . . , Fh

.

Theorem 2.1 Let X be an MS-affine process with admissible parameters. Let u 2 iRd, t  T ,
x 2 X and z 2 Z . Then there exists unique solutions A(t, u) : R+ ⇥ iRd ! Cd⇥d and B(t, u) :

1Taking ↵i and �i regime dependent complicates further analysis and we are not sure whether ODE solutions to
the characteristic function are possible in that case.
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R+ ⇥ iRd ! Cd to

@

t

A(t, u) = A(t, u)

�
diag

�
1
2BJ

(t, u)

>

a

sJJ

B

J

(t, u) + b

>

s

B(t, u)

�
+Q

�
, (4)

A(0, u) = I

h

,

@

t

B

i

(t, u) =

1
2B(t, u)

>

↵

i

B(t, u) + �

>

i

B(t, u), i 2 I,

@

t

B

J

(t, u) = B>

JJ

B

J

(t, u),

B(0, u) = u,

such that the F
t

-conditional regime specific characteristic function satisfies

E
h
e

u

>
XT

Z

T

���F
t

i
= A(T � t, u)e

B

>(T�t,u)Xt
Z

t

. (5)

Before proving the above theorem, we state (without proof) the following lemma, which is useful
in an MS setting. ⌦ denotes the Kronecker product.

Lemma 2.2 Let F
St 2 Rp⇥q be a set of d matrices with Markov switching index, then (Z

t

⌦
I

p

)F

St = diag(F

St)(Zt

⌦ I

q

).

Also, we use the following lemma adapted from Filipović (2009, Lemma 10.1).

Lemma 2.3 Consider the system of ODEs

@

t

y(t, y0) = f(y(t, y0)), y(0, y0) = y0, (6)

where f : Cd ! Cd is a locally Lipschitz continuous function. Then:

1. For every y0 2 Cd there exists a lifetime t+(y0) 2 (0,1] such that there exists a unique
solution y(·, y0) : [0, t+(y0)) ! Cd of (6).

2. The domain D =

�
(t, y0) 2 R+ ⇥ Cd

��
t  t+(y0)

 
is open in R+ ⇥ Cd and maximal in the

sense that either t+(y0) = 1 or lim
t"t+(y0) ky(t, y0)k = 1, respectively, for all y0 2 Cd.

Proof of Theorem 2.1. Define �

t

= A(T � t, u)e

B(T�t,u)>Xt . We prove that �
t

Z

t

is martingale
because this implies that E

⇥
e
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>
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Z

T

��F
t

⇤
= E [�

T

Z

T

|F
t

] = �

t

Z

t

, and then (5) is true. The
dynamics of �

t

Z

t

follow from Itô’s lemma and Lemma 2.2,
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t

Z

t
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t

Z
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t
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St(Xt

)dW
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t

�
B(T � t, u)

>

�

St(Xt

)dW

t

Z

t

+ dM

t

�
.

Therefore, �
t

Z

t

is a local martingale. The remaining part of the proof is showing that this local
martingale is uniformly bounded, so it is also a martingale.
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We know from Filipović (2009, proof of Theorem 10.2) that by admissibility, for any u 2
Cm

�

⇥ iRn, t 2 R+ a unique solution B(t, u) : R+ ⇥ Cm

�

⇥ iRn ! Cm

�

⇥ iRn exists with infinite
lifetime, so < �

B(t, u)

>

x

�  0 for all x 2 X .
Apply Lemma 2.3 to the vectorization of the ODE of A(t, u) (4), so y = vec(A), y0 = vec(I

h

)

and f the vectorization of the RHS of (4). f is differentiable by differentiability of B(t, u) and thus
locally Lipschitz continuous. Therefore a unique solution for A exists with lifetime t+(vec(Ih)) 2
(0,1]. We prove by contradiction that t+(vec(Ih)) = 1. Suppose t+(vec(Ih)) < 1, then
lim

t"t+(vec(Ih)) k vec(A(t, u))k = 1. Note that

k vec(A(t, u))k2 = vec(A(t, u))

⇤

vec(A(t, u)) = tr(A(t, u)

⇤

A(t, u)).

Define � = max

i=1,...,h{��

i

, 0}, with �

i

the eigenvalues of Q+Q

>, then

@

t

k vec(A(t, u))k2 = tr(@

t

A(t, u)

⇤

A(t, u) + A(t, u)

⇤

@
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�
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Q+Q
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h

� k vec(A(t, u))k2.

For the second equality we have substituted @

t

A(t, u) with (4). The first inequality follows from
� � 0 and the fact that for all s 2 S ,

< �
1
2BJ

(t, u)

>
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sJJ

B

J
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>
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J

(t, u)) + b
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<(B(t, u))  0

by the admissibility restrictions on a

sJJ

and b

s

and the codomain of B(t, u). The second inequal-
ity holds because Q + Q

>

+ �I

h

is positive semi-definite by construction and for any positive
definite matrices C and D of the same size it holds that tr(CD)  tr(C) tr(D). Applying Gron-
wall’s inequality gives k vec(A(t, u))k2  he

tr
(

Q+Q

>+�Ih)t, for all t < t+(vec(Ih)). This yields
lim

t"t+(vec(Ih)) k vec(A(t, u))k < 1, so by contradiction it follows that t+(vec(Ih)) = 1; A(t, u)
has infinite lifetime for all u 2 Cm

�

⇥ iRn.
Combining these results we have that �

t

and B(t, u) are uniformly bounded for all t  T , so
�

t

Z

t

is a martingale.
Theorem 2.1 is pivotal to derivatives pricing, but cannot be applied directly. Additionally, we

need that (5) holds when u 2 Rd. Filipović (2009, Theorem 10.3 and Corollary 10.1) proves this
for affine processes, and we conjecture that this result extends to MS-affine processes.

3. SIMPLE EXAMPLE

As an example on how to apply the above theorems to derivative pricing, we consider the bond
price in a MS-Vasicek short rate model. Take the short rate model dr

t

= � (µ

St � r

t

) dt+�

StdWt

,
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where S
t

is the continuous time Markov chain that switches between regimes and has generator Q.
Introduce the integrator dR

t

= r

t

dt, R0 = 0, then X

t

= (r

t

, R

t

) is a MS-affine process, and for
u = (0,�1) we have

1

> E
⇥
e

u

>
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Z
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��F0

⇤
= E

⇥
e

�RT
��F0

⇤
= E


exp

✓
�
Z

T

0

r

t

dt

◆����F0

�
.

Using Theorem 2.1 we can solve the LHS and thus obtain the price of the bond (the RHS, if it is
finite). More examples can be found in Filipović (2009, Chapter 10.3).
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