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Abstract In this paper we first review some
well known results for continuous time Markov
processes, that live on a finite state space.
Then special attention is paid to the construc-
tion of a continuous time Markov process and
a filtration in continuous time, starting from
a discrete time Markov chain and a filtration
in discrete time. The Markov property here
holds with respect to filtrations that necd not
be minimal. A complete version of this paper,
including proofs, will appear elsewhere.

Let (Q,F,IF,P) be a filtered probability
space. Assume that the filtration IF satisfies
the usual conditions in the sense of Dellacherie
& Meyer [3). Let X be a I[F-Markov process
with a finite state space. Without loss of gen-
erality we can assume that the state space is
the standard basis of the Euclidian space IR™.
Call this set B™ = {by,....bn}. (Indeed. if
€ is a stochastic process with values in a set
{z1,...,2m}, where all the z; are different,
then we can define the process X with val-
ues in B™ by X; = b; ill § = =i. Hence the
probabilistic strucure of § determines that of
X and vice versa). By .\ is IF-Markov it is
meant that for all t > s and for all b € B™
one has P(X, = b|F,) = P(X: = bla(.X,)).
Denote by ®(t,s) the n x m matrix with el-
ements ®;;(t,s) = P(X¢ = b\, = b)) and
let (the limit is assumed to exist) A(f) =
limajo ,l;[q’(t + h,t) = I]. In this paper we as-
sume that actually A(t) is independent of ¢, so
we write A instead. We call A the gencrating
matrix of X

Introduce also the following notation. For
ke {0,1,2,...) let T be the time of the k-
th transition of X and Sty = Tigr — Tk Let
furthermore A be the diagonal matrix with el-
ements A;; = A = —Aii. Assume thay the
Ai > 0, then A is invertible. and the T are
finite a.s.
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We have the following wellknown result.

Theovem 1 (i) For all k > 0 we have that
Sk41 has, conditionally on Fr,, an exponen-
tial distribution with mean X‘le

(i) For all k > 0 1l holds that E(X71op|F1] =
[AA=" + 1) X7,

(iii) N7,,, and Sz,,, are condilionally inde-
pendent given Frp,.

Covollary 2 The embedded process x : Q x
{0,1,2,..} — B™, defined by xx = X7, 18
a Markov chain w.r.t. the dicrete time fillra-
tion {Gu}n>0, defined by Gn = Fr,, and has
transilion malriz A given by A=AN"' + L

REMARK: Observe that for an embedded
Markov chain z necessarily the A;; = 0, and
hence P(xi4y = 2¢) = 0 for all k.

We obtained in theorem 1 and corollary 2 the
distribution of the embedded chain and the
distribution of the jump times of the Markov
chain. We proceed with following the road in
the opposite direction. That is, starting from
a Markov chain in discrete time and a sequence
of exponentially distributed random variables,
we construct a Markov chain in continuous
time. A similar construction by another ap-
proach can he found in Doob (4], section VI.1
and Gilman & Skorohod [5] sections 111.1 and
111.3, with the restrictions that the filtrations
are generated by the processes involved. Here
we allow more general filtrations. In Jacod (6],
section 11121 properties of filtrations like the
one that is introduced below are described, for
the case where these are generated by a mul-
tivariate point process. We also mention the
paper (1] by Boel, Varaiya and Wong.

The basic asstnptions for the rest of the paper
are the following. Let (2, F, (i, P) be a filtered
probability space. (3 is a filtration in discrete
time, {+ = {Ge)reqon.2. ). Denote by Goo the



o-algebra \/, 5, G.. Let 7}, : 0 — [0, 00] for
each n € {0,1,2,...) be a random variable,
Assume moreover that for all nThy > 71,
and that strict inequality holds if Th < co and
that the T, are ¢ -measurable. Furthermore
we assume that we have an auxiliary inea-
surable space (E, £) and a stochastic process
z:2x{0,1,2,...} — E. Then a continuous
time process X : Q) x [0,00) — E is defined by

. o0
Xl = szl(T.Sl<Tn+|) (l)

k=0
A filtration in continuous time js defined in

Definition 3 Le¢ Jor each t € [0,00) the set
Hy be defined as Sollows: H, = {(FeF: v
3G € G such that Fn{Tig > t} = Grn
{Tes1 > 1}).

Then we have the following (similar to Jacod
[6], proposition (3.39))

Proposition 4 The Samily 11 = {He}iefo,c0)
1s a right continuous filtration on Q, the Ty are
H-stopping times and the process X defined by
equation (1) is M-adapted.

REMARK: One can also define filtrations hy
Mi =HNGe. This corresponds to the filtra.
tion defined in Jacod (6] on page 84. OF course
the H, and M/ coincide iTF =g..

Proposition 5 For all none has My, = G, N
Hoo, where Ho, = VizoM. and Hr,,, _ =
HT. V.U(T,..“ )

Next we discuss an application of the obtained
results to multivariate point processes. Con-
sider next to the T, sequence a sequence of
random variables Z, taking values in soine
auxiliary measurable space (E,£). Define
Zn = Z,}l(r.<oo). assuming that the product
makes sense in £ Define then the G, as

gn=G(ZO-Zl-T].---vZn‘Tn)- (2)

Let now z, = (Th,27), z, = (Th,Z,) and
for t € [0,0c) we
define X by X’ = Z:;O r"“ﬂ.s‘("}.“) =

o Znl(T.<t<T ). Then X can be con-
sidered as a multivariate point process with
the Z,-sequence as marks, Following the usual
convention all the events of \" take place he-
fore To,. We claim the following:

Proposition 6 The filtration W, 4 defined
with the G, from equation (2), is identical with
IFX, the filtration generaled by X .
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Notice that there js a little difference
with for instance T30 in Brémaud (2],
rage 307, where (in our notation) FX =
a{Z'.TI,Z,'....‘T,‘,Z;}. We cannot have
this result here, since if for instance 7 = 00,
then for all n 2 1 one has f.}‘_ = G, =
o{Z5) # a{Z&,T,,Z,’,...,T,,.Z,‘,}. Of course
the difference disappears if all the Tn are fi-
nite, -

As a side remark we notice that the construc-
tions in this paper allow for a generalization of
the notion of a multivariate or marked point
process as a sequence of pairs of random times
and o-algebras {(7;,,,(},.)}, where the 7, are
Gy -measurable.

In addition to the assumptions made before we
impose the following conditions on the random
variables z, and Th. Each 2, assumes its val-
ues in the set B™ and the sequence {z,.) is
Markov w.r.t. the filtration (3. Denote by
A’ the matrix of transition probalities of T,
S0 Pznyy = bilz, = bj) = Alj. We do not
assume that the A, are zero, which is a nec-
essary property of an embedded Markov chain
(see the remark following corollary 2),

Define for all n € IN S, 4, as Tosy = T, and
assime that S, has. conditionally on Gn,
an-exponential distribution witl density on

(0,00)
17A exp(—=As)z,,,

where A isa diagonal matrix wit), entries Aj;; =
Ai and all \; 2 0 and moreover that Sn41 and
Zn+1 are conditionally independent given G,.
Here 17 is the vector [1,....1] € R™*™ a54
superscript 7' denotes transposition,

The main result of this paper is that the
process X' is a continuous time Markov process
w.r.t. the filtration NI, The proof of this uses
a key result that is contained in the following
lenina, which tells ns how to compute certain
conditional expectations given H, in terms of
conditional expectations given Gn.

Lemma 7 Ler 2 be an integrable random
varwable. Then, with (he convenlion g =0,

E[Z](Tn51<‘r.+t)'ul} =

Wt cier .y EENTu<1<T, ) 160)
n ST, - .
sl NTugieT ) 1G0])

wilh

Elyr, cicr,y,)IGa) =



Lz, <)zl exp(=A(t — T,))1.

Theorem 8 Fort > s> 0 it holds that
E[X(|H,]) = A=) x, (3)

with A = (A'=1)A. So X is a Markov process
with respect to the filtration T with fransition
intensities given by A.

Notice that the Markov process .X' constructed
this way has jump times that in general differ
from the T}, since it is not explicitely assumed
that the diagonal elements of A’ are zero. De-
note by Ty the jump times of X.
In order to avoid uninteresting complications,
we assume that z has no absorbing states, so
all the A, # 1. If we denote in this case the
embedded Markov chain by #, then it follows
from 1, that Z has the transition matrix A and
the interarrival times ~§L-+1 = Tiy1—Th are ex-
ponentially distributed given My, with mean
17'/.\"1"1... where the matrix A has as its en-
tries zeros on the diagonal and outside it
’
Aij = ] .:4':1'..'
Ji

and the diagonal matrix 1‘ has entries Aii =
Ai(1 = A};). (Notice that A = A and 4 = A’ if
all the AJ; are zero).
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