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1 Introduction

In this paper we present some elementary computations concerning some Markov
modulated (MM) counting processes, denotedN , also called counting processes with
regime switching. Such processes fall into the class of hybrid models [29] and are in
fact Hidden Markov processes [10]. Although in the present paper we restrict our-
selves to certain counting processes, it is worth mentioning that owing to its various
attractive features, regime switching has become an increasingly popular concept
in many branches of science. In a broad spectrum of application domains it offers
a natural framework for modeling situations in which the stochastic process under
study reacts to an autonomously evolving environment. In finance, for instance, one
could identify the background process with the ‘state of the economy’, to which asset
prices react, or as an identification of the varying default rate of an obligor. In oper-
ations research, in particular in wireless networks, the concept can be used to model
the channel conditions that vary in time, and to which users react. In the literature
in the latter field there is a sizeable body of work on Markov-modulated queues, see
e.g. [2, Chap. XI] and [27], while Markov modulation has been intensively used in
insurance and risk theory as well [3]. In the economics literature, the use of regime
switching dates back to at least the late 1980s [16]. Various specific models have
been considered since then, see for instance [1, 11, 12]. For other direct applications
of models with regime switching in finance (hedging of claims, interest rate models,
credit risk, application to pension funds) we refer to [8, 22, 23, 30, 31] for recent
results.

The key feature of the counting processes, commonly denoted N , in this paper
is that their intensity processes are of the form λt = λ(Xt,Nt), where X is a finite
state Markov chain whose jumps with probability one never coincide with the jumps
of the counting process. For mathematical convenience we assume without loss of
generality that X takes its values in the set of d-dimensional basis vectors.

This kind of processes can be used to model default events of some companies.
We restrict our treatment to models where the intensity is of a special form, leading
to theMM one point process which can be used to model the default event of a single
company, its extension to the situation of defaults of various companies and an MM
Poisson process, which can be used to model defaults for a large pool of obligors
whose individual intensities of default are all the same and small.

The intensities λt = λ(Xt,Nt) that we use will be affine in Xt , i.e. λt=λ�Xtf (Nt)

for some λ ∈ R
d and some function f . It is possible to show that the joint process

(X,N) isMarkov, in fact it is an affine process after a state transformation. Thismeans
that for many quantities of interest, like conditional characteristic functions, one can
in principle use the full technical apparatus that has become available for affine
process, see [9]. However, as these quantities can all be derived from conditional
probabilities (our processes are finite, or at most countably, valued), using these
techniques is like making a detour since the conditional probabilities can be derived
by more straightforward methods. Moreover these conditional probabilities give a
direct insight into the probabilistic structure of the process and can in principle be
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analytically computed. Therefore, we circumvent the theory of affine processes and
focus on direct computation of all conditional probabilities of interest.

Wewill also study limit results formodelswith rapid switching,which occurwhen
inflating the intensitymatrix of theMarkov chain by a factor tending to infinity. Rapid
switching between (macro) economic states is unrealistic, but in models for the profit
and loss of trading positions, especially in high frequency trading, rapid switching
may take place, see [15]. We will see that the limit processes have intensities that
are expectations under the invariant distribution of the chain. This is similar to what
happens in the context of Markov modulated Ornstein-Uhlenbeck processes [18],
see also [19], whereas comparable results under scaling in the operations research
literature can be found in [5, 6].

The paper is largely expository in nature, with a didactic flavor. We do not claim
novelty of all results below. Rather we emphasize the uniform approach that we
follow, using martingale methods, that may also lead to alternative proofs of known
results, e.g. those concerning transition probabilities by using ‘ε-arguments’ as in
[27]. The organization of the paper is as follows. In Sect. 2 we study Markov modu-
lated model for the total number of defaults when there are n obligors. As a primer,
in Sect. 2.1 we extensively study the Markov modulated model for a single obligor,
in particular its distributional properties. Then we switch to the more general situa-
tion of Sect. 2.2, where our approach is inspired by the easier case of the previous
section. All results are basically obtained by exploiting the Markovian nature of the
joint process (X,N). Section3 gives a few results for the Markov modulated Poisson
process. Conditional probabilities of future values of the counting processes, when
only its own past can be observed (and not the underlying Markov chain) can be
computed using filtering theory, which is the topic of Sect. 4. In Sect. 5 we obtain the
limit results for processes where the Markov chain is rapidly switching.

2 The MMModel for Multiple Obligors

We assume throughout that a probability space (Ω,F ,P) is given. Suppose we
have n obligors with default times τ i for obligor i, i = 0, . . . , n. Let Yi

t = 1{τ i≤t},
t ∈ [0,∞). Here we encounter the canonical set-up for the intensity based approach
in credit risk modelling, see [13, Chap. 12] or [4, Chap. 6] for further details on
probabilistic aspects. We postulate for each i ∈ {1, . . . , n}

dYi
t = λt(1 − Yi

t ) dt + dmi
t, (1)

for λt a nonnegative process to be specified, but which is the same for each obligor
i. Here each mi is a martingale w.r.t. to the filtration, call it Fi, generated by Yi

and the process λ. We impose that the τi are conditionally independent given λ.
Hence, simultaneous defaults occur with probability zero, as the τ i have a continuous
distribution. By the conditional independence assumption, themi are alsomartingales
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w.r.t. F = ∨n
i=1F

i. The process λ is assumed to be predictable w.r.t. F. In all what
follows in this section we take Nt = ∑n

i=1 Y
i
t .

2.1 The MM One Point Process

For a better understanding of what follows, we single out the special case n = 1 and
we write τ instead of τ 1. There is some advantage in starting with a simpler case that
allows for more explicit formulas, is more transparent, and that at the same time can
serve as a warming up for the more general setting.

2.1.1 The General One Point Process with Intensity

Let us consider the basic case, the random variable τ has an exponential distribution
with parameter λ, and Yt = 1{τ≤t}, t ∈ [0,∞). Then Y has semimartingale decom-
position

dYt = λ(1 − Yt) dt + dmt, (2)

where λ > 0 and m a martingale w.r.t. the filtration generated by the process Y . As a
matter of fact, the distributional property of τ is equivalent to the decomposition of
Y in (2). Clearly Yt is a Bernoulli random variable, so y(t) := EYt = P(Yt = 1) =
P(τ ≤ t). Alternatively, taking expectations, we get the ODE

ẏ(t) = λ(1 − y(t)),

which is, with y(0) = 0, indeed solved by

y(t) = 1 − exp(−λt).

Let Λτ be the compensator of Y , then

Λτ
t =

∫ t

0
λ(1 − Ys) ds =

∫ t

0
λ1{s<τ } ds =

∫ t∧τ

0
λ ds = λ(τ ∧ t).

Note that Y can be considered as Nτ , the at τ stopped Poisson process with intensity
λ. The compensator Λ of N stopped at τ indeed yields Λτ .

As a first generalization we change the above setup in the sense that we postulate

dYt = λt(1 − Yt) dt + dmt, (3)

where λ is a nonnegative locally integrable Borel function, also known as the (time
varying) hazard rate. As above one can show that
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y(t) = 1 − exp

(

−
∫ t

0
λs ds

)

.

In a next generalization we suppose that λ becomes a random process defined on
an auxiliary probability space (Ω ′,F ′,P′). We can look at the product probability
space (Ω × Ω ′,F ⊗ F ′,P ⊗ P

′) and redefine in the obvious way Y , τ and λ on
this product space. The filtration we will use consists of the σ -algebras F Y

t ⊗ F λ
t .

It is assumed that λ is predictable and a.s. locally integrable w.r.t. Lebesgue mea-
sure. For a given trajectory λt = λt(ω

′) we define Y on (Ω,F ,P) as in (3). With
F λ the σ -algebra generated by the full process λ, we have that

E[Yt|F λ] = 1 − exp

(

−
∫ t

0
λs ds

)

,

and hence

y(t) = EYt = 1 − E exp

(

−
∫ t

0
λs ds

)

.

Alternatively, one can construct the point process Y as follows. Let (Ω,F ,Q) be a
probability space onwhich is defined a standard Poisson processY and independently
of Y the nonnegative predictable process λ. Put Lt = E (μ)t , the Doléans exponential
of the Q-local martingale μ given by μt = ∫ t

0 (λs1{Ys−=0} − 1) d(Ys − s). Note that
L0 = 1. Let τk be the consecutive jump times of Y , τ0 = 0. Note that the differences
τk − τk−1 have a standard exponential distribution under Q. The assertion of the
following lemma is a variation on Eq. (4.23) in [4].

Lemma 1 The density process L allows the following explicit expression,

Lt = (λτ1)
Yt exp

(

t −
∫ τ1∧t

0
λs ds

)

1{Yt≤1}.

If λ is a bounded process, L is a martingale, hence ELt = L0 = 1.

Proof By construction, L is a local martingale. For bounded λ we have E
∫ t
0 L

2
s ds ≤

C exp(2t) for some constant C, which yields L a square integrable martingale. The
given expression for Lt can be verified by an elementary, but slightly tedious com-
putation.

Under the assumption that L is a martingale (guaranteed for bounded λ), by Gir-
sanov’s theorem, see [7, Chap. VI, T3 and T4], we can define for every T > 0 a
probability P on (Ω,FT ) such that

mt := Yt − t − 〈Y , μ〉t = Yt −
∫ t

0
λs1{Ys−=0} ds

is a localmartingale underP. Note thatP(YT > 1) = EQ1{YT>1}LT = 0.Hence, under
P we have 1{Ys=0} = 1 − Ys and the expression for mt coincides with (3) for t ≤ T .
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Note that L cannot be uniformly integrable, since L∞ = 0, which follows from Lτ2 =
0. Hence it is not automatic that one can define a probability P on (Ω,F ) such that
m is a martingale on [0,∞). Note that the laws under P and Q of λ are the same.

2.1.2 The One Point Process with MM Intensity

In this section we consider (3), where we specify λt as a function of a finite state
Markov chain Xt , i.e. λt = λ(Xt). We see that, trivial cases excluded, unlike the
constant hazard rate λ in (2), we now have a rate that assumes different values
according to the states of the Markov chain. We thus have a rate that is subject to
regime switching, one also says that we have a Markov modulated rate. In order
to pose a precise mathematical model, we make some conventions. Let d be the
size of the state space of the Markov chain X. Then w.l.o.g. we may assume that X
takes its values in the set {e1, . . . , ed} of d-dimensional standard basis vectors. This
implies that any function of Xt can be written as a linear map of Xt , in particular
λ(Xt) = λ�Xt , where on the right hand side λ is a vector in Rd+.

Let Q be the transition matrix of X, for which we use the convention that Qij

for i �= j is the intensity of a transition from state j to state i. As a consequence the
column sums of Q are equal to zero. We then have

dXt = QXt dt + dMX
t ,

whereMX a martingale with values in Rd . We also assume that Q is irreducible and
we denote by π the vector representing the invariant distribution.

Furthermore it will be throughout assumed that Y and X have no simultaneous
jumps, hence the quadratic variation process [X,Y ] ([X,Y ]t = ∑

s≤t ΔXsΔYs) is
identically zero.

For the single obligor case, we pose the following model with regime switching,

dYt = λ�Xt(1 − Yt) dt + dmt,

where λ ∈ R
d+.

One way of constructing this model is by realizing it on a product space with
λt = λ�Xt as in Sect. 2.1.1. Alternatively, one can realize Y as standard Poisson
process and independently of it, X as a Markov chain on the auxiliary space under
Q. By independence, one has [X,Y ] = 0 under Q and as these brackets remain the
same under an absolutely continuous change of measure using the Q-martingale μ

of the previous section, we are then guaranteed to have [X,Y ] = 0 under P as well.
In this case it is possible to have P defined on (Ω,F ) for F = F∞, where we use
the filtration generated by Y and X. As a side remark we note that P will not be
absolutely continuous w.r.t. Q on F∞.
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In all what follows in this paper we adopt the following Convention: we will use the
generic notation M for a martingale, possibly even of varying dimensions, whose
precise form is not important.

An important role will be played by the matrices Qkλ := Q − k diag(λ) for k ≥ 0.
Here diag(λ) is the diagonal matrix with ii-element equal to λi. Here is a, possibly
known, stability result for the matrix Qλ (we take k = 1, but a similar result is
obviously true for all positive k).

Lemma 2 Let λi > 0 for all i. Then the matrix Qλ is invertible and exp(Qλt) → 0
for t → ∞.

Proof That Qλ is invertible, can be seen as follows. Write

Qλ = −(I − Qdiag(λ)−1)diag(λ)

and note that Qdiag(λ)−1 is also the intensity matrix of a Markov chain, as its off-
diagonal elements are positive and 1�Qdiag(λ)−1 = 0. Therefore I − Qdiag(λ)−1 is
invertible, and so is Qλ.

In proving the limit result, we give a probabilistic argument.1 Consider the aug-
mented matrix

Qa
λ =

(
0 −1�Qλ

0 Qλ

)

,

which is the transitionmatrix of aMarkov chain taking values in {ea0, . . . , ead}, labelled
as the standard basis vectors of Rd+1. Clearly, 0 is an absorbing state, and the only
one.Hencewhatever initial state xa(0), we have that exp(Qa

λt)x
a(0) → ea0 for t → ∞.

Computing the exponential and taking xa(0) �= ea0, we find

exp(Qa
λt)x

a =
(
1 1�(I − exp(Qλt))
0 exp(Qλt)

)

xa(0) =
(
1�(I − exp(Qλt))x(0)

exp(Qλt)x(0)

)

.

Hence exp(Qλt) → 0.

In a next section, see Remark 2, we shall see how to compute P(Yt = 1). It turns out
to be the case that

P(Yt = 1) = 1 − 1� exp(Qλt)x(0).

We conclude in view of Lemma 2 that P(Yt = 1) → 1 for t → ∞. Hence, with
probability one, the obligor eventually defaults, as expected.

1This argument has been provided by Koen de Turck, University of Ghent.
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2.2 The MMModel for Multiple Obligors

In Sect. 2.1.2 we have seen results for default processes in the situation of a single
obligor. In the present section we generalize those results, at the cost of considerably
more complexity, to the situation of multiple obligors.

2.2.1 Multiple Obligors with Time-Varying Intensity

Recall (1). Let’s first look at the constant intensity case, λt = λ > 0. Then Nt =∑n
i=1 Y

i
t satisfies

dNt = λ(n − Nt) dt + dmt, (4)

where m = ∑n
i=1 m

i. By the independence of the default times, m is a martingale
w.r.t. F andNt has the Bin(n, 1 − exp(−λt)) distribution. Moreover, givenNu, u ≤ s,
Nt − Ns has for t > s the Bin(n − Ns, 1 − exp(−λ(t − s))) distribution. This model
has long ago been used in software reliability going back to [21], with various refine-
ments, like in a Bayesian set up the parameters n and λ being random, see [25, 26]
or with time varying but deterministic intensity function λ(t), see [14].

Next we look at the case of time varying, possibly random, λ. By the assumed con-
ditional independence of the τ i given λ we have, similar to the constant λ case,
that Nt , conditional on the process λ, has a Bin(n, 1 − exp(−Λt)) distribution with
Λt = ∫ t

0 λs ds.
Let pk(t) = P(Nt = k|F λ), put

p(t) =
⎛

⎜
⎝

p0(t)
...

pn(t)

⎞

⎟
⎠

and

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−n 0 · · · · · · · · · 0
n −(n − 1) 0 · · · · · · 0
0 n − 1 −(n − 2) 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . . −1 0

0 · · · · · · 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5)

Then we have for p(t) the system of differential equations

ṗ(t) = λtAp(t),

which has solution (here we use that λ is real-valued)
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p(t) = exp(ΛtA)e0,

where Λt = ∫ t
0 λs ds and e0 is the first standard basis vector of Rn+1. For the vector

whose elements are the unconditional probabilities P(Nt = k) one has to take the
expectation and it depends on the specification of λ whether this results in analytic
expressions.Wewill see that this happens in case of aMarkovmodulated rate process.

2.2.2 The MM Case

We assume to have a finite state Markov process as in Sect. 2.1.2 and let λt = λ�Xt−.
For Nt one now has its submartingale decomposition

dNt = λ�Xt(n − Nt) dt + dmt .

This is the model of Sect. 2.1.2 extended to more obligors. The default rate for each
obligor has become random (λ�Xt), but is taken the same for all of them.

Let νk
t = 1{Nt=k}, k = 0, . . . , n. For notational convenience we set ν−1

t = 0. It
follows that Δνk

t = 1 iff Nt jumps from k − 1 to k at t, and Δνk
t = −1 iff Nt jumps

from k to k + 1. This can be summarized by

dνk
t = (νk−1

t− − νk
t−) dNt .

In vector form this becomes

dνt = (J − I)νt− dNt, (6)

where

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1 0

0 1
. . .

...
. . .

. . .
. . . 0

0 · · · 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Using the dynamics for N , we get

dνk
t = (νk−1

t− − νk
t−)(λ�Xt−(n − Nt) dt + dmt)

= λ�Xt((n − k + 1)νk−1
t − (n − k)νk

t ) dt + dMt .

Letting νt =
⎛

⎜
⎝

ν0
t
...

νn
t

⎞

⎟
⎠, we get from the above display
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dνt = λ�XtAνt dt + dMt, (7)

where A is as in (5). This equation for ν is a main ingredient in the next result.

Proposition 1 Let ζt = νt ⊗ Xt. The process ζ is Markov with transition matrix Q,
where Q = (A ⊗ diag(λ) + I ⊗ Q). It follows that E[ζt|Fs] = exp(Q(t − s))ζs.

Proof We will use Eq. (7) together with the dynamics of X. Using the product rule
and the fact that N and X do not jump at the same time and summarizing again all
martingale terms again asM,we get (recall themultiplication rule (A ⊗ B)(C ⊗ D) =
(AC) ⊗ (BD))

d(νt ⊗ Xt) = (
(Aνtλ

�Xt) ⊗ Xt + νt ⊗ (QXt)
)
dt + dMt

= (
(Aνt) ⊗ (Xtλ

�Xt) + νt ⊗ (QXt)
)
dt + dMt

= ((Aνt) ⊗ (diag(λ)Xt) + Iνt ⊗ (QXt)) dt + dMt

= (A ⊗ diag(λ) + I ⊗ Q)(νt ⊗ Xt) dt + dMt

= Q(νt ⊗ Xt) dt + dMt .

Note that ζt by construction consists of the indicators of the values of the joint process
(ν,X). Hence the equation dζt = Qζt dt + dMt reveals, cf. Lemma1.1 inAppendixB
of [10], that ζ (and hence (ν,X)) is Markov.

An explicit computation shows

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Qnλ 0 · · · · · · · · · 0
n diag(λ) Q(n−1)λ 0 · · · · · · 0

0 (n − 1) diag(λ) Q(n−2)λ 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . . Qλ 0

0 · · · · · · 0 diag(λ) Q

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (8)

where for k ∈ N we have Qkλ = Q − k diag(λ).

Remark 1 The original dynamic equations for Xt and Nt can be retrieved from
Proposition 1. Realizing the relations Xt = (1� ⊗ I)ζt and (1� ⊗ I)Q = 1� ⊗ Q,
and 1�A = 0, we obtain from Proposition 1

dXt = (1� ⊗ I) (Q(νt ⊗ Xt)) dt + dMt

= (1� ⊗ Q)(νt ⊗ Xt) dt + dMt

= QXt dt + dMt .

Similarly, we get from νt = (I ⊗ 1�)ζt ,



Explicit Computations for Some Markov Modulated … 73

dνt = (I ⊗ 1�) (Q(νt ⊗ Xt)) dt + dMt

= (A ⊗ λ�)(νt ⊗ Xt) dt + dMt

= Aνtλ
�Xt dt + dMt .

Using
(
0 1 · · · n)Aνt = (

n · · · 1 0
)
νt = n − Nt , we get from the last display the

decomposition dNt = (n − Nt)λ
�Xt dt + dmt back.

Letting π(t) = Eζt , we obtain from Proposition 1 the ODE

π̇(t) = Qπ(t), (9)

with the initial condition π(0) = e0 ⊗ x(0), where e0 has 1 as its first element, all
other elements being zero. We will give a rather explicit expression for π(t) =
exp(Qt)π(0), for which we need some additional results.

The differential equation for π is the following type of forward equation,

Ḟ = QF.

Here F can be any matrix valued function of appropriate dimensions. We will block-
diagonalize the matrix Q. The transformation that is needed for that is given by the
matrix V whose ij-block (i, j = 0, . . . , n) is

Vij =
(
n − j

n − i

)

(−1)i−jI.

Note that Vij = 0 for i < j, V is block lower-triangular. The inverse matrix is also
block lower-triangular with blocks

V−1
ij =

(
n − j

n − i

)

I.

One may check by direct computation that indeed VV−1 = I . It is straightforward
to verify that QV := V−1QV is block-diagonal with ith block (i = 0, . . . , n) equal
to

QV
i = Q(n−i)λ.

Putting G = V−1F we obtain
Ġ = QV G,

whose solution satisfying G(0) = I is block diagonal with ith block Gi(t) =
exp(Q(n−i)λt). We thus obtain the following lemma.

Lemma 3 The solution to the forward ODE Ḟ = QF with initial condition F(0) is
given by F(t) = exp(Qt)F(0), where
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exp(Qt) = V

⎛

⎜
⎝

exp(Qnλt)
. . .

exp(Qt)

⎞

⎟
⎠ V−1.

If F(t) = exp(Qt), its blocks Fij(t) can be explicitly computed. One has Fij(t) = 0 if
i < j, and for i ≥ j it holds that

Fij(t) =
(
n − j

n − i

) i∑

k=j

(−1)i−k

(
i − j

i − k

)

exp(Q(n−k)λt).

Proof We use the block triangular structure of V and V−1 together with the block
diagonal structure of QV to compute

Fij(t) =
i∑

k=j

Vik exp(Q(n−k)λt)Vkj

=
i∑

k=j

(
n − k

n − i

)

(−1)i−k exp(Q(n−k)λt)

(
n − j

n − k

)

=
(
n − j

n − i

) i∑

k=j

(−1)i−k

(
i − j

i − k

)

exp(Q(n−k)λt),

as stated.

Proposition 2 The solutionπ(t) to the system (9)ofODEsunder the initial condition
π(0) = e0 ⊗ x(0) has components π i(t) ∈ R

d given by

π i(t) =
(
n

i

) i∑

k=0

(−1)i−k

(
i

k

)

exp(Q(n−k)λt)x(0). (10)

Proof We use Lemma 3 and recall the specific form of the initial condition π(0). We
have to compute exp(Qt)π(0) and obtain fromLemma3with j = 0 forπ i(t) = Fi0(t)

π i(t) =
(

n

n − i

) i∑

k=0

(−1)i−k

(
i

i − k

)

exp(Q(n−k)λt)x(0)

=
(
n

i

) i∑

k=0

(−1)i−k

(
i

k

)

exp(Q(n−k)λt)x(0).

Remark 2 Let us look at a special case, n = 1. Then we can write Nt = Yt and it is
sufficient to compute
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π1(t) = E(YtXt) = (exp(Qt) − exp(Qλt)) x(0). (11)

As a consequence we are able to compute P(Yt = 1) = 1�
E(YtXt),

P(Yt = 1) = 1 − 1� exp(Qλt)x(0),

since 1� exp(Qt) = 1�. As exp(Qt) → π1�, we conclude in view of Lemma 2 from
(11) that π1(t) → π for t → ∞. This result should be obvious, as Yt eventually
becomes 1 and Xt converges in distribution to its invariant law.

For the case n > 1 the expressions forπ i(t) are a bit complicated, but their asymp-
totic values for t → ∞, are as expected, π i(t) → 0 for i < n, whereas πn(t) → π .
This again follows from Lemma 2.

Proposition 2 has the following corollary.

Corollary 1 Let φ(t, u) = E exp(iuNt)Xt. It holds that

φ(t, u) =
n∑

k=0

(
n

k

)

exp(iuk)(1 − exp(iu))n−k exp(Q(n−k)λt)x(0).

Proof We shall use the elementary identity

n∑

k=j

βk

(
n

k

)(
k

j

)

=
(
n

j

)

β j(1 + β)n−j

for β = −e−iu in the last step in the chain of equalities below. From Proposition 2
we obtain

E exp(iuNt)Xt =
n∑

k=0

eiukπ k(t)

=
n∑

k=0

eiuk
(
n

k

) k∑

j=0

(−1)k−j

(
k

j

)

exp(Q(n−j)λt)x(0)

=
n∑

j=0

n∑

k=j

(−eiu)k
(
n

k

)(
k

j

)

(−1)j exp(Q(n−j)λt)x(0)

=
n∑

j=0

(
n

j

)

eiju(1 − eiu)n−j exp(Q(n−j)λt)x(0).

Remark 3 Alternatively, one can compute a moment generating function ψ(t, v) =
E exp(−vNt)Xt for v ≥ 0. Let B have a binomial distribution with parameters n
and p = 1 − exp(−v). Then we have for ψ(t, v) the compact expression ψ(t, v) =
E exp((Q − Bdiag(λ))t)x(0) = E exp(QλBt)x(0).
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Remark 4 There appears to be no simpler representation for φ(t, u). We note that
this function also satisfies the PDE

φ̇(t, u) = (Q + n(eiu − 1)diag(λ))φ(t, u) + i(eiu − 1)diag(λ)
∂φ(t, u)

∂u
. (12)

Just by computing the partial derivatives, one verifies that this equation holds. Alter-
natively, one can apply the Itô formula to exp(iuNt)Xt followed by taking expecta-
tions.

2.2.3 Conditional Probabilities

The vehicle we use is the process ζ , recall ζt = νt ⊗ Xt . Our aim is to find expressions
for ζt|s = E[ζt|Fs] for t > s, fromwhich one can deduce the conditional probabilities
E[νt|Fs] andE[Nt|Fs]. By theMarkov property, Proposition 1, we haveE[ζt|Fs] =
exp(Q(t − s))ζs. Let ζt|s = E[ζt|Fs] and ζ k

t|s = E[1{Nt=k}Xt|Fs]. We aim at a more
explicit representation of the conditional probabilities ζ k

t|s for k ≥ 0. Note that ζ k
t|s =

(e�
k ⊗ I)ζt|s. Hence ζ k

t|s = (e�
k ⊗ I) exp(Q(t − s))ζs. Using Lemma 3, we have

ζ k
t|s = (e�

k ⊗ I)V

⎛

⎜
⎝

exp(Qnλ(t − s))
. . .

exp(Q(t − s))

⎞

⎟
⎠ V−1ζs.

By matrix computations as before this leads to the following result.

Proposition 3 It holds that

ζ k
t|s =

k∑

j=0

(
n − j

k − j

) k∑

i=0

(−1)k−i

(
k − j

k − i

)

exp(Q(n−i)λ(t − s))ζ j
s .

Note that in the formula of this proposition, only one of the ζ
j
s is different from

zero and then equal to Xs. Effectively, the sum over j thus reduces to one term only.
The conditional probabilities νk

t|s = P(Nt = k|Fs) can now simply be computed as
1�ζ k

t|s. Note that these still depend on Xs, and one has the explicit expression

E[νk
t |Fs] =

n∑

j=0

(
n − j

n − k

) k∑

i=j

(−1)k−i

(
k − j

k − i

)

1� exp(Q(n−i)λ(t − s))Xsν
j
s.

Remark 5 Consider the special case n = 1 and let Zt = YtXt , Yt as in Sect. 2.1.2.
This amounts to taking k = n = 1 in Proposition 3 and one gets for Zt|s = E[Zt|F Y

s ]
the simpler expression



Explicit Computations for Some Markov Modulated … 77

Zt|s = exp(Qλ(t − s))Zs + (
exp(Q(t − s)) − exp(Qλ(t − s))

)
Xs. (13)

The next purpose is to compute E[eiuNtXt|Fs] and from that one E[eiuNt |Fs] =
1�

E[eiuNtXt|Fs].
Proposition 4 The following hold.

E[eiuNtXt|Fs] =
n∑

k=0

n∑

j=k

(
n − k

j − k

)

(1 − eiu)n−jeiuj exp(Q(n−j)λ(t − s))ζ k
s ,

E[eiuNt |Fs] =
n∑

k=0

n∑

j=k

(
n − k

j − k

)

(1 − eiu)n−jeiuj1� exp(Q(n−j)λ(t − s))ζ k
s . (14)

Proof We start from the identity eiuNtXt = Fζt , with F = e(u) ⊗ I, where e(u) =(
1 eiu · · · eniu). Hence we have

E[eiuNtXt|Fs] = (e(u) ⊗ I) exp(Q(t − s))ζs.

This can be put into the asserted more explicit representation, involving the matrices
Qkλ by application of Proposition 3. The second assertion is a trivial consequence.

It is conceivable that only N is observed, and not the background process X. In such
a case one is only able to compute conditional expectation of quantities as above
conditioned on FN

s instead of Fs, see Sect. 4.1 for results.

3 The Markov Modulated Poisson Process

In this section we study MM Poisson processes. These have an intensity process
λt = λ�Xt , using the same notation as before. In terms of defaultable obligors, such
processes occur as limits of the total number of defaults Nt as in Sect. 2.2 where
n → ∞ and the vector λ is scaled to become λ/n, as we shall see later. So we can
use this to approximate the total number of defaults in a market with a large number
of obligors, where each of them has small default rate.

3.1 The Model

The point of departure is to postulate the dynamics of the counting process N as

dNt = λ�Xt dt + dmt .
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We follow the same approach as before. So we use that conditionally onF X we have
that Nt has a Poisson(Λt) distribution with Λt = ∫ t

0 λ�Xs ds. It follows that

E[1{Nt=k}Xt|F X ] = 1

k!Λ
k
t exp(−Λt)Xt =: pk(t)Xt,

and
d

dt
pk(t) = pk−1(t) − pk(t)λ�Xt .

Then we obtain

dE[1{Nt=k}Xt|F X ] = (
pk−1(t) − pk(t)

)
diag(λ)Xt dt + pk(t)(QXt dt + dMt),

and with π k(t) = E(pk(t)Xt) we find

π̇ k(t) = diag(λ)π k−1(t) + (Q − diag(λ))π k(t).

For k = 0, one immediately finds the solution π0(t) = exp(Qλt)x(0). For k > 0
there seems to be no simply expression in terms of exponential of Q and Qkλ as in
Proposition 2, not even for k = 1, although one has

π1(t) =
∫ t

0
exp(−Qλ(t − s))diag(λ) exp(Qλs) ds x(0).

However, it is possible to get a formula for the vector

Πn(t) =
⎛

⎜
⎝

π0(t)
...

πn(t)

⎞

⎟
⎠ ,

since it satisfies the ODE
Π̇n(t) = QnΠ

n(t),

where Qn ∈ R
(n+1)d×(n+1)d is given by

Qn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q − diag(λ) 0 · · · · · · 0
diag(λ) Q − diag(λ) 0 0

0 diag(λ)
. . .

. . .
...

...
. . . Q − diag(λ) 0

0 · · · 0 diag(λ) Q − diag(λ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Together with the initial conditions π k(0) = δk0x(0), one obtains
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Πn(t) = exp(Qnt)(e
n
0 ⊗ x(0)),

where en0 is the first basis vector of R
n+1. An elementary expression for exp(Qnt) is

not available due to the fact that Q − diag(λ) and diag(λ) do not commute. Besides,
Qn is block lower triangular with identical blocks on the main diagonal and therefore
cannot be block diagonalized.

However, in the present case there is a nice expression for the characteristic function
φ(t, u) = E exp(iuNt)Xt , unlike the situation of Corollary 1. To determine φ(t, u),
we apply the Itô formula (note that [N,X] = 0) and obtain

d exp(iuNt)Xt = (eiu − 1)eiuNt−Xt−dNt + eiuNt−dXt, (15)

which yields after taking expectations and using the dynamics of X and N

φ̇(t, u) = ((eiu − 1)diag(λ) + Q)φ(t, u).

Hence
φ(t, u) = exp

(
((eiu − 1)diag(λ) + Q)t

)
x(0).

Contrary to the π k(t) of Proposition 2 we thus found a simple formula for φ(t, u).
This formula is in line with [2, Proposition 1.6] for Markovian arrival processes.

Remark 6 It is possible to obtain the above results as limits from results in Sect. 2.2.2,
by replacing there λ by λ/n and letting n → ∞.

If we look at the moment generating functions ψ(t, v) = E exp(−vNt)Xt , we
have ψ(t, v) = exp

(
(Q − (1 − e−v)diag(λ))t

)
x(0). Replace in Remark 3 the para-

meter λ with λ/n and let n → ∞ and write Bn instead of B. Then we have
ψn(t, v) = E exp

(
(Q − diag(λ)Bn/n)t

)
x(0). As Bn/n → 1 − e−v a.s., we obtain

exp
(
(Q − diag(λ)Bn/n)t

) → exp
(
(Q − diag(λ)(1 − e−v))t

)
a.s. Since the expo-

nentials are bounded, we also have convergence of the expectations by dominated
convergence. Replacing −v with iu gives the characteristic function.

3.2 Conditional Probabilities

Mimicking the approach of Sect. 2.2.2, we consider again the νk
t = 1{Nt=k}. Let

ν̄n
t =

⎛

⎜
⎝

ν0
t
...

νn
t

⎞

⎟
⎠ .

Then ν̄n still satisfies Eq. (6). Combining this with the dynamics of N , we obtain the
semimartingale decomposition
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dν̄n
t = λ�Xt(J − I)ν̄n

t dt + dMt .

Letting ζ̄ n
t = ν̄n

t ⊗ Xt , then we can derive, similar to the approach of Sect. 2.2.2,

dζ̄ n
t = Qnζ̄

n
t dt + dMt .

This is for each n a finite dimensional system, which can be extended to an infinite
dimensional system for ζt . The resulting infinite coefficient matrix will be lower
triangular again,

dζt = Q∞ζt dt + dMt,

where Q∞ = I∞ ⊗ Qλ − J∞ ⊗ diag(λ) with I∞ the infinite dimensional identity
matrix and J∞ the infinite dimensional counterpart of the earlier encountered matrix
J . It follows that for the vector of conditional probabilities we have

E[ζt|Fs] = exp(Q∞(t − s))ζ̄s.

This looks like an infinite dimensional expression, but E[1{Nt=n}Xt|Fs] can be com-
puted from E[ζ̄ n

t |Fs] = exp(Qn(t − s))ζ̄ n
s , which effectively reduces the infinite

dimensional system to a finite dimensional one. One can now also compute, with
��
n = (

0 · · · 0 1
) ∈ R

1×(n+1),

P(Nt = n,Xt = ej|Fs) = (��
n ⊗ e�

j ) exp(Qn(t − s))ζ̄ n
s .

3.3 Conditional Characteristic Function

Our aim is to find an expression for φt|s := E[exp(iuNt)Xt|Fs]. Since we deal in
the present section with the MM Poisson process N , the bivariate process (X,N),
unlike its counterpart in Sect. 2, is an instance of a Markov additive process [2],
and E[exp(iu(Nt − Ns))Xt|Fs] will only depend on Xs. We first follow the forward
approach.

Proposition 5 It holds that

φt|s = exp
(
((eiu − 1)diag(λ) + Q)(t − s)

)
eiuNsXs. (16)

Proof Starting point is Eq. (15). We use the dynamics of N and X to get the semi-
martingale decomposition

d exp(iuNt)Xt = (eiu − 1)eiuNtdiag(λ)Xt dt + eiuNtQXt dt + dMt

= ((eiu − 1)diag(λ) + Q)eiuNtXt dt + dMt .

Let t ≥ s. We obtain (differentials w.r.t. t)
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dφt|s = ((eiu − 1)diag(λ) + Q)φt|s dt,

which has the desired solution.

Next we outline the backward approach. Observe first that φt|s is a martingale in the
s-parameter and that due to the fact that (N,X) is Markov, we can write for some
function Φ, φt|s = Φ(t − s,Ns)Xs. We identify Φ as follows, using the Itô formula
w.r.t. s. We obtain

dφt|s = (−Φ̇(t − s,Ns) ds + (Φ(t − s,Ns− + 1) − Φ(t − s,Ns−))dNs
)
Xs−

+ Φ(t − s,Ns−) dXs

= (−Φ̇(t − s,Ns) + (Φ(t − s,Ns + 1) − Φ(t − s,Ns))diag(λ)
)
Xs ds

+ Φ(t − s,Ns)QXs ds + dMs.

The above mentioned martingale property leads to the system of ODEs (n ≥ 0)

Φ̇(t, n) = Φ(t, n + 1)diag(λ) + Φ(t, n) (Q − diag(λ)) . (17)

We have the initial conditions Φ(0, n) = exp(iun). To know Φ(t, n) it seems nec-
essary to know Φ(t, n + 1), which suggest that the ODEs are difficult to solve con-
structively. Instead, we pose a solution, we will verify that

Φ(t, n) = exp
(
((eiu − 1)diag(λ) + Q)t

)
eiun.

Differentiation of the given expression for Φ(t, n) gives

Φ̇(t, n) = Φ(t, n)((eiu − 1)diag(λ) + Q).

Note that Φ(t, n + 1) = Φ(t, n)eiu. Insertion of this into the ODE gives

Φ̇(t, n) = Φ(t, n)(eiudiag(λ) + (Q − diag(λ))),

which coincides with (17).

4 Filtering

Let N be a counting process with predictable intensity process λ. In many cases it
is conceivable that λ is an unobserved process and expressions in terms of λ are not
always useful. Let λ̂t = E[λt|FN

t ]. Then the semimartingale decomposition of N
w.r.t. the filtration FN is given by

dNt = λ̂t dt + dm̂t,
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where m̂ is a (local) martingale w.r.t. FN . The general filter of the Markov chain
X, X̂t = E[Xt|FN

t ] satisfies the following well known formula (see [7], originating
from [28]) with Q as in Sect. 2.1.2

dX̂t = QX̂t dt + λ̂+
t−(X̂λt− − X̂t−λ̂t−)(dNt − λ̂t dt),

where X̂λt = E[Xtλt|FN
t ] and where we use the notation x+ = 1x �=0/x for a real

number x. For any of the previously met models for the counting process N we have
a predictable intensity process of the formλt = λ�Xt−f (Nt−), where f depends on the
specific model at hand. It follows that λ̂t = λ�X̂t−f (Nt−). In all cases we consider it
happens that f (Nt) remains zero after it has reached zero, and henceN stops jumping
as soon as f (Nt) = 0. Since λ�Xt > 0, with the convention 0

0 = 0 the above filter
equation reduces to

dX̂t = QX̂t dt + 1

λ�X̂t−
(diag(λ)X̂t− − X̂t−λ�X̂t−)(dNt − λ̂t dt). (18)

For the specificmodels we have encounteredwe give in the next sectionsmore results
on X̂ .

4.1 Filtering for the MMMultiple Point Process

The notation of this section is as in Sect. 2.2.2 and subsequent sections. Let ζ̂t =
E[ζt|FN

t ]. Then ζ̂t = νt ⊗ X̂t , where X̂t = E[Xt|FN
t ]. For X̂t we have from (18),

dX̂t = QX̂t dt + 1

λ�X̂t−

(
diag(λ)X̂t− − X̂t−X̂�

t−λ
)

(dNt − (n − Nt)λ
�X̂t dt).

At the jump times τk (k = 1, . . . , n) (these are the order statistics of the original
default times τ i) of N we thus have

Xτk = 1

λ�X̂τk−
diag(λ)X̂τk−.

Between the jump times, X̂ evolves according to the ODE

dX̂t

dt
= QX̂t − (n − Nt)(diag(λ)X̂t− − X̂t−X̂�

t−λ),

which is also valid after the last jump of N . It follows that for t ≥ τn we have
X̂t = exp(Q(t − τn))X̂τn .
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Below we need [ν, X̂]⊗t = ∑
s≤t Δνs ⊗ ΔX̂s. Using the equations for ν and X̂, we

find

d[ν, X̂]⊗t = 1

λ�X̂t−
((J − I) ⊗ (diag(λ) − λ�X̂t−I))ζ̂t−dNt .

For ζ̂t we have, using the product formula for tensors,

dζ̂t = dνt ⊗ X̂t− + νt− ⊗ dX̂t + d[ν, X̂]⊗t .

This yields after some tedious computations the following semimartingale decom-
position for ζ̂

dζ̂t = (
I ⊗ Q + (n − Nt)(J − I) ⊗ diag(λ)

)
ζ̂t dt

+ 1

λ�X̂t−

(
J ⊗ diag(λ) − λ�X̂t−I ⊗ I

)
ζ̂t− dm̂t

= Qζ̂t dt + 1

λ�X̂t−

(
J ⊗ diag(λ) − λ�X̂t−I ⊗ I

)
ζ̂t− dm̂t,

where dm̂t = dNt − (n − Nt)λ
�X̂t dt and Q as in Sect. 2.2.2.

Here are two applications. One can now compute

P(Nt = k|FN
s ) = 1�

E[ζ k
t|s|FN

s ] = 1�ζ̂ k
t|s,

for which we can use ζ̂t|s = exp(Q(t − s))ζ̂s. Formula (14) yields for the conditional
characteristic function ofNt given its own past until time s < t the explicit expression

E[eiuNt |FN
s ] =

n∑

k=0

n∑

j=k

(
n − k

j − k

)

(1 − eiu)n−jeiuj1� exp(Q(n−j)λ(t − s))X̂sν
k
s .

In case n = 1 the above formulas simplify considerably. Here are a few examples,
where we use the notation of Sect. 2.1.2. Suppose that only Y is observed. LetF Y

t =
σ(Ys, 0 ≤ s ≤ t). With Zt := YtXt we want to compute Ẑt|s := E[Zt|F Y

s ] for t ≥ s.
Let X̂t = E[Xt|F Y

t ], then obviously, Ẑt|s = X̂t|sYs. Moreover, one has from (13)

Ẑt|s = exp(Q(t − s))X̂s − exp(Qλ(t − s))X̂s(1 − Ys).

As a consequence we have for Ŷt|s = 1�Ẑt|s

Ŷt|s = 1 − 1� exp(Qλ(t − s))X̂s(1 − Ys).
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4.2 Filtering for the MM Poisson Process

The filter equations now take the familiar form

dX̂t = QX̂t dt + 1

λ�X̂t−

(
diag(λ)X̂t− − X̂t−X̂�

t−λ
)

(dNt − λ�X̂t dt).

For ν̄t we have the infinite dimensional analogue of (6). This leads for ζ̂t = ν̄t ⊗ X̂t

as in a Sect. 4.1 to

dζ̂t = Q∞ζ̂t dt + 1

λ�X̂t−

(
J∞ ⊗ diag(λ) − λ�X̂t−I∞ ⊗ I∞

)
ζ̂t− (dNt − λ�X̂t dt).

Note that this system is infinite dimensional, but for each n we also have for ˆ̄ζ n
t =

E[ζ̂ n
t |FN

t ] the truncated finite dimensional system

d ˆ̄ζ n
t = Qn

ˆ̄ζ n
t dt + 1

λ�X̂t−

(
J ⊗ diag(λ) − λ�X̂t−I ⊗ I

) ˆ̄ζ n
t− (dNt − λ�X̂t dt).

For the conditional characteristic function E[exp(iuNt)Xt|FN
s ] we have

E[exp(iuNt)Xt|FN
s ] = exp

(
((eiu − 1)diag(λ) + Q)(t − s)

)
eiuNs X̂s,

whereas ψt = eiuNt X̂t satisfies the equation (dm̂t = dNt − λ�X̂t dt)

dψt = (
eiu

λ�X̂t−
diag(λ) − I)ψt−dm̂t +

(
Q + (eiu − 1)diag(λ)

)
ψt dt.

5 Rapid Switching

In this section we present some auxiliary results that we shall use in obtaining limits
for the various default processes when the Markov chain evolves under a rapid
switching regime, i.e. the transition matrixQwill be replaced with αQ, where α > 0
tends to infinity. In the first two results and their proofs we use the notation C(M)

for the matrix of cofactors of a square matrix M. Throughout this section we write
λ∞ for λ�π .

Lemma 4 Let Q have a unique invariant vector π . Then

C(Q) = qπ1�,
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where the constant q can be computed as det(Q̂), where Q̂ is obtained from Q by
replacing its last row with 1�.

Proof Note first that π can be obtained as the solution to Q̂π = ed , where ed is the
last basis vector ofRd . By Cramer’s rule π can be expressed using the cofactors of Q̂.
In particular, πd = Ĉdd/ det(Q̂), where Ĉ is the cofactor matrix of Q̂. But Ĉdd = Cdd ,
so πd = Cdd/ det(Q̂).

Write C = C(Q) and recall that CQ = det(Q) and hence zero. It follows that
every row of C is a left eigenvector of Q. Since Q has rank d − 1 by its assumed
irreducibility, every rowofC is amultiple of1�. HenceC = α1�, for someα ∈ R

d×1.
By similar reasoning, C = πβ for some β ∈ R

1×d . We conclude that C = qπ1� for
some real constant q. Use now Cdd = qπd and the above expression for πd to arrive
at q = det(Q̂).

Proposition 6 Let Q have a unique invariant vector π and let all λi be positive.
Then (αQ − diag(λ))−1 → −π1�

λ∞ for α → ∞.

Proof We have seen in Sect. 2.1.2 that Q − diag(λ) is invertible if all λi > 0 and
so the same is true for αQ − diag(λ). Both det(αQ − diag(λ)) and the cofactor
matrix of αQ − diag(λ) are polynomials in α and we compute the leading term.
The determinant is computed by summing products of elements of αQ − diag(λ),
from each row and each column one. The αd term in this determinant has coeffi-
cient det(Q), which is zero. Consider the term with αd−1. It is seen to be equal to
−∑d

i=1 λiC(αQ − diag(λ))ii = −αd−1 ∑d
i=1 λiC(Q − diag(λ/α))ii. For the cofac-

tor matrix itself a similar procedure applies.We getC(αQ − diag(λ)) = αd−1C(Q −
diag(λ)/α) and it results from Lemma 4 that for α → ∞

C(αQ − diag(λ))

det(αQ − diag(λ))
→ C(Q)

−∑d
i=1 λiC(Q)ii

= − qπ1�

q
∑n

i=1 λiπi
= −π1�

λ∞
.

Proposition 7 For α → ∞ it holds that

exp
(
(αQ − diag(λ))t

) → exp(−λ∞t)π1�.

Proof For any analytic function f : C → C, f (z) = ∑∞
k=0 akz

k , one defines
f (M) := ∑∞

k=0 akM
k for M ∈ C

d×d (assuming that the power series converges on
the spectrum ofM). It then holds (see also Higham [17, Definition 1.11], where this
is taken as a definition of f (M)) that

f (M) = 1

2π i

∮

Γ

(zI − M)−1f (z) dz,

where Γ is a closed contour such that all eigenvalues of M are inside it. Take M =
αQ − diag(λ). It follows from Proposition 6, note that also λ∞ lies inside Γ as it is
a convex combination of the λi, that (zI − αQ + diag(λ))−1 → 1

z+λ∞ π1�. Hence
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f (αQ − diag(λ)) → π1�f (−λ∞).

Apply this to f (z) = exp(tz).

5.1 Rapid Switching for the MMMultiple Point Process

Suppose we scale the Qmatrix with α ≥ 0, and we let Xα be Markov with transition
matrix αQ. Many (random) variables below will be indexed by α as well. Here is a
way to get accelerated dynamics for Nα

t (previously denoted Nt).
Suppose that one takes the original Markov chain X and replaces the dynamics

of N with one in which X is accelerated,

Nα
t =

∫ t

0
(n − Nα

s )λ�Xαs ds + mt . (19)

Indeed the process Xα defined by Xα
t = Xαt has intensity matrix αQ, and its invari-

ant measure is π again. Recall that, conditionally on F X , Nα
t has a Bin(n, 1 −

exp(− ∫ t
0 λ�Xαs ds)) distribution.

The ergodic property of X gives
∫ t
0 Xαs ds = 1

α

∫ αt
0 Xs ds → π t a.s. and hence by

dominated convergence for the expectations we have that the limit distribution of Nα
t

for α → ∞ is Bin(n, 1 − exp(−λ∞t)). One immediately sees that the default times
τα,k convergence in distribution to τ k that are independent and have an exponential
distribution with parameter λ∞. Keeping this in mind, the other results in this section
are easily understandable.

We recall the content of Proposition 7. Replacing λwith kλ for k ≥ 0 (zero included)
yields

exp
(
(αQ − kdiag(λ))t

) → exp(−kλ∞t)π1�. (20)

To express the dependence of the matrix Q given by (8) on α in the present section,
we writeQα (soQα = A ⊗ diag(λ) + I ⊗ αQ) and Fα(t) instead of F(t) as given in
Lemma 3.

Lemma 5 The solution Fα to the equation Ḟ = QαF, has for α → ∞ limit F∞
given by its blocks

F∞
ij (t) = f∞

ij (t)π1�,

where the f∞
ij (t) are the binomial probabilities on n − i ‘successes’ of a Bin(n −

j, exp(−λ∞t)) distribution,

f∞
ij (t) =

(
n − j

n − i

)

exp(−(n − i)λ∞t)(1 − exp(−λ∞t))i−j.



Explicit Computations for Some Markov Modulated … 87

Proof We depart from Lemma 3 and the expression for Fα
ij (t) given there when we

replace Q with αQ. Taking limits for α → ∞ yields

F∞
ij (t) =

(
n − j

n − i

) i∑

k=j

(−1)i−k

(
i − j

i − k

)

exp(−(n − k)λ∞t)π1�

=
(
n − j

n − i

)

(−1)i−j exp(−(n − j)λ∞t)
i−j∑

l=0

(
i − j

l

)

(− exp(λ∞t))lπ1�

=
(
n − j

n − i

)

exp(−(n − i)λ∞t)(1 − exp(−λ∞t))i−jπ1�,

from which the assertion follows.

Remark 7 One can also use this proposition to show that Nα
t in the limit has the

Bin(n, 1 − exp(−λ∞t)) distribution. Indeed, since ν i
0 = δi0, we get P(Nα

t = i,Xt =
ej) → F∞

i0 (t) = f∞
i0 (t)π and hence P(Nα

t = i) → f∞
i0 (t).

For conditional probabilities one has the following result.

Corollary 2 Let N be a process like in Eq. (4), with λ replaced with λ∞. For α → ∞
one has in the limit ζ i

t|s = 0 for i < Ns and for i ≥ Ns

ζ i
t|s =

(
n − Ns

n − i

)

exp(−(n − i)λ∞ (t − s))(1 − exp(−λ∞ (t − s)))i−Nsπ.

It follows that, conditional onFs, Nt − Ns has a Bin(n − Ns, 1 − exp(−λ∞ (t − s)))
distribution. In fact, one has weak convergence of the Nα to N.

Proof We compute in the limit ζ i
t|s = E[ν i

t Xt|Fs] and obtain from Lemma 5

ζ i
t|s =

n∑

j=0

F∞
ij (t − s)ζ j

s

=
n∑

j=0

f∞
ij (t − s)ν j

sπ

=
i∑

j=0

(
n − j

n − i

)

exp(−(n − i)λ∞ (t − s))(1 − exp(−λ∞ (t − s)))i−jν j
sπ

=
(
n − Ns

n − i

)

exp(−(n − i)λ∞ (t − s))(1 − exp(−λ∞ (t − s)))i−Nsπ,

from which the first assertion follows.
Weak convergence can be proved in many ways. Let us first look at the case of

one obligor, n = 1. The integral in Eq. (19) is, with τα = τ 1,α equal to
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1

α

∫ α(τα∧t)

0
λ�Xu du.

Replacing the upper limit of the integral by t, this almost surely converges to λ∞t
for α → ∞. In fact this convergence is a.s. uniform. Having already established the
convergence in distribution of the τα , and by switching to an auxiliary space on
which the τα a.s. converge to τ∞, we get

1

α

∫ α(τα∧t)

0
λ�Xu du → λ∞(τ∞ ∧ t).

This is sufficient, see [24] or [20, Sect. 8.3d] to conclude the weak convergence result
for the case n = 1.

For the general case, one first notices that the processNα is a sum ofMMone point
processes that are conditionally independent given F X and become independent in
the limit. Combine this with the result for n = 1. Alternatively, one could apply
the results in [20, Sect. 7.3d] again, although the computations will now be more
involved.

5.2 Rapid Switching for the MM Poisson Process

As before we replace Q with αQ and let α → ∞ and denote Nα the corre-
sponding counting process. We apply Proposition 7 to the matrix exponential
exp

(
((eiu − 1)diag(λ) + αQ)(t − s)

)
, and we find that the limit for α → ∞ equals

exp((eiu − 1)λ∞(t − s))π1�. Hence, by virtue of (16), we obtain E[exp(iuNα
t )

Xt|Fs] → exp((eiu − 1)λ∞(t − s))π for the limit of the conditional characteristic
function. This is just one of the many ways that eventually lead to the conclusion that
for α → ∞ the process Nα converge weakly to an ordinary Poisson process with
constant intensity λ∞. In [24] one can find the stronger result that the variational
distance between the MM law of Nα

t , t ∈ [0,T ] and the limit law is of order α−1.
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