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Abstract. Structural threshold models are common industry practice
for modelling portfolio credit risk, but often only consider default depen-
dence via underlying common factors. We consider a structural model
extension that allows for additionally incorporating default contagion
effects. A simulation study illustrates that ignoring default contagion
effects may lead to significant underestimation of portfolio tail risk. As
a key contribution, we propose a procedure for estimating default con-
tagion parameters from historical default probability data.

Keywords: portfolio credit risk · default contagion · structural model

1 Introduction

The dependence between default events of obligors is a key aspect of portfolio
credit risk management. A common approach in practice is to use a structural
threshold model (see [5, p. 465]) in which a default event of an obligor is triggered
by a latent value process reaching some threshold. The value processes of different
obligors are then often assumed to be conditionally independent given underlying
common factors, such as macroeconomic or industry-specific risk drivers.

Another important form of dependence may however arise due to default con-
tagion effects, in which an increase in default risk of one obligor directly causes
an increase in default risk of another obligor. In corporate parent-subsidiary rela-
tionships, for example, increased default risk can propagate from a parent com-
pany to a subsidiary. As another example, increased default risk of a sovereign
issuer may propagate to entities operating in the same country.

We propose a structural threshold model that incorporates both indirect
default dependence via underlying common factors, as well as direct default
contagion effects. The model specifically allows for the special case where the
default of one obligor guarantees the default of another, but also allows default
risk to partially propagate from or to multiple different obligors. As a key contri-
bution, we outline a procedure to estimate the contagion parameters from default
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probability data. Once calibrated, the model can be easily used for simulation of
portfolio losses, similar to the structural threshold models used in practice. The
combination of these desirable properties distinguishes the model from previous
proposed default contagion extensions of the threshold model (see e.g. [1,3,6])1.

Based on a simulation study, we illustrate that ignoring default contagion
effects may cause significant underestimation of portfolio tail risk. This risk is
relatively well captured by using estimated default contagion parameters.

2 Structural Model with Default Contagion

We consider a credit portfolio with obligors indexed by I = {1, . . . , N} that may
default only at the end of some specified time horizon T , e.g. in 1 year. Following
a structural approach, we consider a (latent) joint value process V = [Vi]i∈I and
say that an obligor has defaulted when its value process is non-positive:

{Default of obligor i at time T} := {Vi(T ) ≤ 0} , ∀i ∈ I. (1)

An increase in default risk, is thus represented by a decrease in value.
The joint value process V specifies both marginal default probabilities as

well as default dependence between obligors, including possible default contagion
effects. As is common in portfolio credit risk modelling, we focus on modelling
the dependence between defaults. To simulate the distribution of 1-year portfolio
losses, we therefore assume that the vector of marginal 1-year default probabili-
ties P̂D = [P̂Di]i∈I is given. For the estimation of default contagion parameters,
we assume the availability of the historical time-series {P̂D(tm)}M

m=0.
In practice, (estimated) default probabilities may for example be provided by

rating agencies or internal bank models. Alternatively, default probabilities may
be inferred from market data such as credit spreads. We assume that default
contagion effects are already incorporated into these default probabilities.

We additionally assume that we already know the binary structure of the
default contagion dependence: i.e. between which obligors there exists such direct
dependence. This binary structure is indeed obvious in many practical applica-
tions2. The strength of the dependencies remains to be estimated.

2.1 Base Model

We first consider V = Y, where Y = [Yi]i∈I represents the intrinsic value process
of all obligors and is assumed to be a correlated N -dimensional Brownian motion:

dY(t) = Σ
1
2 dB(t), Y(0) = y ∈ R

N , (2)

where B is an N -dimensional Wiener process and Σ is a correlation matrix3.
1 In particular, earlier proposed calibration of default contagion parameters often relies

on expert input or on strong ad hoc assumptions.
2 For example in corporate parent-subsidiary relationships. Alternatively, the binary

dependence structure may be identified using a network-based approach, see e.g. [2].
3 That is, the process is scaled such that Σii = 1 for all i ∈ I.
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In the base model, the marginal default probability for i ∈ I can be computed
as

PDi = P
[
Yi(T ) ≤ 0

∣
∣ Yi(0) = yi

]
= Φ

(
− yi√

T

)
, (3)

where Φ is the standard Gaussian CDF. Conversely, given a default probability
P̂Di ∈ (0, 1), we can solve for the corresponding starting point ŷi to obtain

ŷi = −
√

T · Φ−1
(
P̂Di

)
. (4)

We note that the base model effectively corresponds to a Gaussian threshold
model, similar to multi-factor extensions of the Merton model that are popular
in industry [5, p. 430]. We assume here that the correlation matrix Σ is known
or has already been calibrated by using such a model. The distribution of losses
can then be simulated when the default probability vector P̂D is also given.

2.2 Default Contagion Extension

We propose a structural extension of the base model in which default risk can
propagate via a parent structure represented by a weights matrix W = [Wij ]i,j∈I
with non-negative entries and row-sums equal to 1. We say j ∈ I is a parent of
child i ∈ I when WIj > 0 and i �= j. We say that obligor i has no parents when
Wii = 1. We assume the existence of a partition I = {IP , IC}, where all obligors
without parents are in IP and the child obligors in IC only have parents in IP

4.
In the proposed extended model, the value V is the (element-wise) minimum

of the intrinsic value Y and the propagated value X = [Xi]i∈I . The intrinsic
value Y is modelled as in (2) and the propagated value X is modelled as a
convex combination of the intrinsic value and the value of parents:

V(t) = min [Y(t),X(t)] , X(t) = WY(t). (5)

A decrease in value Vi of an obligor i may be caused by either a decrease in
intrinsic value Yi or by a decrease in value of its parents propagated via Xi.
Similarly, the default event as defined in (1) can be triggered by a decrease in
either intrinsic or propagated value:

{Default of obligor i at time T} = {Yi(T ) ≤ 0} ∪ {Xi(T ) ≤ 0} , ∀i ∈ I. (6)

We highlight two special cases that can be captured by this model:

1. In the special case that no obligor has parents, i.e. I = IP and W = I, the
model reduces to the base model. This is because each obligor i ∈ IP without
parents has WIi = 1 and therefore value Vi = min [Yi, Yi] = Yi.

2. If obligor i has one parent j with weight Wij = 1, then Vi ≤ Xi = Yj = Vj ,
so that a default event of parent j implies a default event of obligor i.

4 This imposes a restriction where it is not allowed for parents to have also parents
themselves and is similar to the primary-secondary structure assumed in [4].
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In the extended model, we have
[
Y(T )
X(T )

]
∼ N

([
y

Wy

]
, T ·

[
Σ ΣWT

WΣ WΣWT

])
, (7)

so that the marginal default probability of an obligor i ∈ I can be computed as

PDi

(
y;W

)
= P

[
Yi(T ) ≤ 0 or Xi(T ) ≤ 0

∣
∣ Y(0) = y

]

= Φ
(

− yi√
T

)
+ Φ

(
− xi

σXi

√
T

)
− Φρi

2

(
− yi√

T
, − xi

σXi

√
T

)
,

(8)

where xi = [Wy]i, σXi
=

√
[WΣWT ]ii and Φρi

2 (·, ·) is the bi-variate Gaussian
CDF with correlation ρi = [WΣ]ii/σXi

. For obligor i ∈ IP without parents, Eq.
(8) indeed simplifies to as in the base model in Eq. (3).

Given a weights matrix W, correlation matrix Σ and default probability
vector P̂D, we want to find the corresponding starting point ŷ that satisfies
PDi

(
ŷ;W

)
= P̂Di for all i ∈ I. We can first find ŷP := [ŷi]i∈IP

by using
the result in (4). Then given ŷP , we can numerically solve for the remaining
ŷC := [ŷi]i∈IC

by using the result in (8). The latter is possible because in (8)
PDi is strictly decreasing in yi and has range equal to (0, 1) when Wii > 0.5

The distribution of portfolio losses can be simulated when the weights matrix
W, correlation matrix Σ and default probability vector P̂D are estimated or
given. This is analogous to the base model, where W = I.

3 Estimation of the Weights Matrix W

Intuitively, we propose to estimate the weights matrix W by using that the value
processes of the obligors should have correlation Σ after filtering out default
contagion effects. We therefore consider a moment condition on the normalized
discrete-time increments of the intrinsic value process Y as defined in (2):

E
[
Z(tm)Z(tm)T

]
= Σ, for Z(tm) :=

Y(tm) − Y(tm−1)√
tm − tm−1

. (9)

Equation (9) implies the following moment condition for the subcomponents
ZC := [Zi]i∈IC

,ZP := [Zi]I∈IP
of obligors with and without parents respec-

tively:

E
[
ZC(tm)ZP (tm)T

]
= ΣCP , where ΣCP := [Σij ]i∈IC ,j∈IP

. (10)

Although the increments {Z(tm)}M
m=1 are not directly observed, we can use

{P̂D(tm)}M
m=0 to compute the inferred increments {Ẑ(tm)}M

m=1 for a given W:

Ẑ(tm;W) :=
ŷ(tm) − ŷ(tm−1)√

tm − tm−1
,where PD

(
ŷ(tm),W

) ≡ P̂D(tm). (11)

5 Note that PDi has lower bound lim
yi→∞

PDi(y;W) = Φ
( − xi√

TσXi

)
when Wii = 0,

since the probability of default triggered by propagated value Xi is then independent
of intrinsic value yi. For example, we have PDi > PDj when Wij = 1.
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We can thus estimate W by (numerically) minimizing the loss function L(W),
which is based on the Frobenius norm of the difference between ΣCP and the
sample correlation of the inferred value increments:

L(W) :=
∥
∥
∥Corr

(
ẐC(tm;W), ẐP (tm)

)
− ΣCP

∥
∥
∥

F
, for

ẐC := [Ẑi]i∈IC

ẐP := [Ẑi]i∈IP

. (12)

We note two advantages of the loss function in (12) for numerical optimization.
First, each row Wi := [Wij ]j∈I can be estimated separately for each i ∈ IC ,
as each row affects a different element of ẐC . So, if each child only has a few
parents, only a few weights have to be estimated per row. Second, we again note
that the weights corresponding to obligors without parents i ∈ IP are equal to
Wii = 1. This means that the increments ẐP have to be computed only once.

4 Numerical Example and Possible Extensions

To illustrate the possible impact of default contagion effects on aggregate portfo-
lio risk, we consider a numerical example. We first simulate portfolio losses using
the extended model in (5) for a randomly drawn weights matrix Wtrue. We then
also simulate losses with estimated weights West and naive weights Wnaive = I,
to assess the impact on the expected losses and Value-at-Risk (VaR).

We consider a portfolio with N = 800 obligors, partitioned into a set of oblig-
ors without parents IP = {1, . . . , 400} and a set of obligors IC = {401, . . . , 800}
that all have the same two parents {1, 2}. We choose an exposure of 100 for
all obligors and default probabilities of 0.005, 0.008 for the obligors in IP and
IC respectively. We also choose a correlation matrix Σ with off-diagonal entries
equal to 0.3, corresponding to a 1-factor model with equal factor loadings for all
obligors. Finally, for each child i ∈ IC , we fix randomly drawn weights to both
parents in {1, 2}, independent of all other obligors. The weights are drawn from
uniform distributions, such that Wi1 ∼ Unif(0, 1) and Wi2 ∼ Unif(0, 1 − Wi1).

For estimating W, we simulate M = 250 daily observations of the default
probability vector, corresponding to roughly 1 year of trading days. We then
minimize the loss function in (12) by an initial grid search, which is followed by
a numerical gradient-based optimization. This combination mitigates the issue
of possible local minima and is not too computationally intensive given that only
two parameters have to be estimated per row of W.

Figure 1 shows the simulated (relative) expected losses (EL) and VaR for
different quantiles for the three different weights matrices, based on 107 simula-
tions. For easier visual comparison, all figures are relative to the corresponding
figure for the true weights Wtrue. The results show that the simulated expected
losses are very close for all three weights matrices. This is as expected, because
the expected losses depend only on the marginal default probabilities to which
the model is calibrated by construction. The results also show that the VaR at
higher quantiles is significantly underestimated when ignoring default contagion
effects (i.e. using when Wnaive). In contrast, the results indicate that using the
estimated West allows for estimating the VaR reasonably well.
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Fig. 1. Simulated expected losses and VaR(q) for q = 0.99, 0.999, 0.9999

We note that although the aggregate portfolio risk is estimated reasonable
well, the estimation of the weights is relatively volatile on an obligor level. Also,
although daily historical default probability data may be inferred from market
data such as credit spreads, data provided by rating agencies or internal bank
models will likely be less frequent. It may therefore be worthwhile to further
improve the efficiency of the proposed estimation procedure: for example by
explicitly incorporating data from the underlying factor model. Nevertheless, we
have illustrated that it is possible to estimate default contagion parameters from
historical default probability data, overcoming the reliance on expert input.

An interesting extension of the proposed model would be to allow parents
to also have parents themselves. In that case, chain-like propagation of default
contagion effects can be incorporated. In such an extension, the propagated value
in (5) could for example become X(t) = WV(t). However, the results derived
in e.g. (7) and (8) would then take a less simple form. More generally, other
functional forms can be considered for the default contagion model extension.
For example, using a maximum instead of a minimum in (5) could represent the
case where one obligor acts as a guarantor for another obligor.
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