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Most multivariate statistical techniques are based upon the con-

cept of distance. The purpose of this paper is to introduce statis-

tical distance measures, which are normalized Euclidean distance

measures, where the covariances of observed correlated measure-

ments x1, . . . , xn and entries of the Fisher informationmatrix (FIM)

are used as weighting coefficients. The measurements are subject

to random fluctuations of different magnitudes and have therefore

different variabilities. A rotation of the coordinate system through a

chosen angle while keeping the scatter of points given by the data

fixed, is therefore considered. It is shown that when the FIM is posi-

tive definite, the appropriate statistical distancemeasure is ametric.

In case of a singular FIM, the metric property depends on the rota-

tion angle. The introduced statistical distance measures, are matrix

related, and are based on m parameters unlike a statistical distance

measure in quantum information, which is also related to the Fisher

information and where the information about one parameter in a

particularmeasurementprocedure is considered.A transformedFIM

of a stationary process as well as the Sylvester resultant matrix are

used to ensure the relevance of the appropriate statistical distance

measure. The approachused in this paper is such thatmatrix proper-

ties are crucial for ensuring the relevanceof the introducedstatistical

distance measures.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In multivariate statistical analysis the concept of statistical distance is of fundamental importance

because in order to produce a simple group structure from a complex data set, a measure of closeness
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or similarity is required. When units or cases are clustered, proximity is usually indicated by some

distance or dissimilarity. This is also a key problemwith image segmentation schemeswhen similarity

or distance between two regions or pixels in an image have to be computed [25]. The most common

metrics used are Euclidean.

In this paper we consider the statistical distance, which shall be specified below, between two

vectors in a n-dimensional space. The straight-line or Euclidean distance between the stochastic vector

x =
(
x1 x2 . . . xn

)�
and fixed vector y =

(
y1 y2 . . . yn

)�
where x, y ∈ R

n, is given by

d1(x, y) = ‖x − y‖ =
⎛⎝ n∑

j=1

(xj − yj)
2

⎞⎠1/2

, (1)

where the metric d1(x, y) := ‖x − y‖ is induced by the standard Euclidean norm ‖ · ‖ on R
n.

All the components of the observations in (1) contribute equally to the Euclidean distance of x from

y. However, in a statistical context the straight-line or Euclidean distance is unsatisfactory. This is be-

cause the coordinates or variables represent measurements that are subject to random fluctuations of

different magnitudes. It is therefore important to consider a distance that takes the variability of these

variables or measurements into account when determining its distance from a fix point. Components

with a great deal of variability should receive less weight than components with low variability. We

use the expression statistical distance, that accounts for differences in variation and will depend upon

the sample variances and covariances, to distinguish it from ordinary Euclidean distance. A different

measure of distance is obtained by rescaling the components ormeasurements, it is then a normalized

Euclidean distance. This statistical distance is fundamental to multivariate statistical analysis, see e.g.

[1,12]. In probability, statistics and more recently in quantum information, see [19,20,22], the statis-

tical distance is used to quantify the similarity between two probability distributions in the space of

probability distributions.Whereas in this paper, the statistical distance is based on observedmeasure-

ments. However, variables are usually grouped on the basis of correlation coefficients or measure of

association. The measure of association used in this paper is based on covariances and components of

the FIM. In this study,we consider the statistical distance for the case thatmeasurements xj do not vary

independently of the xl measurements, for j, l ∈ {1, . . . , n}, and they are correlated. The variability

in the xj direction is different from the variability in the xl direction. Therefore, as suggested in [12],

a rotation of the n-dimensional coordinate system through an angle ψ is considered while keeping

the scatter of points given by the data fixed and label the rotated axes x̃1, x̃2, . . . , x̃n. A transformed

distance measure is obtained and is determined entirely by the size of statistical fluctuations through

the covariances and the rotation angleψ . It is then identifiedwith a suitable quadratic form. In the first

part of this paper, Section 2, the covariances of the measurements x1, x2, . . . , xn, which are stochastic

components, are used as weighting coefficients in the statistical distance measure, whereas in the

second part, Sections 3 and 4, entries of the FIM F(ϑ) are used for scaling the components. In this

case the components considered are the estimated parametersϑ1, ϑ2, . . . , ϑm which are random and

are computed from the measurements x1, x2, . . . , xn according to appropriate statistical techniques,

like themaximum likelihoodmethod, see [11] for general results and see [5] for time series processes.

The FIM F(ϑ)measures the amount of information about the estimated parameters ϑ1, ϑ2, . . . , ϑm.

Note, them × 1 estimated parameter vector is of the form

ϑ = (ϑ1, ϑ2, . . . , ϑm)
� (2)

andm < n.

It is proved that the appropriate statistical distancemeasure is ametricwhen the corresponding FIM

is positive definite, F(ϑ) � 0. In Section 3.2 we introduce the FIM F(ϑ) of a stationary ARMA(p, q)
process as well as a Sylvester resultant matrix, these matrices extend the sufficient condition for

ensuring the relevance of the introduced statistical distance measure. The ARMA(p, q) process is set
forth in Section 3.2. The presence or absence of common zeros between the ARMA(p, q) polynomials

determines whether or not the property F(ϑ) � 0 holds and consequently, if the metric property

of the introduced statistical distance measure is ensured. In Section 4 we discuss in detail metric
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conditions of the introduced statistical distance measure when the Fisher information matrices of

ARMA(1, 1) and ARMA(2, 2) processes are singular or positive semidefinite. It is shown that some

statistical distance measures fulfill the metric properties whereas some do not and this is determined

by the choice of the rotation angle φ.
Consider the vectors x and y having n coordinates and suppose y is a fixed vector and the coordinate

variables vary independently of one another. Let s1,1, s2,2, . . . , sn,n be sample covariances constructed

fromnmeasurementsx1,x2, . . . , xn respectively.But sincey is afixedvector implies thaty1,y2, . . . , yn
are not random components and this leads to corresponding covariances being zero. The statistical

distance measure, as set forth in [12, p. 21], is of the form

d2(x, y) =
⎛⎝ n∑

j=1

{
(xj − yj)

2

sj,j

}⎞⎠1/2

. (3)

However, in most cases the xj measurements do not vary independently of the xl measurements. The

coordinates of the pairs (xj, xl) can exhibit a tendency to be large or small together so the variables xj
and xl are correlated, for j �= l and j, l ∈ {1, 2, . . . , n}. Consequently, the corresponding correlation

coefficients are strongly positive or negative. Additionally, the variability in the xj direction may differ

from the variability in the xl direction. We shall therefore consider a more general distance measure,

this will be set forth in the next section.

2. A transformed statistical distance measure

As suggested in the multivariate statistical literature, see [12, p. 21–22], a more meaningful and

general measure of distance is considered. We rotate the n-dimensional coordinate system through

an angle ψ while keeping the scatter of points given by the data fixed and label the rotated axes

x̃1, x̃2, . . . , x̃n. Note that in [12], the case displayed is limited to n = 2. The sample covariances are

computed by using the x̃1, x̃2, . . . , x̃n coordinate axes and the statistical distance measure is then

formulated accordingly, to obtain

d(x, y) =
⎛⎝ n∑

j=1

{
(̃xj − ỹj)

2

s̃j,j

}⎞⎠1/2

, (4)

where s̃1,1, . . . , s̃i−1,i−1, s̃i,i, s̃i+1,i+1, s̃i+2,i+2, . . ., s̃n,n denote the sample covariances calculated with

the x̃1, x̃2, . . . , x̃n measurements. The newly obtained coordinates x̃1 − ỹ1, x̃2 − ỹ2, . . . , x̃n − ỹn are

determined according to the following linear transformation which is the rotation through an angle

ψ ∈ R

(̃x − ỹ) = Ri(ψ) (x − y) , (5)

where the block diagonal Givens rotation matrixRi(ψ) ∈ R
n×n is of the form

Ri(ψ) =

⎛⎜⎜⎜⎜⎜⎜⎝
Ii−1 0 0 0

0 (cos(ψ))i,i (− sin(ψ))i,i+1 0

0 (sin(ψ))i+1,i (cos(ψ))i+1,i+1 0

0 0 0 In−i−1

⎞⎟⎟⎟⎟⎟⎟⎠ , 0 � ψ � 2π , (6)

and i ∈ {1, 2, . . . , n − 1}. As can be seen, the GivensmatrixRi(ψ) involves only two coordinates that

are affected by the rotation angle ψ whereas the other directions, which correspond to eigenvalues

1, are unaffected by the rotation matrix. In dimension n there are (n − 1) Givens rotation matrices of

type (6), these (n − 1) Givens rotations composed can generate a n × n matrixR(ψ) according to

R(ψ) = R1(ψ)R2(ψ) . . .Rn−1(ψ). (7)

It is clear that this choice of matrix R(ψ) is a special case in the sense that the rotation angles of the

Givens rotation matrices Ri(ψ) are chosen to be equal. Note that matrix R(ψ) is used in [1] for the
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computation of the eigenvalues and eigenvectors of the covariance matrix of a random vector X of n

principal components.
An explicit representation ofR(ψ) is of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(ψ) − cos(ψ) sin(ψ) . . . . . . (−1)n cos(ψ) sinn−2(ψ) (−1)n+1 sinn−1(ψ)

sin(ψ) cos2(ψ) − cos2(ψ) sin(ψ) (−1)n−1 cos2(ψ) sinn−3(ψ) (−1)n cos(ψ) sinn−2(ψ)

0
. . . . . . . . .

...
...

...
. . . . . . . . . − cos2(ψ) sin(ψ)

...
...

. . . . . . cos2(ψ) − cos(ψ) sin(ψ)

0 . . . . . . 0 sin(ψ) cos(ψ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(8)

The matrix (8) is almost an upper triangular matrix but with sin(ψ) on the first subdiagonal and

the (n − 2) × (n − 2) submatrix starting on position (2, 2) is a Toeplitz upper triangular matrix. To

summarize, the Givens rotations composed can transform the basis of the space to any other frame in

thespace.ThematrixR(ψ) fulfills thepropertyDet (R(ψ)) = 1andR�(ψ)R(ψ) = In,whereDet (X)
is the determinant of squarematrixX and In is the n×n identitymatrix, and the propertyR(ψ = 0) =
In holds. When n is odd, the matrixR(ψ)will have an eigenvalue 1 and the remaining eigenvalues are

pairs of complex conjugateswhose product is 1, the latter property also holds for n even. Consequently,

thematrixR(ψ) is a rotationmatrix and obviously orthogonal and it commuteswith its transpose.We

now conclude that every rotation matrix, when expressed in a suitable coordinate system, partitions

into independent rotations of two-dimensional subspaces like in (7). All the transformed coordinates

x̃1 − ỹ1, x̃2 − ỹ2, . . . , x̃n − ỹn are then affected by the rotation matrix and angleψ through the linear

transformation

(̃x − ỹ) = R(ψ) (x − y) . (9)

Considering the complexity of the rotationmatrixR(ψ), we shall limit ourselves to theGivens rotation

matrixRi(ψ) present in (5) instead of using the computationally muchmore complex transformation

displayed in (9). However, an appropriate approach to this problem can be a subject for future research.

Since the representation of the Givens rotation matrix Ri(ψ) is determined by subscript i, we set

forth the Givens rotation matrix G(ψ) when i = n − 1 in matrix Ri(ψ) and a n × n rotation matrix

D(ψ) of the form⎛⎜⎜⎜⎝
cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 In−2

⎞⎟⎟⎟⎠ .

In the next proposition we will show that the matrices D(ψ) and G(ψ) are similar.

Proposition 2.1. The matrices D(ψ) and G(ψ) are similar.

Proof. The following equality holds true

JnD(ψ)Jn = G(ψ),
where

Jn =

⎛⎜⎜⎜⎜⎜⎜⎝
0 · · · 0 1
... . .

.
1 0

0 . . . . . .
...

1 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠
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and taking into account the property J−1
n = Jn yields

D(ψ)Jn = JnG(ψ),
which completes the proof. �

Similarity between other representations of Givens rotation matrices can be shown analogously.

Choice of the rotation matrixRi(ψ)will yield equivalent results to the results derived throughout

this paper. The subscript i will be subsequently used in this paper and refers to the ith position in

matrix Ri(ψ) such that i ∈ {1, . . . , n − 1} and is associated with the first coordinate that is affected

by the rotation angleψ . A possible change of the value i in the Givens rotation matrixRi(ψ), will not

result in structural changes. Equivalent results will be obtained for all i when i ∈ {1, . . . , n − 1}.
The relation between the original coordinates (x − y) = (x1 − y1, x2 − y2, . . . , xn − yn)

� and

the rotated coordinates (̃x − ỹ) = (̃x1 − ỹ1, x̃2 − ỹ2, . . . , x̃n − ỹn)
� is established through (5).

2.1. A transformed covariance matrix

We shall now use (5) to set forth the connection between the covariance matrices obtained in both

coordinate systems.Considering thenonrandomnessofy1,y2, . . . , yn, leads toCov(x − y) =Cov(x) =
S(x) and Cov(̃x − ỹ) =Cov(̃x) = S (̃x). Applying this property to (5) yields the following matrix

equation

S (̃x) = Ri(ψ)S(x)R�
i (ψ), (10)

the symbol � is the transposition, an explicit representation is given by

S (̃x) =

⎛⎜⎜⎜⎝
S11(̃x) S12(ψ) S13(̃x)

S�
12(ψ) S22(ψ) S23(ψ)

S�
13(̃x) S�

23(ψ) S33(̃x)

⎞⎟⎟⎟⎠ ,

where

S22(ψ) =
⎛⎝ s̃i,i(ψ) s̃i,i+1(ψ)

s̃i+1,i(ψ) s̃i+1,i+1(ψ)

⎞⎠
and ⎧⎪⎪⎪⎨⎪⎪⎪⎩

s̃i,i(ψ) = si,i cos
2(ψ)− si,i+1 sin(2ψ)+ si+1,i+1 sin

2(ψ),

s̃i+1,i+1(ψ) = si+1,i+1 cos
2(ψ)+ si,i+1 sin(2ψ)+ si,i sin

2(ψ),

s̃i,i+1(ψ) = s̃i+1,i(ψ) = (1/2)
(
2si,i+1 cos(2ψ)+ (si,i − si+1,i+1) sin(2ψ)

)
.

Note that the submatrices of the transformedcovariancematrixS (̃x)whose rowsor columns are on the

ith and (i+1)thpositiondependon the rotation angleψ .MatrixS11 (̃x) is a (i − 1)×(i − 1) symmetric

matrix with entries sk,j , where k, j ∈ {1, . . . , i − 1} and matrix S33(̃x) is a (n − i − 1)× (n − i − 1)
symmetric matrix with entries sk,j , where k, j ∈ {i + 2, . . . , n}. The entries of the remaining subma-

trices shall not be specified explicitly since there are of no use in the statistical distance measure set

forth in this paper.

Combining (5) and (10) will allow us to rewrite (4) in terms of the original data combined with its

corresponding covariances and the rotation angleψ , to obtain

d2(x, y) =
n∑

j=1,j �=i,i+1

{(
xj − yj

)2
sj,j

}
+ {(xi − yi) cos(ψ)− (xi+1 − yi+1) sin(ψ)}2

s̃i,i(ψ)

+{(xi+1 − yi+1) cos(ψ)+ (xi − yi) sin(ψ)}2
s̃i+1,i+1(ψ)

. (11)
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A prerequisite for ensuring positivity of the covariances s̃i,i(ψ) and s̃i+1,i+1(ψ) in (11) is given in the

next section. When no rotation is applied to the coordinate system, the distance measure (11) then

coincides with (3).

2.2. A transformed statistical distance as quadratic form distance measures

The statistical distance of the stochastic vector x from the fixed vector y for situations in which the

variables are correlated can also be expressed by the quadratic form

d2(x, y) = QA(x, y) = 〈A (x − y) , (x − y)〉 = (x − y)� A (x − y)

=
n∑

j=1

n∑
k=1

ajk
(
xj − yj

)
(xk − yk) , (12)

where 〈·, ·〉 denotes the standard scalar product onR
n, andmatrix A is symmetric with entries aij . The

distance measures (12) can be seen as acting on a distorted Euclidean space. When A is diagonal with

positive entries, the corresponding QA(x, y) are weighted Euclidean distance measures. The family of

quadratic form distances are defined for general positive semi-definitematrices. However, for positive

definite matrices, the distance measure forms a metric. In Proposition 2.2 we show that the matrix A

is positive definite.

Once the entries aij are known, the distance d(x, y) can be computed. The coordinates of vector x are

then a constant squared distance α2 from y or
∑n

j=1

∑n
k=1 ajk

(
xj − yj

)
(xk − yk) = α2. The entries aij

are numbers such that the distance or quadratic form is positive for all possible values of x1, x2, . . . , xn.
The entries aij of the matrix A are determined by the angle ψ and the covariances s1,1, s2,2, . . . , sn,n
and sn−1,n computed by the original data. For that purpose we identify (12) with (11), thematrix A has

then the representation

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 0 · · · · · · · · · · · · 0

0
. . . . . .

...
...

. . . ai−1,i−1
. . .

...
...

. . . Ai,i+1
. . .

...
...

. . . ai+2,i+2
. . .

...
...

. . . . . . 0

0 · · · · · · · · · · · · 0 an,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

Ai,i+1 =
⎛⎝ ai,i ai,i+1

ai,i+1 ai+1,i+1

⎞⎠
and

ai,i = cos2(ψ)

s̃i,i(ψ)
+ sin2(ψ)

s̃i+1,i+1(ψ)
, ai+1,i+1 = sin2(ψ)

s̃i,i(ψ)
+ cos2(ψ)

s̃i+1,i+1(ψ)
,

ai,i+1 = − sin(ψ) cos(ψ)

s̃i,i(ψ)
+ sin(ψ) cos(ψ)

s̃i+1,i+1(ψ)
,

a1,1 = 1

s1,1
, . . . , ai−1,i−1 = 1

si−1,i−1

, ai+2,i+2 = 1

si+2,i+2

, . . . , an,n = 1

sn,n
.

When no rotation is applied to the coordinate system, the distance measure (3) is then equivalent to

expression (12) with the appropriate matrix A. To show that (12) is strict positive it suffices to show
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the positive definiteness of matrix A. For that purpose we remind the following property of symmetric

matrices which is summarized in the next lemma, see e.g. [4].

Lemma 2.2. Consider a symmetric n × n matrix C. For r ∈ {1, 2, . . . , n}, let C(r) be the r × r matrix

obtained by omitting all rows and columns of C past the rth. These matrices C(r) are called the principal

submatrices of C. The matrix C is positive definite iff Det(C(r)) > 0, for all r ∈ {1, 2, . . . , n}.
Application of this lemma in the following proposition leads to:

Proposition 2.3. The symmetric matrix A is positive definite A � 0 for allψ when

xi cos(ψ)− xi+1 sin(ψ) = X(ψ) and xi sin(ψ)+ xi+1 cos(ψ) = Y(ψ), (13)

where X(ψ) and Y(ψ) are random variables different from zero.

Proof. By virtue of Lemma 2.2, we first show that the matrix Ai,i+1 is positive definite, we therefore

consider the principal submatrices of Ai,i+1. The first submatrix is entry ai,i which shall be represented

accordingly by taking the equalities (13) into consideration, to obtain

ai,i = cos2(ψ)

Var (X(ψ))
+ sin2(ψ)

Var (Y(ψ))
,

where Var(X) denotes variance of a random variable X and considering condition (13) implies that the

variances

Var (X(ψ)) > 0 and Var (Y(ψ)) > 0.

It is now clear that the first principal submatrix ai,i is positive.

The determinant of the second principal submatrix of Ai,i+1is

Det(Ai,i+1) = 1

[Var (X(ψ))] [Var (Y(ψ))]
> 0.

Consequently, the matrix Ai,i+1 is positive definite considering the assumptions set forth in (13). The

(n − 2) eigenvalues of the matrix A associated with the remaining components on the main diagonal

next to the matrix Ai,i+1, are given by (1/s1,1), . . . , (1/si−1,i−1), (1/si+2,i+2), . . . , (1/sn,n), and are

strict positive since s1,1 > 0, . . . , si−1,i−1 > 0, si+2,i+2 > 0, . . . , sn,n > 0. It can be concluded that

the matrix A is positive definite, this completes the proof. �

It follows from Proposition 2.3 that the distance measure QA(x, y) forms a metric. Consequently,

the statistical distance measure (4) is also a metric.

Imposing condition (13) in Proposition 2.3 is justified by the fact that the random variables x1,
x2, . . . , xn are stochastically dependent. Additionally, if X(ψ) and Y(ψ) in (13) are constant numbers

instead of random variables leads to variances equal to 0 in the denominator of ai,i and Det(Ai,i+1).
Another aspect to consider, the rotation angles ψ should not fulfill the equations xi cos(ψ)− xi+1 sin(ψ) = 0 and xi sin(ψ) + xi+1 cos(ψ) = 0. A short illustration of the assumptions is

now set forth. Assume the dependence between the random variables xi and xi+1 to be of the form

xi+1 = αxi, where α ∈ R such that X(ψ) = xi (cos(ψ)− α sin(ψ)). The equation

cos(ψ)− α sin(ψ) = 0 (14)

has nontrivial solutions of the form

ψ1 = Arc cos

(
α√

1 + α2

)
, ψ2 = −Arc cos

(
− α√

1 + α2

)
.

Consequently, the condition set forth in Proposition 2.3 implies that when the linear dependence

between the random variables xi and xi+1 as displayed above is considered, the rotation angles should
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fulfill the property, ψ �= ψ1 and ψ �= ψ2, in order to avoid X(ψ) = 0. In other words one does not

expect the rotation angleψ to fulfill equation (14). A similar approach holds for Y(ψ).
The eigenvalues of matrix A are now displayed,

λi = 1

s̃i,i(ψ)
= 1

Var (X(ψ))
, λi+1 = 1

s̃i+1,i+1(ψ)
= 1

Var (Y(ψ))
, (15)

λ1 = (1/s1,1), . . . , λi−1 = (1/si−1,i−1), λi+2 = (1/si+2,i+2), . . . , λn = (1/sn,n), (16)

where λi and λi+1 are the eigenvalues of matrix Ai,i+1, and by virtue of (13) we have λi > 0 and

λi+1 > 0. Consequently, all eigenvalues of matrix A are positive, this property can also serve as an

alternative proof of Proposition 2.3. The eigenvectors of λi and λi+1 are vi = (0, . . . , 0,

−cotan(ψ), 1, 0, . . . , 0)� and vi+1 = (0, . . . , 0, 1, cotan(ψ), 0, . . . , 0)�, whereas the remaining

(n − 2) eigenvectors are the first up to (i − 1)th standard basic vectors in R
n as well as the (i + 2)th

up to the nth standard basic vectors inR
n, which are labeled asw1, . . . ,wi−1,wi+2, . . . ,wn. Bywj we

denote the jth coordinate vector,wj = (0, . . . , 1, . . . , 0)�, with all its components equal to 0 except

the jth componentwhich equals 1. The orthonormal versions of vi and vi+1 are set forth, to obtainwi =
(0, . . . , 0,− cos(ψ), sin(ψ), 0, . . . , 0)� and wi+1 = (0, . . . , 0, sin(ψ), cos(ψ), 0, . . . , 0)�.

Note that for ψ = (π/2), matrix A is diagonal with ai,i = (
1/si,i

)
and ai+1,i+1 = (

1/si+1,i+1

)
,

consequently, matrix A has only positive entries such that the corresponding quadratic form distance

measure QA(x, y) is a weighted Euclidean distance measure, cf. (3). Whenψ = (π/4),we have

ai,i = ai+1,i+1 = 2si,i + 2si+1,i+1(
si,i − 2si,i+1 + si+1,i+1

) (
si,i + 2si,i+1 + si+1,i+1

)
and

ai,i+1 = −4si,i+1(
si,i − 2si,i+1 + si+1,i+1

) (
si,i + 2si,i+1 + si+1,i+1

) .
As can be seen from (15), the corresponding eigenvalues are then given by

λi = 2(
si,i − 2si,i+1 + si+1,i+1

) , λ2 = 2(
si,i + 2si,i+1 + si+1,i+1

) .
Every quadratic form distance measure having a metric property is characterized by a square matrix

A which is positive definite. However, every positive definite symmetric matrix A can be subjected to

a Cholesky factorization of the form A = L�L, see for example [8,10]. Consequently, there is a unique

upper triangular matrix L with positive diagonal entries. This yields for the vectors x, y ∈ R
n the

quadratic form,

QA(x, y) = (x − y)� A (x − y) = (L (x − y))� L (x − y) = ‖Lx − Ly‖2, (17)

which is theEuclideandistancebetween Lx and Ly. Thematrix L of theCholesky factorizationassociated

with matrix A and for allψ is given by

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
a1,1 0 0 · · · · · · · · · · · · 0

0
. . . . . . 0

0 0
√

ai−1,i−1 0
...

...
. . . . . .

√
ai,i

ai,i+1√
ai,i

...

...
. . . . . .

√
Det(Ai,i+1)

ai,i
0

...

...
. . . . . .

√
ai+2,i+2

. . .
...

...
. . . . . . . . . 0

0 · · · · · · · · · · · · 0 0
√

an,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Some geometry is now considered for the quadratic form (12) which is from R
n to R. Let B be the

eigenspace spannedby the orthonormal eigenvectorsw1,w2, . . . ,wn−2,wn−1,wn of thematrixA that
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have associated distinct eigenvalues λ1, λ2, . . . , λn−2, λn−1, λn, or B =span{w1,w2, . . . ,wn−2,
wn−1,wn}. The quadratic form distance measure (17) can be represented in terms of the eigenvalues

of A, to obtain

1 = 1

‖Lx − Ly‖2

⎧⎨⎩
n∑

j=1,j �=i,i+1

(
c2j

sj,j

)
+ c2i

s̃i,i(ψ)
+ c2i+1

s̃i+1,i+1(ψ)

⎫⎬⎭ , (18)

where the cj , j ∈ {1, . . . , n}are thecoordinatesof (x − y)withrespect to theorthonormaleigenbasisB.
Equality (18) is theequationof anellipsoid inan-dimensional coordinate systemandthecorresponding

eigenspaces (each of these eigenspaces are one-dimensional) of A are the principal axes of (18). This

is justified by the fact that the covariances sj,j , s̃i,i(ψ) and s̃i+1,i+1(ψ) are positive. Consequently, the

statistical distance measure, which is now displayed by the representations (11) and (18), yields the

equality

‖Lx − Ly‖2 = d2(x, y) (19)

that describes the n-dimensional ellipsoid (18) where√
k s1,1, . . . ,

√
k si−1,i−1,

√
k s̃i,i(ψ),

√
k s̃i+1,i+1(ψ),

√
k si+2,i+2, . . . ,

√
k sn,n

are the lengths of the principal axes for k = ‖Lx − Ly‖2. Such that the principal axes of the

n-dimensional ellipsoid given by (18) reflect the covariances or the associations between the ran-

dom variables x1, x2, . . . , xn. In the next section we introduce a statistical distance measure where

entries of the FIM are used as weighting coefficients.

3. Transformed statistical distance measures and the Fisher information matrix

The Fisher information is an ingredient of the Cramér–Rao inequality and belongs to the basics of

asymptotic estimation theory in mathematical statistics. The Cramér–Rao theorem [23] is therefore

considered. When assuming that the estimators (2) are asymptotically unbiased, the inverse of the

asymptotic information matrix yields the Cramér–Rao bound, and provided that the estimators are

asymptotically efficient, the asymptotic covariance matrix. Its quantum analog was introduced im-

mediately after the foundation of mathematical quantum estimation theory in the 1960s, see [9,22]

for a rigorous exposition of the subject. The Cramér–Rao inequality takes a lot of attention because

it is located on the highly exciting boundary of statistics, information and quantum theory and more

recently matrix theory.

Morespecifically, theFisher information isextensivelydiscussed in thequantuminformation theory

literature, see e.g. [2,24]. An interconnection between the Fisher information and a statistical distance

measure is established at the scalar level, see [3,13,20]. In [13], a review of the concept of statistical

distance is given, both for classical probability distributions and for quantum states. The authors relate

the statistical distance to the Fisher information, which measures the amount of information about a

parameter obtained in a given measurement. The authors consider a statistical distance measure in

the space of probability distributions, this measure quantifies the difference between two probability

distributions or measures the length of a curve in the space of probability distributions. This curve

is parameterized by a variable θ1 and when more parameter variables θ1, . . . , θN , are involved they

should be combined in a parameter vector ϕ = (θ1, . . . , θN)
� along the appropriate curve. However,

in the quantum information literaturementioned above, the results are limited to one parameter vari-

able. Whereas in this paper we consider statistical distance measures based on estimated parameters

ϑ1, ϑ2, . . . , ϑm, which are random components and are derived from the observedmeasurements x1,
x2, . . . , xn, where m < n. These parameters are collected in the stochastic parameter vector (2). In

previous section, entries of the covariance matrix S(x) are the weighting coefficients of the statistical

distance measure, whereas in this section, entries of the FIM are the appropriate weighting coeffi-

cients. This will enable us to formulate conditions of the FIM that ensure the metric properties of the

appropriate statistical distancemeasure. The role of the FIMof stationary processes is also emphasized.
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The approach used in this paper is such that matrix properties are crucial for ensuring the relevance

of the introduced statistical distance measures.

3.1. The Fisher information matrix and statistical distance measures

An extension of the results set forth in the previous section shall be displayed. For that purpose we

consider the set of maximum likelihood estimated parameters ϑ1, ϑ2, . . . , ϑ,m whose computation

is based on observations x1, x2, . . . , xn and where m < n. These estimated parameters are random

variables, see e.g.[5]. We consider now the estimated random parameter vector ϑ given in (2) whose

length is the distance that will be considered, for ϑ ∈ R
m. Consequently, an equivalent approach

to the one used in Section 2 can be applied but instead of using the corresponding covariances as

weighting coefficients, entries of the FIMwill be inserted as the newweighting coefficients. The linear

transformation ϑ̃ = Li(φ)ϑ , which is equivalent to (5) is set forth and Li(φ) is an appropriatem×m

Givens rotation matrix with rotation angle φ and having the same configuration as (6), with 0 � φ �
2π and i ∈ {1, . . . ,m − 1}. The covariance matrix of ϑ̃ is,

Cov(ϑ̃) = Li(φ)Cov(ϑ)L�
i (φ), (20)

and is a fundamental matrix equation from which the FIM will be derived and is equivalent to (10).

Considering the Cramér–Rao theorem mentioned in the former section allows us to assert that the

covariance Cov(ϑ) is equal to the inverse of the FIM. It suffices to assume that one of the covariance

matrices Cov(ϑ̃) and Cov(ϑ) is nonsingular and taking the property of the rotation matrix Li(φ) into
account, results in the followingmatrix equationwhen thematrix inversion of (20) is applied, to obtain

Fφ(ϑ) = Li(φ)F(ϑ)L�
i (φ), (21)

whereFφ(ϑ)andF (ϑ)are respectively the transformedanduntransformedFisher informationmatri-

ces. Since the rotation matrix Li(φ) is orthogonal, it can be concluded from (21) that the transformed

and untransformed Fisher information matrices Fφ(ϑ) and F(ϑ) respectively, are similar. The FIM

F (ϑ) measures the amount of information about the parameter vector ϑ which is given in (2), and

is obtained through observed measurements, see next to the statistical literature, [6,7] in the physics

literature.

It is straightforward to conclude from (21) that a positive definite symmetric FIM F (ϑ) yields a

positive definite and symmetric transformed FIM Fφ(ϑ), this holds for all φ.
Note that when rotation matrix L(φ) = L1(φ)L2(φ) . . .Lm−1(φ) is considered, a variant of (20)

and (21) is then of the form

Covar(ϑ̃) = L(φ)Cov(ϑ)L�(φ) and Jφ(ϑ) = L(φ)F(ϑ)L�(φ),

respectively and where Covar(ϑ̃) and Jφ(ϑ) are the appropriate transformed covariance matrix and

transformed Fisher information matrix.

By and large, when empirical estimation is applied, one computes first the FIM F (ϑ) which is

assumed to be nonsingular. This enables us to successfully perform the computation of a reliable

corresponding covariancematrix of the estimated parameters, this is obtained after inversion ofF (ϑ).
The derived covariance matrix is crucial for further statistical analysis. However, it is not uncommon

that empirical statistical estimation results in a singular or near singular FIM. Anear singular FIMF (ϑ)
yields very strongly inaccurate numerical results when an inversion is applied, consequently matrix

equation (20) is then irrelevant. However, in Section 4, the example shows that even when the FIM

F (ϑ) is singular, the statistical distance measure (24) can fulfill the metric properties. This depends

on the choice of the rotation angle φ. The invertibility condition of the matrix F (ϑ) for stationary
processes is formulated in the next section.

We shall introduce an appropriate variant of the distancemeasures (3) and (4),where the estimated

parameters ϑ1, ϑ2, . . . , ϑm are considered instead of the measurements x1 − y1, x2 − y2, . . . , xn −
yn and some of the entries of the Fisher information matrices F(ϑ) and Fφ (ϑ) are the weighting

coefficients instead of the covariances s1,1, s2,2, . . . , sn,n, to obtain
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dF (ϑ) =
⎛⎝ m∑

j=1

{
ϑ2
j

fj,j

}⎞⎠1/2

(22)

and

dFφ (ϑ) =
⎛⎝ m∑

j=1

{
ϑ̃2
j

f̃j,j

}⎞⎠1/2

(23)

respectively. As mentioned above, a positive definite FIM, F(ϑ) � 0, implies a positive definite trans-

formed FIM, Fφ(ϑ) � 0. This property holds because of the orthogonality property of rotation matrix

Li(φ). Consequently, the elements on the main diagonal of F(ϑ), f1,1, f2,2, . . . , fm,m, as well as the

elements on the main diagonal of Fφ(ϑ), f̃1,1, f̃2,2, . . . , f̃m,m are all positive. However, in Lemma 3.4

it is proved that the elements on the main diagonal of a singular FIM of a stationary ARMA process are

also positive. It is clear that the entries of the FIM F(ϑ) depend on ϑ but for typographical brevity we

will henceforth represent the entries fj,l without argument ϑ . Note that matrix equation (21) leads to

f̃j,j = fj,j, for all j ∈ {1, . . . ,m} when j �= i, i + 1. Combining (21), (22) and (23), yields an equation

equivalent to (11) but with entries of the Fisher information matrices F(ϑ) and Fφ(ϑ) as weighting

coefficients, to obtain

d2Fφ (ϑ) =
m∑

j=1,j �=i,i+1

{
ϑ2
j

fj,j

}
+ {ϑi cos(φ)− ϑi+1 sin(φ)}2

f̃i,i(φ)
+ {ϑi+1 cos(φ)+ ϑi sin(φ)}2

f̃i+1,i+1(φ)
, (24)

where

f̃i,i(φ) = fi,i cos
2(φ)− fi,i+1 sin(2φ)+ fi+1,i+1 sin

2(φ), (25)

f̃i+1,i+1(φ) = fi+1,i+1 cos
2(φ)+ fi,i+1 sin(2φ)+ fi,i sin

2(φ), (26)

and fj,l are entries of the FIM F(ϑ). The following inequalities are required for (24) to hold

f̃i,i(φ) > 0 (27)

and

f̃i+1,i+1(φ) > 0. (28)

It can be derived from (25) and (26) that Tr(F(ϑ)) = Tr
(Fφ (ϑ)), where Tr(X) is the trace of a square

matrix X . In case the rotation angle satisfies φ = π , the properties f̃i,i(φ) = fi,i and f̃i+1,i+1(φ) =
fi+1,i+1 hold true. Despite the arguments mentioned above, we prove the inequalities (27) and (28) in

the following proposition.

Proposition 3.1. A positive definite FIM F(ϑ) � 0 implies that the inequalities (27) and (28) hold true

for all values of φ.

Proof. As mentioned above, a positive definite FIM, F(ϑ) > 0, implies Fφ(ϑ) > 0 such that the

determinant of the transformed FIM is positive Det
(Fφ(ϑ)) > 0. Consequently, all submatrices on

the main diagonal of the transformed FIM Fφ(ϑ) are positive definite. Therefore, when Lemma 2.2 is

applied, it suffices to consider the ith 2 × 2 submatrix on the main diagonal of the symmetric matrix

Fφ(ϑ) given in (21), cfr. S22(ψ) in (10), to obtain


(φ) =
⎛⎝ f̃i,i(φ) f̃i,i+1(φ)

f̃i,i+1(φ) f̃i+1,i+1(φ)

⎞⎠ . (29)

where

f̃i,i+1(φ) = (1/2)
(
2fi,i+1 cos(2φ)+ (fi,i − fi+1,i+1) sin(2φ)

)
.
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Thedeterminant of thefirst principal submatrix of (29) coincideswith the left hand sideof (27) givenby

f̃i,i(φ). By virtue of the property Det
(Fφ(ϑ)) > 0, it should be positive. The determinant of the second

principal submatrix of (21) is the determinant of (29), which is also positive by virtue of Lemma 2.2

and the assumption F(ϑ) � 0 which implies Det
(Fφ(ϑ)) > 0. It is then straightforward to conclude

that condition f̃i+1,i+1(φ) > 0, holds. �

3.1.1. Statistical distance measure – Fisher information and quantum information

Asmentionedabove, inquantuminformation, see [3,13,20], the Fisher information, the information

about a parameter θ in a particular measurement procedure, is expressed in terms of the statistical

distance s which is defined as a measure to distinguish two probability distributions on the basis of

measurement outcomes. The Fisher information and the statistical distance are statistical quantities,

and generally refer to many measurements as it is the case in this paper. However, in the quantum

information theory and quantum statistics context, the problem set up shall be formulated as follows.

There may or may not be a small phase change θ , and the question is whether it is there. In that

case you can design quantum experiments that will tell you the answer unambiguously in a single

measurement. The equality derived in the quantum information literature mentioned above is of the

form

F (θ) =
(
ds

dθ

)2

, (30)

so the Fisher information is the square of the derivative to θ of the statistical distance.Whereas in (22)

and (24), the square of the statistical distance measure is expressed in terms of entries of a FIM F (ϑ)
which is based on information aboutm parameters estimated from nmeasurements associatedwith a

certainprocess. So the statistical distancemeasures set forth in thispaper arenot limited to information

based on one particular measurement and parameter. A challenging question could therefore be, how

to generalize equality (30) to a case ofmany observations that lead tomore parameters so that a Fisher

informationmatrix instead of Fisher information could be interconnected to an appropriate statistical

distance measure given by a distance matrix. This question could equally be a challenge in matrix

theory and quantum information.

3.1.2. Some additional properties

It is worth observing that an equivalent to Proposition 2.3, when applied to the statistical distance

measure (24), can be proved in a straightforward manner when Proposition 3.1 is taken into account.

Consider therefore the quadratic form distance measure

d2Fφ (ϑ) = QB(ϑ) = 〈Bϑ, ϑ〉 = ϑ�Bϑ , (31)

where them×m symmetricmatrixBhasanequivalent representation tomatrixA in (12)andwith sjl →
fjl andψ → φ. Condition (13) set forth in Proposition 2.3 is replaced by the condition, positive definite

FIMF(ϑ) � 0, so by virtue of Proposition 3.1wehave f̃i,i(φ) > 0, f̃i+1,i+1(φ) > 0.Note that the equiv-

alent to the determinant of submatrix Ai,i+1 of A in (12), is Det
(
Bi,i+1

) =
(
1/

(̃
fi,i(φ)̃fi+1,i+1(φ)

))
.

A corollary to Proposition 2.3 reads now as follows.

Corollary 3.2. When the FIM is positive definite F(ϑ) � 0, then the matrix B is positive definite for all

values of the rotation angle φ.

Proof. As mentioned above, a positive definite FIM has the property, F(ϑ) � 0 ⇐⇒ Fφ(ϑ) � 0,

a direct consequence of (21). Proposition 3.1 and the property shown in Lemma 3.4, yield f1,1 >

0, . . . , fi−1,i−1 > 0, f̃i,i(φ) > 0, f̃i+1,i+1(φ) > 0, fi+2,i+2 > 0, . . . , fm,m > 0. It can be deduced

from (15) and (16) for sjl → fjl andψ → φ, that the eigenvalues of matrix B are
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μ1 = 1

f1,1
, . . . , μi−1 = 1

fi−1,i−1

, μi = 1

f̃i,i(φ)
, μi+1 = 1

f̃i+1,i+1(φ)
,

μi+2 = 1

fi+2,i+2

, . . . , μn = 1

fm,m
.

Consequently, μ1 > 0, . . . , μi−1 > 0, μi > 0, μi+1 > 0, μi+2 > 0, . . . , μm > 0, from which the

positive definiteness of the symmetric matrix B can be concluded. This completes the proof. �

When F(ϑ) � 0, we get d2Fφ (ϑ) = QB(ϑ) > 0, such that the quadratic form distance measure

(31) and consequently the statistical distance measure (24) are metrics.

Similar equalities to (17) and (19) canbeestablished through the substitutions sjl → fjl andψ → φ,
as in

QB(ϑ) = d2Fφ (ϑ) = ‖Mϑ‖2, (32)

which involves the Euclidean norm of Mϑ , and M is the appropriate m × m Cholesky factorization

matrix associated with matrix B, such that B = M�M. MatrixM has the same configuration as matrix

L in (17) butwhere sjl → fjl andψ → φ.When the entries of the FIM are theweighting coefficients for

the statistical distancemeasure, theQR factorization ofmatrix B is set forth in addition to the Cholesky

factorization, it is of the form

B = QR, (33)

where

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · · · · · 0

0
. . . . . .

...
...
. . . 1

. . .
...

...
. . . Qi,i+1

. . .
...

...
. . . 1

. . .
...

...
. . . . . . 0

0 · · · · · · · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/f1,1 0 · · · · · · · · · · · · 0

0
. . . . . .

...
...

. . . 1/fi−1,i−1
. . .

...
...

. . . Ri,i+1
. . .

...
...

. . . 1/fi+2,i+2
. . .

...
...

. . . . . . 0

0 · · · · · · · · · · · · 0 1/fm,m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

Qi,i+1 = 1

γ (φ)

⎛⎝ δ(φ) ρ(φ)

−ρ(φ) δ(φ)

⎞⎠ ,

Ri,i+1 =
⎛⎝ γ (φ)/ (̃fi,i(φ)̃fi+1,i+1(φ)

)
χ(φ)/

(̃
fi,i(φ)̃fi+1,i+1(φ)γ (φ)

)
0 1/γ (φ)

⎞⎠ ,

whereby the Gram–Schmidt orthonormalization process ensures that the matrix R is an upper trian-

gular matrix and Q is am × m orthogonal matrix, where

γ (φ)=
√̃
f 2i,i(φ) sin

2(φ)+ f̃ 2i+1,i+1(φ) cos
2(φ), δ(φ)= f̃i,i(φ) sin

2(φ)+ f̃i+1,i+1(φ) cos
2(φ).

(34)

χ(φ)=
(̃
f 2i,i(φ)− f̃ 2i+1,i+1(φ)

)
sin(φ) cos(φ), ρ(φ)=

(̃
fi+1,i+1(φ)− f̃i,i(φ)

)
sin(φ) cos(φ).

(35)

Next to the quadratic form distance measure representations (31) or (32), the form

QB(ϑ) = d2Fφ (ϑ) =
〈
Rϑ,Q�ϑ

〉
(36)
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is introduced. Interconnections between the Euclidean norm ‖ϑ‖ and the matricesM, R and Q are set

forth by inequalities displayed in the next proposition.

Proposition 3.3. When the FIM is positive definite, F(ϑ) � 0, the inequalities

‖ϑ‖2 � 1(‖M‖2 + ‖R‖)
{
‖Mϑ‖2 +

〈
Rϑ,Q�ϑ

〉}
(37)

‖ϑ‖2 � 1

2

⎧⎨⎩‖Mϑ‖2

‖M‖2
+

〈
Rϑ,Q�ϑ

〉
‖R‖

⎫⎬⎭ (38)

hold true.

Proof. By virtue of Corollary 3.2, when F(ϑ) � 0 
⇒ B � 0, consequently there exists an appropri-

ate matrix M that satisfies the Cholesky factorization of matrix B iff distance measure (24) fulfills the

metric requirements. Consider then the inequality

‖Mϑ‖2 � ‖M‖2‖ϑ‖2. (39)

Considering the equality (36) and the positive definiteness of the FIM F(ϑ) implies that the scalar

product
〈
Rϑ,Q�ϑ

〉
is positive. Taking the property into consideration that the columns of the matrix

Q are orthonormal, results in ‖Q‖ � 1 and ‖Q�‖ � 1. Applying the Cauchy–Schwarz inequality to〈
Rϑ,Q�ϑ

〉
, then yields the inequality〈

Rϑ,Q�ϑ
〉
� ‖R‖‖ϑ‖2. (40)

Combining (39) and (40) yields (37) and (38). �

We measure the magnitude of a matrix A with the operator norm, ‖A‖ = supx �=0
‖Ax‖
‖x‖ . Note that

the inequalities (39) and (40) result in a connection between the square of the Euclidean norm ‖ϑ‖2

and the transformed statistical distance measure (24).

Equivalently to (18), the stringof equalities formulated in (32) yields anellipsoid in am-dimensional

coordinate system, given by

1 = 1

‖Mϑ‖2

⎧⎨⎩
m∑

j=1,j �=i,i+1

(
k2j

fj,j

)
+ k2i

f̃i,i(φ)
+ k2i+1

f̃i+,i+1(φ)

⎫⎬⎭ . (41)

This is justified by the fact that the entries fj,j , f̃i,i(φ) and f̃i+1,i+1(φ) of the Fisher informationmatrices

F(ϑ) andFφ(ϑ), arepositive. Thedimensionof theeigenspaceM =span{w1,w2, . . . ,wi,wi+1, . . . ,
wm}, where w1,w2, . . . ,wi,wi+1, . . . ,wm are the normalized eigenvectors of matrix B, is smaller

than the dimension of the eigenspace B used in (18), soM ⊂ B. But to some extent, the eigenspaceM
is spanned by the same basis orthonormal eigenvectors as eigenspace B. The principal axes of ellipsoid
(41) are labeled k1, . . . , ki−1, ki, ki+1, ki+2, . . . , km and are the coordinates of ϑ with respect to the

eigenspace M. Consequently, the lengths of these principal axes are given by√
h f1,1, . . . ,

√
h fi−1,i−1,

√
h f̃i,i(φ),

√
h f̃i+,i+1(φ),

√
h fi+2,i+2, . . . ,

√
h fm,m, (42)

for h = ‖Mϑ‖2. When F(ϑ) � 0 combined with Det(F(ϑ)) = 0, at least one eigenvalue of matrix

B can be zero for some value of φ, such that the length of at least one of the main axes of the m-

dimensional ellipsoid in (42), f1,1, . . . , fi−1,i−1, f̃i,i(φ), f̃i+,i+1(φ), fi+2,i+2, . . . , fm,m, will be arbitrarily

large. In this case the statistical distancemeasure (24) does not fulfill themetric requirements. As shall

be seen in Section 4 where stationary processes are considered, the case F(ϑ) � 0 combined with

Det(F(ϑ)) = 0 does not necessarily lead to a statistical distancemeasure (24) that is not ametric. This
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is determinedby the rotation angleφ. However, the conditionF(ϑ) � 0, is of fundamental importance

for ensuring the metric properties of statistical distance measure (24) for all rotation angles φ.

3.2. The Fisher information matrix of stationary processes

In [15], an interconnection between the FIM of a stationary ARMA process, a symmetric block

Toeplitz matrix, and the Sylvester resultant matrix, is set forth. For a detailed exposition of ARMA time

series processes, see [5] and for Sylvester resultant matrices, see [21]. The ARMA(p, q) time series

process is defined as follows:

a(Q) y(t) = b(Q) ε(t), a(Q) =
p∑

j=0

aj Qj; b(Q) =
q∑

l=0

bl Ql , (43)

whereQdenotes thebackward shift operator, e.g.Qx(t) = x(t−1). Thepolynomials a(Q) andb(Q) are
the autoregressive andmoving average polynomials of degree p and q respectivelywith corresponding

coefficient parameters a1, . . . , ap and b1, . . . , bq and a0 = b0 = 1. The stability condition of the

ARMA(p, q) process is imposed, this implies that the absolute values of the roots of the polynomials

a(Q) and b(Q) are outside and not on the unit circle. The process y(t) is driven by awhite noise process

ε(t). The error {ε(t), t ∈ N} is a collection of uncorrelated zeromean random variables with constant

variance. The shift operatorQ is for further analysis substituted by the z transform.Note that p+q = m

and the associated parameter vector is ϑ = (
a1, . . . , ap, b1, . . . , bq

)�
. In [18], representations of the

submatrices of the FIM F(ϑ) of a multivariate ARMA(p, q) process are developed, the corresponding

autoregressive and moving average polynomials are then matrix polynomials. The scalar version of

these representations will be applied to an ARMA(p, q) process, this yields explicit expressions for the
entries fi,i and fi,i+1 of the FIM that appear in (25) and (26), to obtain

fi,i =
⎧⎪⎪⎨⎪⎪⎩

1
2π i

∮
|z|=1

1

a(z)a( 1
z
)

dz
z

i ∈ {1, 2, . . . , p}
1

2π i

∮
|z|=1

1

b(z)b( 1
z
)

dz
z

i ∈ {p + 1, . . . , p + q} (44)

and

fi,i+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
2π i

∮
|z|=1

1

za(z)a( 1
z
)

dz
z

i ∈ {1, . . . , p − 1}
− 1

2π i

∮
|z|=1

1

za(z)b( 1
z
)

dz
z

i = p

1
2π i

∮
|z|=1

1

zb(z)b( 1
z
)

dz
z

i ∈ {p + 1, . . . , p + q − 1} ,
(45)

where i is the standard imaginary unit with the property i2 = −1. The integrals are counterclockwise

and the contour is the unit circle |z| = 1 that encloses all roots of zpa( 1
z
) and zqb( 1

z
). The poles are

the solutions of zpa( 1
z
) = 0 and zqb( 1

z
) = 0 and are used for the standard residue theorem. Remark

that (44) can also be used for computing all remaining values fj,j , where j ∈ {1, . . . ,m} and with

j �= i, i + 1, that appear in statistical distance measure (24).

We shall use (44) to prove that even for singular Fisher information matrices of stationary ARMA

processes, the entries on the main diagonal are positive.

Lemma 3.4. For singular aswell as nonsingular Fisher informationmatrices of stationary ARMA processes,

the components given in (44) satisfy the property fi,i > 0 for i = 1, . . . , p + q.

Proof. Weconsider i ∈ {1, 2, . . . , p} and introduce the p×pmatrix F(ϑ) =Diag
{
f1,1, f2,2, . . . , fp,p

}
and suppose there is a fixed vector x such that F(ϑ) x = 0, so that

0 = 1

2π i

∮
|z|=1

K(z) x dz
z
,
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and K(z) is a p × p diagonal matrix consisting of the integrands of (44). Take z = eiω , we then get

0 = 1

2π

∫ 2π

0
x∗K(eiω) x dω,

and with

fi,i = 1

2π

∫ 2π

0

dω

a(eiω)a(e−iω)
= 1

2π

∫ 2π

0

dω∣∣a(eiω)∣∣2 ,
where x∗ is the complex conjugate of x. Thenwemust have x∗K(eiω)x ≡ 0 and note thatK(eiω) > 0, it

then follows that x∗
i

1

a(eiω)
= 0 for almost allω. This is only possible if x∗

i = 0 and consequently xi = 0

for all i ∈ {1, 2, . . . , p}, so fi,i > 0. It is clear that fi,i > 0 also holds for i ∈ {p + 1, . . . , p + q}. �

From Lemma 3.4 it can be concluded that statistical distance measure (22) is always a metric,

even for singular Fisher information matrices, when applied to stationary ARMA processes. Whereas

statistical distance measure (24), under these conditions, does not always fulfill the metric condition,

as shall be seen in Section 4. However, equality (20) can in no way be considered when a singular FIM

is the case since inversion of the FIM is then necessary. This property does not only hold for stationary

processes.

The following decomposition of the asymptotic FIM of a stationary ARMA process, is displayed

accordingly, see [15]

F(ϑ) = S(−b, a)P(ϑ)S�(−b, a), (46)

where the (p + q)× (p + q) Sylvester resultant matrix of the polynomials a(z) and b(z) is defined as

S(a, b) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a1 · · · ap 0 · · · 0

0
. . . . . . . . . . . .

...
...
. . . . . . . . . . . . 0

0 · · · 0 1 a1 · · · ap

1 b1 · · · bq 0 · · · 0

0
. . . . . . . . . . . .

...
...
. . . . . . . . . . . . 0

0 · · · 0 1 b1 · · · bq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is shown that the matrix P(ϑ) is positive definite and is given by

P(ϑ) = 1

2π i

∮
|z|=1

up+q(z)u
�
p+q(

1
z
)

a(z)a( 1
z
)b(z)b( 1

z
)

dz

z
, (47)

where uk(z) = (zk−1, z, . . . , 1)�, a(z) and b(z) are the ARMA(p, q) process monic polynomials set

forth in (43). A fundamental property of the Sylvester matrix S(a, b) is that it becomes singular iff the

polynomials a(z) and b(z) have at least one common root. This is called the resultant property. In [15],

matrix equality (46) is used to prove the resultant property of the FIM of an ARMA process. Remark

that in [14], the resultant property is proved for the FIM of an ARMAX process. This is also proved

through Sylvester resultant matrices. An ARMAX process is an extension of the ARMA process where

an input-control-exogenous variable is added to the ARMA part.

An alternative representation of the transformed FIM is now obtained by a combination of (21) and

(46),

Fφ(ϑ) = Sφ(−b, a)P(ϑ)S�
φ (−b, a), (48)
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where the transformed Sylvester resultant matrix is given by

Sφ(−b, a) = Li(φ)S(−b, a). (49)

In the next proposition we shall formulate the condition under which the transformed FIM Fφ(ϑ)
fulfills the resultant property condition.

Proposition 3.5. The transformed FIM Fφ(ϑ) in (48) is a resultant matrix for all values of the rotation

angle φ when the FIM is positive definite, F(ϑ) � 0.

Proof. It is straightforward to conclude that for all values of the rotation angle φ, the rotation matrix

Li(φ) is invertible since it is an orthogonal matrix. Consequently, from (49) can be seen that the

transformed Sylvester matrix Sφ(−b, a) has the same invertibility condition as matrix S(−b, a) and
is therefore a resultant matrix. It can be concluded, the transformed FIM Fφ(ϑ), given the property

P(ϑ) > 0 and matrix equality (48), has the resultant matrix property. �

It is clear that when a stationary ARMA process is considered, a corollary to Proposition 3.5 can be

proved equivalently when the nonsingularity condition of the Sylvester resultant matrix

Det(S(−b, a)) �= 0 instead of F(ϑ) � 0, is imposed. Equation (46) can be interpreted as

Det(S(−b, a)) �= 0 ⇐⇒ F(ϑ) � 0 since the Sylvester resultant matrix S(−b, a) does not have

to fulfill the condition S(−b, a) � 0 and can be S(−b, a) ≺ 0, negative definite instead.

The distance measures (22) and (23) are partially expressed by the original and transformed

Sylvester resultant matrices S(−b, a) and Sφ(−b, a) through the corresponding values f1,1, . . . ,

fi−1,i−1, f̃i,i(φ), f̃i+,i+1(φ), fi+2,i+2, . . . , fm,m. These values are computed by means of the equalities

(46) and (48) respectively.

It can be concluded, when a stationary ARMA process is considered, an equivalent to Proposition

3.1 and Corollary 3.2 can be proved in a similar manner when the nonsingularity condition of the

Sylvester resultant matrix Det(S(−b, a)) �= 0 instead of F(ϑ) � 0, is imposed.

In [15], it is proved that the FIM is nonsingular when the corresponding ARMA polynomials have

no common zeros. Under these conditions it can be concluded that the FIM of an ARMA process is

strict positive, F(ϑ) � 0 or Det(F(ϑ)) > 0. Consequently, the properties shown in Propositions

3.1 and 3.3 automatically hold for ARMA processes when no common roots are detected between the

ARMA polynomials. This yields, by virtue of Corollary 2.2 proved in [15, p. 276], that the nonsingularity

condition of the Sylvester resultant matrix, Det(S(−b, a)) �= 0 instead ofF(ϑ) � 0, can alternatively

be imposed as a sufficient condition for Propositions 3.1 and 3.3 and Corollary 3.2 to hold. The results

shown in Propositions 3.5, 3.1 and 3.3 and Corollary 3.2 can also be proved for ARMAX processes since

the resultant property of the corresponding FIMhas been confirmed in [14]. In [17], an interconnection

between the Bezout matrix, which has the resultant property, and the FIM of an ARMA process is set

forth. Introducing an appropriate Bezoutmatrix in equalities which are equivalent to (46) and (48) can

be applied in the same way as with the Sylvester resultant matrices. This would lead to an alternative

version of the statistical distance measure (24), whereby the appropriate weighting coefficients are a

combination of entries of the Bezout matrix.

In the next section, cases based on ARMA(1, 1) and ARMA(2, 2) processes are set forth to show

that when there is a common zero between the ARMA polynomials, which implies a singular FIM, the

distancemeasure (24) can fulfill themetric properties depending on the choice of the rotation angleφ.

4. Singular Fisher information matrices of ARMA(2, 2) and ARMA(1, 1) processes

In this section we study the metric conditions of statistical distance measure (24) when the FIM

F(ϑ) is singular. This will be analyzed by means of ARMA(2, 2) and ARMA(1, 1) processes.
Consider the FIM of an ARMA(2, 2) process, the autoregressive and moving average polynomials

are of degree two, and described by, y(t)a(z) = b(z)ε(t), where y(t) is the stationary process driven

by white noise ε(t), a(z) = (1 + a1z + a2z
2) and b(z) = (1 + b1z + b2z

2). The condition, zeros of

the polynomials
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p(z) = z2a(z−1) = z2 + a1z + a2 and q(z) = z2b(z−1) = z2 + b1z + b2 (50)

are in absolute value smaller than one, is considered. The Sylvester resultant matrix S(−b, a) corre-
sponding to the polynomials a(z) and b(z) as well as the FIM of the ARMA(2, 2) process are set forth.

Computation of the FIMF(ϑ) at amatrix level implies the evaluation of (46), this can be done through

a combination of the appropriate matrix P(ϑ) displayed in (47), with p = q = 2, and the Sylvester

matrix of the form (52). However, the scalar version of the representations in [18] will be applied to

the ARMA(2, 2) process where ϑ = (a1, a2, b1, b2)
�, to obtain

F(ϑ) =
⎛⎝ Faa(ϑ) Fab(ϑ)

F�
ab(ϑ) Fbb(ϑ)

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
f11 f12 f13 f14

f12 f22 f23 f24

f13 f23 f33 f34

f14 f24 f34 f44

⎞⎟⎟⎟⎟⎟⎟⎠ , (51)

and

Faa(ϑ) = 1

(1 − a2)
[
(1 + a2)

2 − a21

]
⎛⎝ 1 + a2 −a1

−a1 1 + a2

⎞⎠ ,

Fbb(ϑ) = 1

(1 − b2)
[
(1 + b2)

2 − b21

]
⎛⎝ 1 + b2 −b1

−b1 1 + b2

⎞⎠ ,

Fab(ϑ) = 1

(a2b2 − 1)2 + (a2b1 − a1) (b1 − a1b2)

⎛⎝ a2b2 − 1 a1 − a2b1

b1 − a1b2 a2b2 − 1

⎞⎠ .

The submatrices Faa(ϑ) and Fbb(ϑ) are symmetric and Toeplitz whereas Fab(ϑ) is Toeplitz. This

property holds for the class of Fisher information matrices of stationary ARMA(p, q) processes, where

pandqare arbitrary, finite integers that represent thedegreesof theautoregressive andmovingaverage

polynomials, respectively. The Sylvester resultant matrix associated with the stationary ARMA(2, 2)
process is

S(−b, a) =

⎛⎜⎜⎜⎜⎜⎜⎝
−1 −b1 −b2 0

0 −1 −b1 −b2

1 a1 a2 0

0 1 a1 a2

⎞⎟⎟⎟⎟⎟⎟⎠ . (52)

The zeros of the autoregressive and moving average polynomials p(z) and q(z) are z1,2 =
1
2

(
−a1 ±

√
a21 − 4a2

)
and z3,4 = 1

2

(
−b1 ±

√
b21 − 4b2

)
respectively, the conditions | z1,2 |< 1

and | z3,4 |< 1 are imposed and we assume z1 = z3. Apply the substitution z1 → z3 to polynomial

p(z), the appropriate coefficients are then

a1 → 1

2

(
a1 + b1 +

√
a21 − 4a2 −

√
b21 − 4b2

)
(53)

and

a2 → 1

4

(
a1b1 + b1

√
a21 − 4a2 − a1

√
b21 − 4b2 −

√
a21 − 4a2

√
b21 − 4b2

)
. (54)

By inserting representations (53) and (54) in thematricesS(−b, a) displayed in (52) and the FIMF(ϑ)
given in (51) and leaving the coefficients of polynomial q(z) unchanged, results in the singularity of

these matrices.
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The choice of i, in the 4 × 4 Givens rotation matrix Li(φ) of type (6), that shall first be considered,

is 2. The entries of the Fisher information matrix F(ϑ), f22, f23 and f33, are used for the computation

of the appropriate values of f̃2,2(φ) and f̃3,3(φ) according to (25) and (26), to obtain

f̃2,2(φ) = f22 cos
2(φ)− f23 sin(2φ)+ f33 sin

2(φ) and

f̃3,3(φ) = f33 cos
2(φ)+ f23 sin(2φ)+ f22 sin

2(φ). (55)

From (55) can be seen that for φ = kπ , with k = 0, 1, 2, . . ., we have f̃2,2(φ) = f22 and f̃3,3(φ) = f33,

by virtue of Lemma 3.4 we have f̃2,2(φ) > 0 and f̃3,3(φ) > 0. Equivalently, when φ = π/2 and

φ = 3π/2, it yields f̃2,2(φ) = f33 and f̃3,3(φ) = f22. The structure of the matrix 
(φ), introduced in

(29) andwhen (55) is taken into account, results inDet (
(φ)) = f22f33− f 223,which is the determinant

of an appropriate 2× 2 submatrix on the main diagonal of the FIM F(ϑ) in (51). Despite the property

F(ϑ) � 0 
⇒ Fφ(ϑ) � 0, we have Det (
(φ)) �= 0, due to the fact f2,2(φ) > 0 and f3,3(φ) > 0,

at least for some values of φ. This case shows that when F(ϑ) � 0, the case of a singular FIM, the

statistical distance measure d2Fφ (P,Q) given in (24) can fulfill the metric requirements. By virtue of

Lemma 3.4, the entries ofF(ϑ), f11 > 0 and f44 > 0, such that all the eigenvalues of the corresponding

matrix B, introduced in (31), are positive. The corresponding CholeskymatrixM, and correspondingQR

decomposition (33) are under these conditions relevant. Considering that usually f2,2 �= f3,3, implies

that the resulting inequalities in Proposition 3.3, also hold since the appropriate values of γ (φ), δ(φ),
χ(φ) and ρ(φ), given in (34) and (35), are then different from zero.

When i = 1 and i = 3 in the Givens rotation matrix (6), we have the property f1,1 = f2,2 and

f3,3 = f4,4 respectively, see the FIM (51). The case i = 1 combined with rotation angle φ = (kπ/2),

where k = 0, 1, 2, . . ., results in f̃1,1(φ) = f̃2,2(φ) = f1,1. We further have γ (φ) = δ(φ) = f1,1 and

χ(φ) = ρ(φ) = 0, so that Q = I4, R = B =diag
{
1/f1,1, 1/f1,1, 1/f3,3, 1/f4,4

}
and the Cholesky

matrix is then M =diag
{
1/

√
f1,1, 1/

√
f1,1, 1/

√
f3,3, 1/

√
f4,4

}
, this confirms the positive definiteness

of B. The obtained inequalities in Proposition 3.3, are then relevant. The resulting statistical distance

measure (24) or equivalently representations (31) and (32) are of the form

d2Fφ (ϑ) = ϑ2
1

f1,1
+ ϑ2

2

f1,1
+ ϑ2

3

f3,3
+ ϑ2

4

f4,4
, (56)

where ϑ1 and ϑ2 are given by representations (53) and (54) respectively, ϑ3 = b1 and ϑ4 = b2.

Equivalently, when i = 3 in the Givens rotation matrix (6) and φ = (kπ/2), with k = 0, 1, 2, . . ., the
appropropriate matrices are then Q = I4 and R = B =diag

{
1/f1,1, 1/f2,2, 1/f3,3, 1/f3,3

}
respectively

and we have B � 0. An equivalent to (56) is then

d2Fφ (ϑ) = ϑ2
1

f1,1
+ ϑ2

2

f2,2
+ ϑ2

3

f3,3
+ ϑ2

4

f3,3
.

We have considered some rotation angles φ that confirm the metric properties of statistical distance

measure (24) despite the singularity of the FIM (51).

However, for singular Fisher information matrices, there exists nontrivial solutions φ to the equa-

tions

fi,i cos
2(φ)− fi,i+1 sin(2φ)+ fi+1,i+1 sin

2(φ) = 0 (57)

and

fi+1,i+1 cos
2(φ)+ fi,i+1 sin(2φ)+ fi,i sin

2(φ) = 0, (58)

which are of the form

±Arccos

⎛⎜⎜⎝±
√√√√√ f 2j,j − fi,ifi+1,i+1 + 2f 2i,i+1 ± 2

√
f 4i,i+1 − fi,ifi+1,i+1f

2
i,i+1

f 2i,i − 2fi,ifi+1,i+1 + f 2i+1,i+1 + 4f 2i,i+1

⎞⎟⎟⎠ , (59)

where j = i + 1 and j = i for (57) and (58) respectively and are evaluated through the Mathematica

6.0 version. The equalities (57) and (58) have different solutions that are variants of representation
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(59), this implies different rotation angles φ. When i = 2 in the 4 × 4 Givens rotation matrix Li(φ),
introduce the representations (53) and (54) in f2,2 and f2,3 and eventually insert the corresponding

values of f2,2 and f2,3 in φ given by (59) results in f̃2,2(φ) = f̃3,3(φ) = 0. Consequently, in the case

of a singular FIM, there exists a set of values of the rotation angle φ that yields a statistical distance

measure (24) that does not satisfy the metric conditions. Equivalently, for any stationary ARMA(p, q)
process with a singular FIM, there exists rotation angles φ that satisfy equations (57) and (58). Note

that the equations (57) and (58) hold for all i = 1, . . . ,m − 1 and for any process or statistical model

that differs from a stationary ARMA(p, q) process when a singular FIM is the case, see Proposition 3.1.

By virtue of Proposition 3.1, can also be concluded that there are no solutions to the equations (57)

and (58) when the Fisher information matrices are nonsingular.

WhentheFIMis singularand the rotationangleφ is givenby the representation (59), theappropriate

matrix B, its associated Cholesky matrix M, and the corresponding QR decomposition (33) are then

irrelevant. Consequently, the resulting inequalities in Proposition 3.3, are also irrelevant since the

appropriate values of γ (φ), δ(φ), χ(φ) and ρ(φ) are under these conditions zero.

Note that when a2 is close to the unit circle |z| = 1, f22 will be arbitrarily large, the corresponding

eigenvalue
(
1/̃f2,2(φ)

)
of thematrixB is then close to zero. Under these conditions, the property B � 0

does not hold such that d2Fφ(P,Q) in (31) is not a metric. This could be the case for any fii.

An ARMA(1, 1) process is now considered, this is obtained by choosing a2 = b2 = 0 in the

autoregressive and moving average polynomials a(z) and b(z) respectively, and displayed in (50). The

corresponding FIM and Sylvester matrix are then 2 × 2, and are of the form

F(ϑ) =
⎛⎝ f11 f12

f12 f22

⎞⎠ =
⎛⎝ 1/(1 − a2) −1/(1 − ab)

−1/(1 − ab) 1/(1 − b2)

⎞⎠ and S(−b, a) =
⎛⎝ −1 −b

1 a

⎞⎠ .

(60)

Assume that a and b coincide, it is then straightforward to see that F(ϑ) and S(−b, a) in (60) are
singular matrices. The presence of a common root results in, f11 = f22 = −f12 > 0, such that Det

(F(ϑ)) = Det (
(φ)) = f 211 − f 212 = 0, this implies that matrix 
(φ) is singular for all values of φ,
contrary to the ARMA(2, 2) case. This is equivalent with a semipositive transformed FIM Fφ(ϑ). The
corresponding values of representations (59) are then±Arccos

(
1/

√
2
)
and±Arccos

(
−1/

√
2
)
which

yield the following rotation angles for 0 � φ � 2π and when taken counterclockwise, φ1 = (π/4),
φ2 = (3π/4),φ3 = (5π/4) andφ4 = (7π/4). The appropriate entries of the transformed FIMFφ(ϑ),
f̃1,1(φ) and f̃2,2(φ), are zero and the equations (57) and (58) are then

f11 (1 − sin(2φ1))= f11 (1 − sin(2φ3)) = 0 and f11 (1 + sin(2φ2))= f11 (1 + sin(2φ4)) = 0.

In this case one of the eigenvalues of the appropriate matrix B is arbitrarily large such that the length

of one principal ax of the corresponding ellips is zero. Under these conditions, Proposition 3.1 does not

hold and consequently, the statistical distance measure (24) does not satisfy the metric requirements.

It can be concluded for an ARMA(1, 1) processwhich has a singular FIM, that there exist values ofφ for

which Proposition 3.1 does not hold, andwhere conditions (27) and (28) are not feasible, consequently,

the statistical distancemeasure (24) does not satisfy themetric requirements. However, for the values

of φ equal to π and (π/2) we have f̃1,1(φ) = f̃2,2(φ) = f11 such that (27) and (28) hold, since

f11 = f22 > 0. The statistical distance measure (24) is then a metric.

The cases considered in this section show that when the matrix F(ϑ) is singular, the choice of

the rotation angle φ determines whether or not the statistical distance measure (24) fulfills the met-

ric requirements. It is therefore not possible to draw a coherent conclusion concerning the metric

properties of the statistical distance measure (24) when singular Fisher information matrices of sta-

tionary ARMA processes are considered, contrary to statistical distance measure (22), this by virtue of

Lemma 3.4.

It is straightforward to conclude that a singular FIM F (ϑ) and not only for stationary ARMA(p, q)
processes, and when a numerical inversion is still feasible, see e.g. [16] for vector ARMA processes,



712 A. Klein, P. Spreij / Linear Algebra and its Applications 437 (2012) 692–712

will result in a trivial covariance matrix Cov(ϑ). This implies that matrix equation (20) is under this

condition irrelevant.

5. Conclusions

In this paper it is proved that when the Fisher information matrix F(ϑ) is positive definite, the

statistical distance measure (24) fulfills the metric requirements. The metric properties of statistical

distance measure (22) are always ensured, both for singular and nonsingular Fisher information ma-

trices of stationary ARMAprocesses, whereas themetric properties of statistical distancemeasure (24)

hold only for some values of the rotation angle φ when a singular FIM is the case.

Based on the results obtained for ARMA(2, 2) andARMA(1, 1)processeswhichhave singular Fisher

information matrices, one can assert that without any loss of generality, similar conclusions can be

drawn for any ARMA(p, q) process when the ARMA polynomials have at least one common zero.

The statistical distance measures derived in this paper, are matrix related through the entries of

the FIM. These distance measures can be a challenge to its quantum information counterpart (30).

This because (22) and (24) involve information about m parameters estimated from n measurements

associated with a certain process. Whereas in quantum information, the information about one para-

meter in a particular measurement procedure is considered for establishing an interconnection with

the appropriate statistical distance measure.
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