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The purpose of this paper is to develop compact expressions for

the Fisher informationmatrix (FIM) of a Gaussian stationary vector

autoregressive and moving average process with exogenous or in-

put variables, a vector ARMAX or VARMAX process. We develop a

representation of the FIM based on multiple Sylvester matrices. An

extension of this representation yields another one but in terms of

tensor Sylvester matrices. In order to obtain the results presented

in this paper, the approach used in [A. Klein, G. Mélard, P. Spreij,

On the resultant property of the Fisher information matrix of a

vector ARMA process, Linear Algebra Appl. 403 (2005) 291–313]

is extended.
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1. Introduction

The purpose of this paper is to develop compact representations of the Fisher information matrix

of a Gaussian stationary vector autoregressive and moving average process with exogenous or input

variables, a vector ARMAX or VARMAX process. These representations involve multiple and tensor

Sylvestermatrices. Especially the representationof the Fisher informationmatrix expressed in termsof
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tensor Sylvestermatrices leads to abetter understandingof theunderlyingmatrix structural properties

of the Fisher information matrix. The latter representation shall be used for further study. In the next

subsections the stationary process considered in this paper is introduced and the Fisher information

matrix in this context is presented.

1.1. The VARMAX process

Consider the vector difference equation representation of a linear system ({y(t), t ∈ N}, N the set

of integers, of order (p, r, q)),
p∑

j=0

αjy(t − j) =
r∑

j=0

γjx(t − j) +
q∑

j=0

βjε(t − j), t ∈ N, (1)

where y(t), x(t) and ε(t) are the outputs, the observed inputs, and the errors, respectively, and where

αj ∈ Rn×n, γj ∈ Rn×n, and βj ∈ Rn×n are the associate parameter matrices. The scalar version of

process (1) is extensively studied in the system and control literature, where x(t) assumes the role of

a control variable, see e.g. [3,11,21]. In the statistical literature the process in (1) is extensively treated

in [12].

We additionally have α0 ≡ β0 ≡ γ0 ≡ In, and starting the summation in the first sum of the right-

hand side in (1) with 1 rather than with zero turns out to be more convenient and there is no loss

in generality in the sense that x(t) can always be redefined as x(t + 1). The error {ε(t), t ∈ N} is a

collection of uncorrelated zero mean n-dimensional random variables each having positive definite

covariance matrix Σ . We assume, for all s, t, E{x(s)ε�(t)} = 0, where E is the expected value and �
denotes the transposition.

Weuse L to denote the backward shift operator, for example Lx(t) = x(t − 1). Eq. (1) can bewritten

as

α(L)y(t) = γ (L)x(t) + β(L)ε(t), (2)

and

α(z) =
p∑

j=0

αjz
j; γ (z) =

r∑
j=0

γjz
j; β(z) =

q∑
j=0

βjz
j. (3)

The autoregressive matrix polynomial is given by α(z), the AR part, γ (z) is the exogenous matrix

polynomial, theXpart andβ(z) is themovingaveragematrixpolynomial, theMApart. Considering that

matrix polynomials combinedwith vector processes are used, justifies the acronymVARMAX process.

The assumption det(α(z)) /= 0, det(β(z)) /= 0 and det(γ (z)) /= 0 for |z| � 1 or the determinants

are different from zero in the closed unit disc will be imposed. Hence the zeros of the respective

determinants, the eigenvalues, are outside the unit disc, so the elements ofα−1(z),β−1(z) andγ −1(z)
can be written as power series in z with radius of convergence greater than 1.

Some more assumptions on the observed inputs x(t) are given. The observed input variable x(t) is
assumed to be a stationary process with spectral density Rx(·)/2π . If x(t) is an n-dimensional VARMA

process with η(t) a white noise process satisfying E{η(t)η�(t)} = Ω ,

a(L)x(t) = b(L)η(t), (4)

then the spectral density of process x(t) is

Rx(e
iω) = a−1(eiω)b(eiω)Ωb∗(eiω)a−∗(eiω) ω ∈ [−π ,π ]. (5)

We have E{ε(t)η�(s)} = 0 for all s and t, the last property is a direct consequence of the fact that x(t)
and ε(t) are orthogonal processes.

The parameter vector ϑ is defined by

ϑ = vec
{
α1,α2, . . .,αp, γ1, γ2, . . ., γr ,β1,β2, . . .,βq

}
, (6)

where the ordering of the elements of the matrix polynomials α(z), β(z) and γ (z) into a vector ϑ is

done according to (3). The vec operator transforms a matrix into a vector by stacking the columns of

the matrix one underneath the other.
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Estimation of thematricesα1,α2, . . .,αp, γ1, γ2, . . ., γr ,β1,β2, . . .,βq andΣ has received consider-

able attention in the time series andfiltering theory literature [10,11]. In [12], the asymptotic properties

of maximum likelihood estimates of the coefficients of VARMAX processes, stored in a (� × 1) vector
ϑ , where � = n2(p + q + r) have been studied.

1.2. The Fisher information matrix

The Fisher information matrix prominently features in the asymptotic analysis of estimators. It is

linked to the Cramér-Rao bound on the covariance of unbiased estimators, see e.g. [13] for general

results and [1] for time series processes. Undermild assumptions but assuming that the estimators are

asymptoticallyunbiased, the inverseof theasymptotic Fisher informationmatrixyields this bound, and

provided that the estimators are asymptotically efficient, it equals the asymptotic covariance matrix.

The inversion of the Fisher information matrix is thus of basic importance. In [22], an algorithm for

the computation of asymptotic Fisher informationmatrix of a VARMA process is developed. It is based

on a frequency domain representation of the Fisher information matrix, known as Whittle’s formula,

see [23]. In the pioneering paper [23], a scalar-level formula is developed for the asymptotic Fisher

information matrix of a VARMA process, a stationary process that does not involve the input process

x(t) as in (2). In [16,19], the equivalence between a time and frequency domain representation of the

asymptotic Fisher information matrix of VARMA-VARMAX processes has been established. The Fisher

informationmatrix of a scalar version of (2) is described in [15]. The Fisher informationmatrix has also

attracted much attention in the signal processing literature, see e.g. [7] and more recently in physics,

see e.g. [5,6].

When the representation of the parameter vector ϑ as defined above is considered, the following

expression may be taken as the definition of the n2(p + q + r) × n2(p + q + r) asymptotic Fisher

information matrix of a VARMAX process

F(ϑ) = Eϑ

⎧⎨
⎩
(

∂ε

∂ϑ

)�
Σ−1

(
∂ε

∂ϑ

)⎫⎬
⎭ , (7)

where Eϑ is the expected value under the parameter ϑ . A proof of an equivalent to (7) for a VARMA

process is given in [18].

The remainder of the paper is organized as follows: Differentiation of the error of the VARMAX

process is described in Section 2.1. The method of differentiation applied in [17] is used. A convenient

form for the derivative ∂ε/∂ϑ is constructed in order to obtain appropriate representations of the

Fisher informationmatrix. For that purposewe proceed in three stages. First an integral representation

is constructed for the Fisher information matrix F(ϑ) in (7). This is done in Sections 2.2 and 2.3.

Second, the integral representation displayed in Section 2.3 is further developed and involvesmultiple

Sylvester matrices. This is done in Section 2.4. Third, the results of Section 2.4 are used to construct

a representation for the Fisher information matrix involving tensor Sylvester matrices. This is done

in Section 2.5. In Section 2.6 an expression for the inverse of the matrix polynomials in terms of

the corresponding parameters is given. In Section 2.7 a representation is derived from the Fisher

information matrix, as a direct consequence of the results in Section 2.5.

2. Compact representations of the Fisher information matrix

In this section a representation of the Fisher informationmatrix F(ϑ) expressed in terms of tensor

Sylvester matrices is developed. For this purpose several steps set forth in Sections 2.1–2.5 are con-

sidered. We use a partitioned form of the Fisher information matrix, composed by the submatrices

associated with the parameters α1,α2, . . .,αp, γ1, γ2, . . ., γr ,β1,β2, . . .,βq, which is given by

F(ϑ) =
⎛
⎝Fαα(ϑ) Fαγ (ϑ) Fαβ(ϑ)

Fγα(ϑ) Fγ γ (ϑ) Fγβ(ϑ)
Fβα(ϑ) Fβγ (ϑ) Fββ(ϑ)

⎞
⎠ .
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In a dynamic stationary stochastic context it has long been shown useful to use Fourier transform

representations, or alternatively, circular integral representations, also called z-transform, to obtain

F(ϑ) = 1

2π i

∮
|z|=1

⎛
⎝Jαα(z) Jαγ (z) Jαβ(z)

Jγα(z) Jγ γ (z) Jγβ(z)
Jβα(z) Jβγ (z) Jββ(z)

⎞
⎠ dz

z
. (8)

The integration in (8) and elsewhere in the paper is counterclockwise around the unit circle. We then

derive a compact representation of the Fisher information matrix of the form

F(ϑ) = 1

2π i

∮
|z|=1

J (z)
dz

z
. (9)

The integrand J (z) is Hermitian and shall eventually involve multiple and tensor Sylvester matrices.

In order to transform expression (7) of F(ϑ) into representation (9), appropriate matrix differential

rules are first to be applied to the error process ε(t). This is done in the following section where a

representation of ∂ε/∂ϑ is constructed. We apply the method used in [17].

2.1. Differentiation of the error process

In [19] differentiation is applied to the different parameter blocks of the Fisher information matrix

whereas in this paper a global approach is considered. From (2) it can be seen that

ε(t) = β−1(L)α(L)y(t) − β−1(L)γ (L)x(t).

Differentiation will be applied to this form of ε(t). The following facts are used. If d represents any dif-

ferential operator involving partial derivatives w.r.t.ϑ , then dy(t) = 0 and dx(t) = 0. These equalities

hold because the realizations of y(t) and x(t) are independent of the parameters. For typographical

brevity we omit the argument t, and write

dε=β−1(L)dα(L)α−1(L)γ (L)x − β−1(L)dγ (L)x + β−1(L)dα(L)α−1(L)β(L)ε

− β−1(L)dβ(L)ε. (10)

The rule

vec (ABC) =
(
C� ⊗ A

)
vec B where A ∈ Rm×n, B ∈ Rn×p and C ∈ Rp×s,

is applied to (10), to obtain

dε=
{(

α−1(L)γ (L)x
)� ⊗ β−1(L)

}
vec dα(L)

+
{(

α−1(L)β(L)ε
)� ⊗ β−1(L)

}
vec dα(L)

−
{
x� ⊗ β−1(L)

}
vec dγ (L)

−
{
ε� ⊗ β−1(L)

}
vec dβ(L),

where ⊗ denotes the Kronecker product.

An appropriate expression for the differentiation of the noise process ∂ε/∂ϑ is then

∂ε

∂ϑ
=
{(

α−1(L)γ (L)x
)� ⊗ β−1(L)

}
∂vec α(L)

∂ϑ

+
{(

α−1(L)β(L)ε
)� ⊗ β−1(L)

}
∂vec α(L)

∂ϑ
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−
{
x� ⊗ β−1(L)

} ∂vec γ (L)

∂ϑ

−
(
ε� ⊗ β−1(L)

) ∂vec β(L)

∂ϑ
. (11)

2.2. Representation with reordered factors and an integral representation

In the present and following sections, we use an approach similar to the method applied in [17].

However, the construction presented in the present paper is mainly concerned with the input part of

process (2) that is not present in a VARMA context.

Substitution of (11) into (7) shall allow us to develop appropriate forms for the Fisher information

matrix. For that purpose a useful equality is introduced. Consider the discrete-time stationary process

w(t) where w(t) = H(L)u(t), u(t) is the input process and H(L) is an asymptotically stable filter. We

apply Herglotz’s theorem to express the covariance function of a stationary process w(t) in terms of

the spectral distribution function of w(t), see e.g. [2,3]. For evaluating the covariance matrix of the

output w(t), we have the equality

Eϑ

{
w(t)w�(t)

}
=

π∫
−π

φw(ω)dω, ω ∈ [−π ,π ] (12)

where φw(ω) is the spectral density of the proceses w(t). It is defined as

φw(ω) = H(eiω)φu(ω)H∗(eiω). (13)

Expression (13) is a Hermitian matrix, and φu(ω) is the spectral density of the stationary process u(t).
Here Y∗ denotes the complex conjugate transpose of the matrix Y . In order to use Herglotz’s theorem

given in equality (12), we rearrange the elements of the right-hand side of (7) so that a representation

of the form w(t)w�(t) is obtained. For that purpose the rule

(A1 ⊗ B1) (A2 ⊗ B2) · · · (Am ⊗ Bm) = (A1A2 · · · Am) ⊗ (B1B2 . . . Bm) (14)

is applied, for matrices A1, A2, . . . , Am and B1, B2, . . . , Bm of appropriate dimensions, see e.g. [20]. We

shall consider the first term in (11), which we denote by (∂ε/∂ϑ)1, to illustate the method used. The

following representation is set forth

(
∂ε

∂ϑ

)�

1

Σ−1

(
∂ε

∂ϑ

)
1

=
(

∂vec α(L)

∂ϑ

)� {
α−1(L)γ (L)x ⊗ β−�(L)

}
Σ−1

×
{(

α−1(L)γ (L)x
)� ⊗ β−1(L)

}
∂vec α(L)

∂ϑ

=
(

∂vec α(L)

∂ϑ

)� {
α−1(L)γ (L) ⊗ β−�(L)

}
(x ⊗ In)Σ

−1

× (x ⊗ In)
�
{(

α−1(L)γ (L)
)� ⊗ β−1(L)

}
∂vec α(L)

∂ϑ

=
(

∂vec α(L)

∂ϑ

)� {
α−1(L)γ (L) ⊗ β−�(L)

}
(x ⊗ Σ−1)

× (x ⊗ In)
�
{(

α−1(L)γ (L)
)� ⊗ β−1(L)

}
∂vec α(L)

∂ϑ
.

Our objective is to obtain a symmetric expression.We therefore apply a Cholesky factorization toΣ−1,

since the covariance matrix Σ is positive definite. Consequently, there is a unique lower triangular

matrix Γ with positive diagonal entries such that Σ−1 = Γ Γ �. This yields the expression



1980 A. Klein, P. Spreij / Linear Algebra and its Applications 432 (2010) 1975–1989

Eϑ

⎧⎨
⎩
(

∂ε

∂ϑ

)�

1

Σ−1

(
∂ε

∂ϑ

)
1

⎫⎬
⎭

= Eϑ

⎧⎨
⎩
(

∂vec α(L)

∂ϑ

)� {
α−1(L)γ (L) ⊗ β−�(L)

}
(x ⊗ Γ )

× (x ⊗ Γ )�
{(

α−1(L)γ (L)
)� ⊗ β−1(L)

}
∂vec α(L)

∂ϑ

}
. (15)

From (15) it can be seen that equality (12) can be used by setting

w(t) =
(

∂vec α(L)

∂ϑ

)� {
α−1(L)γ (L) ⊗ β−�(L)

}
(x ⊗ Γ ) .

The spectral density of (x ⊗ Γ ) is considered for obtaining an explicit expression of the covariance

matrix. Since Eϑx = 0, this covariance matrix equals

Eϑ (x ⊗ Γ ) (x ⊗ Γ )� = Eϑ

(
x x� ⊗ Γ Γ �) = Rx(e

iω) ⊗ Σ−1.

It is straightforward to conclude that in view of (12) the values of the spectral density of (x ⊗ Γ ) are
(1/2π)(Rx(e

iω) ⊗ Σ−1), where Rx(e
iω) is defined in (5). By virtue of (12), expression (15) becomes

1

2π

π∫
−π

(
∂vec α(eiω)

∂ϑ

)� {
α−1(eiω)γ (eiω) ⊗ β−�(eiω)

} (
Rx(e

iω) ⊗ Σ−1
)

×
{(

α−1(e−iω)γ (e−iω)
)� ⊗ β−1(e−iω)

}
∂vec α(e−iω)

∂ϑ
dω

= 1

2π

π∫
−π

(
∂vec α(eiω)

∂ϑ

)� {
α−1(eiω)γ (eiω)Rx(e

iω) ⊗ β−�(eiω)Σ−1
}

×
{(

α−1(e−iω)γ (e−iω)
)� ⊗ β−1(e−iω)

}
∂vec α(e−iω)

∂ϑ
dω

= 1

2π

π∫
−π

(
∂vec α(eiω)

∂ϑ

)� {
α−1(eiω)γ (eiω)Rx(e

iω)
(
α−1(e−iω)γ (e−iω)

)�

⊗ β−�(eiω)Σ−1β−1(e−iω)
} ∂vec α(e−iω)

∂ϑ
dω.

Equivalently for z = eiω we have

Eϑ

⎧⎨
⎩
(

∂ε

∂ϑ

)�

1

Σ−1

(
∂ε

∂ϑ

)
1

⎫⎬
⎭

= 1

2π i

∮
|z|=1

(
∂vec α(z)

∂ϑ

)� {
α−1(z)γ (z)Rx(z)

(
α−1(z−1)γ (z−1)

)�

⊗ β−�(z)Σ−1β−1(z−1)
} ∂vec α(z−1)

∂ϑ

dz

z
. (16)
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A similar approach is applied to the remaining terms of representation (11). We denote the integrand

of (16) by J (1)(z). Taking into account the fact that E{ε(t)η�(s)} = 0 for all s and t, we obtain for the

integral representation given in (8)

F(θ) = Eϑ

⎧⎨
⎩
(

∂ε

∂ϑ

)�
Σ−1

(
∂ε

∂ϑ

)⎫⎬
⎭ = 1

2π i

∮
|z|=1

8∑
j=1

J (j)(z)
dz

z
, (17)

where

J (2)(z)=−
(

∂vec α(z)

∂ϑ

)� {
α−1(z)γ (z)Rx(z) ⊗ σ (z)

} (∂vec γ (z−1)

∂ϑ

)
,

J (3)(z)=
(

∂vec α(z)

∂ϑ

)� {
α−1(z)β(z)Σ

(
α−1(z−1)β(z−1)

)� ⊗ σ (z)

} (
∂vec α(z−1)

∂ϑ

)
,

J (4)(z)=−
(

∂vec α(z)

∂ϑ

)� {
α−1(z)β(z)Σ ⊗ σ (z)

} (∂vec β(z−1)

∂ϑ

)
,

J (5)(z)=−
(

∂vec γ (z)

∂ϑ

)� {
Rx(z)

(
α−1(z−1)γ (z−1)

)� ⊗ σ (z)

} (
∂vec α(z−1)

∂ϑ

)
,

J (6)(z)=
(

∂vec γ (z)

∂ϑ

)�
{Rx(z) ⊗ σ (z)}

(
∂vec γ (z−1)

∂ϑ

)
,

J (7)(z)=−
(

∂vec β(z)

∂ϑ

)� {
Σ
(
α−1(z−1)β(z−1)

)� ⊗ σ (z)

} (
∂vec α(z−1)

∂ϑ

)
,

J (8)(z)=
(

∂vec β(z)

∂ϑ

)�
{Σ ⊗ σ (z)}

(
∂vec β(z−1)

∂ϑ

)
,

where σ(z) = β−�(z)Σ−1β−1(z−1). The representation of the parameter vector ϑ as displayed in

(6) yields

∂vec α(z)

∂ϑ� = z
{
u�
p (z) ⊗ In2 , 0

�
r ⊗ In2 , 0

�
q ⊗ In2

}
, (18)

∂vec γ (z)

∂ϑ� = z
{
0�
p ⊗ In2 , u

�
r (z) ⊗ In2 , 0

�
q ⊗ In2

}
, (19)

∂vec β(z)

∂ϑ� = z
{
0�
p ⊗ In2 , 0

�
r ⊗ In2 , u

�
q (z) ⊗ In2

}
, (20)

where u�
x (z) = (1, z, z2, . . . , zx−1).

2.3. Second integral representation

To analyze (17) further it requires an additional matrix property. If a matrix A is decomposed as

A =
(
A11 A12

A21 A22

)
,

then the Kronecker product A ⊗ B takes the form

A ⊗ B =
(
A11 ⊗ B A12 ⊗ B

A21 ⊗ B A22 ⊗ B

)
. (21)
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Combining (18), (19), (20) and (21) yields the following formulas for the elements of (17)

J (1)(z)=
⎛
⎜⎝up(z)u

�
p (z−1) 0p×r 0p×q

0r×p 0r×r 0r×q

0q×p 0q×r 0q×q

⎞
⎟⎠

⊗
{
α−1(z)γ (z)Rx(z)

(
α−1(z−1)γ (z−1)

)� ⊗ σ (z)

}
,

J (2)(z)=−
⎛
⎝0p×p up(z)u

�
r (z−1) 0p×q

0r×p 0r×r 0r×q

0q×p 0q×r 0q×q

⎞
⎠⊗

{
α−1(z)γ (z)Rx(z) ⊗ σ (z)

}
,

J (3)(z)=
⎛
⎜⎝up(z)u

�
p (z−1) 0p×r 0p×q

0r×p 0r×r 0r×q

0q×p 0q×r 0q×q

⎞
⎟⎠

⊗
{
α−1(z)β(z)Σ

(
α−1(z−1)β(z−1)

)� ⊗ σ (z)

}
,

J (4)(z)=−
⎛
⎜⎝0p×p 0p×r up(z)u

�
q (z−1)

0r×p 0r×r 0r×q

0q×p 0q×r 0q×q

⎞
⎟⎠⊗

{
α−1(z)β(z)Σ ⊗ σ (z)

}
,

J (5)(z)=−
⎛
⎜⎝ 0p×p 0p×r 0p×q

ur(z)u
�
p (z−1) 0r×r 0r×q

0q×p 0q×r 0q×q

⎞
⎟⎠

⊗
{
Rx(z)

(
α−1(z−1)γ (z−1)

)� ⊗ σ (z)

}
,

J (6)(z)=
⎛
⎝0p×p 0p×r 0p×q

0r×p ur(z)u
�
r (z−1) 0r×q

0q×p 0q×r 0q×q

⎞
⎠⊗ {Rx(z) ⊗ σ (z)} ,

J (7)(z)=−
⎛
⎜⎝ 0p×p 0p×r 0p×q

0r×p 0r×r 0r×q

uq(z)u
�
p (z−1) 0q×r 0q×q

⎞
⎟⎠⊗

{
Σ
(
α−1(z−1)β(z−1)

)� ⊗ σ (z)

}
,

J (8)(z)=
⎛
⎜⎝0p×p 0p×r 0p×q

0r×p 0r×r 0r×q

0q×p 0q×r uq(z)u
�
q (z−1)

⎞
⎟⎠⊗ {Σ ⊗ σ (z)} .

The submatrixJαα(z) in (8) is equal to the sumof the non-zero blocks ofJ (1)(z) andJ (3)(z). Similarly,

the submatrices Jαγ (z), Jαβ(z), Jγα(z), Jγ γ (z), Jβα(z) and Jββ(z) are equal to the non-zero blocks

of J (2)(z), J (4)(z), J (5)(z), J (6)(z), J (7)(z) and J (8)(z) respectively. Since the input process x(t)
and the noise process ε(t) are orthogonal, we have Fγβ(ϑ) = Fβγ (ϑ) = 0. Inserting representations

J (1)(z) through J (8)(z) in (17) yields a compact expression for the Fisher information matrix which

is summarized in Proposition 2.1.

Proposition 2.1. The following integral expression for the Fisher information matrix of a VARMAX process

holds true

F(θ) = 1

2π i

∮
|z|=1

(P(z) ⊗ σ (z))
dz

z
+ 1

2π i

∮
|z|=1

(Q(z) ⊗ σ (z))
dz

z
, (22)

where the (p + r + q)n × (p + r + q)n matrices P(z) and Q(z) are

P(z) = G(z)ΣG(z)∗
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and

Q(z) = K(z)Rx(z)K(z)∗,
where

G(z) =
⎛
⎝up(z) ⊗ α−1(z) (−β(z))

0rn×n

uq(z) ⊗ In

⎞
⎠ and K(z) =

⎛
⎝up(z) ⊗ α−1(z) (−γ (z))

ur(z) ⊗ In
0qn×n

⎞
⎠ .

2.4. Representation based on multiple Sylvester matrices

The representations developed in the previous section are such that amultiple Sylvestermatrix can

be used to rewrite (22). For that purposewe apply a convenient factorization to thematrix polynomials

G(z) and K(z), to obtain

G(z) =
⎛
⎜⎝Ip ⊗ α−1(z) 0pn×rn 0pn×qn

0rn×pn 0rn×rn 0rn×qn

0qn×pn 0qn×rn Iq ⊗ α−1(z)

⎞
⎟⎠
⎛
⎝up(z) ⊗ (−β(z))

0rn×n

uq(z) ⊗ α(z)

⎞
⎠ (23)

and

K(z) =
⎛
⎜⎝Ip ⊗ α−1(z) 0pn×rn 0pn×qn

0rn×pn Ir ⊗ α−1(z) 0rn×qn

0qn×pn 0qn×rn 0qn×qn

⎞
⎟⎠
⎛
⎝up(z) ⊗ (−γ (z))

ur(z) ⊗ α(z)
0qn×n

⎞
⎠ . (24)

We now introduce the n(p + q) × n(p + q)multiple Sylvester matrix involving the coefficients of the

matrix polynomials α(z) and β(z). It is given by

S(−β ,α) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−In −β1 · · · −βq 0n×n · · · 0n×n

0n×n

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0n×n

0n×n · · · 0n×n −In −β1 · · · −βq

In α1 · · · αp 0n×n · · · 0n×n

0n×n

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0n×n

0n×n · · · 0n×n In α1 · · · αp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Consider the pn × (p + q)n and qn × (p + q)n upper and lower submatrices Sp(−β) and Sq(α) of

the multiple Sylvester matrix S(−β ,α) such that

S(−β ,α) =
(

Sp(−β)
Sq(α)

)
.

It is straightforward to verify that the following equalities hold true,

Sp(−β)
(
up+q(z) ⊗ In

) = up(z) ⊗ (−β(z)) (25)

and

Sq(α)
(
up+q(z) ⊗ In

) = uq(z) ⊗ α(z). (26)

Similarly for the submatrices Sp(−γ ) and Sr(α) of the (p + r)n × (p + r)nmultiple Sylvester matrix

S(−γ ,α), we have

Sp(−γ )
(
up+r(z) ⊗ In

) = up(z) ⊗ (−γ (z)) (27)
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and

Sr(α)
(
up+r(z) ⊗ In

) = ur(z) ⊗ α(z). (28)

Insertion of (25) and (26) in (23) and (27) and (28) in (24) respectively yields a representation of the

Fisher information matrix in terms of multiple Sylvester matrices. These matrices are represented

by the submatrices associated with S(−β ,α) and S(−γ ,α), respectively. This is summarized in

Proposition 2.2.

Proposition 2.2. The Fisher information matrix of a VARMAX process expressed in terms of multiple

Sylvester matrices is given by

F(θ) = 1

2π i

∮
|z|=1

(
Ω(z)ΣΩ∗(z) ⊗ σ (z)

) dz
z

+ 1

2π i

∮
|z|=1

(
Γ (z)Rx(z)Γ

∗(z) ⊗ σ (z)
) dz

z
, (29)

where

Ω(z) =
⎛
⎜⎝Ip ⊗ α−1(z) 0pn×rn 0pn×qn

0rn×pn 0rn×rn 0rn×qn

0qn×pn 0qn×rn Iq ⊗ α−1(z)

⎞
⎟⎠
⎛
⎝ Sp(−β)
0rn×n(p+q)

Sq(α)

⎞
⎠ (up+q(z) ⊗ In

)

and

Γ (z) =
⎛
⎜⎝Ip ⊗ α−1(z) 0pn×rn 0pn×qn

0rn×pn Ir ⊗ α−1(z) 0rn×qn

0qn×pn 0qn×rn 0qn×qn

⎞
⎟⎠
⎛
⎝ Sp(−γ )

Sr(α)
0qn×n(p+r)

⎞
⎠ (up+r(z) ⊗ In

)
,

where Sp(−β) and Sq(α) are submatrices of the multiple Sylvester matrix S(−β ,α) whereas Sp(−γ )
and Sr(α) are submatrices of the multiple Sylvester matrix S(−γ ,α).

We have derived a compact representation of F(ϑ) at the vector-matrix level and expressed in

terms of multiple Sylvester matrices. It is known that the scalar version of S(−β ,α) has the resultant

property, the matrix S(−β ,α) becomes singular if and only if the scalar polynomials α(z) and β(z)
have at least one common zero. However, the multiple resultant property does not hold for multiple

Sylvester matrices, see e.g. [8,17]. If the twomatrix polynomials α(z) and β(z) have a common eigen-

value the det S(−β ,α) will not necessarily be equal to zero. In the next section we represent F(θ) in
terms of tensor Sylvester matrices, for which the multiple resultant property does hold.

2.5. Representation based on tensor Sylvester matrices

In this section we shall further exploit the approach used in Section 2.4. We will develop a repre-

sentation of the Fisher information matrix in terms of tensor Sylvester matrices. We shall therefore

apply another factorization to the matrices in (22). We have

P(z) ⊗ σ (z) = D(z) (Σ ⊗ σ (z)) D(z)∗ (30)

and

Q(z) ⊗ σ (z) = N (z) (Rx(z) ⊗ σ (z)) N (z)∗, (31)

where

D(z) =
⎛
⎜⎝up(z) ⊗ α−1(z) (−β(z)) ⊗ In

0rn2×n2

uq(z) ⊗ α−1(z)α(z) ⊗ In

⎞
⎟⎠

and

N (z) =
⎛
⎜⎝up(z) ⊗ α−1(z) (−γ (z)) ⊗ In

ur(z) ⊗ α−1(z)α(z) ⊗ In
0qn2×n2

⎞
⎟⎠ .
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For matrix polynomials α(z) = ∑p
i=0 αiz

i and β(z) = ∑q
j=0 βjz

j the n2(p + q) × n2(p + q) tensor

Sylvester matrix is defined as

S⊗(−β ,α)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−In) ⊗ In (−β1) ⊗ In · · · (−βq

)⊗ In 0n2×n2 · · · 0n2×n2

0n2×n2
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0n2×n2

0n2×n2 · · · 0n2×n2 (−In) ⊗ In (−β1) ⊗ In · · · (−βq

)⊗ In
In ⊗ In In ⊗ α1 · · · In ⊗ αp 0n2×n2 · · · 0n2×n2

0n2×n2
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0n2×n2

0n2×n2 · · · 0n2×n2 In ⊗ In In ⊗ α1 · · · In ⊗ αp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Gohberg and Lerer (1976), in [8], have proved that the matrix polynomials α(z) and β(z) have at least

one common eigenvalue if and only if det S⊗(−β ,α) = 0 or when the matrix S⊗(−β ,α) is singular.
In other words the tensor Sylvester matrix S⊗(−β ,α) has the multiple resultant property contrary to

the multiple Sylvester matrix S(−β ,α).
We need the pn2 × (p + q)n2 and qn2 × (p + q)n2 submatrices S⊗

p (−β) and S⊗
q (α) of the tensor

Sylvester matrix S⊗(−β ,α) such that

S⊗(−β ,α) =
(

S⊗
p (−β)

S⊗
q (α)

)
.

The following two properties are easily verified. We have

S⊗
p (−β)

(
up+q(z) ⊗ In2

) = up(z) ⊗ (−β(z)) ⊗ In (32)

and

S⊗
q (α)

(
up+q(z) ⊗ In2

) = uq(z) ⊗ α(z) ⊗ In. (33)

Similarly, for the submatrices S⊗
p (−γ ) and S⊗

r (α) of the (p + r)n2 × (p + r)n2 tensor Sylvester

matrix S⊗(−γ ,α), it holds that

S⊗
p (−γ )

(
up+r(z) ⊗ In2

) = up(z) ⊗ (−γ (z)) ⊗ In (34)

and

S⊗
r (α)

(
up+r(z) ⊗ In2

) = ur(z) ⊗ α(z) ⊗ In. (35)

A factorization of thematrices in (30) and (31)will be applied in order to express the Fisher information

matrix in terms of the tensor Sylvester matrices S⊗(−β ,α) and S⊗(−γ ,α). For that purpose we first

factorize the matrix polynomials D(z) and N (z) accordingly, to obtain

D(z) =
⎛
⎜⎝Ip ⊗ α−1(z) ⊗ In 0pn2×rn2 0pn2×qn2

0rn2×pn2 0rn2×rn2 0rn2×qn2

0qn2×pn2 0qn2×rn2 Iq ⊗ α−1(z) ⊗ In

⎞
⎟⎠
⎛
⎝up(z) ⊗ (−β(z)) ⊗ In

0rn2×n2

uq(z) ⊗ α(z) ⊗ In

⎞
⎠ (36)

and

N (z) =
⎛
⎜⎝Ip ⊗ α−1(z) ⊗ In 0pn2×rn2 0pn2×qn2

0rn2×pn2 Ir ⊗ α−1(z) ⊗ In 0rn2×qn2

0qn2×pn2 0qn2×rn2 0qn2×qn2

⎞
⎟⎠
⎛
⎝up(z) ⊗ (−γ (z)) ⊗ In

ur(z) ⊗ α(z) ⊗ In
0qn2×n2

⎞
⎠ .(37)

Expression (30), when equalities (32) and (33) are used in (36), becomes

P(z) ⊗ σ (z) = �(z)�(z)�∗(z), (38)
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where

Φ(z) =
⎛
⎜⎜⎝
Ip ⊗ α−1(z) ⊗ In 0pn2×rn2 0pn2×qn2

0rn2×pn2 0rn2×rn2 0rn2×qn2

0qn2×pn2 0qn2×rn2 Iq ⊗ α−1(z) ⊗ In

⎞
⎟⎟⎠
⎛
⎜⎝

−S⊗
p (β)

0rn2×n2(p+q)

S⊗
q (α)

⎞
⎟⎠(up+q(z) ⊗ In2

)

and

Θ(z) = Σ ⊗ σ (z) .

When equalities (34) and (35) are used in (37), we obtain

Q(z) ⊗ σ (z) = �(z)�(z)�∗(z), (39)

where

Λ(z) =
⎛
⎜⎜⎝
Ip ⊗ α−1(z) ⊗ In 0pn2×rn2 0pn2×qn2

0rn2×pn2 Ir ⊗ α−1(z) ⊗ In 0rn2×qn2

0qn2×pn2 0qn2×rn2 0qn2×qn2

⎞
⎟⎟⎠
⎛
⎜⎝

−S⊗
p (γ )

S⊗
r (α)

0qn2×n2(p+r)

⎞
⎟⎠(up+r(z) ⊗ In2

)

and

Ψ (z) = Rx(z) ⊗ σ (z) .

Combining (38) and (39) in (22) yields a representation for the Fisher information matrix F(ϑ) in

terms of submatrices of the tensor Sylvester matrices S⊗(−β ,α) and S⊗(−γ ,α). This is given in

Proposition 2.3.

Proposition 2.3. The following representation of the Fisher information matrix of a VARMAX process

expressed in terms of tensor Sylvester matrices holds true

F(ϑ) = 1

2π i

∮
|z|=1

�(z)�(z)�∗(z)dz
z

+ 1

2π i

∮
|z|=1

�(z)�(z)�∗(z)dz
z

. (40)

As mentioned before, the multiple Sylvester matrix has no resultant property whereas the tensor

Sylvestermatrix doeshave this property. This implies that representation (40) ismore appropriate than

(29) to prove a possible resultant property of the Fisher informationmatrix of a VARMAX process. This

will be a subject for further research.

The resultant property of the Fisher information matrix of a VARMA process is proved in [17].

In [19] an elementwise representation of the Fisher information matrix of a VARMAX process is

developed. The obtained expressions are easily implementable circular integralswhich are convenient

for computational purposes. Therefore, a numerical computation of the Fisher information matrix of

a VARMAX process is a subject for further study. An efficient and fast algorithm described in [4] can

be used to compute the circular integrals.

A representation of the inverses (α(z))−1, (β(z))−1, (α(z−1))−1 and (β(z−1))−1, which appear

in (29) and (40), is expressed in terms of the coefficients. More details are given in the next section

according to a property proved in [9].

2.6. Inversion of matrix polynomials

Let α̃(z) = zpα(z−1) and β̃(z) = zqβ(z−1). Companion matrices which shall be associated with

the matrix polynomials α̃(z) and β̃(z) are defined by the np × np and nq × nq matrices accordingly,

to have

Cα =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 I 0 . . . 0

0 0 I . . . 0
...

. . .

0 I

−αp −αp−1 · · · · · · −α1

⎞
⎟⎟⎟⎟⎟⎟⎠

and
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Cβ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 I 0 . . . 0

0 0 I . . . 0
...

. . .

0 I

−βq −βq−1 · · · · · · −β1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

respectively. As in the scalar case, the properties

det(Iz − Cα) = det α̃(z) and det(Iz − Cβ) = det β̃(z)

and

det(I − zCα) = det α(z) and det(I − zCβ) = det β(z)

hold, see [9].

The following equalities hold for every z ∈ C which is not an eigenvalue of the matrix polynomials

α̃(z) and β̃(z),

(α̃(z))−1 = Pα(Iz − Cα)−1Rα and
(
β̃(z)

)−1 = Pβ(Iz − Cβ)−1Rβ ,

where

the n × npmatrix Pα = (I 0 . . . 0
)
and np × nmatrix Rα = (0 . . . 0 I

)�
and

the n × nqmatrix Pβ = (I 0 . . . 0
)
and nq × nmatrix Rβ = (0 . . . 0 I

)�
.

Since (α(z−1))−1 = zp (α̃(z))−1 and (β(z−1))−1 = zq (β̃(z))−1 the relations(
α(z−1)

)−1 = zpPα(Iz − Cα)−1Rα and
(
β(z−1)

)−1 = zqPβ(Iz − Cβ)−1Rβ

and

(α(z))−1 = z−p+1Pα(I − zCα)−1Rα and (β(z))−1 = z−q+1Pβ(I − zCβ)−1Rβ

hold true. However, the computation of the values that the inverses of the matrix polynomials take

at some points can be of interest; i.e. when we are not interested in the computation of the matrix

coefficients of the inverses.

2.7. A representation derived from the Fisher information matrix

The purpose of this section consists of displaying a setting which is similar to the representation

of the Fisher information matrix of a scalar ARMAX process set forth in [14]. For that purpose we start

from representation (40). The integrand of the first term is considered,

A(z):=Φ(z)Θ(z)Φ∗(z).
We obtain

L(z)A(z)L∗(z) =
⎛
⎜⎝

−S⊗
p (β)

0rn2×n2(p+q)

S⊗
q (α)

⎞
⎟⎠ (up+q(z) ⊗ In2

)
�(z)

(
up+q(z) ⊗ In2

)∗
⎛
⎜⎝

−S⊗
p (β)

0rn2×n2(p+q)

S⊗
q (α)

⎞
⎟⎠

�

, (41)

where

L(z) =
⎛
⎝Ip ⊗ α(z) ⊗ In 0pn2×rn2 0pn2×qn2

0rn2×pn2 0rn2×rn2 0rn2×qn2

0qn2×pn2 0qn2×rn2 Iq ⊗ α(z) ⊗ In

⎞
⎠ .
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Integrating expression (41) yields

1

2π i

∮
|z|=1

L(z)A(z)L∗(z)dz
z

=
⎛
⎜⎝ −S⊗

p (β)

0rn2×n2(p+q)

S⊗
q (α)

⎞
⎟⎠R(ϑ)

⎛
⎜⎝ −S⊗

p (β)

0rn2×n2(p+q)

S⊗
q (α)

⎞
⎟⎠

�
, (42)

where

R(ϑ) = 1

2π i

∮
|z|=1

(
up+q(z) ⊗ In2

)
�(z)

(
up+q(z) ⊗ In2

)∗ dz

z
.

The integrand of the second term of (40) is now considered,

B(z) := �(z) �(z)�∗(z).
A similar procedure as above is applied, to obtain

W(z)B(z)W∗(z) =
⎛
⎜⎝ −S⊗

p (γ )

S⊗
r (α)

0qn2×n2(p+r)

⎞
⎟⎠ (up+r(z) ⊗ In2

)
�(z)

(
up+r(z) ⊗ In2

)∗
⎛
⎜⎝ −S⊗

p (γ )

S⊗
r (α)

0qn2×n2(p+r)

⎞
⎟⎠

�
, (43)

with

W(z) =
⎛
⎝Ip ⊗ α(z) ⊗ In 0pn2×rn2 0pn2×qn2

0rn2×pn2 Ir ⊗ α(z) ⊗ In 0rn2×qn2

0qn2×pn2 0qn2×rn2 0qn2×qn2

⎞
⎠ .

Integration of (43) is applied, to obtain

1

2π i

∮
|z|=1

W(z)B(z)W∗(z)dz
z

=
⎛
⎜⎝ −S⊗

p (γ )

S⊗
r (α)

0qn2×n2(p+r)

⎞
⎟⎠ T (ϑ)

⎛
⎜⎝ −S⊗

p (γ )

S⊗
r (α)

0qn2×n2(p+r)

⎞
⎟⎠

�
, (44)

where

T (ϑ) = 1

2π i

∮
|z|=1

(
up+r(z) ⊗ In2

)
�(z)

(
up+r(z) ⊗ In2

)∗ dz

z
.

A matrix, which is a combination of (42) and (44), is set forth

M(ϑ)= 1

2π i

∮
|z|=1

L(z)A(z)L∗(z)dz
z

+ 1

2π i

∮
|z|=1

W(z)B(z)W∗(z)dz
z

=
⎛
⎜⎝ −S⊗

p (β)

0rn2×n2(p+q)

S⊗
q (α)

⎞
⎟⎠R(ϑ)

⎛
⎜⎝ −S⊗

p (β)

0rn2×n2(p+q)

S⊗
q (α)

⎞
⎟⎠

�

+
⎛
⎜⎝

−S⊗
p (γ )

S⊗
r (α)

0qn2×n2(p+r)

⎞
⎟⎠ T (ϑ)

⎛
⎜⎝

−S⊗
p (γ )

S⊗
r (α)

0qn2×n2(p+r)

⎞
⎟⎠

�

. (45)

In [14], the Fisher information matrix of a ARMAX process has a similar representation to (45) with

appropriate submatrices. This expression is used to prove that the Fisher information matrix of a

ARMAX time series process is singular iff the three polynomials have at least one common zero.

3. Conclusion

Compact formsof theFisher informationmatrixofaVARMAXprocessexpressed in termsofmultiple

and tensor Sylvestermatrices have been established. Especially the representation expressed by tensor
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Sylvester matrices will allow us to study matrix structural properties of the Fisher information matrix

of VARMAX processes. This will be a subject of further study.
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