Linear Algebra and its Applications 430 (2009) 674-691

Contents lists available at ScienceDirect

Linear Algebra and its Applications

journalhomepage: www.elsevier.com/locate/laa

Matrix differential calculus applied to multiple stationary
time series and an extended Whittle formula
for information matrices

André Klein 2+, Peter Spreij P

2 Department of Quantitative Economics, University of Amsterdam, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands

b Korteweg-de Vries Institute for Mathematics, University of Amsterdam Plantage Muidergracht 24,
1018 TV Amsterdam, The Netherlands

ARTICLE INFO ABSTRACT
Article history: The purpose of this paper is to set forth easily implementable
Received 4 February 2008 expressions for the Fisher information matrix (FIM) of a Gauss-
Accepted 5 September 2008 ian stationary vector autoregressive and moving average process
with exogenous or input variables, a vector ARMAX or VARMAX
Submitted by V. Mehrmann process. The entries of the FIM are represented as circular integral
expressions and can be computed by applying Cauchy’s residue the-
AMS classification: orem. An extension of the Whittle formula for the FIM of multiple
15A57 time series processes is developed for VARMAX processes. It will
15A69 be shown that the extended Whittle formula yields the FIM when a
26B12 bivariate structure, consisting of the VARMAX process and the exog-
253112 enous-input process, is considered. Consequently, the equivalence

between a frequency and time domain representation of the FIM
of VARMAX processes is established. In order to obtain the results
presented in this paper, the differentiation techniques developed
and used in [A. Klein, P. Spreij, An explicit expression for the Fisher

Keywords:
Matrix differential calculus
Matrix polynomial

Fisher information matrix information matrix of a multiple time series process, Linear Algebra
VARMAX process Appl. 417 (2006) 140-149] are applied.
Whittle formula © 2008 Elsevier Inc. All rights reserved.

1. Introduction

The purpose of this paper is to set forth easily implementable expressions for the Fisher information
matrix of a Gaussian stationary vector autoregressive and moving average process with exogenous or

* Corresponding author. Tel.: +31 20 5254245; fax: +31 20 5254349 .
E-mail address: A.A.B.Klein@uva.nl (A. Klein).

0024-3795/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.1aa.2008.09.019


http://www.sciencedirect.com/science/journal/00243795
mailto:A.A.B.Klein@uva.nl

A. Klein, P. Spreij / Linear Algebra and its Applications 430 (2009) 674-691 675

input variables, a vector ARMAX or VARMAX process. A difficult computational problem involved in
the statistical inference from time series is that of determining the asymptotic covariance matrix of the
maximum likelihood estimators. The asymptotic covariance matrix is obtained by inverting the Fisher
information matrix. The Fisher information plays a vital role in estimation theory and statistical signal
processing and control, see e.g.[3,7] and more recently in physics, see e.g. [5,6]. VARMAX processes are
of common use in signal processing, control and system theory and statistics, see e.g.[18,9]. The entries
of the Fisher information matrix represented as circular integral expressions and computed by applying
Cauchy’s residue theorem. It concerns the evaluation of integrals of a rational function over the unit
circle. These integrals can be computed by recursions with respect to the degree of the polynomials,
see e.g. [23]. However, a more efficient and faster method consists of transforming the problem to the
evaluation of the autocovariances of an ARMA process by means of the algorithm developed in [4].

Until recently the asymptotic covariance matrix of the Gaussian VARMA model has been stated
only in terms of formulas involving integration over the frequency domain. For stationary time series
models without inputs, the Whittle formula, developed in the pioneering paper [24], for the Fisher
information matrix of multiple time series processes, is a frequency-domain integral representation
and used in [21] to derive closed form expressions for the VARMA case. In [14], an equivalence between
a frequency and time domain representation of the Fisher information matrix of VARMA processes is
established. It is worth emphasizing that many results on the asymptotic Fisher information matrix
of multiple time series processes are limited to these processes. In most of these cases, except in [15],
Whittle’s formula is used, see e.g. [21].

In the present paper, the Whittle formula is extended to VARMAX processes. Since a straightforward
application of the Whittle formula in a VARMAX context does not yield the Fisher information matrix,
an alternative approach will be developed. It will be shown that the original Whittle formula can be
used to obtain the Fisher information matrix of a VARMAX model, when the process is rewritten in a
bivariate form. The latter combines both the VARMAX process as well as the exogenous stationary input
process. The Fisher information matrix of VARMAX processes as well as the corresponding extended
Whittle formula developed in this paper are set forth both at the full matrix and block matrix level.
We will establish equivalence between a frequency and time domain representation of the Fisher
information matrix.

In order to obtain the results presented in this paper, we apply the methods developed in [15] to
obtain the Fisher information matrix of a VARMA process. These methods involve differentiation of
the error process with respect to the parameter matrices. In many studies, e.g. [14,16,19] when differ-
entiation is applied in statistics and matrix calculus, the differentiation methods use the vectorization
of matrices and matrix products in order to obtain the desired representations. In the present paper
the differentiation is such that the structure of the matrix is left unchanged.

For other applications of matrix derivatives in statistics, see e.g. [19]. More recent developments
on matrix derivatives are well covered in the survey paper by Wong [25]. Matrix calculus finds also
applications in other areas of interest. The mathematical methods of quantum statistical inference are
based on matrix derivatives, see e.g. [1,2]. For applications in econometrics, see e.g. [20].

Consider the vector difference equation representation of a linear system {y(t),t € Z}, Z the set of
integers of order (p,r, q)

Za,y(t h= Zy,x(t -+ Zﬁ,s(t o teZ, (1)
0 0
where y(t) x(t) and s(]t) are the outpjuts the observed inputs x(t) also named the exogenous or con-
trol variable depending on the field of application (econometrics, signal processing and systems and
control), and the errors, respectively, and where o; € R"™", ; € R™™, and p; € R™" are the associate
parameter matrices. We impose ag = g = I.
Eq. (1) can compactly be written as

a(L)y(t) = yDx(t) + BL)e(t), (2)
where

al) =Y oll; y) =) yl; Bl =) g,



676 A. Klein, P. Spreij / Linear Algebra and its Applications 430 (2009) 674-691

where L denotes the backward shift operator, e.g. Lx(t) = x(t — 1). The estimation of the matrices
01,02, ., p, Y1, Y2, - - -+ ¥r, B1, B2, - - ., Bq has received considerable attention in the time series and sta-
tistical signal processing literature, see e.g. [3,8,10,18].

The left-hand side of (1) is the autoregressive part, the second term on the right-hand side the
moving average part and process x(t) are the input variables. The error {e(t),t € N} is a collection
of uncorrelated zero mean n-dimensional random variables each having positive definite covariance
matrix X and we assume, for all s, t, E5 {x(s)e T (t)} = 0, where T denotes the transposition and [ repre-
sents the expected value under the parameter ©. The matrix © represents all the VARMAX parameters,
with the total number of parameters being n®(p + q) + mn(r + 1). The choice for the n x {n(p + q) +
m(r + 1)} parameter matrix is

U =1 P2 -+ Op Vps1 Opr2 -+ Opir Oprr+1 Optr42 Optre3 - Opireqe1)s
(3)
=02 - apyoyt - v—1 v B B2 o By (4)

The observed input variable x(t) is assumed to be a stationary process with spectral density Rx(-)/27x.
If x(t) is a m-dimensional VARMA process satisfying

alyx(t) = b(L)n(t), (5)
then
Rx(el®) = a~1(el®)b(el®)Qb*(el®)ya *(el*), o e [-m, 7], (6)

where E{n(t)nT (t)} = Q.

The assumption det(a(z)) # 0, |z| < 1anddet(8(z)) # 0, |z| < 1ensures thate(t) are the linearinno-
vations, in the linear prediction of y(t) from x(s), y(s) when s < t. The elements of «~1(z) and 8~1(2)
can be written in power series in z. In [13], the scalar version of (2) is considered. The authors proved
that the asymptotic Fisher information matrix is singular if and only if the scalar polynomials «(z), 8(z)
and y (z) have at least one common root. In [16], the same property is considered for the asymptotic
Fisher information matrix of a VARMA process. The authors show that the Fisher information matrix
becomes singular if and only if the VARMA matrix polynomials have at least one common eigenvalue.
A similar result probably holds for the VARMAX case as well.

The {n2(p + q) + mn@r + 1)} x {(n?(p + q) + mn(r + 1)} asymptotic Fisher information matrix of the
VARMAX process is given by

F ) =F, =<gl";>Tzl <§T§> } 7)

The paper is organized as follows. The technique of differentiation with respect to a matrix applied to
the VARMAX processis described in Section 2. A convenient representation for the derivative Os /09 will
be constructed in order to evaluate (7). In Section 3, the results developed in Section 2 are used to con-
struct the entries of the Fisher information matrix of a VARMAX process and closed form expressions
are derived. In Section 4, we emphasize the fact that Whittle’s formula for the Fisher information matrix
of a VARMA process cannot be directly used for a VARMAX process. We therefore present an extended
Whittle formula which corresponds to the Fisher information matrix of a VARMAX process. In the
appendix explicit expressions of the block matrix representations of the Whittle formula are presented.

2. Differentiation of the error process

In this section, the approach used in [15] is extended to a VARMAX process since a new component,
the input process x(t), is introduced. This will lead to an appropriate representation for Os/0%. Let us
first briefly outline the differentiation rules used in the present paper.

Consider a real, differential (m x n) matrix function X () of areal (1 x ¢) vector © = (91,92, ...,%),
where m, n and ¢ are positive integers. Let the (m x n) matrices 0;X = (0X;;/0%;) withr =1,2,...,¢be

the first order partial derivatives of X () with X;; the (i, ) element of X. Write dX;; = Zle (GX,-j /00 doy
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where dv; is an arbitrary perturbation of #r. The (m x n) matrix dX = (dXj) is the differential form
of the first order derivative X(#). An expression in differential form can instantaneously be put into a
partial derivative form by replacing d with 0, forr =1,2,...,¢.

Let X(¢) and Y (&) be real (m x n) and (n x p) differentiable matrix functions of the real vector
?(¢ + 1), where m,n,p and ¢ are positive integers. The usual scalar product rule of differentiation
yields

dXY) = (dX)Y + X(dY).
Consider now the VARMAX Eq. (2). From (2) one obtains
y® = Dy Lx®) + o~ DHBLIED). (8)

Before applying the appropriate differentiation technique to Eq. (8), we note the properties dy(t) = 0
and dx(t) = 0, where dw(t) is the total differential of a process w(t) with respect to the parameters
aray - opYo Y1 -+ ¥r—1 ¥r B1 B2 -+ Bg. because the realizations of the processes y(t) and x(t) do not
depend on these parameters. Below we also use the differential rule, see e.g. [17]

da (1) = —a ' ()da(L)e" 1 (L). 9)

When for typographical brevity the time argument for x(t) and &(t) is omitted, we have for the
VARMAX process given in (8)

de = 71 (Lyda (o' Lyy L)X — g~ Ddy (L)X
+ 7 Wdaa 'L BLe — 71 LYABL)e. (10)

We can now develop (10), using (3) and (4) according to

g—gm = B HLAYY + L2 A0y + - + [P Avpla~ Ly (L)x
— BV DAYy 1 +LADp 2 + L2 AUy 3+ + L Ay 1)X
+ 87N DLAD] + LPADy + - + [P AV}~ (D) B(L)e

= BT DAYy 2 + L2 A3 + o + LIADp g e (11)

where Av; is an arbitrary perturbation of ;.

The last two terms in (11) are given in [15] and since the method used in this section has been
introduced in [15], we will give a short description of the results, emphasizing the differences caused
by the presence of the input process.

To construct the first n? columns of the matrix 0s/0%, we define the n x n matrix Ej= eie].T, where
e; and e; are respectively the ith and jth standard basis vectors in R", see [15]. The first n columns
will be set forth by considering the n standard basis vectors ej, ey, ..., e, in R" belonging to E;;, for
i=1,2,...,n. The standard basis matrices or block vectors necessary for deriving the first n columns
of 0s /01, corresponding to differentiation with respect to 91, are

(Eil Onxn <+ Onxn Onxm ~+ Onxm Onxn Onxn)~
In (11) A%y shall consist of the first n x n matrices E;; with i =1,2,...,n, whereas all remaining
Avj, wherej=2,...,p+T1 +q+ 1, are zero. Consequently, the first n columns of de/0» are given by
LB~ DEga ' Ly (WX + LB~ D Eja~ L)AL

A similar method is applied to the n? — n remaining columns associated with 4.
We proceed in a similar manner for the remaining columns associated with Ad, ..., A9,_q in (11).
For 9, the standard basis block vectors are then given by

pth n x n block

{
(Onxn Onxn Ey Onxm Onxm Onxn 0n><n)~
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The corresponding n? columns are given by
PN (DEjo ' Ly (X + P~ (DEje  (LB(L)e.

We now consider the construction of the nm(r + 1) columns associated with 9,1, 9p12,..., 9p4r,
Op4r+1. For that purpose we introduce the n x m matrix & = e;?(e]f")T where e} is the ith standard
basis vector in R" and e]’." is the jth standard basis vector in R™. For a column associated with Iptk
where k =1,2,...,r + 1, the standard basis matrix-vector is then

kth n x m block

A

(Onxn Onxn Onxm (’5@11 Onxm Onxn 0n><n)~
The corresponding columns of 0s /0 are then

~L*g N D& yx.
Similarily, as for the first n2p columns, the n%q columns associated with Dptr420 Opri3s - - » Opgriged
have the representation

—L*8(L)Ege,
where k =1,2,...,q and for each k we have the same specification for the matrices Ej; as for the first
nZp columns.

We shall summarize the obtained results in Proposition 2.1, an extension of Proposition 3.1 in [15].
For that purpose we define

¢y = B (WEje My () and ¢5(L) = = (HEja ' LBWL), (12)
YL ='Wy and yEWL) = —p (DE;. (13)
Put

D) = (¢F; D)x + ¢ (De, ¢3 (DX + ¢5 (D), . . ., % (D)X
+ o5y (Le, ¢, (DX + ¢35 (L)e, @5, (DX + ¢S5, (L), . . ., ¢, (L)X
+ ¢pa e, .. ¢, (DX + @5, (De, o5, (DX + ¢5, (De, . . ., (DX
+ ¢nnDe),
II(L) = (Y (DX, v (DX, .. iy (DX, i DX, ¥, (DX, .. Y (DX, .,
VX, Y3 (DX, .. Y (DX),
V(L) = (5 De,v5 Dy, . .., ¥ (De, i (De, Y3y D, ... Y (e, . .,
YinDe, ¥5, D, ..., De),

where the matrices @(L), IT(L) and ¥ (L) have dimension n x n2, n x nm and n x nZ, respectively.

Proposition 2.1. The following representation of the {n x (n*(p + q) + mn(r + 1))} matrix 0s/0 holds
true when the parameter matrix © given in (3) is considered:

g—; = LDWL),[2PL),...,[POL), [I(L),LITL), [AIIL),... L'TIL),
LY L), [2PL),... L1V L)
=LA, LI2,.. P e dd), 1L, L) @ ITD),
(1,LL12,. .. 19 @ V(L))
= L{uy 1) ® PL), L7 ] 4 (L) @ TI(D),ug (L) ® PL)}, (14)

where uI(L) = (1,L,12,...,L¥) for positive integers k and ® is the Kronecker product of two matrices.
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3. Closed form expressions for the entries of the Fisher information matrix

Easily implementable representations of the entries of .7 () shall be set forth by applying expres-
sion (14)-(7). We proceed with the block representation of .% (%) which is given by

(?aa(ﬁ) 970(}/(19) gf_aﬂ(ﬂ)>

t9—;(19)= eg;}/ot(l?) eg;yy(ﬂ) yyﬁ(l?) (15)

Fpa@®)  Fp,(9)  Fpp®)

In a dynamic stationary stochastic context it has long been shown useful to use Fourier transform
representations, which provide alternative circular integral representations. For evaluating % (), the
integral

dz

Faa®)  Fay @) Iap®)
Z (16)

1
tg/’-(ﬁ) = ﬁ% ]ya(ﬁ) jyy(ﬂ) fyﬂ(ﬁ)
=N\ Fh9)  Ipy ) Ipp(®)

is considered, where the integration in (16) and everywhere below is counterclockwise around the
unit circle. We shall first consider an arbitrary entry of block .7, (#). The other blocks can be treated
similarly. For that purpose a useful equality isintroduced. Consider the discrete-time stationary process
w(t) where w(t) = H(L)u(t) and the input process is described by u(t) = G(L)v(t). H(L) and G(L) are
asymptotically stable filters. For evaluating the cross covariance matrix of the output w(t) and the
input u(t), the equality

Estwu () = | Quu(w)do, o e[-m,7] (17)
holds true, where Quu(w) is the cross spectral density of the proceses w(t) and u(t). It is defined as
Quu(w) = HE¥)Q, (w) where Q, () is the spectral density of the input process u(t) which is given by

Qu(w) = GE'”)Qy()G* (™). (18)
Expression (18), which is a Hermitian matrix, is the definition of the spectral density of the stationary
process u(t). Here Y* denotes the complex conjugate transpose of the matrix Y and ,(w) is the

spectral density of the process v(t). When representation (14) is inserted in (7), an arbitrary element
of submatrix .7 4, (9) then takes the form

Ey (T ¥ x g x) T Z71)
+ Eo(Tr@ g (e g (D) T X711, (19)
where Tr(M) is the trace of a square matrix M and v,k =0,1,2,...,p—1and i,j,I,f =1,2,...,n. The
indices (i,j) and (I, f) are associated with the non-zero elements of the matrices Ejj and Ejs, respectively,

whereas the indices k and v are associated with the corresponding coefficients o, and «y of the matrix
polynomial «(z). We consider the first part of (19) and using formula (17) yields

w(t) = L gX(x and () = 2”L"+1¢;} (L)x.
The Hermitian positive definite spectral density of the process u(t) is, by virtue of (18), equal to
1 _ . . . _
LI CRCRICHCEN]
Interchanging expectation [, and trace in the first part of (19) and application of (17) leads to

L [ TV Ry ) @ @) 2 o,

27 J_,

Equivalently, for z = el®, we have

X kv _ 1 k= ey—1,d2
F aa @iy = 5= ﬁéﬂ:f Tr @R @) (@ (@) 27 ) —. (20)
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The second part of (19) is now considered. We choose
w(t) = 1gee and u(h) = Z_lL"“q&ff(L)s.
The connection between the processes u(t) and w(t) is
w(t) = Lk*V¢fj(L)(¢5c(L))*1Zu(t)_
Since the process ¢ is white noise, it has a constant spectral density equal to (1/27)2. The spectral
density of the process u(t) is then by virtue of (18) equal to
%{Z’l¢;(eiw)2(¢ff(eiw»*2’l )
Interchanging expectation [E; and trace in the second part of (19) and application of (17) leads to

Equivalently, for z = ei®, we have
kv 1

(T o @)

_ k— e e ey—1.dz
iilf = 271 fz‘zlz‘ TH @@ X (@) 27— 1)

Both for (20) and (21) we have, i,j,1,f = 1,2,...,n. Consequently, in agreement with (19)-(21) we have

kv
ijil,

kv

(Faa@Dh = (Faa O+ (F o -

A similar approach is used for the remaining components of the Fisher information matrix .7 (). An
elementwise representation of .Z (#) in (16) then becomes

T kg L g—k X Xk y—1 %
T ayO)ijig = 57 le:lz Trj @R @ (@@ 2 ) —, (22)
wherei,j,l =1,2,...,nand f = 1,2,...,m. The fact that Ry(z) is Hermitian, yields
T dv 1 _d 1 Ldz
(7 ya(ﬂ)),-‘,-',f =957 fZI:l 2" Tr (X ¢f}(Z)Rx(Z)(w,-’}(Z)) )7, (23)

whereg,d=0,1,...,randif,I=1,2,...,nandj=1,2,...,m.
Furthermore, we have

272 kv 1 - & & * _] dz

F s ODijiy = 37 fz\ﬁ 2T @2 @@ 2 (24)
and

T v 1 V—CT 2—1 £ (A (WE * dz 25

(«/’,aa(ﬂ))u,,f=—2ni7|§z|=]z H2 @2 (W@ (25)

wheres,c=0,1,...,q—1andi,jf =1,2,...,n.

Finally
7 dg _ 1 d- wy-1,dz
T = 55§, AETG@R@WF@ DT, (26)
wherei,l =1,2,...,nandj,f =1,2,...,m. Similarly
T s 1 c—s . e s y—1. 07
(& 855 = P le:] z Tr(l//ij(Z)Z(wlf(Z)) p) )7. (27)

where i,j,I.f =1,2,...,n.
The fact that the input x(t) and the noise ¢(t) are orthogonal processes implies that

Fyp(®) = 0. (28)
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The above matrix representations (20)—(27) are multivariate extensions of their scalar couterparts,
see [13]. The algorithm developed in [4] can be used for computing (20)-(27) as well as the computer
program displayed in [23] and based on [22] algorithm.

For an appropriate computation of («(2))~!, (8(2))"1, (@(z"1))~! and (8(z~1))~! which appear in
(20)-(27), we refer to procedures proved in [11] and used in [16]. In [21] closed form expressions for
the Fisher information matrix of a VARMA process are set forth. These representations are derived
from the Whittle formula where the derivatives of the spectral density of the output process y(t) are
considered. The closed form expressions givenin [21] as well as (20)-(27) are easily implementable. In
[14] the equivalence between the VARMA version of (7) and a matrix-level representation of Whittle’s
formula is established. In the next section a similar interconnection is set forth for a VARMAX process.

4. An extension of the Whittle formula to VARMAX processes

In this section an extension of the Whittle formula is set forth. An equivalence between two repre-
sentations is then established. It concerns a time and frequency-domain representation given by (7)
and the latter is a circular integral with a Hermitian integrand. First we show that the Whittle formula
for VARMA processes derived in the pioneering paper [24] does not yield the Fisher information matrix
of VARMAX processes when the spectral density of the observations y(t) given in (2) is considered.
For that purpose we recall the known representation of the Fisher information matrix of multiple
stationary time series processes or VARMA process developed in [24]

afy (eiw

h
a19lk

eh 1 T af;/(eiw) -1/ ,iw ) —1/4iw
T i) = ol B ( 597 @) @) ) do, (29)
where fy(eiw) is the spectral density matrix of the process y(t). The spectral density of the process given
by (2) with z = el® is

1
@ = Z(a‘l<z>y(z>Rx(z)y*(z)a‘*<z> +a @@ 2B @ (2)). (30)

It can be verified that the representations of the VARMA components of the Fisher information matrix
of the VARMAX process (2), as derived in the previous section, are equivalent with the corresponding
schemes developed through (29), see [21,15]. It concerns the representations (21), (24), (25) and (27).
However, such an equivalence does not hold for the exogenous components of (2) when (29) is applied.
This will be illustrated in the next section by means of an example where representation (29) is applied
to a parameter associated with an exogenous component of process (2).

4.1. An example of the Whittle formula for a VARMAX process

Consider the following VARMAX process with n =2, m=3 and p = ¢ =r = 1. The appropriate
matrix polynomials are then

C(1+el'L WL 1+l BRL
"‘(L)_( 2L 1+a?2L)’ pl) = AL 1+ p2L)°

11 11 12 12 13 13
+r L vyt +wvl vy +cL
@) = (V . 31
g J«%l + V?‘L V%Z + VIDL V§3 + V?L Gy

Since m = 3 the input process x(t) € R3, the corresponding matrix polynomials are

1+allL al’L afL
ab=| a'L  1+a2L dPL and
alL a?L  1+aPL

1+b]'L  bIL bfL
bly=| b¥L  1+b32L  bPL |.

b%lL bL  1+bPL
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We further assume
1 0 O

1 0
Z:(O 1) and Q:(g (1) (1)) (32)

The spectral densities are then

fye) = Z(Ot_] €){y @R (€*)y* (') + (') *(")}a™" (")),
RX (ei[u) — a*l (eiw)b(eiw)b* (eiw)af* (eiw) .

We shall consider the (y, y) block consisting of the parameters of the matrix polynomial y (z) given
in (31). Therefore, the appropriate derivatives in (29) with respect to an element of the (y, y) block are
given by

afy(eia)) B 0(71 (eia))

o7 5 (€O G R(E)y " (€) + ey (@)Ru(€) o (€) (33)

and
afy(eim) _ a*l(eiw)
ayék T 2n
wherei,l =1,2andj,k=1,2,3.

Recall that & = e,-ejT, where e; and e; are standard basis vectors in R? and R respectively. As can be
seen, when fy‘1 (el?) and the derivatives (33) and (34) are used in the Whittle formula (29), the matrix
polynomial y (z) contributes to the pole location when Cauchy’s residue theorem is applied. A similar
situation occurs for the remaining parameter blocks that are associated with exogenous components.
This is not the case in expression (26), see also [13] for a scalar equivalent of (26). For that purpose we
consider (26) for the (y, y) block with the matrix polynomials given in (31). First we use

TI(L) = (W DX, ¥3, (Dx, vy (DX, ¥3, (DX, Y5 (DX, Y3 (D)X) (35)

as given in Proposition 2.1. We use (31), (32) and (35) for the computation of the 12 x 12 submatrix
Z ,,(®) in (15). This yields for the Fisher information matrix (7)

{(2) ()7

where Og/0y is according to Proposition 2.1 given by the 2 x 12 matrix %8/ = (1,L) ® II(L) or, more
explicitely
Oe

5 = ~ BN WEUX BT DEnx, D)

{E 1R @)y * (@) + ¥ (€)Ry (1) & " (e1), (34)

E1ax, BN L) E0xX, B DE13x, B~ (L) E 3%,
LB W E1ux, LB D)Enx, LB (1) E 12X, LB~ (L) 2k,
LB~ E13x, LB (D) E23x). (37)

The entries of %, () can be computed by inserting representation (37) in (36) and the partitioned
form of #,, (¥) is given by

Fvon®  Fpop (19)>. (38)
Tn @ T @)

Using (26) for computing the elements of (38) yields

Ty () = <

00 1 _ T .. dz
F o Ny = 5. le:] Tr(p @8 Re@E 52D (39)
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1 d
F yon Oijis = 53 » Trz™! (ﬁ‘1<z>£ng(z)€}ﬂ‘*<z>>7z, (40)
1 d
F iy = 5 ﬂ:l Tz @&y Re@ 65 B @) (41)
2 2 —x d
T nn iy = 5 fz‘:l Tr(s ™ @R E R @) (42)

where i,l = 1,2 and j,f = 1, 2, 3. It is straightforward to see that the matrix polynomial y (z) does not
affect the pole location in (39)-(42), contrary to (29). This example clearly reveals that the Whittle
formula (29) does not correspond to the Fisher information matrix of process (2) when the spectral
density of the observations y(t) , given in (2), is used. However, as will be shown in the next section,
when an appropriate bivariate representation, consisting of the VARMAX process and the exogenous
variable, is used, equality of a matrix-level representation of the extended version of (29) and (7) holds
true.

Toillustrate the computation of (39)-(42) we consider a numerical example where the input process
x(t) is driven by a white noise process with covariance Q given in (32). Additionaly we have for the
entries of the matrix polynomial #(2) with the setting givenin (31), ]! = 6/5, 812 = 1/2, 2! = —(7/5)
and ﬁlzz = —(1/5). The basic assumption that the eigenvalues of the matrix polynomial 8(z) lie outside
the unit circle is fulfilled since the eigenvalues are: (5/23)(—5 + i+/21) with modulus equal to 1.47442.
We first choose (F (ﬂ))?z?‘m, to obtain the following circular integral expression:

1 _ , e dz
F o 0111 = 57 ylgﬂ:] T @6 nEhp @)

B _L% 500z(1 — 15z + z2) dz
T 271 Jiz=1 (50 + 50z 4 2322)(23 + 50z + 50z2) z

For applying Cauchy’s residue theorem we have to consider the poles whithin the unit circle and
these are given by the polynomial (23 + 50z + 50z2). For evaluating the integral, the algorithm devel-
oped in [4] or the computer program displayed in [23] and based on the Peterka-Vidincev [22] algo-
rithm can be implemented. This yields (&% ,,, (17))(]):?'1_] =(F yun (19))}:1,]‘1 = 7.82242. We proceed
by computing an element of block %, (%) and 7, ,,, (9) involving the parameters y 3 and yZ3, to
obtain

1 d
T yipe 1523 = 5= yil:] TrZ(ﬁ*l(Z)gBéa%ﬂ**(Z))?Z (43)

1 ?g 50z%(—25 + 89z + 70z2) dz
"~ 27 Jiz=1 (50 4+ 50z + 2322)(23 4 50z 4 5022) z
= —3.3552

and

ﬁ le:l Trz”<ﬂ*1<z>é"23££ﬂ**<z)>%z (44)
1 50(—70 — 89z + 252%) dz

T 2xi fjﬂ:] (50 + 50z + 2322)(23 4+ 50z + 5022) z

= —3.3552.

s 0,1
(Z yon (ﬁ))2'3,1,3 =

Since the matrix %, () is symmetric we have &, (¥9) = ,97;1 4 (@) and property (55) proved in
Lemma A.1 is numericaly confirmed through the computation of (43) and (44) that results in
T @13 23 = Fron 03313
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4.2. The Whittle formula for a VARMAX process

We proceed by presenting a setting which makes Whittle’s formula (29) appropriate for the Fisher
information matrix of a VARMAX process. The setting proposed in this section has also been applied
in [12].

Insert the exogenous variable x(t) = a~1(L)b(L)n(t), given by (5), in (2). This leads to

aLyy(t) = y(Ha ' LbLn) + L)e (D). (45)

Consider the bivariate representation of the VARMAX process (2), based on the exogenous variable
x(t) and representation (45),

<a<L) Onxm> (y(t)) _ <ﬁ(L) y(L)a*(L)b(L)) (s(t)) (46)
Omsn al) ) \x(6)) ~ \Omsn b(L) n(o)
or equivalently
(y(t)) _ <a*1(L)ﬁ(L) a*(L)y(L)a*l(L)b(L)) <s(t>> 47)
X(0) Omsxn a'(Db() )

Let us denote the vectors @’Eg) and (;2?)) by &(t) and §(t), respectively. Since the white noise

processes {e(t)} and {n(t)} are not correlated we have

Es@ms® ') = (0 Q)

and the spectral density matrix of §(t) is

fi= o (g g) (48)

The spectral density matrix f; (el»), of the extended vector £(t) displayed in (47), is obtained by com-
bining (48) and (18)

fE (eiw) _ 1 (0{1 (eiw)ﬂ(eim) Olil (eiw)y(eiu-))af'l (eiw)b(eim)> (Z‘ 0)

27 Omxn a~1(el)b(el®) 0o Q
a—l(eiw)ﬂ(eiw) O{_] (eia))y(eiw)a—l(eia))b(eiw) *
* ( Omcn a! (e)b(e) ' (49)

The inverse of (49) is then

ft @) =2x (ﬁ‘1<eiw>a(eiw> —ﬁ”(eiw)y(eiw))*(Z] 0 )

Omxn b-1(el*)a(e”) 0o Q!
Bl )ael”)y  —p1el®)y ()
X( Omxn b (@)a(e™) ) (0)

The main idea in this section consists of showing that when the spectral density matrix f; (el*) is used
instead of f; (el*) in Whittle’s formula (29), one obtains the Fisher information matrix of multiple time
series with exogenous variables.

Property (9) for the derivative of fgl (el») leads to the following alternative representation of (29)

when the spectral density f; (el) is used. It holds that

p iw -1 piw
Feh ! Tr(afg(el G ))dw. (51)

ijkl(ﬁ) =T a- e h
Ar ) aﬂij a’9k1

Representation (51) of Whittle’s formula shall be subsequently used.
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In [14], the following interconnection between a time and frequency-domain representation of the
Fisher information matrix of a VARMA process has been established:

e\ 1 (0 1 ovecf@)\* .+ »

b {(ac> 4 (65)} " 4ri lezl ( oc > F@ef@
Ovecf(2)\ dz
x ( % ) 7 (52)
where the right-hand side is a matrix level representation of Whittle’s formula for the Fisher informa-
tion matrix of a VARMA process. The vec operator is defined as vec X = col(col(X,-j)l'f‘:] )}’:1 and col(X,-]-)?:1
refers to the jth column of the matrix X with elements Xy, ..., Xy;. The spectral density of the VARMA
processis givenby f(2), ¢ is the parameter vector withrepresentation ¢ =vec{ay, g, . .., ap, B1. B2, - - -, Bq}
and A is the positive definite covariance matrix of the VARMA white noise process. The left-hand side
of (52) is the VARMA equivalent to (7). However, the derivatives in [14] are defined differently than
in this paper. The approach used for the VARMA equivalent of (10) consists of vectorizing the (m x n)

matrix function X(#) introduced in Section 2 according to the following rule:

vec(ABC) = (CT ® AyvecB where A € R™", Be R™P and C e RP**.

The (mn x ¢) matrix Ovec X (9)/09, the gradient form of first order derivatives of X (¢9), can be defined
as vec(dX (®)) = (O(vec X (9))/09)dy = dvec X (). Componentwise application of this rule to the VAR-
MA equivalent of (10) results in a different representation of 0s/0# than the one displayed in Propo-
sition 2.1. In Section 2, Os /0¥ is set forth at a component-level and involves all the entries of ©. As a
consequence, the Fisher information matrix displayed in Section 3 has an elementwise representation
that involves all the entries of the parameter . The computation of these entries rely on evaluating
integrals of a rational function over the unit circle. This is illustrated in Section 4.1. In [14], as a result of
a different method, Oe /0¥ is given at the vector-matrix level so that the scalar entries of the parameter
¥ can not be directly located in the corresponding Fisher information matrix.

In Theorem 4.1 below, the main result of this section, it is shown that a VARMAX equivalent to (52)
can be established when the spectral density of the extended vector &(t), based on the setting (46) and
(47), is considered.

Theorem 4.1. The equality

e\ < 1/ 0e 1 ovecfs @\ .+ 1
Es {(&9) ) (679)} = Hfz\:l <7az9 ) (fg @ ®f: ()

ovecf: (2)\ dz
x (7619 )7 (53)

holds true for the bivariate form (46). The left-hand side is given by (7) and the right-hand side is a
representation of Whittle’s formula in matrix form applied to the process (y(t),X(t)) given by (47).

Proof. We use the principal result of [14], in this paper presented as (52), but now applied to the

process {¢(t)}, driven by the white noise process {§(t)} (see (46)) and with parameter vector ¢. The
essential thing to do first is to compute the derivative process {g—g}. It immediately follows from (46),

that
ds _ (&)
dv 0

As a consequence we get that

(GG B @)= @) @)
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This gives the left-hand side of (53). The right-hand side of this equation is just the right-hand side of
(52) with f = f; and identifying ¢ with». [

Alternatively, we can also prove the equality of each submatrix in the left-hand side of (53) and
the corresponding submatrices in the right-hand side. For that purpose we use the extended Whittle
formula (51) for each submatrix of (15). This is outlined in the appendix. The approach in the appendix
can be applied to the VARMAX example (31) to illustrate the correspondence between the extended
Whittle formula and the Fisher information matrix of a VARMAX process. Egs. (56)-(60) are sufficient
to illustrate this correspondence. It can also be seen that the computation of (20)—(27) requires much
less numerical operations than using the Whittle formula (53).

5. Conclusion

In this paper easily implementable formulas of the Fisher information matrix of a VARMAX process
have been derived. The Fisher information matrix set forth in this paper consists of an elementwise
representation. The entries are closed form expressions described by circular integrals and can be
computed by applying Cauchy’s residue theorem. An appropriate extension of the Whittle formula
leads to a correspondence with the Fisher information matrix of a VARMAX process. This implies an
equality between a time and frequency-domain representation of the Fisher information matrix of
VARMAX processes. These results are obtained by using appropriate matrix differential rules. From
the numerical point of view it can also be concluded that using representations (20)-(27) is far less
computationally expensive than applying the Whittle formula given in the right-hand side of (53).
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Appendix A

In this appendix, we present the block matrix representation of the Whittle formula and prove
the equivalence to the results in Section 3. First we present a lemma that we repeatedly use in the
computations to follow.

Lemma A.1. Consider a matrix polynomial A(z) € C™*" with real coefficients, the property

1 dz 1 .o dz
5 ?‘gz‘:] TrA(z)7 =5 ?fzm TrA @— (55)

holds true.

Proof. We shall first prove the following property. If f (z) is analytic inside the unit circle then

1 dz 1 _1.dz
Tﬂifz\:lfa)7 = Tﬂifﬂ:]f(z )7.

"\ X\

the integral being taken counter-clockwise.
Setv=z"1,then & = — % the integral can now be written according to

1 ,dz 1 dv 1 dz
i b ST = b SOV = 0T

) N )

We now consider a matrix polynomial A(z) € C"™*" with real coefficients. Define Tr A(z) = f (z) where
f(2) is a scalar holomorfic function. Then it is straightforward to observe that Tr A*(z) = f(z~1). Conse-
quently, the property above yields equality (55). [
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The (y,y) block of the Fisher information matrix of the VARMAX process (2) is first considered.
The appropriate matrices to be inserted in (51) and which are based on (49) and (50) respectively are
introduced, to obtain

afg(eiw) 3 1 (0 Ol—l(eiw)gijeiwdafl(eim)b(eiw)> <Z‘ O)
0

al’i}(*d) 27 \0 0 Q

N 'BT(efiw)afT(efitu) 0
bT (efiw)afT(efiw)yT (efiw)afT (efiw) bT (efiw)afT (efia))

s (al(ei‘“m(eiw) a1(eiw)y<eiﬂf>a1(ei‘”>b(eiw)> (Z 0)

2 0 a-1(el®)b(elv) 0 Q

0 0
X (bT(e—iw)a—T(e—iw)éa;]re—iwda—T(e—iw) 0)

= H () + H*(E), (56)
where
%(eiw) _ l (a—] (eiw)(o@ijeiwde(eia))yT(e—iw)a—T(e—iw) Ol_l (eiw)(gaijeiwde(eiw)>
27 0 0

and Ry(el?) is the spectral density of the process x(t) given in (6).
It is followed by

ot 0 o\(z" o
ayl}g) =an _éal—frefiwgﬁf"r(efiw) O O Q—l

(BT EaE) g )y (e)
0 b=1(e*)a(el*)

aT(efiw)ﬂfT(efiw) 0 2_1 0
+ 27 (VT(e—ia))ﬂ—T(e—iw) aT(e—iw)b—T(e—iw) 0 Qfl

—1 /piwy @ iw,
o <0 —p~1Ee“)& el g)

0 0
= P + P (), (57)
where
PE) =2 0 0
= an _éﬁ;fre—iwgﬂ—T(e—iw)Z*lﬂ—l (eiw)a(eia)) g;fre—iwgﬂ—T(e—iw)Z*lﬂ—l (eiw)y(eiw) :

Insertion of (56)and (57)in (51) is the next step. We remind the property that when the square matrices
A1 A, .., An which do not necessarily have the same dimensions, constitute the main diagonal of a
square matrix, then

Aq

A2 =TrA; +TrAy +--- + TrA,.

An
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Representation (51) for the (y, y) block is given by

P iw a —1 /piw
(F y 0)}E ‘—Lf Tr (%(61 )W) do (58)

ijlf «d )
ar J_, aVij) aylf
— 1 " ..alod iwy €T n—iwg p—T ra—ioy y—1 -1 niw
= Tr(&'jje'*“Re(e') & pe '8 g~ 1 (e7') 27 71 () dw (59)
4 J_,
+ % Tr(RX(eiw)ﬂe*iwdﬂ*T(e*iw)Z‘lﬁ*l(eiw)@@,feiwg)dw. (60)

Since expression (59) is the complex conjugate transpose of (60) we have by virtue of (55) that (58)
becomes for z = e!®

1 - -1 ~1 ey-1,42
i f]‘gl‘:l Z8Tr{B™ @& iR ) (BT @)X }7,
which is equal to (26).
A similar approach is applied to the remaining submatrices of the Fisher information matrix. A
summary is therefore given. The («, y) block is

; -1/ 4iw
. kg 1 (7 of: (el Of; (e)
Ty O =4 /ﬂTr( e do (61)

— _4l Tr(ﬁ‘l(ei“’)E,-jei“)koc_l(ei’”)y(ei“’)
T J-n

x Ry )& pe 8T (e )X Ndw (62)
_ l Tr(Rx(eia))yT(efiw)afT(efi(u)E'Tefia)k
a7 J_, y

x 7T 27 g7 (el) 8 el 8)do. (63)

Since expression (62) is the complex conjugate transpose of (63), we have by virtue of (55) that (61)
becomes for z = e'®
1 dz

- fh 1zg"‘Tr{ﬁ‘l<z>ra‘”1fo(z)(ﬂ‘1(z)EUorl(z)y(z))*Z’l} -
Z|=

27i (64)

which is equal to (22).
The integrand in the (y, «) block integral expression, given by

P d, 1 T afg (ei‘”) af%-—] (eiw)
CRTICHT :_E[_n Tr( D W do (65)
Yij If

is the complex conjugate transpose of the integrand in (64), we then have

1

_ dz
v—d -1 -1 yey—1,-1 dz
~5 7‘{2‘212 Trie ™ @y @R(@) (B~ @& ) 2™ B~ (2)Ey) 7

which is equal to (23).
We now proceed with the («, «) block which can be written as

i -1 piw

P k; 1 ” afg (e'*) afg ()

(F (ﬁ))id't}l\f = Tax - T ( da® OaV do (66)
ij If

1 T ik —1 /40
=i _nTr(E,»je‘ a” (e

x ﬁ(eiw)z‘ﬂT(e—iw)a—T(e—iw)El}e—iwvﬂ—T(e—iw)z‘*l/3—1 (eiw))dw (67)
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1 T . . . . . .
+ Tl‘(E,jel”’koF] (ela})y (elw)RX (elw)yT(eflw)afT (eflw)
47 J_,

x El}'efiwvlgf"l' (efiw)z‘—1

x 1@y dw (68)

+ % Tr(e™ " (e7)Ej e o T (e7)Efe ) dw (69)
-7

+ % Tr(e~ ! (€)Ejel“ka 1 (l*)Eyel)dw (70)

+ 4l i TF(O{_] (eiw)ﬁ(eiw)ZﬁT(e—iw)a—T(e—iw)
T J-n

« Ei}l_'e—iwkﬁ—‘l'(e—iw)z‘flﬂ—l (eiw)Elfeiwv)dw (7])
+ l / Tr (0[7] (eiw)y(eiw)RX(ei(u)yT(efiw)afT(efiw)

47 J_,
« Ei}'e—iwkﬁ—T(e—i(u)Z*1ﬂ—] (eiw)E’feiwv) do. (72)

Expression (67) is the complex conjugate transpose of (71), (68) is the complex conjugate transpose of
(72)and expression (69) is the complex conjugate transpose of (70). Expression (70) can be represented
forz = el as

1

27

The scalar equation det(a(z)) = 0 has all its roots outside the unit circle and the smallest values of

the integers v and k is one. Consequently, there are no poles within the unit circle and so the integral

(73) is equal to zero. This implies that the integral expressions (69) and (70) vanish, by virtue of (55).
The remaining integral expressions summarizing (66) are by virtue of (55) and for z = e, given by

1
27i

7? . 21T (@) Eja~ () Eyp)dz. (73)
Z|=

_ d
7|§ ‘ ]z"*VTr{Eija*1(z)ﬂ(z)Z(ﬂ*(z)Elfa*(zm(z))*Z g (z)}f (74)
Z|=
+% f e @) Eje ! @y (@R (2)

7l Jiz1=1

-1 -1 R | dz
x(B~ @Epa™ @y @)* 2 = (75)

Representations (74) and (75) are equal to (21) and (20) respectively.
The («, B) block can now be represented according to (51), to obtain

. ion AF—1 aio
= —% :T Tr(Eje ko~ )
x pe”)ZEfe s p=T(e7) X7 g1 () dw (77)
- % :{ Tr(6~! (€*)Ejei“ka (e1)Epel®)dw (78)
- % —7; Tr(a‘T(e‘i“’)Ei]T-e‘i“’S/S‘T(e‘i“’)e‘i“’kE,})dw (79)

1 T . . .
= Tr(ZﬂT(efla))afT(eflw)ETeflmk
4 y

-7

x BT ) 27 g1 (el)Eyel®)dw. (80)
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Expression (78) is the complex conjugate transpose of (79) and expression (77) is the complex conju-
gate transpose of (80). Expression (78) can be represented for z = e!® according to
1

_ v s+k—1 -1 -1
o ?\%:12 Tr(8~" (2)Ejja™ " (2)Ef)dz. (81)

The scalar equations det(«(z)) = 0 and det(8(z)) = 0 have all their roots outside the unit circle and the
smallest values of the integers s and k is one. Consequently, there are no poles within the unit circle so
integral (81) is equal to zero, this implies that the integral expressions (78) and (79) vanish, by virtue of
(55). The remaining integral expressions summarizing (76) are by virtue of (55) and for z = el given by

1

b s—k -1 -1 xy—1,-1 %
~ 5 le:lz Tr{Z (B~ @Ejoe" @B@)* 2" 8 @Ep)—. (82)

Considering the representations displayed in (12) and (13) when inserted in (82) yield (24).
The integrand in the (8, «) block integral expression, given by

P c 1 T 6f§ (ei‘”) af;] (eiw)
(*//5a(79)),'""”[‘f = _E . Tl‘( aﬂi(jc) Tl(fv) do (83)

is the complex conjugate transpose of (82), this yields

1 dz
—5= f 2Trla ' @B@Z (B @Ej)* 2 B~ (Z)Ef
71 Jiz1=1

which is equal to (25).
The (8, B) block can be represented according to (51), to obtain
i T af%_ (eia)) afg] (eiw)
(F 55(19))(:5 =—— Tr - | do (84)
il f 47 |_ aﬁlsc) algl(fs)

— l Tr(Ei,eiwCZ‘ETefin/ng(efiw)z‘—l‘B—] (eiw))dw (85)

47 J_, v If
+ 41 Tr(Egel g1 (e)Epe’sp~! (') dw (86)

-7
+ — / Tl'(E —la)C (e—iw)E;fFe—inﬂ—T(e—iw))dw (87)
1 ) o ) )

+ 4 Tr(ZEi]T e T (e )X g1 (el*)Eyrel®)dw. (88)

-7

Expression (86) is the complex conjugate transpose of (87) and (85) is the complex conjugate transpose
of (88). Expression (86) can be represented for z = e'® accordingly, to obtain

1

- c+s—1 a1 -1 _
o fz‘:lz Tr(Egp~ @EpB™ " (2))dz=0

Using the same arguments as for (81) justifies this conclusion. Consequently, the terms (86) and (87)
vanish. The remaining integral expressions summarizing (84) are by virtue of (55) and for z = e'® given

by
1 Cc—S B -1 /pi0 xy—1,-1 Jiw dz
Tﬂif‘z‘=1z Tr{E; 2 (B~ (€)Ep)* 2™ B (e )}7
which is equal to (27).
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