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Abstract

The main goal of this paper consists in expressing the solution of a Stein equation in terms
of the Fisher information matrix (FIM) of a scalar ARMAX process. A condition for express-
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can be derived when a companion matrix with eigenvalues equal to the roots of an appropriate
polynomial associated with the ARMAX process is inserted in the Stein equation. The case of
algebraic multiplicity greater than or equal to one is studied. The FIM and the corresponding
solution to Stein’s equation are presented as solutions to systems of linear equations. The
interconnections are obtained by using the common particular solution of these systems. The
kernels of the structured coefficient matrices are described as well as some right inverses. This
enables us to find a solution to the newly obtained linear system of equations.
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1. Introduction

The purpose of this paper consists in deriving a solution to a Stein equation ex-
pressed in terms of the asymptotic Fisher information matrix of an ARMAX process.
The condition for expressing the Fisher information matrix in terms of a Stein solu-
tion is also set forth. In [9] an alternative interconnection is established for the case
of an ARMA process where the vectorized form of the Fisher information matrix is
used.

The ARMAX processes are of common use in signal processing, control and sys-
tem theory, statistics and econometrics, see e.g. [1,2,15]. The concept of the Fisher
information plays a vital role in estimation theory and since more recently in physics,
see e.g. [3,4]. Various algorithms have been developed for computing the information
matrix, e.g. [5,6]. In [6] two algorithms have been proposed for a fast computation of
the Fisher information matrix of a SISO process. The ARMAX process is a special
case of the SISO process, the latter is discussed in [15].

A companion matrix with eigenvalues equal to the roots of an appropriate poly-
nomial derived from the ARMAX representation is used as a coefficient in the Stein
equation. The solution S of this equation can be factorized as Ax, where x is a
solution of the equation Ax = b for some b. A similar factorization is applied to the
Fisher information matrix resulting in a system A′x = b′ and the coefficient matrices
A and A′ are q × q2 where q is the degree of an appropriate polynomial associated
with the ARMAX process. The Stein equation has been extensively studied in the
mathematical literature, e.g. [13]. The use of a companion matrix in a Stein equation
is also studied in [12].

By proving surjectivity of the coefficient matrices and using a common particular
solution of both linear systems of equations leads to the following interconnections.
A solution to Stein’s equation is expressed in terms of the Fisher information matrix
and vice versa. In [9] only a solution of a Stein equation expressed in terms of the
vectorized form of the Fisher information matrix of an ARMA process is studied.
The kernels of the newly obtained coefficient matrices are derived as well as a right
inverse of the coefficient matrix associated with the Fisher information matrix. This
makes it possible to find a solution to the newly obtained linear system of equations.
The approach set forth in this paper is applied for one block of the Fisher information
matrix.

The paper is organized as follows. First we present the definitions which are fol-
lowed by interconnections between blocks space of the Fisher information matrix
and a solution to a Stein equation. This is done for the algebraic multiplicity greater
than or equal to one. In Section 3, algorithms describing the structure of the kernel
of coefficient matrices associated with the linear systems of equations obtained in
Section 2, are developed. In Section 4, an example is provided to illustrate the con-
struction of a solution to Stein’s equation in terms of the Fisher information matrix.
In Section 5, the case of the Fisher information matrix containing all the parameter
blocks and not decomposed is mentioned.
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2. Link solution Stein’s equation-Fisher’s information

2.1. The ARMAX process

In this section a block of the Fisher information matrix of an ARMAX process
is used to develop an interconnection with a solution to Stein’s equation. For that
purpose we first introduce the ARMAX process and we discuss Stein’s equation in
Section 2.2

a(z)=zp + a1z
p−1 + · · · + ap,

b(z)=zq + b1z
q−1 + · · · + bq,

c(z)=zr + c1z
r−1 + · · · + cr .

The reciprocal polynomials a∗(z), b∗(z) and c∗(z) are a∗(z) = zpa(z−1), b∗(z) =
zqb(z−1) and c∗(z) = zrc(z−1).

The ARMAX process y(t) is specified as the stationary invertible (which exists
under suitable conditions, see below) solution of

a∗(L)y(t) = b∗(L)x(t) + c∗(L)ε(t), (2.1)

with L the lag operator, x(t) the input process which is independent of the white
noise sequence ε(t) that has variance σ 2. We make the assumptions that a(z), b(z)

and c(z) have zeros inside the unit disc. The input x(t) is described by an AR process
with spectral density (2π)−1Rx(z) where Rx(z) = σ 2

η (1/h(z)h(z−1)) and 1/h(z) is

the transfer function. We assume σ 2
η = 1, the latter represents the variance of the

white noise sequence η(t) which generates the AR process x(t) and ε(t) and η(t)

are independent.
Define the vectors

uk(z) = (1, z, . . . , zk−1)�, u∗
k(z) = (zk−1, zk−2, . . . , 1)�

and

θ = (a1, a2, . . . , ap, b1, b2, . . . , bq, c1, c2, . . . , cr )
�.

We assume the polynomial a(z) having p0 distinct roots, α1, α2, . . . , αp0 , with alge-
braic multiplicity n1 + 1, n2 + 1, . . . , np0 + 1 respectively and

∑p0
i=1(ni + 1) = p,

b(z) has q0 distinct roots, β1, β2, . . . , βq0 , with algebraic multiplicity m1 + 1, m2 +
1, . . . , mq0 + 1 respectively and

∑q0
i=1(mi + 1) = q and polynomial c(z) has r0 dis-

tinct roots γ1, γ2, . . . , γr0 with algebraic multiplicity s1 + 1, s2 + 1, . . . , sr0 + 1
respectively and

∑r0
i=1(si + 1) = r . The function h(z) has v0 distinct zeros τ1, τ2,

. . . , τv0 with algebraic multiplicity 
1 + 1, 
2 + 2, . . . , 
v0 + 1 respectively and∑v0
i=1(
i + 1) = v.
It is known, see [6,7], that Fisher’s information matrix of (2.1) is F(θ) = (1/σ 2)

G(θ) with the following block decomposition for G(θ),
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G(θ) =
Gaa(θ) Gab(θ) Gac(θ)

G�
ab(θ) Gbb(θ) Gbc(θ)

G�
ac(θ) G�

bc(θ) Gcc(θ)

 . (2.2)

The matrices appearing in (2.2) can be expressed as

Gaa(θ) = 1

2πi

∮
|z|=1

b(z)b(z−1)Rx(z)up(z)u�
p (z−1)

a(z)a(z−1)c(z)c(z−1)

dz

z
(2.3)

+ 1

2πi

∮
|z|=1

up(z)u�
p (z−1)

a(z)a(z−1)

dz

z
, (2.4)

Gab(θ) = − 1

2πi

∮
|z|=1

b(z)Rx(z)up(z)u�
q (z−1)

a(z)c(z)c(z−1)

dz

z
, (2.5)

Gac(θ) = − 1

2πi

∮
|z|=1

up(z)u�
r (z−1)

a(z)c(z−1)

dz

z
, (2.6)

Gbb(θ) = 1

2πi

∮
|z|=1

Rx(z)uq(z)u�
q (z−1)

c(z)c(z−1)

dz

z
, (2.7)

Gbc(θ) = 0, (2.8)

Gcc(θ) = 1

2πi

∮
|z|=1

ur(z)u
�
r (z−1)

c(z)c(z−1)

dz

z
. (2.9)

As can be seen from the blocks (2.3)–(2.9) which constitute G(θ), the terms in block
(2.4), (2.6) and (2.9) have representations which correspond to the ARMA part of
G(θ), whereas the remaining blocks contain information of the input process x(t). In
[6] a detailed derivation of the representations (2.3)–(2.9) is provided. As mentioned
earlier, in [9] interconnections are established using representations in vectorized
form.

In this paper we abandon the idea of vectorizing matrices so that a different and
more general approach is obtained. We derive linear systems of equations that lead
to interconnections between a solution to Stein’s equation and the Fisher information
matrix. We consider the (b, b)-block extensively, the remaining blocks can be treated
in a similar manner. Block Gbb(θ) given in (2.7) can alternatively be written as

Gbb(θ) = 1

2πi

∮
|z|=1

uq(z)u∗�
q (z)

h(z)c(z)h∗(z)c∗(z)zl+1
dz. (2.10)

For technical convenience we write l + 1 = q − v − r and the cases l + 1 > 0, l +
1 = 0 and l + 1 < 0 shall be discussed. The polynomials h(z), c(z) and zl+1 have
their roots inside the unit circle. For typographical brevity we introduce the following
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notation. Given a polynomial p(·), assume that for some natural number j (z − β)j

is a factor of p(·), and β has multiplicity j � 1, we define the polynomial pj (.; β)

by pj (z; β) = p(z)

(z−β)j
. Applying Cauchy’s residue theorem to (2.10) for l + 1 > 0,

one obtains

Gbb(θ) = g1(γ1) + g2(γ2) + · · · + gr0(γr0)

+ k1(τ1) + k2(τ2) + · · · + kv0(τv0) + f (0),

where

gi(γi) = 1

si !

(
�si

�zsi

uq(z)u∗�
q (z)

csi+1(z; γi)h(z)h∗(z)c∗(z)zl+1

)
z=γi

, i = 1, . . . , r0,

(2.11)

kj (τj ) = 1


j !

(
�
j

�z
j

uq(z)u∗�
q (z)

c(z)h
j +1(z; τj )h∗(z)c∗(z)zl+1

)
z=τj

, j = 1, . . . , v0,

(2.12)

f (0) = 1

l!

(
�l

�zl

uq(z)u∗�
q (z)

c(z)h(z)h∗(z)c∗(z)

)
z=0

. (2.13)

A useful factorization of Gbb(θ) can be obtained by applying Leibnitz rule to j -fold
differentiation of a ratio of two functions as in (2.11)–(2.13). To that end we need to
introduce a number of expressions, we define

U(k)
si

(z) = �k

�zk
(uq(z)u∗�

q (z)), k = si, . . . , 0.

The matrices Usi (z), for i = 1, . . . , r0, have the structure

Usi (z) = (U(si )
si

(z),U(si−1)
si

(z), . . . ,U(0)
si

(z)).

The following representations are now considered for all the eigenvalues:

Ur (γ ) = (Us1(γ1),Us2(γ2), . . . ,Usr0
(γr0)),

Uv(τ ) = (U
1(τ1),U
2(τ2), . . . ,U
v0
(τv0)),

Ul (0) = (U
(l)
l (0),U

(l−1)
l (0), . . . ,U

(0)
l (0)).

Let

µi(z) = 1

csi+1(z; γi)h(z)h∗(z)c∗(z)zl+1
,

ζj (z) = 1

c(z)h
j +1(z; τj )h∗(z)c∗(z)zl+1
,



6 A. Klein, P. Spreij / Linear Algebra and its Applications 396 (2005) 1–34

ξ(z) = 1

c(z)h(z)h∗(z)c∗(z)
,

then we define

µ(k)
si

(z) =
(

si
k

)
�k

�zk
µi(z), k = 0, . . . , si ,

and

µsi (γi) = 1

si ! (µ
(0)
si

(z), µ(1)
si

(z), . . . , µ(si )
si

(z))�z=γi
, i = 1, . . . , r0.

Analogously, we define

ζ
(s)

j

(z) =
(


j

m

)
�m

�zm
ζj (z), m = 0, . . . , 
j

and introduce

ζ
j
(τj ) = 1


j !
(
ζ

(0)

j

(z), ζ
(1)

j

(z), . . . , ζ
(
j )


j
(z)

)�
z=τj

, j = 1, . . . , v0.

Similarly we define

ξ
(n)
0 (z) =

(
l

n

)
�n

�zn
ξ(z), n = 0, . . . , l

and

ξ0(0) = 1

l! (ξ
(0)
0 (z), ξ

(1)
0 (z), . . . , ξ

(l)
0 (z))�z=0.

With the above notations we can now introduce the vector ϑ given by

ϑ = (µ�
s1

(γ1), µ
�
s2

(γ2), . . . , µ
�
sr0

(γr0),

ζ�

1

(τ1), ζ
�

2

(τ2), . . . , ζ
�

v0

(τv0), ξ
�
0 (0))�. (2.14)

With the aid of this notation we can factorize Gbb(θ) according to

Gbb(θ) = (Ur (γ )Uv(τ )Ul (0))(ϑ ⊗ Iq). (2.15)

We illustrate this notation with an example.

Example 2.1. Consider the ARMAX process with p = q = 3, r = 2 and v = 1,
the polynomials involved are c(z) = (z − γ )2 and h(z) = (z − τ). This case will be
used for the remaining examples in this paper. Consequently, the Fisher information
matrix block Gbb(θ) admits the form

Gbb(θ) = 1

2πi

∮
|z|=1

z2 z 1
z3 z2 z

z4 z3 z2

 dz

(z − τ)(z − γ )2(1 − zτ)(1 − zγ )2
.
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The components of the Toeplitz and symmetric matrix Gbb(θ) are obtained by means
of Cauchy’s residue theorem, to have

τ j

(τ − γ )2(1 − τ 2)(1 − τγ )2
+

(
�
�z

zj

(z − τ)(1 − zτ)(1 − zγ )2

)
z=γ

for j = 0, 1, 2, 3, 4.

The matrix Gbb(θ) is then

Gbb(θ) = 1

(γ 2 − 1)3(γ τ − 1)2(τ 2 − 1)


G11

bb(θ) G12
bb(θ) G13

bb(θ)

G21
bb(θ) G22

bb(θ) G23
bb(θ)

G31
bb(θ) G32

bb(θ) G33
bb(θ)

 ,

where

G11
bb(θ) = G22

bb(θ) = G33
bb(θ) = 1 + 2γ τ − 2γ 3τ − γ 4τ 2 − γ 2(τ 2 − 1),

G12
bb(θ) = G23

bb(θ) = G21
bb(θ) = G32

bb(θ) = 2γ + τ − γ 4τ − 2γ 3τ 2,

G13
bb(θ) = G31

bb(θ) = −γ 4 + 2γ τ − 2γ 3τ + τ 2 − 3γ 2(τ 2 − 1).

2.2. The Stein equation

We now introduce the Stein equation and its solution. Let A ∈ Cm×m, B ∈ Cn×n

and � ∈ Cn×m and consider the Stein equation

S − BSA� = �. (2.16)

It has a unique solution iff λµ /= 1 for any λ ∈ σ(A) and µ ∈ σ(B). From [13] we
take

Theorem 2.2. Let A and B be such that there is a single closed contour C with
σ(B) inside C and for each non-zero w ∈ σ(A), w−1 is outside C. Then for an
arbitrary � the Stein equation (2.16) has a unique solution S

S = 1

2πi

∮
C

(λI − B)−1�(I − λA)−�dλ.

This theorem is used to interconnect the Fisher information matrix and a solu-
tion to a Stein equation. We are interested in the case A = B = E, where E is an
appropriate companion matrix. Representation (2.16) becomes

Sbb − ESbbE
� = �, (2.17)

where the companion matrix E is chosen to be
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E =


0 1 . . . 0
...

. . .
...

0 1
−er+v −er+v−1 . . . −e1


and the entries ei are the coefficients of the polynomial e(z) = c(z)h(z) = zr+v +∑r+v

i=1 eiz
r+v−i . The companion matrix E has the property det(zI − E) = e(z), see

e.g. [14]. The choice of the companion matrix E yields a unique solution to the
Stein equation (2.17) since all the eigenvalues of E are within the unit disc. Using
companion matrices in (2.16) for the coefficients A and B is also studied in [12].

In [8] the following result has been obtained. The Fisher information matrix of
an ARMA process coincides with a corresponding solution to a Stein equation for a
specific choice of �, namely � = wp+rw

�
p+r , where wp+r is the last standard basis

vector in Rp+r and p and r are the degrees of the ARMA polynomials. In a similar
way we can show that Gbb(θ) coincides with the solution to the Stein equation (2.17)
for l + 1 = 0 and with � = wr+vw

�
r+v , where wr+v is the last standard basis vector

in Rr+v . See also Section 5. Consequently, Gbb(θ) satisfies the Stein equation

Gbb(θ) − EGbb(θ)E� = wr+vw
�
r+v.

The general result of Theorem 2.2 applied to (2.17) gives

Sbb = 1

2πi

∮
|z|=1

adj(zI − E)�adj(I − zE)�zl+1

h(z)c(z)h∗(z)c∗(z)zl+1
dz. (2.18)

Then, applying Cauchy’s residue theorem to (2.18) yields,

Sbb =G1(γ1) + G2(γ2) + · · · + Gr0(γr0)

+K1(τ1) + K2(τ2) + · · · + Kv0(τv0) + F(0),

where

Gi (γi) = 1

si !
(

�si

�zsi

adj(zI − E)�adj(I − zE)�zl+1

csi+1(z; γi)h(z)h∗(z)c∗(z)zl+1

)
z=γi

,

Kj (τj ) = 1


j !

(
�
j

�z
j

adj(zI − E)�adj(I − zE)�zl+1

c(z)h
j +1(z; τj )h∗(z)c∗(z)zl+1

)
z=τj

,

F(0) = 1

l!
(

�l

�zl

adj(zI − E)�adj(I − zE)�zl+1

c(z)h(z)h∗(z)c∗(z)

)
z=0

.

A similar factorization as in (2.15) can be applied. For that purpose we use

M̃
(k)

si
(z) = �k

�zk
(adj(zI − E)�adj(I − zE)�zl+1), k = si, . . . , 0,

to define

M̃si (z) = (M̃
(si )

si
(z), M̃

(si−1)

si
(z), . . . , M̃

(0)

si
(z)).
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Representations that contain all the eigenvalues are then

M̃r (γ ) = (M̃s1(γ1), M̃s2(γ2), . . . , M̃sr0
(γr0)),

M̃v(τ ) = (M̃
1(τ1), M̃
2(τ2), . . . , M̃
v0
(τv0)),

M̃l (0) = (M̃
(l)

l (0), M̃
(l−1)

l (0), . . . , M̃
(0)

l (0)).

With the same vector ϑ as given in (2.14) we then have the factorization

Sbb = (M̃r (γ )M̃v(τ )M̃l (0))(ϑ ⊗ Ir+v). (2.19)

2.3. Interconnections between a solution to Stein’s equation and Fisher’s information
matrix

We now proceed constructing an interconnection between Gbb(θ) and Sbb by
solving (ϑ ⊗ Iq) and (ϑ ⊗ Ir+v) from the linear equations (2.15) and (2.19) respec-
tively. This will happen according to the solution of two linear systems of the form
AX = B where A, B and X are matrices of appropriate dimension. The matrix A will
be represented by the corresponding coefficient matrices (Ur (γ )Uv(τ )Ul (0)) and
(M̃r (γ )M̃v(τ )M̃l (0)) in (2.15) and (2.19) respectively. The linear system AX = B

has a solution if and only if B ∈ Im(A), a solution of the linear system is given
by X = X0 + A where X0 is a particular solution of the matrix equation AX = B

and A ∈ Ker(A), the kernel of A. We take the matrix X0 = A+B and where A+
is the Moore–Penrose inverse of A, see e.g. [14]. In general, the solution set is a
manifold of matrices obtained by a shift of Ker(A). This will be applied to the linear
systems (2.15) and (2.19) in order to obtain an interconnection or equation involving
the Fisher information matrix and a solution to Stein’s equation. For that purpose
the particular solutions of the linear systems (2.15) and (2.19) are considered. From
(2.15) one obtains

(ϑ ⊗ Iq) = (Ur (γ )Uv(τ )Ul (0))+Gbb(θ) + A, (2.20)

where A ∈ Ker(Ur (γ )Uv(τ )Ul (0)).
Likewise, the solution of Stein’s equation takes the form

(ϑ ⊗ Ir+v) = (M̃r (γ )M̃v(τ )M̃l (0))+Sbb + B, (2.21)

where B ∈ Ker(M̃r (γ )M̃v(τ )M̃l (0)).
Considering Eqs. (2.10) and (2.18), three situations shall be considered, l + 1 >

0, l + 1 = 0 and l + 1 < 0. The results will be presented as Propositions 2.6–2.8.
First we consider the case l + 1 > 0. Then we can write

Iq =
(

Ir+v 0
0 Iq−(r+v)

)
and Iq ⊗ ϑ =

(
Ir+v ⊗ ϑ 0

0 Iq−(r+v) ⊗ ϑ

)
.

In order to obtain the forms (ϑ ⊗ Ir+v) and (ϑ ⊗ Iq) we use the following property
of the Kronecker product of two matrices. Let A be an m × n matrix and B a p ×
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q matrix. Then there exist pm × pm and nq × nq universal permutation matrices
Rpm and Rnq such that ∀A, B : Rpm(A ⊗ B)Rnq = B ⊗ A, see e.g. [14]. Double
application of this rule to A = ϑ and B = Iq , respectively B = Ir+v results in an
equation which involves the Fisher information matrix and a solution to a Stein equa-
tion. This is summarized in Proposition 2.6. First we need to show the surjectivity
of the coefficient matrices in (2.15) and (2.19). For that purpose it remains to show
that the rank of the corresponding coefficient matrices is q. This will be done with
the help of the following results.

Proposition 2.3. The matrix (Ur (γ )Uv(τ )) has rank q.

Proof. We shall show that the matrix (Ur (γ )Uv(τ )) has a right inverse. For that
purpose the (q × q) generalized Vandermonde matrix

Wr,v(γ, τ ) = (Ws1(γ1),Ws2(γ2), . . . ,Wsr0
(γr0),

V
1(τ1),V
2(τ2), . . . ,V
v0
(τv0))

is introduced, where

Wsi (γi) = (W(si )
si

(z),W(si−1)
si

(z), . . . ,W(0)
si

(z))z=γi

and

W(si−k)
si

(γi) =
(

�si−k

�zsi−k
uq(z)

)
z=γi

, k = 0, 1, . . . , si .

The blocks that constitute the matrix

V
j
(τj ) = (V

(
j )


j
(z),V

(
j −1)


j
(z), . . . ,V

(0)

j

(z))z=τj

have the following representation:

V
(
j −k)


j
(τj ) =

(
�
j −k

�z
j −k
uq(z)

)
z=τj

, k = 0, 1, . . . , 
j .

One may check that

(Ur (γ )Uv(τ ))(Iq ⊗ wq) = Wr,v(γ, τ ),

from which it follows that

(Ur (γ )Uv(τ ))((Wr,v(γ, τ ))−1 ⊗ wq) = Iq .

The Vandermonde matrix Wr,v(γ, τ ) is invertible, see e.g. [11]. Consequently, an
appropriate right inverse of (Ur (γ )Uv(τ )) is ((Wr,v(γ, τ ))−1 ⊗ wq), where wq is
the last standard basis vector in Rq , from which we can conclude that the matrix
(Ur (γ )Uv(τ )) has full row rank. �

For proving the surjectivity of the matrix (Mr (γ )Mv(τ )), some additional gen-
eral concepts are needed. To this end we introduce some notation. Consider a matrix
A ∈ Rn×n in the following companion form:
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A =



0 1 0 . . . 0
... 0 1

...
...

. . .
. . . 0

0 0 1
−an −a2 −a1

 . (2.22)

Let a� = (a1, . . . , an), and we redefine u(z)� = (1, z, . . . , zn−1) and u∗(z)� =
(zn−1, . . . , 1). Define recursively the Hörner polynomials ak(z) by a0(z) = 1 and
ak(z) = zak−1(z) + ak . Notice that an(z) is the characteristic polynomial of A. We
will denote it by π(z).

Write ã(z) for the n-vector (a0(z), . . . , an−1(z))
�. Furthermore S will denote the

shift matrix, so Sij = δi,j+1 and J the backward or antidiagonal identity matrix.

Lemma 2.4. Let A be n × n companion matrix as in (2.22). Let Pk(z) = (adj(z −
A), d

dz
adj(z − A), . . . , dk−1

dzk−1 adj(z − A)) and P = (Pk1(λ1), . . . , Pks (λs)) ∈ Rn×n2
,

where the λj are all the different eigenvalues of A, with multiplicities kj , so
∑s

j=1
kj = n. Then P has rank n.

Proof. We will use Proposition 3.2 of [11], which says that the adjoint of z − A,
with A a companion matrix, is

adj(z − A) = u(z)ã(z)�J − π(z)

n−1∑
j=0

zjSj+1. (2.23)

If we evaluate this expression for z equal to an eigenvalue, the second term at the
RHS vanishes, and the same holds true if we consider multiple eigenvalues and com-
pute the (k − 1)th derivative of adj(z − A) in an eigenvalue with multiplicity at least
equal to k.

Let then λ be an eigenvalue of multiplicity k. Clearly Im adj(λ − A) is spanned by

u(λ), Im d
dz

adj(z − A)|z=λ is spanned by u(λ) and u′(λ), etc. up to Im dk−1

dzk−1 adj(z −
A)|z=λ which is spanned by u(λ) up to u(k−1)(λ). As a conclusion we get for such

a λ that Im(adj(z − A), d
dz

adj(z − A), . . . , dk−1

dzk−1 adj(z − A))|z=λ is also spanned by

u(λ) up to uk−1(λ).
It now follows from the above that Im P is spanned by all the columns of a non-

singular confluent Vandermonde matrix. Therefore P has maximal (row) rank and is
thus surjective. �

In the next proposition we use a symmetrizer associated with a polynomial. For
a given polynomial p(z) = zn + a1z

n−1 + · · · + an of degree n we write S(p) to
denote the n × n matrix
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S(p) =



1 0 0 . . . 0

a1 1 0
...

...
. . .

. . . 0
... 1 0

an−1 a1 1


. (2.24)

Proposition 2.5. Let V be the confluent Vandermonde matrix associated with all
the eigenvalues of E and let S(e) be the symmetrizer associated to the coefficients of
the characteristic polynomial of E. Assume that � is such that none of the rows of
V �S(e)� is the null vector. Then R = (Mr (γ )Mv(τ )) has rank q.

Proof. A sketchy proof, much in the spirit of the proof of Lemma 2.4, is given. We
now have to consider all relevant derivatives of adj(zI − E)�adj(I − zE)� evalu-
ated at the different eigenvalues γi and τi , call them λi , with their multiplicities ki .
It is easy to see (by computing these derivatives and inserting the eigenvalues) that
the range of R is the same as the range of R0 which is row block matrix with blocks
R0

i defined by R0
i = (u(λi), u

′(λi), . . . , u
(ki−1)(λi))ã(λi)

�J�.
Since the vectors u(λi), u

′(λi), . . . , u
(ki−1)(λi) with varying i are independent,

the only case in which R0 has full row rank is obtained by having all ã(λi)
�J� not

equal to the null vector. �

Remark. The condition of this proposition can alternatively be described as fol-
lows. Let ek(λ) be the kth Hörner polynomial associated with the coefficients of E

evaluated at an eigenvalue λ. Put then ē(λ) = (eq−1(λ), . . . , e0(λ)). Then none of
the rows of V �S(e)� is the null vector iff none of the vectors ē(λ) belongs to the left
kernel of �. This condition is satisfied if one chooses � such that the resulting solu-
tion of the Stein equation is the Fisher information matrix. Indeed, with � = wqw�

q ,
where wq is the last standard basis vector of Rq verifies this easily.

We can now formulate an equation that involves Fisher’s information matrix and
Stein’s solution.

Proposition 2.6. Let l + 1 > 0 and the matrix � fulfills the condition given in Prop-
osition 2.5. There exist matrices A ∈ Ker(Ur (γ )Uv(τ )Ul (0)) and B ∈ Ker
(M̃r (γ )M̃v(τ )M̃l (0)) such that the corresponding Eqs. (2.20) and (2.21) hold. The
following equality then holds true

Rqq {(Ur (γ )Uv(τ )Ul (0))+Gbb(θ) +A}Rqq

=
(
R(r+v)q {(M̃r (γ )M̃v(τ )M̃l (0))+Sbb + B}R(r+v)(r+v) 0

0 Iq−(r+v) ⊗ ϑ

)
.
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We now consider the case where l + 1 = 0 or equivalently q = v + r . The rep-
resentations (2.15) and (2.19) become

Gbb(θ) = (Ur (γ )Uv(τ ))(ϕ ⊗ Iq), (2.25)

sbb = (Mr (γ )Mv(τ ))(ϕ ⊗ Ir+v) = (Mr (γ )Mv(τ ))(ϕ ⊗ Iq). (2.26)

The vector ϕ has the same form as ϑ in (2.14) but without ξ0(0). The corresponding
blocks composing Mr (γ ) and Mv(τ ) are

M
(si−j)
si (z) = �si−j

�zsi−j
(adj(zI − E)�adj(I − zE)�)

and

M
(
j −k)


j
(z) = �
j −k

�z
j −k
(adj(zI − E)�adj(I − zE)�),

respectively. It can be seen that by eliminating the common particular solution of the
linear systems (2.25) and (2.26), which is (ϕ ⊗ Iq), leads to the equality

(Ur (γ )Uv(τ ))+Gbb(θ) + Q = (Mr (γ )Mv(τ ))+Sbb + T, (2.27)

where Q ∈ Ker(Ur (γ )Uv(τ )) and T ∈ Ker(Mr (γ )Mv(τ )).
In this case the interconnection between Gbb(θ) and Sbb can therefore be rep-

resented in both directions. The interconnections between the Fisher information
matrix and a solution to a Stein equation can now be summarized in the next propo-
sition.

Proposition 2.7. Let l + 1 = 0 and the matrix � fulfills the condition given in Prop-
osition 2.5. There exist matrices Q ∈ Ker(Ur (γ )Uv(τ )) and T ∈ Ker(Mr (γ )Mv(τ ))

such that Eq. (2.27) holds. The following interconnections then hold true:

Sbb = (Mr (γ )Mv(τ )){(Ur (γ )Uv(τ ))+Gbb(θ) + Q},
Gbb(θ) = (Ur (γ )Uv(τ )){(Mr (γ )Mv(τ ))+Sbb + T},

In Section 3 a detailed description of Ker(Ur (γ )Uv(τ )) and Ker(Mr (γ )Mv(τ ))

will be given. It is clear that it is not necessary to impose any condition on � when
Sbb is expressed in terms of Gbb(θ).

We now study the case l + 1 < 0 or equivalently q < v + r . In this case we obtain
from (2.15) and (2.19)

Gbb(θ) = (Ũr (γ )Ũv(τ ))(ϕ ⊗ Iq), (2.28)

Sbb = (Mr (γ )Mv(τ ))(ϕ ⊗ Ir+v). (2.29)

The block components of Ũr (γ ) and Ũv(τ ) are composed by

Ũ
(si−j)

si
(z) = �si−j

�zsi−j
(uq(z)u∗�

q (z)zl+1)
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and

Ũ
(
j −k)


j
(z) = �
j −k

�z
j −k
(uq(z)u∗�

q (z)zl+1),

respectively and are evaluated for z = γj and z = τj . We extract the desired partic-
ular solution of the linear system of equations (2.28) and (2.29), to obtain

(ϕ ⊗ Iq) = (Ũr (γ )Ũv(τ ))+Gbb(θ) + D, (2.30)

where D ∈ Ker(Ũr (γ )Ũv(τ )) and

(ϕ ⊗ Ir+v) = (Mr (γ )Mv(τ ))+Sbb + E, (2.31)

where E ∈ Ker(Mr (γ )Mv(τ )).
An equation involving the Fisher information matrix and a solution to Stein’s

equation, for the case considered, is given in the next proposition.

Proposition 2.8. Let l + 1 < 0 and the matrix� fulfills the condition given in Propos-
ition 2.5. There exist matricesE ∈ Ker(Mr (γ )Mv(τ )) andD ∈ Ker(Ũr (γ )Ũv(τ ))

such that the respective Eqs. (2.31) and (2.30) hold andR is a permutation matrix. We
then obtain the following equation involving Sbb and Gbb(θ):

R(r+v)(r+v){(Mr (γ )Mv(τ ))+Sbb + E}R(r+v)(r+v)

=
(
Rq(r+v){(Ũr (γ )Ũv(τ ))+Gbb(θ) + D}Rqq 0

0 Ir+v−q ⊗ ϕ

)
.

Example 2.9. In this example a right inverse of the coefficient matrix (Ur (γ )Uv(τ ))

is set forth. Using the information of the ARMAX process given in Example 2.1
yields the following representation for the coefficient matrix (Ur (γ )Uv(τ ))

Ur (γ ) =
 �

�z

z2 z 1
z3 z2 z

z4 z3 z2

 ,

z2 z 1
z3 z2 z

z4 z3 z2


z=γ

and

Uv(τ ) =
z2 z 1

z3 z2 z

z4 z3 z2


z=τ

.

The right inverse of (Ur (γ )Uv(τ )) in the proof of Proposition 2.3 is

(Ur (γ )Uv(τ ))−R = ((Wr,v(γ, τ ))−1 ⊗ w3),

where

w3 = (0, 0, 1)� and
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(Wr,v(γ, τ )) =
{(

�
�z

u3(z)u3(z)

)
z=γ

(u3(z))z=τ

}
=

 0 1 1
1 γ τ

2γ γ 2 τ 2

 .

We eventually obtain

(Ur (γ )Uv(τ ))−R = 1

(γ − τ)2



0 0 0
0 0 0

γ τ(γ − τ) −(γ 2 − τ 2) (γ − τ)

0 0 0
0 0 0

(γ − τ)2 − γ 2 2γ −1
0 0 0
0 0 0
γ 2 −2γ 1


.

3. Kernel description

In this section algorithms for the kernels of the coefficient matrices in the linear
system of equations (2.15) and (2.19) are described.

3.1. General case

We first focus on the null space appearing in Proposition 2.6, namely Ker
(Ur (γ )Uv(τ )Ul (0)). Since the matrix blocks which constitute Ur (γ ), Uv(τ ) and
Ul (0) are evaluated at distinct roots, we then have the property Im(Uν(σ )) ∩ Im
(Uµ(ρ)) = {0} for all the distinct eigenvalues σ and ρ (with corresponding alge-
braic multiplicity ν and µ). Consequently, the subspace Ker(Ur (γ )Uv(τ )Ul (0))

can be decomposed into a direct sum Ker(Ur (γ )Uv(τ )Ul (0)) = Ker(Ur (γ )) ⊕ Ker
(Uv(τ )) ⊕ Ker(Ul (0)). A similar decomposition can also be applied to the
subspaces on the right-hand side, to obtain Ker(Ur (γ )) = ⊕r0

i=1 Ker(Usi (γi)),
Ker(Uv(τ )) = ⊕v0

j=1 Ker(U
j
(τj )). This property follows from the next lemma.

Lemma 3.1. Consider two matrices A and B with appropriate dimensions, then

Im A ∩ Im B = {0} iff Ker(A, B) =
(

Ker A

0

)
⊕

(
0

Ker B

)
.

Proof. When moving from right to left it follows from the dimension rules for A, B

and (A, B) that

dim Im A + dim Im B − dim Im(AB)

+ dim Ker A + dim Ker B − dim Ker(A, B) = 0.
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By assumption we have

dim Ker A + dim Ker B − dim Ker(A, B) = 0

so that

dim Im A + dim Im B = dim Im (AB).

Because Im A + Im B = Im(AB), we must therefore have Im A ∩ Im B = {0}. From

left to right, we assume

(
x

y

)
∈ Ker(AB), this implies Ax + By = 0 and since Im A ∩

Im B = {0} we have Ax = 0 and By = 0. �

Since the individual null spaces have the same representation, it therefore suffices
to specify the null space evaluated at one single root. For that purpose we represent
a root by σ with algebraic multiplicity ν + 1. In the next sections an algorithm for
Ker(Uν(σ )) is described and is followed by properties of Ker(Mν(σ )).

3.1.1. An algorithm for computing Ker(Uν(σ ))
In this section we shall adapt the notations used in the previous section accord-

ingly. Consider uq(z) = (l, z, . . . , zq−1)� and vp(z) = zp−1up(z−1)�. Define the
q × p(n + 1) matrix Unqp(z) = (Un

qp, . . . , U0
qp) (this is equivalent with Uν(z)) by

Uk
qp(z) =

(
d

dz

)k

uq(z)vp(z).

We will give an expression for Ker Unqp(z). Let x be vector belonging to this
kernel and decompose x as x� = (x�

0 , . . . , x�
n ), with the xk ∈ Rp. Then

Unqp(z)x=
n∑

k=0

(
d

dz

)k

uq(z)vp(z)xn−k

=
n∑

k=0

k∑
j=0

(
k

j

)
u

(j)
q (z)v

(k−j)
p (z)xn−k

=
n∑

j=0

u
(j)
q (z)

n∑
k=j

(
k

j

)
v

(k−j)
p (z)xn−k

=
n∧(q−1)∑

j=0

u
(j)
q (z)

n∑
k=j

(
k

j

)
v

(k−j)
p (z)xn−k.

Since the vectors u
(j)
q (z) are independent as long as j � q − 1, we see that

Unqp(z)x = 0 iff for all j � (q − 1) ∧ n we have
n∑

k=j

(
k

j

)
v

(k−j)
p (z)xn−k = 0. (3.1)
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(Notice that in this summation we only have non-zero contributions for k � (j +
p − 1) ∧ n.)

Thus we consider a system of (q − 1) ∧ n + 1 equations of type (3.1). Clearly,
this system is triangular, which leads to a recursive solution procedure.

We introduce some more notation. Let Kp(z) be a p × (p − 1) matrix whose
columns span Ker vp(z) (later on we will specify a certain choice for Kp(z)). We
proceed in steps.

First we consider the case in which n < q, so we have a system of n + 1 equa-
tions.

Set j = n. Then the corresponding equation becomes vp(z)x0 = 0. Hence x0 =
Kp(z)γ0 for an arbitrary vector γ0 ∈ Rp−1.

Consider now (with x0 given above) the equation for j = n − 1:

vp(z)x1 + nv′
p(z)x0 = 0.

A particular solution of this equation is x1 = −nlpv′
p(z)x0, with lp the last standard

basis vector of Rp and hence the general solution is given by x1 = −nlpv′
p(z)x0 +

Kp(z)γ1 with arbitrary γ1, so x1 = Kp(z)γ1 − nlpv′
p(z)Kp(z)γ0.

Continuing this way, we look at the equation for j = n − 2. It is

vp(z)x2 + (n − 1)v′
p(z)x1 + 1

2
n(n − 1)v′′

p(z)x0 = 0.

A particular solution is given by

x2 =−lp

(
(n − 1)v′

p(z)x1 + 1

2
n(n − 1)v′′

p(z)x0

)
=−lp

(
(n−1)v′

p(z)(−nlpv′
p(z)Kp(z)γ0+Kp(z)γ1)+ 1

2
n(n−1)v′′

p(z)x0

)
=−lp

(
(n − 1)v′

p(z)Kp(z)γ1 + 1

2
n(n − 1)v′′

p(z)Kp(z)γ0

)
,

where we used in the last equality that v′
p(z)lp = 0. The general solution now be-

comes

x2 = Kp(z)γ2 − lq

(
(n − 1)v′

q(z)Kp(z)γ1 + 1

2
n(n − 1)v′′

q (z)Kp(z)γ0

)
.

Proceeding in this way, one obtains the following recursion for the xk and then its
explicit form.

xk+1 = Kp(z)γk+1 −
k∑

j=1

(
n − k + j

j

)
lpv

(j)
p (z)xk+1−j , (3.2)

xk = Kp(z)γk −
k∑

j=1

(
n − k + j

j

)
lpv

(j)
p (z)Kp(z)γk−j . (3.3)
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If we put all the xk underneath each other, we get

x = Ln(z)(In+1 ⊗ Kp(z))γ, (3.4)

with Ln(z) ∈ R(n+1)p×(n+1)p the lower triangular matrix

Ip 0

−
(

n

1

)
lpv

(1)
p (z) Ip 0

−
(

n

2

)
lpv

(2)
p (z) −

(
n − 1

1

)
lpv

(1)
p (z) Ip 0

...

−lpv
(n)
p (z) −lpv

(1)
p (z) Ip


.

(3.5)

Clearly dim Ker Unqp(z) = (n + 1)(p − 1).

Since obviously, the image space of Unqp(z) is spanned by the vectors u
(j)
q (z), for

j = 0, . . . , n (recall that n < q), it has dimension n + 1. This is in agreement with
the dimension rule: (n + 1)(p − 1) + n + 1 is the number of columns of Unqp(z).

A convenient choice of Kp(z) is

−1 0 0
z −1

0 z
. . . 0

. . .
. . . −1

0 0 z

 .

In particular the computation of the products v
(j)
p (z)Kp(z) now becomes easy. Dif-

ferentiate vp(z)Kp(z) j times. Since K has zero derivatives of order greater than

1 and since vp(z)Kp(z) = 0, we get v
(j)
p (z)Kp(z) = −jv

(j−1)
p (z)K ′(z). But this is

nothing else than the vector −jv
(j−1)
p (z) without its first element.

For the case in which n � q, a similar procedure as above has to be followed.
The prime difference is that we now consider the set of q equations (3.1), for j =
0, . . . , q − 1. Consider first the equation for j = q − 1:

n∑
k=q−1

(
k

q − 1

)
v

(k−q+1)
p (z)xn−k = 0.

To get a solution we choose the x0, . . . , xn−q completely free, say xk = βk with
βk ∈ Rp. Then we get for xn−q+1 the general solution

xn−q+1 = −lp

n∑
k=q

(
k

q − 1

)
v

(k−q+1)
p (z)βn−k + Kp(z)γn−q+1,
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with γn−q+1 an arbitrary vector in Rp−1. Continuing this way as in the case with
n < q we now get the solution x given by

x =
(

I(n−q+1)p 0(n−q+1)p×qp

M(z) Lq(z)(Iq ⊗ Kp(z))

) (
β

γ

)
, (3.6)

with Lq(z) ∈ Rqp×q(p−1) like the matrix Ln(z) above, M(z) ∈ Rqp×(n−q+1)p defined
by

M(z) =


−

(
n

q − 1

)
lpv

(n−q+1)
p (z) . . .

(
q

q − 1

)
lpv

(1)
p (z)

...
...

−
(

n

0

)
lpv

(n)
p (z) . . .

(
q

0

)
lpv

(q)
p (z)


and β = (β�

0 , . . . , β�
n−q)�, γ = (γ �

n−q+1, . . . , γ
�
n )�.

Since the image of Unqp(z) is now spanned by the vectors u
(j)
q (z), for j = 0, . . . ,

q − 1 (recall that n � q), it has dimension q. For the kernel we now have that its
dimension is (n − q + 1)p (from the first components) plus q(p − 1) (from the other
other components), np + p − q in total. Notice again that this is in agreement with
the dimension rule.

For constructing the subspace Ker (Ur (γ )Uv(τ )Ul (0)) one considers the direct
sum of the kernels of the Uνi

(σi) for all the distinct eigenvalues σi and hence it’s
dimension is the sum of the dimensions of the summands.

Example 3.2. In this example the implementation of the algorithm just developed
will be illustrated. Consider the coefficient matrix (Ur (γ )Uv(τ )) used in Exam-
ple 2.9. A vector in the subspace Ker(Ur (γ )Uv(τ )) = KerUr (γ ) ⊕ KerUv(τ ) is
derived. The multiplicity equal to one yields according to (3.9)

KerUv(τ ) = span

(−z−2u�
2 (z)

J2

)
z=τ

= span

−z−2 −z−1

0 1
1 0


z=τ

.

The parameters necessary for constructing the null space KerUr (γ ) are, n = k = 1
and p = q = 3. This results in the equations

x0 = K3(z)γ0

x1 = −l3v
′
3(z)K3(z)γ0 + K3(z)γ1

that belong to the subspace KerUr (γ ), compactly written

x =
(

x0
x1

)
=

(
I3 0

−l3v
′
3(z) I3

)
(I2 ⊗ K3(z))

(
γ0
γ1

)
.



20 A. Klein, P. Spreij / Linear Algebra and its Applications 396 (2005) 1–34

An explicit representation yields

K3(z) =
−1 0

z −1
0 z

 , v3(z) = (z2, z, 1), l3 = (0, 0, 1)�

and γ0 and γ1 are arbitrary. Let us denote the components of γ0 and γ1 by (γ 1
0 γ 2

0 )�
and (γ 1

1 γ 2
1 )� respectively, so that the vector belonging to the subspace KerUr (γ )

can be expressed as

x =


−1 0 0 0
z −1 0 0
0 z 0 0
0 0 −1 0
0 0 z −1
z 1 0 z


z=γ


γ 1

0

γ 2
0

γ 1
1

γ 2
1

 =



−γ 1
0

γ 1
0 z − γ 2

0

γ 2
0 z

−γ 1
1

γ 1
1 z − γ 2

1

(γ 1
0 + γ 2

1 )z + γ 2
0


z=γ

.

According to the results obtained in Section 3.1.1. it can be concluded that dim Ker
Ur (γ ) = 4 and dim KerUv(τ ) = 2, consequently dim Ker(Ur (γ )Uv(τ )) = 6. It is
then clear that the matrix (Ur (γ )Uv(τ )) is surjective since dim Im(Ur (γ )Uv(τ )) =
3, a confirmation of Proposition 2.3.

Since γ0 and γ1 are arbitrary, we choose γ0 = (1, 1)� and γ1 = (2, 3)� so that a
choice for a 9×3 matrix Q such that Q ∈ Ker(Ur (γ )Uv(τ )), can be expressed as

Q =



−1 0 0
γ − 1 0 0

γ 0 0
−2 0 0

2γ − 3 0 0
4γ + 1 0 0

0 −τ−2 −τ−1

0 0 1
0 1 0


.

3.1.2. An algorithm for computing Ker(Mν(σ ))
In this subsection we study the null space Ker(Mr (γ )Mv(τ )Ml (0)). The sub-

spaces Im(Mr (γ )), Im(Mv(τ )) and Im(Ml (0)) have the property formulated in
Lemma 3.1 and this can be justified since the matrix blocks which form Mr (γ ),
Mv(τ ) and Ml (0) are evaluated at dinstinct roots. Therefore, we have Ker(Mr (γ )

Mv(τ )Ml (0)) = Ker(Mr (γ )) ⊕ Ker(Mv(τ )) ⊕ Ker(Ml (0)) with Ker(Mr (γ )) =⊕r0
i=1 Ker(Msi (γi)), Ker(Mv(τ )) = ⊕v0

j=1 Ker(M
j
(τj )) and since Ml (0) = 0, we

have KerMl (0) = Cr+v ⊕ Cr+v ⊕ · · · ⊕ Cr+v . Considering that the individual null
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spaces have the same structure, it is therefore sufficient to describe a null space
evaluated at one single root.

Let C be a m × m companion matrix of the form (2.22). Let c(z) be the m-vec-
tor of polynomials ci(z) defined by c0(z) = 1 and ci(z) = zci−1(z) + ci , so c(z) =
(c0(z), . . . , cm−1(z))

�. Let σ be one of its eigenvalues and assume that it has alge-
braic multiplicity equal to ν + 1. We have of course ν + 1 � m. Let � be an arbitrary
m × m matrix. We will also use f (σ ) = c(σ )�J� and A(σ) = adj(I − σC)�. We
study the m × m(ν + 1) matrix

M(σ ) = (M(ν)(z),M(ν−1)(z), . . . ,M(0)(z))z=σ ,

where each m × m block M(j)(z) is given by

M(j)(z) = �j

�zj
(adj(zI − C)�adj(I − zC)�).

In the next proposition an explicit representation for M(j)(z) is given.

Proposition 3.3. For n � ν we have

M(n)(σ ) =
n∑

k=0

(
n

k

)
u(n−k)(σ )

k∑
j=0

(
k

j

)
f (j)(σ )A(k−j)(σ ). (3.7)

Proof. First we compute the derivatives of adj(zI − C). Using (2.23), we see that
the terms that involves the characteristic polynomial of C vanish for z = σ and k �
ν. So, we get from the Leibniz rule

�k

�zk
adj(zI − C)|z=σ =

k∑
j=0

(
k

j

)
u(j)(σ )c(k−j)(σ )�J.

Recall that M(z) = adj(zI − C)�A(z). Applying the Leibniz rule once more, we
obtain

M(n)(z) =
n∑

k=0

(
n

k

)
�k

�zk
adj(zI − C)�

�n−k

�zn−k
A(z).

Insertion of the previously found derivative for adj(zI − C) yields

M(n)(σ ) =
n∑

k=0

(
n

k

) k∑
j=0

(
k

j

)
u(j)(σ )f (k−j)(σ )A(n−k)(σ ),

which is equivalent (rearrange the summation) to (3.7). �

An appropriate factorization is applied and is summarized in the following
proposition.
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Proposition 3.4. The matrix M(σ ) can be factored as the product

M(σ ) = UHA, (3.8)

where the matrices U, H and A are as follows.U = (u(σ ), u′(σ ), . . . , u(ν)(σ )). H

has a block-triangular structure in which its ith column (i = 1, . . . , ν + 1) has j th

element given by the row vector

(
ν + 1 − j

i − 1

)
f (ν+1−j)(σ ). The elements become

zero for i + j > ν + 2. The matrix A is invertible, block-triangular and has as ij -

block element the matrix

(
ν + 1 − j

i − j

)
A(i−j)(σ ). The ij th element of this matrix

becomes zero if j > i. The matrix U has full column rank.

Proof. To each of the entries of M(σ ) we apply the preceding proposition. Then
the next step is to compute the factors by which have to postmultiply the u(l)(σ ).
Consider first u(σ). It is postmultiplied by the row vectors

∑k
j=0 f (j)(σ )A(k−j)(σ ),

for k = ν down to 0 to get its contribution to each of the M(k)(σ ). Notice that∑k
j=0 f (j)(σ )A(k−j)(σ ) is the product of the first row of H and the kth column

of A. The contributions of the other u(l)(σ ) can be treated similarly. On the
diagonal of the matrix A we find the invertible matrices A(σ). Because of its
triangular structure the matrix A is invertible. That U has full column rank is
obvious. �

The sizes of the above matrices are as follows. U is a m × m(ν + 1) matrix, H is
of size (ν + 1) × (ν + 1)m and A has dimensions (ν + 1)m × (ν + 1)m.

We are interested in KerM(σ ). Let x ∈ KerM(σ ), so M(σ )x = 0. Since A is
invertible, we can write x = Ay and y = A−1x. So we look at UHy = 0. But since
U has full column rank, this is equivalent to Hy = 0. Below, we will investigate in
some detail the structure of Ker H . As a side remark we mention that for an explicit
expression for Ker H , we also need the inverse of A. Because of the block trian-
gular structure the block-elements of this inverse are products of the derivatives of
A(z) and A(z)−1. But A(z)−1 = det(I − zC)−1 × (I − zC�) and so this causes no
computational problems. To compute adj(I − zC) and its derivatives we can use an
expression similar to (2.23).

A condition for specifying the dimension of the kernel of M(σ ) is given and can
be seen as an alternative to Proposition 2.5.

Theorem 3.5. The rank of the matrix M(σ ) is equal to ν + 1 − k(σ ), where k(σ ) =
min{j : f (j)(σ ) /= 0}, with the understanding that k(σ ) = ν + 1 if all f (j)(σ ) are
zero. Furthermore, dim KerM(σ ) = (m − 1)(ν + 1) + k(σ ).

Proof. From the above discussion it is clear that the rank of M(σ) is equal to the
rank of H . From the triangular structure of H , which would be block-Hankel if we
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ignore the binomial coefficients, the result on the rank is obvious. The dimension
of the kernel follows from the addition rule for the dimensions of kernel and image
space. �

It is hard to give an explicit description of a basis of the kernel of H . However,
for the special case of k(σ ) = 1, there is a neat expression available. This case is
motivated by the case where we deal with the Fisher information matrix as mentioned
earlier in this paper. In this case we use � = wmw�

m , where wm is the last basis vector
of Rm. Since now J� = w1w

�
m , we get f (σ ) = w�

m , whatever σ and hence k(σ ) = 1
for all σ . So we assume now that k(σ ) = 1. Let H0 be a matrix of size m × (m − 1)

whose columns span Ker(f (σ )). Let p∗
0 = p∗

0(σ ) ∈ Rm be a column vector such
that f (σ )p∗

0 = 1. Such a vector obviously exists, when k(σ ) = 1.
Let y ∈ Ker H and write y = (y�

0 , . . . , y�
ν )�, with yi ∈ Rm. Then we have a

recursive set of equations for the yi . We briefly outline the procedure how to compute
these yi . The first equation we solve is f (σ )y0 = 0. We can express y0 as y0 =
H0η0, where η0 is a free vector in Rm−1. The next equation we solve is f ′(σ )y0 +
f (σ )y1 = 0, whose general solution can be written as y1 = −p∗

0f ′(σ )y0 + H0η1,
where η1 is another free vector in Rm−1. Continuing this way, we can express the
whole vector y as a certain matrix times the vector that is obtained by stacking the
ηi into one vector of dimension (ν + 1)(m − 1). This matrix does not look very nice
though, but there is still something to say.

Let �0 = Iν+1 ⊗ H0. We need the matrix K = K(σ) (of block-triangular struc-
ture) whose elements are m × m matrices and where the ij th element is specified as

I if i = j , zero for j > i and for i > j we have Kij =
(

ν + 2 − j

i − j

)
p∗

0f (i−j)(σ ).

We observe that K is invertible and that JK has a structure similar to the one of
H . Then the columns of the matrix K−1�0 span Ker H . Notice that this matrix has
(ν + 1)(m − 1) independent columns.

If f (σ ) = 0, but f ′(σ ) /= 0, the procedure is similar. The recursive set of equa-
tions does not contain f (σ ) anymore. But we can find p∗

1 such that f ′(σ )p∗
1 = 1

and we proceed along the same lines as in the previous case, upon noticing that we
now need a matrix whose columns span Ker f ′(σ ). The vector yν is entirely free in
the present case. The other cases can be treated similarly.

3.2. Special case

In this section we compute the kernels of the coefficient matrices in (2.15) and
(2.19) for the case when the zeros of the polynomials a(z), b(z), c(z) and h(z) all
have multiplicity equal to one. First, we consider the subspace

Ker(Ur (γ )Uv(τ )Ul (0)) = Ker(Ur (γ )) ⊕ Ker(Uv(τ )) ⊕ Ker (Ul (0)),
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with

Ker(Ur (γ )) =
r⊕

i=1

Ker(Ui (γi)), Ker(Uv(τ )) =
v⊕

j=1

Ker(Uj (τj )).

It is sufficient to represent one case, to obtain

Ker(Ui (γi)) = span

(−z−(q−1)u�
q−1(z)

Jq−1

)
z=γi

, (3.9)

where Jq−1 is the (q − 1) backward or antidiagonal identity matrix and dim
Ker(Ui (γi)) = (q − 1). A similar representation holds for Ker(Uj (τj )) when z =
τj . Observe the properties

Ker(Uδ(0))=Ker

(
�δ

�zδ
(uq(z)u∗�

q (z))

)
z=0

=span


(

Jq−1−δ

01+δ

)
for δ = 0, 1, . . . , q − 1,(

02q−1−δ

Jδ−(q−1)

)
for δ = q, q + 1, . . . , 2q − 2

and

dim Ker

(
�δ

�zδ
(uq(z)u∗�

q (z))

)
z=0

=
{
(q − 1) − δ for δ = 0, 1, . . . , q − 1,

δ − (q − 1) for δ = q, q + 1, . . . , 2q − 2.

The null spaces which compose the subspace Ker(Mr (γ )Mv(τ )Ml (0)) are obtained
according to

Ker(Mr (γ )Mv(τ )Ml (0)) = Ker(Mr (γ )) ⊕ Ker(Mv(τ )) ⊕ Ker (Ml (0)),

with

Ker(Mr (γ )) =
r⊕

i=1

Ker(Mi (γi)), Ker(Mv(τ )) =
v⊕

j=1

Ker(Mj (τj ))

and as in the general case KerMl (0) = Cr+v ⊕ Cr+v ⊕ · · · ⊕ Cr+v . Since there is
an equivalent functional form for all the subspaces, it suffices to consider the case

Ker(Mr (γ )) =
r⊕

i=1

Ker(Mi (γi)).

The factorization

Mr (γ ) = M(1)
r (γ )M(2)

r (γ )
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is applied, where

M(1)
r (γ ) = (adj(zI − E)z=γ1 , adj(zI − E)z=γ2 , . . . , adj(zI − E)z=γr )

and

M(2)

r (γ ) =



�(adj(I − zE)�zl+1)z=γ1 0 · · · 0

0 �(adj(1 − zE)�zl+1)z=γ2 0
.
.
.

.

.

. 0
. . . 0

0 · · · 0 �(adj(I − zE)�zl+1)z=γr

 .

Since the blocks composing M
(2)
r (γ ) are square invertible matrices (for simplicity

we assume that the matrix � is invertible), we then have

Ker(Mr (γ )) = (M(2)
r (γ ))−1Ker(M(1)

r (γ )).

Using a similar argument as in Lemma 3.1, we have the following direct sum

Ker(M(1)
r (γ )) = Ker(adj(zI − E)z=γ1)

⊕ Ker(adj(zI − E)z=γ2) ⊕ · · · ⊕ Ker(adj(zI − E)z=γr ).

A representation of Ker(adj(zI − E)z=σ ) is now given. We therefore consider equa-
tion (2.23). Observe that ẽ(z)�J = u∗(z)�S(e). The vector ẽ(z) consists of Hörner
polynomials associated with the companion matrix E and S(e) is the symmetrizer
associated with the coefficients of the characteristic polynomial of the companion
matrix E. An equivalent representation to (2.23) is then

adj(zI − E) = u(z)u∗(z)�S(e) − π(z)
∑

zjSj+1.

Let y ∈ Ker(adj(zI − E)z=σ ) and let x = S(e)y, then we have y = S−1(e)x and x

is a column in subspace (3.9). This will be illustrated in Example 3.6.
It can be seen that dim Ker(M(1)

r (γ )) = r(r + v − 1). When an interconnection
takes place, or when l + 1 = 0, we have dim Ker(Mr (γ )Mv(τ )) = (r + v)(r + v −
1) and dim Im(Mr (γ )Mv(τ )) = (r + v).

Example 3.6. Consider the case of 4 distinct eigenvalues α, β, γ and τ . The 4×4
adj (zI − E) matrix, where E is the companion matrix introduced in Eq. (2.17), is

adj(zI − E) =


e3 + e2z + e1z

2 + z3 e2 + e1z + z2 e1 + z 1
−e4 e2z + e1z

2 + z3 e1z + z2 z

−e4z −e4 − e3z e1z
2 + z3 z2

−e4z
2 −e4z − e3z

2 −e4 − e3z − e2z
2 z3

 .

The entries of the companion matrix E, when expressed in terms of the eigenvalues,
are after identification with the corresponding coefficients of the characteristic equa-
tion

e1 = −(α + β + γ + τ), e2 = γ τ + βτ + ατ + βγ + αγ + αβ,

e3 = −(βγ τ + αγ τ + αβτ + αβγ ) and e4 = αβγ τ.
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An explicit expression for adj(zI − E) is then for z = α

adj(αI − E) =


−βγ τ βγ + βτ + γ τ −(β + γ + τ) 1
−αβγ τ αβγ + αβτ + αγ τ −(αβ + αγ + ατ) α

−α2βγ τ α2βγ + α2βτ + α2γ τ −(α2β + α2γ + α2τ) α2

−α3βγ τ α3βγ + α3βτ + α3γ τ −(α3β + α3γ + α3τ) α3

 .

The matrix B with columns in the subspace Ker{u(z)u∗(z)�}z=α , is according to
(3.9)

B =


− 1

α3 − 1
α2 − 1

α

0 0 1
0 1 0
1 0 0

 .

The symmetrizer is given by

S(e) =


1 0 0 0

−(α + β + γ + τ) 1 0 0

γ τ + βτ + ατ + βγ + αγ + αβ −(α + β + γ + τ) 1 0

−(βγ τ + αγ τ + αβτ + αβγ ) γ τ + βτ + ατ + βγ + αγ + αβ −(α + β + γ + τ) 1

 .

The subspace Ker(adj(zI − E)z=α) is spanned by columns of the matrix S−1(e)B.
For example, y ∈ Ker(adj(zI − E)z=α) can have the following form when α /= 0

− 1
α3

− α+β+γ+τ

α3

− α2+β2+γ 2+τ2+γ τ+β(γ+τ)+α(β+γ+τ)

α3

− β3+γ 3+τ3+γ 2τ+γ τ2+β2(γ+τ)+α2(β+γ+τ)+β(γ 2+τ2+γ τ)+α(β2+γ 2+τ2+γ τ+β(γ+τ))

α3


.

4. Example

In this section an interconnection between Gbb(θ) and a corresponding solution
to Stein’s equation is illustrated for p = q = 3, r = 2 and v = 1. The same parame-
trization as in Examples 2.1 and 2.9 is used.

Note that in Example 3.2, a matrix Q, which is in the kernel of (Ur (γ )Uv(τ )),
is set forth so that a general solution to the linear system of equations (2.25) can be
deduced. The particular solution (ϕ ⊗ Iq) is just one of the many solutions of the
appropriate linear system of equations.

However, for establishing an interconnection between the Fisher information mat-
rix and a solution to Stein’s equation, the particular solution (ϕ ⊗ Iq), common to
both linear systems (2.25) and (2.26) is considered. Consequently, the choice of the
matrix, denoted by A, contained in the subspace Ker(Ur (γ )Uv(τ )) and associated
with the particular solution (ϕ ⊗ Iq) is then evaluated accordingly, to obtain

A = (ϕ ⊗ Iq) − (Ur (γ )Uv(τ ))+Gbb(θ).
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For that purpose (ϕ ⊗ I3) is first considered and ϕ is constructed according to a
variant of (2.14) given in (2.25) and (2.26). We obtain

(ϕ ⊗ I3)=



1
(1−γ 2)2(γ−τ)(1−γ τ)

0 0

0 1
(1−γ 2)2(γ−τ)(1−γ τ)

0

0 0 1
(1−γ 2)2(γ−τ)(1−γ τ)

1+4γ 3τ+τ2−3γ 2(1+τ2)

(−1+γ 2)3(−γ+τ)2(−1+γ τ)2
0 0

0 1+4γ 3τ+τ2−3γ 2(1+τ2)

(−1+γ 2)3(−γ+τ)2(−1+γ τ)2
0

0 0 1+4γ 3τ+τ2−3γ 2(1+τ2)

(−1+γ 2)3(−γ+τ)2(−1+γ τ)2
1

(−γ+τ)2(1−τ2)(1−γ τ)2
0 0

0 1
(−γ+τ)2(1−τ2)(1−γ τ)2

0

0 0 1
(−γ+τ)2(1−τ2)(1−γ τ)2


and

(Ur (γ )Uv(τ ))+Gbb(θ)

=



0 0 0

0 0 0

− γ 2

(−1+γ 2)2(γ−τ)(−1+γ τ)
− γ

(−1+γ 2)2(γ−τ)(−1+γ τ)
− 1

(−1+γ 2)2(γ−τ)(−1+γ τ)

0 0 0

0 0 0

γ (2τ+2γ 4τ−γ (1+τ2)−γ 3(1+τ2))

(−1+γ 2)3(γ−τ)2(−1+γ τ)2
τ+3γ 4τ−2γ 3(1+τ2)

(−1+γ 2)3(γ−τ)2(−1+γ τ)2
1+4γ 3τ+τ2−3γ 2(1+τ2)

(−1+γ 2)3(γ−τ)2(−1+γ τ)2

0 0 0

0 0 0

− τ2

(γ−τ)2(−1+γ τ)2(−1+τ2)
− τ

(γ−τ)2(−1+γ τ)2(−1+τ2)
− 1

(γ−τ)2(−1+γ τ)2(−1+τ2)



,

with (Ur (γ )Uv(τ ))−R given in Example 2.9 as an appropriate choice for (Ur (γ )

Uv(τ ))+ and Gbb(θ) is computed in Example 2.1.
Computation of matrix A shows that

A = 1

(−1 + γ 2)3(γ − τ)2(−1 + γ τ)2(−1 + τ2)

×



−(−1 + γ 2)(γ − τ)(−1 + γ τ)(−1 + τ2) 0 0

0 −(−1 + γ 2)(γ − τ)(−1 + γ τ)(−1 + τ2) 0

γ 2(−1 + γ 2)(γ − τ)(−1 + γ τ)(−1 + τ2) γ (−1 + γ 2)(γ − τ)(−1 + γ τ)(−1 + τ2) 0

(−1 + τ2)(1 + 4γ 3τ + τ2 − 3γ 2(1 + τ2)) 0 0

0 (−1 + τ2)(1 + 4γ 3τ + τ2 − 3γ 2(1 + τ2)) 0

γ (−1 + τ2)(−2τ − 2γ 4τ + γ (1 + τ2) + γ 3(1 + τ2)) −(−1 + τ2)(τ + 3γ 4τ − 2γ 3(1 + τ2)) 0

−(−1 + γ 2)3 0 0

0 −(−1 + γ 2)3 0

τ2(−1 + γ 2)3 τ(−1 + γ 2)3 0



,

it can be verified that the property A ∈ Ker(Ur (γ )Uv(τ )) holds.
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The factorization

(M2(γ )M1(τ )) = M
(1)
2,1(γ, τ )M�

2,1M
(2)
2,1(γ, τ )

is used for r = 2 and v = 1.
The 12×12 matrix M�

2,1 has the form M�
2,1 = diag{�, �, �, �}.

The block M
(1)
2,1(γ, τ ) is given by the 3×12 matrix M

(1)
2,1(γ, τ ) = (M

(1)
1 (γ )

M
(1)
0 (τ )), with M

(1)
1 (γ ) = (M

(1)(1)
1 (z)M

(0)(1)
1 (z))z=γ . The blocks constituting

M
(1)
1 (γ ) are

M
(1)(1)
1 (γ ) =

(
�
�z

adj(zI − E) adj(zI − E)

)
z=γ

,

M
(0)(1)
1 (γ ) = (adj(zI − E))z=γ ,

respectively and M
(1)
0 (τ ) = (adj(zI − E))z=τ .

The desired adjoint matrices are

adj(zI − E) =
z2 + e1z + e2 z + e1 1

−e3 z2 + e1z z

−e3z −e2z − e3 z2

 ,

adj(I − zE) =
1 + e1z + e2z

2 z + e1z
2 z2

−e3z
2 1 + e1z z

−e3z −e2z − e3z
2 1

 .

The entries e1, e2 and e3 of the companion matrix E will be subsequently expressed
in terms of the roots-eigenvalues γ and τ . This results in the following representation
of the appropriate matrices

M(1)
1 (γ ) =


−τ 1 0 τγ −γ − τ 1 τγ −γ − τ 1

0 −τ 1 τγ 2 −γ 2 − τγ γ τγ 2 −γ 2 − τγ γ

τγ 2 −γ 2 − 2τγ 2γ τγ 3 −γ 3 − τγ 2 γ 2 τγ 3 −γ 3 − τγ 2 γ 2


and

M
(1)
0 (τ ) =

 γ 2 −2γ 1
τγ 2 −2τγ τ

τ 2γ 2 −2τ 2γ τ 2

 .

Whereas the 12×9 matrix M
(2)
2,1(γ, τ ) has the representation, M

(2)
2,1(γ, τ ) =

diag{M(2)
1 (γ )M

(2)
0 (τ )}, with

M
(2)
1 (γ ) =

(
M(1)(2)(z) 0

0 M(0)(2)(z)

)
z=γ

,

M(0)(2)(τ ) = M
(2)
0 (τ ) = (adj(I − zE)�)z=τ ,

M(1)(2)(γ ) =
(

adj(I − zE)�
�
�z (adj(I − zE)�

)
z=γ

and

M(0)(2)(γ ) = (adj(I − zE)�)z=γ .
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An explicit form is

M(1)(2)
(γ ) =



1 − 2γ 2 + γ 4 − γ τ + 2γ 3τ γ 4τ γ 3τ

γ − 2γ 3 − γ 2τ 1 − 2γ 2 − γ τ −γ 3 − 2γ 2τ + γ 4τ

γ 2 γ 1

−2γ + 2γ 3 − τ + 4γ 2τ 2γ 3τ γ 2τ

1 − 4γ 2 − 2γ τ −2γ − τ −γ 2 − 2γ τ + 2γ 3τ

2γ 1 0


and

M(0)(2)
(γ ) =

1 − 2γ 2 + γ 4 − γ τ + 2γ 3τ γ 4τ γ 3τ

γ − 2γ 3 − γ 2τ 1 − 2γ 2 − γ τ −γ 3 − 2γ 2τ + γ 4τ

γ 2 γ 1

 ,

M(2)
0 (τ )=

1 − 2γ τ − τ 2 + γ 2τ 2 + 2γ τ 3 γ 2τ 3 γ 2τ 2

γ − 2γ τ 2 − τ 3 1 − 2γ τ − τ 2 −γ 2τ − 2γ τ 2 + γ 2τ 3

τ 2 τ 1

 .

For this example we choose � = I3 or the identity matrix.
The matrices (Mr (γ )Mv(τ )), (Ur (γ )Uv(τ ))+ = (Ur (γ )Uv(τ ))−R , Gbb(θ) and

A are now inserted in the equation

Sbb = (Mr (γ )Mv(τ )){(Ur (γ )Uv(τ ))+Gbb(θ) + A}.
A solution to the Stein equation when expressed in terms of the Fisher information
matrix is derived, to obtain

Sbb = 1

(γ 2 − 1)3(γ − τ)2(τ 2 − 1)(−1 + γ τ)2


S11

bb S12
bb S13

bb

S21
bb S22

bb S23
bb

S31
bb S32

bb S33
bb

 ,

where

S11
bb = −(γ − τ)2(−3 + 5γ 2 − 7γ 4 + γ 6 + 2γ τ − 14γ 3τ

+ 10γ 5τ − 2γ 7τ + 2τ 2 − 11γ 2τ 2 + 9γ 4τ 2 − γ 6τ 2 + γ 8τ 2 − 4γ τ 3

+ 8γ 3τ 3 − 4γ 5τ 3 + 4γ 7τ 3 + 2γ 2τ 4 + 4γ 6τ 4),

S12
bb = −(γ − τ)2(−2γ − 2γ 5 − τ − 7γ 4τ + 4γ 6τ − 8γ 3τ 2

+ 8γ 5τ 2 − 4γ 2τ 3 + 7γ 4τ 3 + γ 8τ 3 + 2γ 3τ 4 + 2γ 7τ 4),

S13
bb = −(−2γ 4 − 2γ 6 + 4γ 3τ − 2γ 5τ + 2γ 9τ − 3γ 2τ 2 + 6γ 4τ 2

+ 6γ 6τ 2 − 2γ 8τ 2 + γ 10τ 2 + 2γ τ 3 − 4γ 3τ 3 − 4γ 7τ 3

− 2γ 9τ 3 − τ 4 + 2γ 2τ 4 − 8γ 6τ 4 + 3γ 8τ 4 − 2γ τ 5

+ 2γ 5τ 5 + 4γ 7τ 5 + 4γ 4τ 6 − 4γ 6τ 6),
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S21
bb = −(γ − τ)2(−2γ − 2γ 5 − τ − 7γ 4τ + 4γ 6τ − 8γ 3τ 2

+ 8γ 5τ 2 − 4γ 2τ 3 + 7γ 4τ 3 + γ 8τ 3 + 2γ 3τ 4 + 2γ 7τ 4),

S22
bb = −(γ − τ)2(−2 + 2γ 2 − 4γ 4 − 8γ 3τ + 4γ 5τ + τ 2

− 7γ 2τ 2 + 3γ 4τ 2 + 3γ 6τ 2 − 2γ τ 3 + 2γ 3τ 3 + 2γ 5τ 3

+ 2γ 7τ 3 + γ 2τ 4 + γ 4τ 4 + γ 6τ 4 + γ 8τ 4),

S23
bb = −(−2γ 3 − 2γ 7 + 3γ 2τ − 3γ 6τ + 4γ 8τ + 2γ 5τ 2 + 6γ 7τ 2

− τ 3 + 5γ 4τ 3 − 5γ 6τ 3 − 8γ 8τ 3 + γ 10τ 3 − 4γ 5τ 4 − 4γ 2τ 5

+ 3γ 4τ 5 + 5γ 8τ 5 + 2γ 3τ 6 + 2γ 5τ 6 − 4γ 7τ 6),

S31
bb = −(γ − τ)2(−2γ 2 − 2γ 4 − 6γ 3τ + 2γ 7τ − τ 2 − 2γ 2τ 2

+ 2γ 6τ 2 + γ 8τ 2 − 2γ τ 3 + 6γ 5τ 3 + 2γ 4τ 4 + 2γ 6τ 4),

S32
bb = S12

bb,

S33
bb = −(−γ 2 − γ 4 − γ 6 − γ 8 + 2γ τ + 2γ 9τ − τ 2 + 3γ 2τ 2

− 2γ 6τ 2 + 9γ 8τ 2 − γ 10τ 2 − 2γ τ 3 + 4γ 3τ 3 − 4γ 7τ 3

− 6γ 9τ 3 − 3γ 2τ 4 + 5γ 4τ 4 − 5γ 6τ 4 − 3γ 8τ 4 + 2γ 10τ 4

− 4γ 3τ 5 + 4γ 7τ 5 + 4γ 9τ 5 + 4γ 4τ 6 − 4γ 8τ 6).

It can be verified that when � = w3w
�
3 , where w3 is the last standard basis vector in

R3, the solution to Stein’s equation Sbb indeed coincides with the Fisher information
matrix Gbb(θ).

5. The global Fisher information matrix

In this section the entire Fisher information matrix, not decomposed, is consid-
ered. In Klein and Spreij [7], the representation of the global Fisher information
matrix is given by

G(θ) =
−Sp(b)

Sq(a)

0

 Q(θ)

−Sp(b)

Sq(a)

0

�
+

−Sp(c)

0
Sr(a)

 P(θ)

−Sp(c)

0
Sr(a)

�
,

(5.1)
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where

Q(θ) = 1

2πi

∮
|z|=1

Rx(z)up+q(z)u�
p+q(z−1)

a(z)a(z−1)c(z)c(z−1)

dz

z
,

P (θ) = 1

2πi

∮
|z|=1

up+r (z)u
�
p+r (z

−1)

a(z)a(z−1)c(z)c(z−1)

dz

z

and Sp(b) and Sq(a) are blocks of the Sylvester resultant matrices S(−b, a)

S(−b, a) =
(−Sp(b)

Sq(a)

)
and S(−c, a) =

(−Sp(c)

Sr(a)

)
,

where Sp(b) is formed by the top p rows of S(−b, a) and similarly for the remaining
blocks. The Sylvester resultant S(c, −a) is the (p + r) × (p + r) matrix defined as

S(a, c) =



1 a1 a2 · · · ap · · · 0
. . .

. . .
. . .

. . .
0 1 a1 a2 · · · ap

1 c1 c2 · · · cr · · · 0
. . .

. . .
. . .

. . .
0 1 c1 c2 · · · cr


.

We shall show that both terms of (5.1) can be expressed by solutions of correspond-
ing Stein equations. In [8] it is shown that the matrix P(θ) fulfills a Stein equation,
it is given by

P(θ) − EacP (θ)E�
ac = wp+rw

�
p+r , (5.2)

where wp+r is the last standard basis vector in Rp+r . The entries of the compan-
ion matrix Eac are associated with the coefficients of the polynomial a(z)c(z). We
consider the case of an interconnection, this implies q = r + v. We therefore rewrite
Q(θ) as

Q(θ) = 1

2πi

∮
|z|=1

up+q(z)u�
p+q(z−1)

h(z)h(z−1)a(z)a(z−1)c(z)c(z−1)

dz

z
.

We now construct a companion matrix of degree p + r + v = p + q, denoted by
Each, with entries that are associated with the coefficients of the polynomial
a(z)c(z)h(z). Consequently, the matrix Q(θ) verifies the following Stein equation

Q(θ) − EachQ(θ)E�
ach = wp+qw�

p+q, (5.3)

where wp+q is the last standard basis vector in Rp+q . When appropriate choices
for � in (2.16) are considered, we can express the Fisher information matrix G(θ)

in terms of solutions to the Stein equations (5.2) and (5.3). Observe that this result
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can also be used to express each block of G(θ) in terms of solutions to the Stein
equations (5.2) and (5.3). For example, the Fisher information matrix Gaa(θ) is then
explained by the (p × p) matrices in the right-hand side of (5.1), to obtain

Gaa(θ) = Sp(b)Q(θ)S�
p (b) + Sp(c)P (θ)S�

p (c).

That can be generalized for different values of �, with the condition formulated in
Proposition 2.5. In this case P(θ) and Q(θ) in (5.1) can be replaced by elements
that are expressed by corresponding solutions to Stein equations. These solutions are
obtained by solving systems of linear equations. This is done in a similar manner
as in the block case when appropriate companion matrices are inserted in the Stein
equations. Consequently, the Fisher information matrix G(θ) is then explained by
these solutions as well as by Sylvester resultants (in [7] it is shown through Eq. (5.1)
that the Fisher information matrix has the resultant property). Algorithms for the
kernels of the appropriate coefficient matrices can be constructed according to the
development described in Section 3.

An algorithm of the Fisher information matrix of an ARMAX process is devel-
oped in [10]. Consequently, when a solution to a Stein equation coincides with the
Fisher information matrix (the condition is mentioned in this paper), the value of this
Stein solution can then be straightforwardly computed by this algorithm. More gen-
erally, by using the algorithm developed in [10], combined with the results obtained
in this paper, allows us to develop numerical computations of a solution to a Stein
equation by means of Fisher’s information matrix. This can be a subject for further
study.

Example 5.1. We shall illustrate some results outlined in Section 5. Consider the
ARMAX process with p = 1, r = 1, v = 1 and q = 2. The following polynomials
are given, a(z) = z + a, c(z) = z + c, b(z) = z2 + b1z + b2 and h(z) = z + τ . The
matrix P(θ) is then,

P(θ) = 1

(1 − a2)(1 − ac)(1 − c2)

(
1 + ac −(a + c)

−(a + c) 1 + ac

)
.

Consider the companion matrix in (5.2),

Eac =
(

0 1
−ac −(a + c)

)
.

It can be verified that the following Stein equation holds true

P(θ) − EacP (θ)E�
ac = w2w

�
2 ,

where w2 is the last standard basis vector in R2. The Sylvester matrix is−Sp(c)

0
Sr(a)

 =


−1 −c

0 0
0 0
1 a

 .
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We have the symmetric and Toeplitz matrix

Q(θ) = 1

(1 − a2)(1 − ac)(1 − c2)(1 − aτ)(1 − cτ)(1 − τ 2)

×
Q11(θ) Q12(θ) Q13(θ)

Q21(θ) Q22(θ) Q23(θ)

Q31(θ) Q32(θ) Q33(θ)

 ,

with

Q11(θ) = Q22(θ) = Q33(θ)

= 1 + cτ − a2cτ(1 + cτ) + a(c + τ − c2τ − cτ 2),

Q12(θ) = Q23(θ) = Q21(θ) = Q32(θ)

= − c − τ + a2cτ(c + τ) + a(−1 + c2τ 2),

Q13(θ) = Q31(θ)

= cτ + τ 2 − c2(−1 + τ 2) − a2(−1 + c2 + cτ + τ 2)

+ a(c + τ − c2τ − cτ 2).

The companion matrix associated with (5.3) is

Each =
 0 1 0

0 0 1
−acτ −ac − aτ − cτ −a − c − τ

 .

It can be verified that the following Stein equation holds true

Q(θ) − EachQ(θ)E�
ach = w3w

�
3 ,

where w3 is the last standard basis vector in R3. The matrix containing Sylvester
matrices is given by,−Sp(b)

−Sq(a)

0

 =


−1 −b1 −b2
1 a 0
0 1 a

0 0 0

 .

We can now compute the Fisher information matrix G(θ) by means of solutions of
Stein equations.
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