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the inverse of appropriate Vandermonde matrices. A condition is set forth for establishing an
equality between Fisher’s information matrix and a solution to Stein’s equation. Two examples
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1. Introduction

The main objects of study of this paper consists of investigating interconnections
between Fisher’s information matrix and solutions of Stein’s equation. The links are
verified for a univariate ARMA process, this type of structure is known both in the
statistical and engineering literature, see, e.g.[2,3,10]. The ARMA process consists of
autoregressive and moving average parameters which are estimated accordingly and
they are respectively the coefficients of the autoregressive and moving average poly-
nomials, in [1], some algebraic properties of ARMA process type polynomials are also
studied. The quality of these estimated parameters is described by Fisher’s informa-
tion matrix which corresponds to the Cramer—Rao lower bound. The latter is part of
an inequality which is of fundamental importance both in statistical theory and esti-
mation in signal processing. Fisher’s information matrix consists of blocks which are
associated with the ARMA parameters. The purpose of this paper is also to study pos-
sible algebraic properties of statistical information which in our case is described by
Fisher’s information matrix. A companion matrix will be chosen for Stein’s equation
such that the eigenvalues of the corresponding resolvent are equivalent with the roots
of the appropriate ARMA polynomial(s). This allows the link between Fisher’s infor-
mation matrix and a solution of Stein’s equation to be established by using Cauchy’s
residue theorems, eventually the linkis obtained through associating the common poles
ofboth expressions. Two cases are considered: (i) one block is investigated individually
and linked with a corresponding solution of Stein’s equation; (ii) Fisher’s information
matrix where all the parameters are taken into account and expressed in terms of the
Sylvester resultant matrix, is connected with an appropriate solution of Stein’s equa-
tion. In both cases (i) and (ii) the situations of distinct and multiple roots are studied.
The relations produced in both cases (distinct and multiple roots) contain leftand right
inverses. Depending on the case, each of these inverses can be expressed in terms of
a Vandermonde matrix. For the case of multiple roots a generalized Vandermonde is
involved. Some ofthe Vandermonde matrices obtainedin cases (i) and (ii) are not square
so that an appropriate left or right inverse is then additionally necessary for further
study. The global approach and the off-diagonal block cases are illustrated by means
of an example for distinct and multiple roots, respectively.

The paper is organized as follows: in Section 2 the link is established between
Fisher’s information matrix and a solution of Stein’s equation for the case of the
parameter block and for both multiple and distinct eigenvalues. In Section 3, left and
right inverses obtained in Section 2 are formulated in terms of appropriate Vander-
monde matrices. In Section 4 the link is set forth for the global Fisher information
matrix which contains all the parameters. Section 5 analyses left and right inverses
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obtained in Section 4 and is followed by Section 6 which points out the analogy with
the solution of Lyapunov equation. Examples are presented in Section 7.

In this section the main theorem that will be extensively used in this paper is
formulated and is based on Lancaster and Rodman [6]. Some additional notational
conventions concerning the companion matrix and some of its properties will be
summarized .

LetA e C™*" B e C"" andl’ € C"*™ ,

The Stein equation

S—BSAT=T (1.1)
has a unique solution i £ 1 for anyl € o (A) andu € o (B). From [6] we take

Theorem 1.1. If the Sein equation (1.1) has a unique solution S, then
1
S = —f W —B)Ira —24)7T da, 1.2)
2mi C

where C is a single closed contour with o (B) inside C and for each nonzero w €
o(A), w lisoutsideC.

Consider the notations for the following companion matrix:

x=| : TR
0 1
—Xn  —Xp-1 - —X1

It is known that its characteristic polynomig(z) is given by

x(z) =deizl — X) ="+ x12" 1+ 4 x,. (1.3)
The reciprocal polynomial* of x is given by

x*(z)=detl —zX) =14+ x1z2+ -+ x,7". (1.4)

We will also use the Hérner polynomialg(-), recursively defined byg(z) = 1 and
x;(2) = zxx—1(2) + xx. Furthermore we will use the adjoint matrices

adjizl — X) = (zI — X)"x(z) (1.5)
and
adi(l — zX) = (I — zX) "™ (). (1.6)

Itis straightforward to verify that the adjoint matrix &flj— zX) = z"t adjz 11 —
X). Given the structure of the matrk an explicit expression of the corresponding
adjoint matrix can be formulated in the next proposition.

Proposition 1.2. Consider a square matrix X of dimension n with the parametriza-
tion given above, the related adjoint matrix adj (z/ — X) is described by
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adiizl — X) =Y xp i ()X, (1.7)
k=1
where x,_x(z) isa polynomial definedin (1.3) of degreen — k.

Proof. Just multiply the right-hand side of (1.7) wiia/ — X), work the prod-

uct, use the recursive definition of the Horner polynomials and Caley—Hamilton
(Zzzoka”*" =0) to see that the result is(z)/, which is what one has to
prove. [

2. Link solution Stein’s equation—Fisher’s information: The parameter-block
approach

2.1. General case

In this section the Fisher information matrix of an ARMA process will be for-
mulated where the parameter blocks are considered, whereas in Section 4 the global
form will be studied.

Depending on the situation, both cases have theirimportance and this is the reason
why the two cases are treated separately.

Consider the ARMA processgspecified as the solution of

a*(L)y = c¢*(L)e (2.1)

with L the lag operator and a white noise sequence. We make the assumptions
that botha andc have zeros inside the unit disa,andc are the following monic
polynomials:

a(x) =zF +arz’ 1+ +a,,

c@) =21 +c1z? T+ e
By a* andc* we denote the reciprocal polynomiadg(z) = za(z~1) andc*(z) =
z%¢(z71). Itis known that Fisher ’s information matrix of (2.1) is

Faa FaC
F) = . 2.2
®) ( £ F) (2.2)
Define the vectors(z) = (L z, ..., ZF"H)T andu}(z) = (ZF71, 471, ..., DT and
0 = (a1, az,...,ap,cl,cz,...,cq)T.

The matrices appearing in (2.2) can be expressed as.

1 up@uiT(2)
Fope=——— ————dz, 2.3
2nmi ?%:1 c(z)a*(z) ‘ (2-3)
*T
3 1 up(uy, (2) d. (2.4)

~oni lo)=1 a(z)a*(z)
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1 f ug (RusT(z) 2.5)
|

“~2n =1 c(@)ec*(2)

First the link between Fisher’s information matrix and a solution of Stein’s equation
for the (a, a)-block is deduced, consequently an interconnection fof¢he) block

can be provided. This will be followed by a corresponding link for the off-diagonal
block (a, c).

First the situation with eigenvalues (roots) having an arbitrary multiplicity will be
developed, followed by the formulation where all the eigenvalues are distinct. Let us
consider Stein’s equation followed by its solution with the following matrices and
the contour bein@ = {z : |z] = 1}. Let A be the companion matrix

0 1 )
A= : . .
0 1
_ap _ap_l e —ai

and letS,, be the solution of
Sua — ASuqAT = I,

A special case of ¢ = epe;, wheree,, is the last standard basis vector in a Euclid-

ean spac&®” and verifies the solutiof,, — AF,,AT = epe;.
According to Theorem 1.1:

1
Sua = —7§ I —A)~rreaa —2A)"Tda. (2.6)
2mi C

The resolvents can be written@&.) (A1 — A) 1 =adj(Al — A),a*(L)(I —rA) "1 =
adj(/ — LA). Since the eigenvalues éfare within the unit disc, the conditions for
a unique solution of Stein’s equation is fulfilled. The idea of considering block-
companion matrices in such a type of equations is also suggested in [5]. However
in this paper the scalar case will be studied.

We write an explicit form of the solution of Stein’s equation in such a way so that
its poles correspond to the poles appearing in the expression of Fisher’s information
matrix.

1 adj(zI — A)I'*“adj(I — zA)T

4“4 2mi c a(z)a*(z) ¢ 27
1 up (Ui’ (2)
Foa=— pif (2.8)
2ni Jig=1 a(z)a*(2)
We assume the polynomialz) having po distinct rootsay, az, . .., ap,, With al-

gebraic multiplicityny + 1, n2 + 1, ..., np, + 1, respectively, an[j{’il(n,- +1) =
p. Consequently in virtue of Cauchy’s residue theorem, the solutidf,pftan be
written as
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Foa = a1(a1) + a2(a2) +--- + apo(apo)»

where
@ — L[ up@usl () 1<i<p
aie) = = v s X! % po.
i\ (2 -y )@ )
(2.9)

One way to obtain a common factor betweyy and S,, consists of a separation
between numerator and denominator of #he;)’s by using Leibnitz’s rule of the
n;th derivative of a product of two or more functions. Let us denote

1
po L (z— -".f+1) *
(H1=1,1#1(Z aj) a*(z) i

A useful way to factorize (2.9) is by vectorizing Fisher’s information matrix accord-
ing to ve€ABC) = (CT ® A) vecB, whereA € R™ ", B € R"*Pand C € RP**,
and® denotes the Kronecker product. We therefore have

i) =

vec F,, =vecay (o) + vecaz(a) + - - - + VecCap,(atp,)

¢
=Wa(@) (&), @), &1(@2), . &1 (@) (2.10)

npg
where
Wa@) = (Way @1), Wy (@2), -, Wy @10))

where the matris¥,,, (;) of dimensionp? x (n; + 1) is

1 ) _
Wi (@) = — (W@ W D@ WP @)

i) 7=a;

each block being

o ; an,'fk .
W,E:’z RICHES (’;{) (W (up(z)®up(z))> , 0<k<n,

=0

and the matri,; («;) of dimension(n; + 1) x 1 is given by

0 o T
En; (i) = (Ei (2), a—zé'i @, @Ei (Z)>z:a,-
Itis according to (2.10) that the interconnection between Fisher’s information matrix
and the corresponding Stein solution will be established. However, we will present an
alternative to (2.10) which results in an additional link with Vandermonde matrices.
The prevectorization form of Fisher’s information matrix for tfae a)-block can be
written as
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Fao = aP@)a®® (), (2.11)
where
aV@) = (at’ (@), af @), .. aD () )
with
(1)( ) ( (1) (n;i )(Z) (1) (ni=1) (Z), L (1) (O)(Z)> ,
=0
where each bIock is given by
PENCES ni\ (O T <k<n
(@) = ( ) (a — (@ <z>))zzm, 0<k<n.

We also have

a®(a) = <(a§2)(a1))T , (aéz)(a2)>T, ceey (a},%)(apo))T>T

with
T

i

@) = (£ @1, Ze @)1 —& ()
i i i P o Po g Si p

=0
The solution of Eg. (2.7), obtained by means of Cauchy'’s residue theorem, can now
be expressed as follows:

Saa = Ar1(@1) + A2(a@2) + -+ - + Apg(atp,y),
where
1 [ o adjzl — A)I*“adjl — zA)"
Ai(oi) = — F Ty — 1
: ( je1 i@ — )T )a*(Z)

A similar factorization as in (2.10) is used here and we obtain

.
Saa = Ma@) (&1, @0 @ I, 61, @2) @ Iy, & (@) ©1,)  (2.12)

7=

with
Mu(@) = (May @), My (@2), -, My (@)
whereM,, («;) is thep x (n; + 1) p-dimensional matrix given by

1 ) _
My, @) = = (M @) M), MO @)

it =0

and

M (@) = ( ) ( - (adj(zI — A)I**adj(1 — zA)T)> :

<k <
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Representing the second term in (2.10kpyallows (2.12) to be written as
Saa = Mp (o) (é&a ® Ip) . (2.13)

From the relations obtained fd¥,, andS,, in (2.10) and (2.13), respectively, one
can deduce the link between Fisher’s information matrix and the solution of Stein’s
equation. Therefore we have:

Theorem 2.1. The matrices S,, and F,, are linked through
Saa = My () {(Wy (@) VECFaq) ® 1)} . (2.14)
where (-); isany left inverse.
Analogously forF,. which consists ofjg distinct rootsys, y2, . . ., y4, With alge-

braic multiplicitymy + 1, m2 + 1, ..., mg, + 1, respectively, an ?il(m,' +1) =
q. The companion matrix used in Stein’s equation is

0 1 .. 0
c=1 : . :
0 1

_Cq —qul .« .. —Cl

To establish a link betweenR.. and the solution of.. — CS..CT = I'*“ we intro-
duce some notation in the same spirit as we use above. Define

N ) = (N (2 Nng (72, - Nongg (Vo) )
where

1 _ i
Non () = = (NS0 @, N @), N2 (2))

i! =V
with

N’g;ti—k)(yl.) = ( ) (6 (adj(z! — C)I*“adj(I — ZC)T)> ,

I=Yi
<k<m

We also put

W) = (W (2, Wy (72D, s Wi (i) )
where

1 (mi—1) 0)

W) = o (W@ W Vo, W0 @)

with
. am,-fk
W(m, 0 () = <m ) <am—k (ufl(z) ® W(Z)))g_y , 0<k<<m;.
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Proposition 2.2. For the (¢, ¢)-block we have
Sec = Nm(¥) {(Wm(V)ZVECFcc) ® Iq} .

Next a link involving F,. and the solution of., — CS., AT = I'“* will be set
forth for p > ¢. From (2.3) we obtain

Fae = c1(y1) + c2(y2) + -+ - + ¢4 (¥po) -

where
1 [ om T )
ci(yi) = Tl <6z—m (“p(z)éi(z)uz (Z)>>z:y,- . 1<i<qo,
with
1
gi(z) =

(1_[(,1-0:1,#1' (z— )/j)”-fH) a*(2)
Vectorization ofF,. results in
vecF,.=veai(y1) + veaa(y2) + - - - + veary, (¥Vq)
= V) (1,00 5,020, 8 ) (2.15)
where

V) = (Vim0 Vi 020, Vingy (70))
with
1 o N
Vi ) = = (Vi @, Vi D @), ., Vi)
m;j: =Y

with each block

i m; am,-fk .
V"(1,~’ D) = <k> (W (uq(z) ®MP(Z)>>Z=V. , 0<k<m,
and
0 omi T
Sm; (Vi) = (fi(Z)» —¢%i(2), ..., —,L’(Z))
0z Oz™mi -

A similar form as (2.15) can now be obtained #¢,. We have

:
VeCF oy = = 0n () (61,00, &1, 02, - G (o)) (2.16)

whereQ,,(y) has the same structure &g (y) but where the blocks have the form
given by

. ; amifk .
fn"f’ D = (n,z ) (W (“p(Z) ®uq(z)>> ;o 0<k<m;.

I=Yi
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The corresponding Stein solution yields

¢ 1 adj(z — C)I'“*adj(l — zA)T
“4T 2mi lz]=1 c(2)a*(z)

=C1(y1) + Co(y2) +--- + qu(yqo),

dz,

where

1 omi ca
Citr) = - | 5 (@dicl — O)Iadil —z4) ") ¢i2)
I=Yi
Stein’s solution can be written as

Sea = En ) (6my ) @ Ly, 0,02 ® Ly 68 (140) © Ip)T ,
where

Eny) = (Em 00, Eny(12), -+ Engy (a0))
and theg x (m; + 1) p matrix

Em, (i) = ml (Ew @, B @, ERD )

i ! I=Yi

with the blocks
o = (7 )(
<k

The interconnections are given in the following lemma. Its proof is similar to the
proof of Theorem 2.1.

- (adi@! — C)r““adj(/ — zA)T)> ,
=i

oz
<m

Lemma 2.3. The off-diagonal blocks yield the connections

Sca = _Em(y) {(Vm(V)ZVGCFac) ® Ip} (217)
and

Sca = —En () {(Qm (V) VeCFea) ® Iy} . (2.18)

Some results for the cage< ¢ will be outlined in Section 3.1.
2.2. Special case

In this section, the case in which all the eigenvalues are assumed to be distinct
will be considered. As a result the preceeding formulas take a simpler form.
The F,, in Fisher’s information matrix is given by

Faa = up ()T (@1)ra(en) + up (s’ (a2)ra(e2)
ot () (p)rp ey, (2.19)
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where
(ai) !
ri(o;) =
5):1,]'#,' (z — Olj)a*(Z)

An appropriate factorization of (2.19) yields

) with1 <i < p.
7=

Fuo = (up(al), up(@), ..., up(ap)) diag(rl(al), ro(a2), ..., rp(ap))
T
x (u;(al), Wh(@2), ..., u’;,(a,,)) . (2.20)

The first and last term of (2.20) are Vandermonde (type) matrices which will be
denoted by, andV;, respectively.

1 1 1
o1 o2 ap
2 2 2
VOl: al aZ ap
p—1 p—1 p—1
a1 @3 Up
and
-1 -2
af af a1 1
p—1 p—2
oy as a2 1
V=
o T . . .
-1 -2
af,? af,? ap 1

The corresponding Stein solution can be factorized analogously.

Saa = A1 (1, ® ') {diag(ri(@1), r2(@2), . .., rpep)) ® I,} A]  (2.21)
with

A1 = (adjeal — A), adjlaal — A), ..., adja, — A))
and

Az = (adj(l — a1 A), adi(l — azA), ..., adil —a,A)).
Proposition 2.4. Combining (2.20)and (2.21)links F,, and S,, by

Sua = A1 (Vi Faa Vi @ 1°0) AL, (2.22)

We used the shorthand notatigy * = (V;)_l.
A similar link is established for thé&:, ¢) block. We introduce the notations

C1 = (adj(y1! — C), adj(y2l — C), ..., adj(y,I — C))
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and

C2 = (adj(l — y1C), adj( — y20), ..., adil — y,C)).

Proposition 2.5. The matrices S.. and F,. are connected via

See = C1 (Ve @ 1) €.

Next we consider the link between the off-diagonal blocks and Stein’s solution

forp > ¢.

Fae = — (tp(y0), tp(72), - . 1t (v)) diag(s1(yn), s2r2), - - - 54 (vg))

T
x (g s (v2), o (v ) (2.23)

with
(vi) !

si(yi) =
s 7=1,j#i (Z - )/])Cl*(Z)

and the first and third matrix in (2.23) are Vandermonde matrices which are denoted
by V, andV;, respectively.

) with1<i <gq
=

)/12- )/22 PR yqz
‘—/y _ yl yz e yq
-1 -1 -1
i Vs Ve
and
-1 -2
vi v , n 1
. va Vs y2 1
)/ . : .
-1 -2

The appropriate Stein solution is

Sea = C1 (I ® ) {diag(s1(y1), s2(72), - -, 54 (v)) ® I,} A} (2.24)
with

Az = (adjl — y14), adi( — y24), ..., adil — y,4)).

As for the general case Fisher’s information for thea)-block is also considered,
this is formulated in the following proposition.



A. Klein and P. Spreij / Linear Algebra and its Applications 329 (2001) 947 21

Proposition 2.6. Combining (2.23)and (2.24)yields
&mz—q(@jaAg*®ﬂﬂA§ (2.25)
and
Sea = =C1(Vy TRV @ 1) AL, (2.26)

where V-, and V,  are left and right inverses of V,, and V], respectively.

The appearance of Vandermonde matrices in this and subsequent sections is of
course not a coincidence. It can be explained as follows. Consider again Eq. (1.1).
Let T be the matrix that bringB on its Jordan formJg = TBBTB‘1 and likewise

Ja = TaAT Y Let§ = T ST andl” = TpI'T). Then Eq. (1.1) transforms into
S—JpSJI=". (2.27)
As soon as the matrices andB are of companion type, the matric&s and Tp

are just the inverses of (generalized) Vandermonde matrices. More precisely, if the
matrix A has the following companion form:

0 1 ... 0
A=]| : R (2.28)
0 1
—ap, —ap-1 - —dail

thenJs = V,1AV,, whereV, is given as follows. Letis (z) = [[i_1(z — &)™ =
Z'}:o ajZn_j be the characteristic polynomial &fwith m1 + m2 + - - - + ms = n.
Let thenU; (z) be then x m; matrix with kth column equal tg1/(k — 1)) u*—D(z)
and writeU; = U;(«;). ThenVs = (Uq, ..., Uy).

If moroevers,,, denotes the:; x m; shift matrix (itsi, j elementis the Kronecker
8ij), thenJy is the block diagonal matrix with entries/,,,, + S,I,l, , sovA‘lA Vi = Ja.

3. Left and right inverses: Blocks of the Fisher infor mation matrix

In this section we will derive explicit formulas for certain right and left invers-
es that are used in Section 2.1. Some of these matrices are of fundamental impor-
tance for a successful realization of an interconnection between Stein’s solution and
Fisher’s information matrix as set forth in this paper.

3.1. General case
A left inverse involved in Theorem 2.1 has the properties summarized in the fol-

lowing lemma. The following notations are first introduced. Let the p general-
ized Vandermonde matrix be
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W = (Ws (@), Wy (@2), ... Wy @po) )
where

~ 1 ~ ~c ~
Wy (@) = = (0@ W@ W0 )

il 7=a;

with
~ oni —k
Wi =0 (@) = (nl> (6 ni—k p(Z)) . 0<k<n.
=qa;

Lemma3.1. Thenext relations hold true:
Opxptr-1- Ip) Wa(@) = Wer and (Oppip-1), Wy ) Wale) = I,

S0 (0px p(p—1), Wy t) isaleftinverse of W, ().
Proof. Straightforward computation completes the proof]
Some property of (2.11) is now set forth in the next lemma.

Lemma 3.2. Thefollowing relationsare verified for thematrix a™® (o) in Eq. (2.11):
aV@) (I, ®ep) = Wo and a®(w) (Wa—l ®e,,> =1,

where e, isthe last standard basis vector of a Euclidean space R”, it can be con-
cluded that a right inverse of oV () is given by

.
T T T
(Opx(,,,l), V1 Opx(p—1): V2 - s Ops(p—1)s vp) :

where vy, va, .. ., v, aretherows of W L.
Proof. Straightforward. O

In order to formulate left inverses appearing in (2.17) and (2.18), the following
notations are introduced. Let thex ¢ generalized Vandermonde matrices be

Wy = (Wml(yl), sz(VZ), cees quo (qu)> ,

where

- 1 o -
W, () = — (W@, W@, .., W,jff)(z))z_y
it =Y

with

. am,-fk
00y, ( )(am kuq(z)) . 0<k<m
I=Yi
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We also put
Wy = (W;;l(yl), Wi, (v2). ... W;,quo(yqo)> :
where

~ L iy o onim -
Wi, () = —= (W;;Em')(z), Wimi=D(z), ..., W,;’;go)(z))z_y_
L- =Y

with

G+ mi =) mi) (&
*(m;— ) — * .
Wi i) = (k) <6z’”iku"(1)>zzy.’ 0<k<m.
A lemma specifing left inverses needed in (2.17) and (2.18) can now be set forth.

Lemma 3.3. It can be verified that for p > ¢
(Ogxpg—1) Ig» Ogx(p—g)) Vi (¥) = W)/
and
(04Xp(q—1)’ Wy_l’ OqX(p—q)) Vin(y) = 1.
Smilarly,
(g, Oy xg(p-1) Cm(¥) = W;
and

(VT/;*, quq(pfl)) Onm(y) =1y

We may take (0gx pig—1)- Wy L. Ogx(p—g)) and (W%, Ogug(p—1)) for Viu(y); and

Proof. Straightforward. O

As mentioned before, for the cage< ¢ an interconnection between Stein’s so-
lution and Fisher’s information matrix will not be envisaged since an appropriate
left inverse is not directly available, however some attractive properties are worth
considering.

The following notations are introduced. Consider the ¢ generalized Vander-
monde matrix

Wp()/) = (Wp(yl)s Wp(VZ)» B Wp(yqo)) s
where

_ 1 _ _ _
) — (m;) (m;=1) (O]
Wy(yi) = o (me (2), me @,..., Wp (Z)>z=y,~

with
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Wmi=h (1) = ("“) (am—u,,(z)> , 0<k<m.
P k zmi—k =y

Lemma 3.4. Thefollowing relation holdstruefor p < ¢:
I Wp(y)
s (3.,)) 0= ()
(qxp(q ) Og—pyxp Y Og—p)xq
Proof. Straightforward. O

For p < g the matripr(y) has a right inverse, e.g. as specified in the next
corollary.

Corollary 3.5. Let y, be the pth root of polynomial c¢(z) and fi1, fo, ..., f, the

rows of fo)l,, wherethe p x p Vandermonde matrix is
1 1 Ce 1
)/]2- )/22 e y[é
Vpy = 7/.1 V‘z e V‘p
1 1 1
le Vzp e sz

Thenfor p < ¢

- T
W) (Opmss €1, 0prmzs €2. - Oprcmygs €)= Vioy

and

1 T T T T
Wp(y) (Opxml, fl,opxmg, f2,~-~,0pxmqo, fp) =Ip
and

1 =
(%Xp(q—l)v <0(q;)xp>> Vin(y) (Wp,R(V) OqX(q—p)>
— ( Ip Opx(g—p) ) .
Ou-pyxp  Oq-prxg—p)
Proof. Straightforward. O
An appropriate factorization of the first term in the right-hand side of (2.17) and
(2.18) is proposed and Vandermonde matrices are detected.
The block elemenk,,; (y;) of the matrixE,, (y) can be factorized as follows:
1 . N
Em,(r)) = —E¢’ () DVEL (). (3.1)
i!

where
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EQ ) = (EE 00, EX V0, EQ o)
with each block
- D\ [ omik
EC (i) = (”,Z) (Wwou(zz - c») L 0<k<m

I=Yi
and

DY = (Ion+1)0mi+2/2 ® )
and
E () = diag(ES (), EL 0. ES () )
where each block is
.

m,-—k

i § :
Egm, By = <6zmik (adj(Z — ZA)T)>Z_V_

withk =m;,m; —1,...,0.

The first, second and third matrix in (3.1) have the following size, g (m; +
1(mi +2)/2, q(m; + D)(m; +2)/2 x p(m; + 1)(m; + 2)/2 and p(m; + 1)(m; +
2)/2 x p(m; + 1), respectively. The first term in the right-hand side of (2.17) and
(2.18) can now be factorized accordingly as

1 1 1
1o @ @0
(ml! E& (v, p— ES(v2), .-, g, E; (qu))
x diag(D(l), p?@, . ., D("O))
. 1 2
x diag(ES 1), EL (02), . E§® (140 (3.2)

Observe the dimensions of the first, second and third term in ( 3.2) being

N (mi 4 1)(mi +2
qu(z(m )2(m ),

i=1
q0 q0
(mi +1(m; +2) (mi + D(m; +2)
(Bt o (g )

and

8 (mi + 1)(mi +2
p<z<m># « pa.

i=1
respectively.
The presence of Vandermonde matrices in the first term of (3.2) can be detected in
the following lemma by exploiting the property that the last column ofddf- C)
is uq (z). For typographical brevity we set
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(m; +D(m; +2)
2
We introduce

Ec(y) = (E& o). EQ o). .

and the Vandermonde matrices

—1=4.

1 1
V% 1/22
Vyao = )/.1 )/.2
1 1
i~ vs
and
1 1
V12 V22
Vyao = )/‘1 V‘Z
—1 —1
o v
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L] E(CqO) (qu))

1
Yq0

q—1
Yao

1
7y
Va0

qo—1
Yao

Lemma 3.6. Thefollowing relations hold true:

EC(J/) (0q0><5]_a €1, 0q0><82» €2, ...

whereey, ez, ..
more

., eq are standard basi
(Iqo’ Oqu(q—qo)) Vy.q0 = Vy.qo

(

Proof. Straightforward. O

and

V*l

.40’ Oflox(q—qO)) Ec(y) (Oq0x

T -
,Oqoxa,,o, er> = Vy.400
svectorsin a Euclidean space R?°. Further-

V—l

and ( Va0

Oqu(q—qo)) Vy.a0 = Igo

T
(317 €1, Oq0x82, €2, ..., OqOX(SqO’ eqo) = Iqo'

For formulating some results for the third term of (3.1) we focusE(ﬁﬁ(yi).

Lemma3.7. Thenext holdstrue.

(O(m,'+1)><p(m,-+l)—lv €1, O(mi+l)><(pmi)—l, €2, ..
Otmi+1) (p—1) x p(mi+1) (m;i+2) /2

i U3 (vi
<E () =< pr)

where

Otm;+1) (p—1)x p(mi+1)

O] O(mi+l)><p—l, em,'Jrl)

).
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omi
Oz™Mi

*T amiil *T *T
uy, (2), Uy (@), u, (2)

azml‘ p

Us(n) = diag(

I=Yi

Proof. Straightforward since the last row of &flj— zA)T is uj,T(z). O

Since the upper block/;(y,-) is of dimension(m; + 1) x p(m; + 1), we further
proceed with a choice for a right inverse.

Lemma3.8. Onehas
~*x
Us(vi) (tmi+1® Ip) =V,

where ¢, +1 is an (m; + 1) column vector consisting of ones and the (m; + 1) x p
Vander monde matrix
T

" omi amifl
s = <6z’"i u,(2), Wu’;(z), e u;(z))z_y' :

<

Proof. Straightforward. O

Aright inverse oij; and consequently df;(y,-) can now be deduced and sum-
marized in the next lemma.

Lemma 3.9. Invirtue of the previous lemma we have

~ % 0 . . ~
p—(m+Dx(mi+1) ) _ T+

Vyi < Imi+1 ) - Vyi
and

Op—(mi+ 1) x (mi+1

Up@i) (tmi+1® Ip) < i ‘i,};:(m " )> = Imi+1,

where V* isthe (m; + 1) x (m; + 1) Vandermonde matrix
.

- m; m;—1
* * * *
VVi - <6Zmi umiJrl(Z)’ dz™Mi umi+l(Z)’ T umi+1(z)> )
I=Yi

Aright inverse of U;(y,') isthen
_ 0, 1 1
Up(yi)g = (tmi+1® Ip) ( p—(m ‘i%:):(m + )) ‘

Proof. Straightforward. O
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Lemma 3.10. Thefollowingis easily verified:

(O(m,-+1)><p(m,-+l)—lv €1, 0(m,-+l)><(pm,-)—l, €2, ..., O(mi+l)><p—l, em,'Jrl)
O0mi+1) (p—1) x pmi+ 1) (mi+2)/2

EX)(%‘) (U;(Vi)}, 0p(m,-+1)x(m,-+1)(p—1)>
( Inm;+1 Otmi+2)x (mi+1) (p—1) ) (3.3)
Oumi+1(p-2xmi+1)  Omi+D(p-Dx(mi+1) (p-1)

Proof. Straightforward. O

Let us denote the first and third term of the left-hand side of (3.3)hy1 and
Bm; +1, respectively and the term on the right-hand side of (3.3%hy;1. Eq. (3.3)
can now be used for establishing an interconnection involving the last term of ( 3.2).

Corollary 3.11. The next holds:
diag(=53/m1+l, A iyl - ﬂmq0+1> diag(Eil)(yl), Ef)()/z), ce EXIO)(qu))

X diag(%mﬁl, .@szr]_, RN '@mqo+l> = diag(%mﬁl, e@mz+1, RN '%m‘10+1> .
Proof. Straightforward. O

The results formulated in the Lemmas 3.6—3.10 and Corollary 3.11 allow us to
detect Vandermonde matrices in the factorization proposed fal). The depen-
dence of a generalized Vandermonde matrix can also be detected in the following
structure:

G(@) = (Guy(@1), Gy (@2, - Gy @)

where

1
Gp; (i) = F( ("’)( ), G(’” Y, . (0)(z))

i =0

with each block
n: anifk
G ™ (en) = (k) (an—,_kmdj(zl - A))) . 0<k<nm.
=0u;

Since the last column of a(djl A) is the vectom ,(z), a connection with the gen-
eralized Vandermonde matri¥, can then be established. This will be formulated
in the following lemma.

Lemma 3.12. The following equations are easily verified:
Gu@)I, ®ep) =W, and Gu@)(Wyl®e,) =1,
where W, isthe generalized Viandermonde matrix defined in Lemma 3.1
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Proof. Straightforward. O

3.2. Special case

We have the case where all the eigenvalues are distinct which are presented in this
section. Eq. (2.20) can also be factorized according to

Faa = (up(al)uf,T(al), up(aus (@2, ... up(ap)uf,T(ap)>
x (ri@D) I, r2@2) Ly, .., rp(ap)ly) "

A right inverse of the first term of this factorization is provided in the next lemma
and can be considered as a special case of Lemma 3.2.
Lemma 3.13. The next relations hold true:
(up vy @), w0 @2 . up@pus (@) Uy @ ) = Ve
and
(up v @), up@u @) .. up@pus @) (Ve @ ep) =1y,
where V,, is the Vandermonde matrix defined in (2.20).Hence (V1 ® ep) isaright
inverse of (u,(cn)uT (1), up (a2l (@2), ..., up(ap)utl(@p)).

Proof. Straightforward. O

The first and third term of (2.21) also involve Vandermonde matrices, this can be
summarized in the following lemma which can be seen as a special case of Lemma
3.12.

Lemma 3.14. The following equations may be verified:
A, ®ep) =V, and A1(Vyl®ep) =1,
aswell as
(Iy®epA;=V; and (V;*®e))A; =1Ip,
where the Vandermonde matrix V. is defined in (2.20)
Proof. Straightforward. O
We first speC|ny L andV ., extracted from (2.25) and (2.26), respectively, for

linking S¢, with F,. and Fea, Followed by the appropriate inverses of the first terms
of (2.24). A special case of Lemma 3.3 is summarized in the following lemma.
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Lemma3.15. Sncep > ¢,
- 1 -

(g, Ogx(p-g))Vy = Vy and (V% Ogx(p—g)) Vy = Iy
Taking the transpose yields a right inverse necessary for linking S., with F,:

-~ I - v T

vT< q ):vT and vT< 4 ):1,

Y \O(p—g)xq 4 Y \O(p—g)xq 1

Cil;®eq) =V, and Cu(V, ®e,) = I,

(I, ®e)) Ay =V}

with
-1 2
G| 7 vz 1
Y :
—1 -2
Ve e ve 1
and
1 1 1
V% 7/22 Yq
Vy = yl )/2 yq
-1 -1 .,1
i vs 2

Proof. Straightforward. O

Lemma3.16. Arightinverseof V¥ isgiven by

— (Ocp— - (Ocp—
* P—Xq \ _ y* x [ Y(p—q)xq
v, < I, ) =V, and V, ( v ) =1,

The next relation then holds true:
0p—
(Iq ® e;) A} ( (1"/_492><q> =1,.
14
Proof. Straightforward. O

Lemma3.17. For p < g we have

(u,,(yl),up(yz),...,u,,m,))( Ir ):v,,,y

O(q—p)Xp
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and

-1
(u,,(yl),up(yz),...,u,,m,))( Yoy )=1,,,

O(q—p)Xp
where V,, ,, isa (p x p) Vandermonde matrix defined in Corollary 3.5.

Proof. Straightforward. O

4. Link solution Stein equation—Fisher information: The global approach
4.1. General case

In this section an extension of previous sections is implemented by constructing
interconnections where the entire Fisher information matrix, not decomposed, is tak-
en as one block. Fisher’s information matrix will be interconnected not only with the
corresponding Stein solution but also with Sylvester’s resultant, see [4], where the
following property is established.

F®) = S(c, —a)P(0)S (c, —a), (4.1)
whereS(c, —a) isthe(p + q) x (p + q) Sylvester resultant defined as

1 a1 a -+ ap -+ 0
D\ — 0 1 al a - ap
S(Q,C)— 1 C1 c2 Cq 0 )
0 1 ca e Cq
and
1 u u* z T
P(@):—% p+q( ) I’+(1( ) .2)
2mi J;1=1 a(2)c(z)a*(2)c*(2)

An equivalent formulation of equation (4.1) was already given by McLeod in [8]
and more explicitly in [9].

The interconnection with a corresponding Stein solution will first be constructed
with P(0). Applying Cauchy'’s residue theorem to (4.2)

P(0) = gi(a1) + ga(a2) + - - - + gpolarpy)
+h1(y1) +ho(y2) + -+ hgy(Vgo),

where
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@) 1 o Up+q (Z)“;qu ()
gilaj) = —— -
it o ( oy i) H) (H?il(z B ”)mlH) Q@)

1<i < po.

N ( )_ 1 amj uerq(z)u’;-Erq(Z)

D= e (11,2002 = 1) (T2 1 2 = ™) @@ ()
r=1 r I=1,i#] ! =y,

1<j<qo

A similar approach will be used as in the previous sections, namely a separation
between numerator and denominator in order to achieve an appropriate connection.
By setting

1
wi(o) = ( . — an) P ,
P21z = ap) ) (1724 (2 — yymitL) a*(2)e*(2) o

b)) = L
o (1,2 — a1 (H?il,l;&j (z— Vl)"”“) @@ ) ’

vectorization ofP () yields
vecP (0) = vecgi(a1) +vecga(ao) + - - - + Vecgy,(ap,) + vechi(yl)
+vecha(y2) + -+ -+ VeChy, (V)

= (Wa@), V(1) (1, (), ih,(@2), i (@),

;
oD L 02), -V (o)) (43)

) mqo
where
Wn(a) = (Wnl(al), an(aZ)v cees Wnpo(apo))

with the matriced,,, (;) given by
_ 1 /- o _
W (en) = = (W0 @. WP @) WP@)
i- =q

each block being

- n: an,-fk
Wn(l(zﬁ (o) = (kl> (W (u;+q(z) ®u,,+q(z))> , 0<k<n;.

=0

We further have



A. Klein and P. Spreij / Linear Algebra and its Applications 329 (2001) 947 33

V() = (Vs 00 Vg (72D, Vi (Vo) )
andV,,; (v;) is given by
- 1 1 -
Vs ) = = (W} @, Wl V@, V0 @)
m;! =Y
each block has the following form:
gm0 o () (9T
Vin;? 7 (yj) = ( k]> (W (Mp_H,(Z) ®Mp+q(Z)) ) ;o 0<k<m;.
The remaining terms are

0 o T
M, () = <,uz (2), Mz (@)oo i (z)> ,

n;
a 7=u;

d o T
vm](yj)—<v (2), v,(z) '3 m,”J(Z)>

=Yj

As in (2.11) an alternative representation will be developed for (4.2).

T ™nT
PO = (P @.dV ) ((b‘”(a)) (d®w)) ) (4.4)
with
bV @) = (b @), b @), .. b @) )
where
1 . .
b () = = (bi(l)’( D@, b Dy .,bfl)’(o)(z)) ’
n;: =0
each block is given by
. .
pD0iD () — (nl) <a — u,,+q(z)> . 0<k<n;.
=a;

Additionally we have

dO) = (a0, 4" ). P vy )
with

1
@ D), (mj) (D), (m;-1) 1),(0)
@op= (@@ o 0w)
The structure of each block is
1 , K amj—k
4D ,)-( ><a — u,,+q(z)> . 0<k<m;.

z=Yy;
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We further have
(b<2) (a))T = ((b:(LZ) (al))T, (béz) (az))T e (b%) (a,,o))T> ,
(¢@) = ((df)(n))T, (@12 02) . (42 0) )

The elementgh@ ()T and (d@(y))T consist of terms with the following struc-

tures:b® () = jun; (@) ® Ipiq andd( "(¥)) = vm, (7)) ® Lp+q. In order to apply
Theorem 1.1 we introduce the followmjg + ¢) x (p + ¢) companion matrix:

0 1 0
A = - " : y
0 1
—8p+q —8pt+g-1 - —81
where the entrieg; are given byz?*4 + Y"1 ¢;27+9~1 = a(2)c(z) = g(2). The

condition for uniqueness of the solution of Stein’s equation is verified. Stein's equa-
tion and its solution are, respectively,

S—ASAT =T,
= (zI — A7 —zA) T dz,
2mi lz]=1
1 dj(zI — Ayradj(l — zA)T
_ 1 adj(z yradj(l — zA) d (4.5)
2ni J=1 a(@e(x)a*(2)e*(2)
Applying Cauchy'’s residue theorem to (4.5) yields
S=Aq(ag) + Ag(a) + -+ Apgapy) + B1(y) + Ba(y2) + -+ + Bgo(Vgo),
_ 1 [ o adjiz/ — A)ladj(/ — zA)T
Aileq) == | = 7— 1
P2 e =) (M2 ) @@ )
By = 1o adj(zI — A)Tadj( — zA)T
Tt (e - e ) (T2 s - ) @) )
A similar factorization as in (2.12) gives
- _ T ™'
S = (Ma(@), N (1) ((b<2><a>) (d?)) ) (4.6)

with
Mn(a) = (Mnl(al)v an(O(Z), cees ano(apo)> ,
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where the(p + ¢) x (n; + 1)(p + ¢g) matrix

- 1
iy, () = — (117, 110 @). L M0 2))

i =q;

has blocks

A;[r(ll(tifk)(ai) = ( ) ( k(adj(z[ — A)Iadj(/ —zA)T)> )

=0

<k <

We further have
N ) = Ry 02, Mg 02, - Ny (Vo) )

where the(p + g) x (m; + 1)(p + ¢) matrix is given by

_ 1 _
N (vj) = o ( (mj (2), Nrfimj )( ) P N,,(lo,.)(z)>z_y
J ' =Y

with each block

mj—k
N,g;jik)()/j) _ (mj> (aam — (adj(zl — A)Fadj(l — ZA)T)> ,
=y,

0<k<mj

Combination of (4.3) and (4.6) proves the following theorem.

Theorem 4.1. Therelation holdstrue:

§ = (M@, M) | (W@, V1)) vecP©)) @ Iy} -

From (4.1) can be seen that v&¢h) = (S(c, —a) ® S(c, —a)) " 1vecF (0). The
Sylvester resultant matrix is nonsingular if no common roots are assumed to exist
between the polynomials(z) andc(z). Theorem 4.1 combined with this property
interconnects Stein’s solution, Fisher’s information matrix, Sylvester’s resultant and
a generalized Vandermonde matrix which is hidden in the left inverse. In [4] it has
been verified that the following equality holds:

PO)—APO)AT =T 4.7

forI' = e,,welT,Jrq, wheree, 1, is the last basis vector of the Euclidean spRéa?.

An equation for the Fisher matrix itself, similar to (4.7), is given in [4]. It can also
be derived from (4.7) by using the expression given on p. 208 of [9], that relates the
Fisher matrix for the ARMA case to the one of a corresponding AR process.
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4.2. Special case

In this section interconnections are also established when Fisher’s information
matrix is considered as a global matrix but with distinct rootsdar) andc(z).
Starting from (4.2) with these assumptions and applying a similar factorization as in
(2.20) results in a factorization @f(9) as the product of the following three terms.

P®)=UDU*, (4.8)
where
U= (Merq(al), l"erq(aZ), cees Merq(O(p)y
Uptqg(VD), Uptq(V2)s - -, “p+q()’q)) )

D = diag(p1(e1), g2(e2), . .., p(ap), Y1 (1), Y2(12), ..., ¥q (¥g))

and
U* = (u;+q(a1), Upig(@2), o Uy (@),
Wy (YD) Wy (V). .. uf,w()/q))T
with
@i(o) = :
(M a2 = ) (Ma@ = ) @6 @) =,
and
viyj) = -
(I = @) (T 1y & = ) @*@e* (@) .

The first and third term of (4.8) are Vandermonde matrizgs andV;;, . Respec-
tively

N T
1 o a% af+q
-1
1 o2 a% a5+q
1l « o’ Ml
Vay = g Z +q-1
prq—
1 n ylz V1+ .
prq—
1 yv2 v Y2
p+q—1

1 yq yqz yq
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and
-1 -2
afﬂ afﬂ !
-1 -2
aéﬂrq aéﬂrq a1
p+g—1 p+q—2
Ve = ap+ . ap+ ) a1
ay ptq— p+q—
"1 ) "1 , i 1
P+q P+q
%) %) ey 1
p+q 1 ptq—2
)/q )/q yq 1

We now also have a factorization of Stein’s solution

S = (A1, A2) (Ip1g ®T) (D ® I,1q) (A3, Ad)" (4.9)
where
A1=(adj(enl — A), adj(azl — A), ..., adj,] — A)),
Az=(adj(y2l — A), adj(y2l — A), ..., adi(y,I — A)),
A3=(a j(1 — a14), adi(l — azA), ..., adil —apA)),
a=(adj(l — y14),adil — y24), ..., adl — y,A))

andD as above.
The combination of (4.8) and (4.9) produces an interconnection as summarized in
the following lemma.

Lemma4.2. Thefollowing equation holdstrue:
—x = o\T
S = (A1, &2) (Ve PO)Viy @ T) (As, Aa) (4.10)

In virtue of (4.1) and (4.10) an interrelationship between Stein’s solution, Fisher’s
information matrix, Sylvester’s resultant and Vandermonde matrices is set forth for
the case of distinct roots. As in (2.23) an alternative factorization can be considered.

P(0) = (uw (@ (@1), . upyg (@l (o), tprg (YUY, (v1)

<y Uptg (Vq)“;-z_q(yq))
X (pr(@) Iprg. 02@) Iptg, - oo 0p@p) I pig, Y1V pig, Y2(v2) Ipsg.
T
s 1/fq()/q)]erq) . (4.11)
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5. Left and right inverses: Global approach
As in Section 3 left and right inverses will be presented.
5.1. General case

The notations that will be used are introduced. Thet ¢) x (p + ¢) general-
ized Vandermonde matrix is given by

Wot)/ = (Wnl(al), an(aZ)» cees Wnpo(apo)a
le(yl), Vmg(VZ)y ceey quo (qu)) s

where

~ 1 (=) ~ (n;—1) ~ (0)

Wy(a)=— W, @, W, (,....,W, )

”li! i i i .

with

~ (n;—k) n\ [ 0% F

W, (a,~)=<kl> (W”””(Z)> . 0<k<n.

=0

The matrix

~ 1 ~(mj) ~(m;j—1) ~(0)
-7

with

~(mj—k) mj\ ("
ij’ (vj) = <k1> <Wup+q(z)> , 0<k<m;.

Z=Yj
Lemma5.1. The following relations are verified:
(Op+qX(p+q)(p+q—l)’ ]p+q) (Wn (o) Vm(y)) = Ww’

~

-1\ , - -
<0p+qX(p+q)(p+q—1)v Woty) (W”(O‘) Vm()’)) = Ip+q-
Proof. Straightforward. O

Lemma5.2. Thefirst termof (4.4)verifies

(0@, dV D)) (Ipsg ® €prg) =Wary.

~ -1
(b“)(a), d“)(y)) (WW ® ew) =Ipiq.
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Proof. Straightforward. O

An extension of Lemma 3.12 allows us to considEy, («), Ly, (y)). With

K@) = (Kny(@1), Ky @2), -, Ky @po))

and
1
K@) = — (KM@, KPP, . K0@) _
n;. =0
where each block is described as
oni— —k
Kr(l:’i—k)(ai) = (”z) (6 - (adj(zl - A))) , 0<k<n;.
=a;

Next we have
L) = (Lon(02). Ly 72, -+ Ly (a0))
with
L,,,,-(y,»):m%( L@, L9 (), . L(O)(z)>zzyj,
where each block is
(mj—k) ami—k

Ln] " (vj) = (2’) (W (adjzl — 5))) . 0<k <m;.

=V

Then we have:

Lemma5.3. Thefollowing equations hold true:

(Kn(a), Lin(y)) (]erq ® ep+q) = Wozyy
~ -1
(Kn(), Ly (y)) Way ®eprqg )| = Iptq-
Proof. Straightforward. O

5.2. Special case

A right inverse of the first term of (4.11) has the property summarized in the next
lemma.

Lemma5.4. Thefollowing equations hold:
(praCees] @), g @l @), g (sl ()

v up+q()/q)uj,1q()/q),) (]P+q ® ep+(1) = Vay,
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*T *T *T
(Mp+q (@D, g (@1), .o upig(ap)uy, (op), tprq (YU, (Y1)
T -1
s Mp+q()/q)uf,+q()/q), ) (Vay ® ep-‘rq) =Ipiq-
Proof. Straightforward. O
The first and third term of (4.10) also involve Vandermonde matrices.

Lemmab.5. Onehas
(A1, A2) (Ip+q ® epiqg) = Vay and (A1, Ap) (Va}l ® ep+q) = Ipiq,

= o\ T _ = o\ T
(I ®ehig) (Aa. Aa) = Vg, and  (Vir@ep,,) (As Ae) = Ipiy.

Proof. Straightforward. O

6. Connection Lyapunov equation—Fisher’sinformation

The purpose of this section consists of showing that possible interconnections
between the solution of Lyapunov’s equation and Fisher's information matrix are
similarly obtained as for Stein’s equation. We therefore illustrate(¢he) block
with distinct roots, the results for other blocks are similar. First we recall the fol-
lowing theorem from [6]. Le#d € C™*™, B € C"*" andQ € C"*™. The Lyapunov
equation

LA—BL=2Q (6.1)
has a unique solution i andB have no eigenvalues in common.

Theorem 6.1. If the Lyapunov eguation (6.1) has a unique solution L, then
1
L= —f W =Bt — A, (6.2)
2mi D

where D isa single closed contour with o (A) inside D and o (B) outside D.

Use (2.20) and compare with an appropriate form of (6.2), the choice of a com-
panion matrix form forA is similar with the one used in (2.6), wherdass associ-
ated with the monic polynomi@l(z) = 1+ a1z +--- + a,,,lzl’*l + z?, denote the
companion matriB

0o 1 - 0

-1 —ai N _ap71
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We will apply Cauchy'’s residue theorem to (6.2) and combine Wjthas developed
in Section 2.2. First the following notations are introduced.

By = (adj(e1/ — B), adj(@2l — B), ..., adja,I — B))

br(e) = diag(bi(c1), ba(a2), ..., by(ay))

with b; (¢;) = (det(z! — B))2, = (b(2))-2,,. The interconnection wittf, is sum-
marized in the following lemma.

Lemma6.2. Thenext link holdstrue:
Laa = By (Vy Y Fau Vi © Q) (br(@) ® 1) A]. (6.3)

Note that the last column of adjl — B) is the vectou, (z) so that Vandermonde
matrices can be detected in a similar way as in previous sections by searching right
and left inverses.

7. Examples

In this section we illustrate by means of two examples how a solution of Stein’s
equation can be computed through Fisher’s information matrix. Mathematica 3.0 is
used.

7.1. Distinct roots and global approach

The first case to be considered is the ARMA time series processpwithl and
g = 1, first without specifying the structure éfand then for an explicit’. Fisher's
information matrix is taken as one block, the assumption of distinct eigenvalues is
in force and the link (4.10) is evaluated. Fisher’s information matrix of the ARMA
process, described by

y(@)+ay(t—1) =e(t) +ce(t —1)
is evaluated according to (2.3)—(2.5) and is given by

Lz 1
F(o) = (i—al f) :
1—ac 1—c2

We will use this expression in order to find a solution to Stein’s equation and for
that purpose we give the main terms involved in the equation linking the solution of
Stein’sequation wittP (9). The roots of the autoregressive and moving average poly-
nomials arex = —a andy = —c, respectively, we assume that: ¢. The Sylvester
resultant is

S(c, —a) = (_i _Ca)
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andP(0) is according to (4.1)

P©) =S Y—c,a)FO)S T (—c,a)

_ 1 ( 1l+ac —(a+c)>
C (L—a?®)(ac—1D(c2-1) \—(@a+c) 14ac)”

The Vandermonde matricés. andV,, are,

1 1 — 1
Ve = (_a _C> and V) = <_Z 1).

1
1 0
Va;lp(g)vaz* — ((1a2)(10ac)(ca) 1 ) .
(1—c2)(1—ac)(a—c)
Introduce

A1 =adj(—al — A), Ay = adj(—cl — A),
Az = adjl +aA), Az =adil +cA).
with

(A17A2)=<c 1 a 1>’

—dac —a —dac —C

- 0 1
A= (—ac —(a + c))

2

— = \T l1-a“—ac —-a 1-—c“—ac -—c T
(A?”A4) =< a’c 1 ac? 1) ’

Fll F12
I'= ( 21 F22> :
Stein’s equation and its corresponding solution expressed in terl&@agfcan now
be formulated, the latter according to (4.10)
S—ASAT =T,
o _ _ = = \T
S = (A1, A2) (Vi PO)Vor @ T) (As, Aa)"

1 Sll 512
_ 7.1
(1—a® (1 - c)(-1+ac) (S” 822> (71
with
sl _ {(1 tade— 2 tac(c®—1) +a?2c? — ))I' + a?e(rt2 4 12y

+ 124 acel™ 4 cr? 4 1%,
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Slzz a362r11+ (_1+c2)1—~12+a2(c31—~11+ I—~12+ CZFZl) —I—CFZZ
+a(cl?+cr? 4+ 1??),

S = qer? — 12 4 212 4 a2 (acrtt + 1?1y + er??
+alac®(cl™ + ') + cr? 4 1),

§22_ _ {ac2r12 +a2c(@c®r + 1Y + 122 1 g(ac(el™ + 112
Fe(el® 4+ F22))} :

It is now straightforward to verify that by choosing

0 O
F:eze;=<0 1>

in (7.1), equality between the solution of Stein’s equation &) is obtained or
equivalently, it can be checked that the Stein equaftg®) — AP(0)AT = ezel
holds true.

7.2. Multiple roots and one block

In this example a case of multiple poles is considered fotdhe) block of Fish-
er's information matrixp = 3 andg = 2, the roots arer andy for the autoregres-
sive and moving average polynomial respectively with corresponding multiplicities
n+1=3andm + 1= 2. Link (2.17) is considered. The blodk,. is computed
according to (2.3) with , (z) = (1zz%)" andu}}(z) = (z D).

1
(14 a1y +a2y?+ a3y3)2

1—azy? —2azy®  —(a1+ 2agy + 3agy?)
x| 2y +a1y? — azy? 1—azy? — 2agy®
3y2+2a1y3 +ay* 2y +a1y? —asy?

Fac’:_

We shall write the matrices necessary for establishing (2.17).

0 * *
V() = (— (o) uoe up(z)>

0z =y
B (1 2y 32 0 1 2y>T
y v2 2 1y y?) o

A left inverse as presented in Lemma 3.3 is set forth

0 1 ~
(02x3 12 02x1) Vin(y) = (1 y) =Wy,
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- (0 0 0 -y 1 O
Vm(y)L‘(o 00 1 0 o>'
The companion matrices associated with the monic polynomialsandc(z), re-
spectively, are

0 1 0
A:(o 0 1) and C=<0 1)
—Cc2 —C1

—a3z —az —ai

anda*(z) = 1+ a1z + a2z® + asz®, ¢(z) = 7% + c1z + ¢ . For writing out the first
term of (2.17) appropriate adjoint matrices are first given followed'tfy

1+ a1z + a»z? 7+ a1z? 22
adj(I — zA) = —azz? 1+ a1z z |,
—asz —apz —azz® 1
. 1
adjzl — C) = (Cl_ . Z)

w2 s
r=\ra1 2 23)-

The first term of (2.17) is

o . . . .
En(y) = (&(adj(zl — O)I*“adj(l — zA)"), adj(zl — C)I'*“adj(l — zA)T)
=y
Since it is clear that computing,, () under its present form is quite cumbersome,
a factorization proposed in Egs. (3.1)—(3.2) subsection 3.1 shall be applied here.

En(y) = Ec(r)DEA(y),
Ec) = (EQ ) EQ W),

o . _
EP@y) = <&adl(z1 — C), adj(z] — C)) ,

=y
EQ(y) = (adjzl — C)).—, .
Eaty) = diag(EL () EP 1)),
.
EQ () = (adj(] — z4), agadj(l - zA)) ,
Z =y

EP(y) = @dil —zA) L, .

This results in the form
(1 0 a+z 1 ca+z 1
Ecr) = (O 1 -2 z - Z>7=

D = diag(I*® 1@ 1<),

’

=y



Ealy) =

1+ a1z + axz?

—asz?

1+ a1z

—aszg

—da27 — a3z

1+ai1z+ a2z2

Z+ a1z2

Z2

0 0

0 0

0 0

0 0

0 0
—Cl3Z2 —da3q
14 a1z —apz — azz?

z 1

L6 (T00Z) 62€ Suoleal|ddy s)i pue eigebly Jesul / Bids d pue uB |y v

174



46 A. Klein and P. Spreij / Linear Algebra and its Applications 329 (2001) 947

All the matrices necessary for linking Stein’s solution with the corresponding block
of Fisher’s information are now evaluated. Consequently Stein’s solution can be set
forth through Fisher’s information matrix according to (2.17). However, Lemmas 3.6
and 3.10 shall first be verified. With

Vygo=Vy1=(1y)" and V);l,L =(10),

Lemma 3.6 becomes
(1 OEc(y)Owxs e)' =1,
whereas

~. (1 0 ~ (1 0
VV_()/ 1) sothatvy _<_y 1)

* - 0 S
U3y = Uz Ip) (55) :
Y
Lemma 3.10 is confirmed through the following equation

O2x5  e1 O2x2 e % = I Oxxs
E Ui(yi)» 0 = .

and

Stein’s equation followed by its solution is now given as
Sea — CSeaAT =T,

Sea =—Emn(y) {(Vm()/)ZVGCFac) ® ]3} )

_ 1 (Sclal Si2 S&f)
(L+ a1y +azy? + asy®2 \S&h %2 s23)

More explicitly we have

S = (L + ary + azy® + azy® I3y 2 + 12y A+ ary) + A+ ary + azy?)
+ (a1 + 2a2y) (T2 + T er + y) + (L + 2a1y) (T2 + T2(c1 + 7))
+ 2y (2 4+ %1 + ) — (a1 + ¥ (2a2 + 3azy)) (L + a1y + azy?)
x (I 4+ I Yer + ) + y A+ a1y) T2+ T(c1 + )
+y2IB + 131+ y))

S22 — (12 4 agei M2 + eol'B + a1l?? + 12 — 2a3c1 ™Yy + 201112y
+2r8y — 2a31?Yy — 3a3ry?) (1 + a1y + azy® + azy?)
— (a1 + y(2az + 3azy)) (—azy* (T + e + v) + L+ a1y)
X (T2 4 T2(c1+ ) + y T2 4+ T3 + )

SB8 = —(a1+ y (a2 + 3azy)) T B+ I'(c1 + ) — y(az + azy) (1Y
+ T2 4y —agy (I 4 1Y e+ v) — A+ a1y +azy? +azy®)
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x (=T + ap(c1 I + I'2 + 2y I?) 4+ az(I'?* + 21ty 4+ 2y 1?2
+ 3F12)/2 + Cl(Fll + 2F12)/)))

Sei = —(a1+y 2az + 3azy)) (y (L + ary)(—c2l 2 + T?y) + y2(—c2l
+ I'By) + (—cal ™M+ T?y) A4 a1y +azy?) + 1+ ary +azy® +asy®)
X (le + 2F22y + 3a2y2F21 + 3F23y2 — cz(Flz + 2a2yF11 + 2)/F13)
+ ar(—co(I' 4 2I''%y) 4 y (21?1 4 31%2y)))

Scza2 = —y(—2F23 + 3a3F21y — alyF23 + 2a1a3F21y2 + a2a3F21y3
+asly3) — 1%2(-1 - 2a1y — aZy? + azy? + 2azy® + azazy®)
+ cz(F13(—l + a2y2 + 2a3y3) + y(2a3F11 + 2a2F12 + alagflly
+ alazflzy + 3a3F12)/ + 2a1a3F12y2 - a%l“lly3))

Scza3 = +aicolB3 4+ 2% — a%czflzyz - a%yS(Zszll + czflzy — ley)
— ap(—cal? — 2¢,I' %y 4 21?2y a1 122y 4 128 2) — ag(y (2%
+ a1ty + 31?2y 4 201172y 2 4 2122 2) 4 cp(—111 — 2112y
+ aoI'Yy? — aaI''%y?% — 31132 4 24,112 3)).
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