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ABSTRACT 

We establish a relation between Fisher's information matrix of a stationary 
autoregressive moving average process, with an exogenous component, and two 
Sylvester's resultant matrices. 

1. INTRODUCTION 

The Cram~r-Rao bound is of paramount importance for evaluating the 
performance of (stationary) autoregressive moving average models with an 
exogeneous component (ARMAX), where the focus is on the error covari- 
ance matrix of the estimated parameters. See Cram~r.[3] and Rao [8]. For 
computing the Cram~r-Rao bound the inverse of Fisher's information ma- 
trix is needed. The latter is singular in the presence of common roots of 
the AR, the MA polynomial, and the polynomial describing the influence 
of the exogenous part. 

The  purpose of the present paper is to study the link between Fisher's 
information matrix and Sylvester's resultant matrices involving the three 
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polynomials that  model the ARMAX process. In a previous paper [7] we 
investigated the simpler case for ARMA processes, 

The link between statistical considerations and algebraic results is of 
independent interest, since one is based on the Wald test statistic for testing 
common roots (see Klein [6] for the ARMA case), and the other one is 
deduced from the structure of the Fisher information matrix of a stationary 
ARMAX process. 

In Barnett  [1] a relationship between Sylvester's resultant matrix and the 
companion matrix of a polynomial is given. Kalman [4] has investigated the 
concept of observability and controllability in a function of Sylvester's resul- 
tant  matrix. Similar results can be found in Barnett  [2], which contains dis- 
cussions on these topics and a number of further references. Furthermore, 
in SSderstrSm and Stoica [9, p. 162 ff.] a discussion on overparametrization 
in terms of the transfer function of a system can be found. 

2. PRELIMINARY ALGEBRAIC RESULTS AND NOTATION 

Consider the following two scalar polynomials in the variable z: 

A ( z )  = z p + a l z  v - t  + . . .  + a p ,  (2.1) 

B ( z )  = z q -{- blZ q-1 + ' "  + bq. (2.2) 

The Sylvester resultant matrix of A and B is defined as the (p + q) x (p + q) 
matrix 

1 al . . . . . .  ap 0 

q ,,o " . .  " , ,  

0 1 al . . . . . .  ap 
S ( A , B )  = 

P 

1 bl . . . . . .  bq 0 

0 1 bl . . . . . .  bq 

(2.3) 

P q 

det S ( A ,  B) -- H H (flj - a ,) ,  (2.4) 

where the c~ and the f~j are the roots of A and B respectively. 

In the presence of common roots of A and B the matrix S ( A ,  B )  becomes 
singular. Moreover it is known that  
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In the context of ARMA(X) processes it is more natural  to work not 
with monic polynomials, but  instead with polynomials with a constant t e rm 
equal to 1. These are linked with the monic polynomials as follows. Given 
a monic polynomial A as in Equation (2.1), we define a ( z )  = z P A ( z  - 1 )  = 

1 + a l z  + . . .  + a p z  p. Similarly we have a qth order polynomial b given 
by b ( z )  = 1 + b l z  + . . .  + bqz  q and an r t h  order polynomial c given by 
c ( z )  = 1 + ClZ + . . .  + c r z  r.  In the sequel we will use the notat ion S ( a ,  b) 

to denote the Sylvester matr ix  in Equation (2.3) and not S ( A ,  B ) .  Similar 
notat ion will be used for all other Sylvester matrices appearing in the rest 
of the paper. 

3. MAIN RESULT 

First we specify Fisher 's information matr ix  of a Gaussian ARMAX (p, q, r) 
process. Let a, b, and c be the same polynomials as in the previous section. 
Consider then the s tat ionary ARMAX process y tha t  satisfies 

(3.1) 

Notice tha t  we use z invariably as a complex number and as the lag opera- 
tor. In Equation (3.1) u is a given s tat ionary process with spectral  density 
(2~r)-IP~, and ~ a white noise sequence with variance ~r 2. The processes 
u and e are supposed to be independent, or at least uncorrelated. Assume 
also tha t  b has no zeros on the unit circle. Let 0 denote the parameter  vec- 
tor, 0 = ( a l ,  . . . , ap ,  b l ,  . . . , bq, c 1 , . . . ,  cr )  T (here and elsewhere superscript 
T stands for transposition). Denote by ~t °~ the derivative of ~t with respect 
to 0~. Then we have 

b(z) 1 

b~ 1 
E t - -  C(Z) 

1 

We introduce some more convenient notation. For each positive inte- 
ger k we write u k ( z )  T = [1 ,z , . . . , zk-Y] .  Then we have for the Fisher 
information matr ix  (we write ~t ° as the row vector of all the derivatives) 
R i O )  = _ -2L-~  -OTTO ~o~t ~t" See also Klein and Mdlard [5] for an expression in the 
more general case of SISO models. 
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For G(O) = a2F(O) we have the following block decomposition: 

[G~a Gab Ga~] 

a(o)= i aa% abb abo / , 
LaL 

where the matrices appearing are given by 

1 f b(z)b(z-1) " ' z ' u  " z 'u" - l "vdz  
aaa =Y~i Sl*l=~ a(z)a(z-~)c(z)~(z-~) ~ t  ) ,t  ) ,tz ~ T 

(3.2) 

G 2 

- b ' ~ i ~ z l = l a ( z ) ~ ( z - 1 ) u p ( z ) u p ( z - 1 ) T d ' ~ f f  , 

1 ~lz b(z) -1 TdZ 
Gab= --2rc--- ~ i=lRU(Z)a(z)c(z)c(z_l) Up(z)uq( z ) --~, 

--G2 ~l z lC(Z_I)Up(Z)Ur(Z-X)TdZ 
27ri J=l a(z) z ' 

Gbb = ~ [=1 C(Z Z - 1 )  Z ' 

Gbc = O, 

a2 ~lz 1 Ur(Z)Ur(z_l)TdZ" 

Let K(z) = a(z)a(z-1)c(z)c(z-1). Putting all these expressions to- 
gether, we can write G(0) as the sum of the following two matrices: 

b(z)up(z) 
1 ~ 1 _a(zluq(z) 2~--7 i=1 P~ ( z l -k-~ o 

X [b(z-1)Up(Z-1) r , - a ( z - 1 ) u q ( z - 1 )  T , 0] --,dz (3 .3)  
z 

{ c(zlu,(z) ][ 
a2 ~lz i --. 27ri I= 1 g(z) 0 c(Z_I)Up(Z_I)T,o ,  _a(z_l)Ur(Z_l)T] dz 

-a(z)ur(z) z 
(3.4) 
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These matrices can be written in a more compact form. In order to do so, 
we introduce some notation. Furthermore we split the Sylvester matrix 

S(-b,a) = S.(a) " 

Here Sp(b) is formed by the top p rows of S(-b ,  a). In a similar way we 
decompose 

St(a) " 

Then we can write the matrices in the expressions (3.3) and (3.4) respec- 
tively as 

[ -SP(b) l ~l z z Up+q(Z)Up+q(Z-1)T dz 

U J 
(3.5) 

and 

(c) ~zl=l Up+r(Z)UP+r(Z-1)T dz 
L St(a) j g(z)  z [ -  S'(c)T' o, Sr(a)T]. (3.6) 

The main theorem is now the following 

THEOREM 3.1. The Fisher information matrix of an ARMAX(p, q, r) 
process with polynomials a(z), b(z), and c(z) of order p, q, r respectively 
becomes singular if[ these three polynomials have at least one common root. 

Proof. Because G(8) = a2F(8) is the sum of the two nonnegative defi- 
nite matrices in Equations (3.5) and (3.6), and the two integrals appearing 
there are both strictly positve (which is shown in Theorem 3.1 of Klein and 
Spreij [7]), we see that a vector 

[ i ]  with 

belongs to ker G(8) iff 

X 6 IR. p, 

and 

y E ] R  q, a n d z E ] R  r 

: ]  ~ k e r S ( - c , a )  T. 
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Assume tha t  there exists a common zero ¢ of a, b, and c. I t  follows from 
the appendix (Lemma A.1) tha t  the vector 

with x = ~(¢),  y =/3(¢) ,  and z = 7(¢) 

belongs to the kernel of G(0), which then must be singular. 
In order to prove the converse we proceed as follows. Assume tha t  

kerG(0),  with x E R  p, y E R  q, z E R  r. 

Let { ¢ 1 , . . . , ¢ k }  be the set of all common zeros of A and B, and let 
{¢1 , . . .  ,¢ ,}  be the set of all common zeros of A and C (counting mul- 
tiplicities). The other p - k - l zeros of A are denoted by P l , . . . ,  Pp-k-l.  
Then we can write A(z)  k l p -k - l  = l - I ~ = l ( z  - ¢~)IL=l(z - ¢~)I]~=1 (z - p,). 
As in the appendix, we denote by A((])) the p x k matr ix  with i th col- 

k T umn equal to jp-lT,~,pa. Recall tha t  T¢,p is short for l-L=1 ¢,,p, T#,p = 
l T r '[p-k-ZT The matrices B((I)), A(~) ,  and I~i=l ¢ i ,P '  and TR,p = 11i=1 pl,p" 

C ( ¢ )  have a similar meaning to A(¢) .  From Lemma A.2 of the ap- 
pendix we find tha t  ker S ( - b ,  a) T is given by the image of the map  with 
matr ix  

A(¢) 
B(¢)]" 

So there exists a vector v E l~ k such tha t  

[;] LB(¢)] v 

Similarly, there exists a vector w E l~ l such tha t  

[:] = rA( )l 
LC(, i , ) j  ,1,. 
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Combining the two expressions for x, we get A(O)v - A(g2)w = O, and from 
this 

T R , p A ( ~ ) v - T R , p A ( ~ ) w = [ T R , p A ( O ) , T R , p A ( g 2 ) ] [ _  w ] = 0 . .  (3.7) 

Recall that  the ith column of A(~) is given by ] i - l T ¢  pa and there- . P 
fore the i th column of TR,pA(¢) is given by J~-lTR,pT¢,pa. Similarly to 
the observation we make in the appendix [premultiplying of a with T¢,p 
if ¢ is a zero of a monic polynomial A gives the coefficients of the poly- 
nomial A ( z ) / ( z  - ¢)], we notice that  the first l + 1 elements of the first 
column are exactly the coefficients of the polynomial I-Ili=l(Z - ¢i), the 
last p - l - 1 coefficients being zero• Likewise the first column of the ma- 
trix TR,pA(g2) has the coefficients of the polynomial l-Ik=l(Z - ¢i) on its 
first k + 1 places, the other p - k - 1 elements being also zero• Therefore 
the matrix [TR,pA(¢), TR,pA(g2)] in Equation (3•7) is nothing else but the 
transpose of the Sylvester matrix S(~,  ~)  extended with a ( p - k - l )  x (k+l)  
lower block of zeros• By assumption there are no zeros shared by a, b, and 
c, so in particular the set of common zeros of • and g2 is empty, and 
therefore the Sylvester matrix S(¢ ,  ~)  is nonsingular, and then the matrix 
TR,p[A(¢), A(g2)] as well as [A(¢), A(~)] has full column rank• We conclude 
that  v and w are zero and so are x, y, and z. This proves the theorem. • 

APPENDIX 

In this appendix we give some results on the kernel of a Sylvester ma- 
trix. Contrary to what we wrote in the main text,  we usually denote monic 
polynomials by lowercase letters• Let S(a, b) be the Sylvester matrix as- 
sociated with the real polynomials a and b, where a(z) = ~,~=o ak zp-k ,  
ao = 1, and b(z) = ~_,~=obkz q-k, b0 = 1. So S(a,b) E l~ (p+q)x(p+q) and 

1 

al 1 

al 

5(a,b)  T = ap " 

ap 

1 

bl 1 

bl ". 

1 b a 

al bq 

ap 

1 

bl 

bq. 
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Let for each ¢ the matr ix  T¢ E C (p+q)x(p+q) be defined by having i j  entry 
¢ i - j  for i > j and 0 otherwise• So 

1 

¢ 1 
¢2 ¢ 1 

T ¢  ~ . . .  . .  

". 1 

cp+q-1 . . . . . . . . .  ¢ 1 

Define also the polynomials ak by the recursion ak(z)  = z a k - l ( Z )  + ak, 
with initial condition a_ 1 = 0 and the convention tha t  ak = 0 for k > p. I t  
then follows tha t  ak(z)  = zk-Pa(z)  for k > p, and consequently ak(z)  = 0 
for k _> p if z is a zero of a. Similarly we define the polynomials bk. 
With  the aid of these polynomials we also define the polynomial a(.; ¢) 

v 'P -1  a . / ~ z P - l - k  An easy calculation shows tha t  A(z;  ¢) _= by a(z ;¢ )  = z.,k=0 ~ ' J  
(z - ¢)a(z; ¢) = a(z)  - a(¢),  whence the conclusion A(.; ¢) = a iff ¢ is a 
zero of a. Consider now the product 

T¢S(a ,  b) T = 

1 1 

a l (¢ )  1 bl(¢) 1 

a l (¢)  ' .  51(¢) ". 

". 1 ". 1 

a1(¢) 

ap+a_l(¢  ) . . . . . .  ap(¢) 5p+a_l(¢ ) 

b1(¢) 

5q(¢). 

(A.1) 

In order to prepare for the lemma below we introduce some notation. 
Let ot T = [1, . . .  , a p - 1 ]  E ]R p and f iT  = [1, . . . ,bq_l]  E ]R q. With the 
notation introduced at the beginning of this appendix we write a (¢ )  T = 
[1 ,a1(¢) , . . .  , ap- l (¢ ) ]  E R p and/~(¢)  E ]R q likewise• In the main text  of 
this paper  we often encountered Sylvester matrices of the type S ( - b ,  a). 
In the rest of this appendix we will s tate some results for these matrices• 

For pth  order polynomials a and qth order polynomials b we some- 
times parti t ion the Sylvester matr ix  S ( - b ,  a) into its upper  block - Sp (b )  E 
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R px(p+q) and its lower block Sq(a) E l~ qx(p+q). We also use 0p, 0q, 0p-l, 
and 0q-i to denote the zero vectors in P~P, R q, ]R p-I, and ]R q-1 respec- 
tively. Ip-1 and Iq-1 are the identity matrices of orders p - I and q - I. 

LEMMA A.1. Let S = S ( - b ,  a) be the Sylvester matrix  associated with 
the polynomials a and b as above, and suppose that ¢ is a common zero of  
a and b. Then 

fO>l] 
kerST /0L,/kerS(-b(;C)'a(;c))T @ tf~(¢) " 

tIq-iJ 

In pa~ic~,la," we have that dim ker S(-b, a)r= dim ker S(-b(.; ¢), a(.¢))r+l.  

Proof. Obviously for x l  E ]R p-1 and x2 E ]R q-1 we have 

• ke rS  T if Xl E k e r S T ( - b ( . , ¢ ) , a ( . , ¢ ) ) .  X2 
Lx21 

Write ol T = [ a l , . . . ,  ap], t3 T = [ b b . . . ,  bq]. It is easy to see that  

S ( - b , a )  T ~1 = Op -- Oq " 

A similar result holds if we replace a and b with a(-; ¢) and b(.; ¢), and a~ 
and j31 with a(¢)1 = [a1(¢) , . . . ,  ap-l (¢)]  T and f~(¢)1 = [b1(¢), . . . ,  bq-i(¢)] T. 
So 

[Og(¢)l] [/~(~)1 ] fC[(¢)I ] (A.4) 
S ( - b ( " ¢ ) ' a ( " ¢ ) ) T  Lz(¢), = L L Oq-I J" 

In parallel notation to the one introduced above we have 

1 0 . . . 0  1 

T ¢ S ( _ b , a ) T _ ~  [-f~(¢)l ] _ST_ 1 (b(.; (~))[ o/((~)1 ] 
t 0p--i J L 0q-i J 

0 0 . . . 0  0 

' " "  O 

sg_~(a(.; ¢)) 

0 - - . 0  

(A.5) 
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Hence we see from Equations (A.4) and (A.5) that  

Ill 
LZ(¢)IJ 

belongs to the kernel of S(-b, a) T. Since the two subspaces in (A.2) have 
a trivial intersection, we get that  their sum is actually a direct sum and 
that  it belongs to ker S(-b, a) T. 

Now we have to prove the converse. So take a vector v E ker S(-b, a) T, 
which we can always partition as 

[i] for some x E R p- l ,  y E 1~ q -1  , and z E R. 

We have to show that  

[; z;3(¢)1 E kerS(-b(.;¢),a(.;¢)). 

From the partitioning (A.5) of T¢S(-b, a) and the fact that  v E ker S(-b, a) 
we readily obtain the equality 

L Op_l j L0q-1 J] 
The result then follows from Equation (A.4). 

Let now Jp E l~ pxp be the shifted unit matrix defined by its ele- 
ments Jp,ij = 5i,j+l, and Jq likewise. Furthermore for complex num- 
bers ¢1 , - . . ,  Ck we define the p x p matrices TCz,v given by their ij entries 
T$3,p = ¢~-J if i _> j and zero elsewhere. Note that  the matrices T¢, com- 
mute. Then we define the matrix T¢,v as the product of the matrices T¢~,v. 
Notice that  commutativity makes the order of multiplication irrelevant. It  
is also easy to see that  the matrices Jp and T¢~,v commute. The matrix 
To,q is defined as its q x q analog. 

3 1 Denote by A(¢)  the matrix with J~-  Tv, ra  as its j t h  column. Similarly 
we write B ( ¢ )  for the matrix with J-Jv-lT,~,q~ as its j t h  column. 

The following result is a direct consequence of the previous lemma. 
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LEMMA A.2.  Let ¢l, . . . , ¢k be all the common zeros of the polynomialsa 
and b (counting multiplicity). With the notation introduced before, we have 
that ker S( -b ,  a) T is k-dimensional and spanned by the independent vectors 

{ 
Equivalently, ker S(-b ,  a) T is the image space of 

B(¢)J  

Proof. The idea is to iterate the procedure described in the proof of 
the previous lemma by decomposing ker S(-b(.;  ¢1), a(.; ¢1)) T in the same 
way as we decomposed ker S(-b ,  a) T. 

So we find that  ker S(-b(.;  ¢1), a(.; ¢1)) T is the direct sum of 

¢2) ] 
/ and kerS(-b( . ;¢ l ,¢2) ,a( . ;¢ l ,¢2))  T, ~(¢1,¢2)] 

where e.g. a(¢1, ¢2) = T¢2,p-l[Ip-1,0p-1]a(¢l) and a(z; ¢1, ¢2) = a(z) /  
(z - ¢1)(z - ¢2). This shows that  also 

[°]  1 L 4T,2,q/3(¢1) 

L Z(¢1, ¢:) J 

belongs to ker S(-b ,  a) T. The iterations give step by step Sylvester matrices 
of decreasing dimension, and they stop when we arrive at the Sylvester ma- 
trixk S(-b(. ;  ¢1 , . . . ,  tk) ,  a(.; ¢1 , . . . ,  tk))  T, where a(z; ¢ 1 , . . . ,  tk)  = a(z) /  
1-L=l(Z -- ¢i) and b(z; ¢1, - . . ,  tk)  = b(z ) / [L=l ( z  - ¢i). Since these poly- 
nomials have no common zeros, the associated Sylvester matrix is nonsin- 
gular. In conclusion we can say that  kerS(-b ,  a) T is spanned by the k 
independent vectors 

[v~] with v i =  p ¢''p T ~ l ' p ~ a n d w i =  p ~''p T ¢ l ' p ~ w i  J~- IT  "'" J~- IT  "'" 

with i = 1 , . . . ,  k. 
k Define for j = 1 , . . . ,  k polynomials f j (z)  = I-L=j+i(z - ¢,), and write 

these as f j ( z )  = ~-~=1NiJ zk-i ,  so N~j = 0 if i < j and Nit = 1. By f ]  we 
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k denote the reversed polynomial, f~(z)  = z k - J f j ( z  -1) = I-Ii=j+l(1 - ¢iz). 
Notice tha t  for j = k we get an empty  product,  which is 1 b~ convention. 

I t  is easy to check tha t  T~lp = I - ¢iJv and hence ~-]~=1 NiJJiv - j  = 

f](Jp)  = ( T c j + , . . . .  Tck,p) -1 for j < k and f/~(Jp) = Ip. 
Let N be the k x k matr ix  with entries Nij as above. Consider now the 

j t h  column of the product  [a, Jp(~,. . . ,  J k - l ~ ] N .  I t  is given by ~-~'~ik__l j ~ - I  
Nij = f~(Jp)~. Then we get 

A ( O ) N  = T¢,p[a, J p a , . . . , J ~ - l a ] N  

= To., [S;(J,),..... 
. . . ,  • T j k-lA3 = [ T , l , p a ,  T l,p . .  

= 

Similarly we have the relation B ( ~ ) N  = [ w l , . . . ,  wk]. So we finally have 

iv1 vk] rA o ] 
wl ""  wk [ B ( ¢ )  N, 

which proves the lemma, since N is nonsingular. 
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