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Abstract. We provide explicit representations of the null space S of adjoints of companion-
related matrices and of certain rectangular generalized Vandermonde matrices of block Toeplitz type
which are encountered in the Fisher information matrix of time series processes. A formula for the
right-inverse of this class of matrices A is provided which allows one to express the solution of the
system Az = b as ¢ = A7 b+ S. The formulas can be easily turned into solution algorithms.

Key words. linear systems, coefficient matrix, null space, generalized Vandermonde matrix,
Toeplitz matrix

AMS subject classification. 15A06

DOI. 10.1137/060656115

1. Introduction. The subject of this paper is concerned with a recursive solu-
tion of new linear systems of equations. The following two linear systems of equations
are investigated:

(L.1) K,(0)X =&
and
(1.2) M-(p)Y =R.

The coefficient matrices in (1.1) and (1.2) have the form

v—1
d * T

Kolo) = (o (0T oo () T )

M) = (o (i T = ). s (i (T = G oo adi G- Gy))

T ’ T—1
dz dz o

where IC,, (o) € R4+ and M, (p) € RP*P(T+1) | The companion matrix C, € RP*?
is given by

0 1 0 0
0 1
(1.3) C, = S
0 0 1
—Cp —C2 —C1
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1192 ANDRE KLEIN AND PETER SPRELJ

where p is an eigenvalue of (), with algebraic multiplicity 7 + 1, T denotes the
transpose, adj(X) denotes the adjoint of matrix X, o, ¢, and v are arbitrary scalar
values. Further, we have

(1.4) ug(2) = (1,2,...,2971) " and uy(z) = (71T,

Here X and Y are matrices of size ¢ (v + 1) x £ and p (7 + 1) x h, respectively, while
€ and R have size ¢ x ¢ and p x h, respectively. The coefficient matrices in (1.1)
are rectangular generalized Vandermonde matrices of block Toeplitz type and in (1.2)
they are adjoints of companion-related matrices. The linear equations studied in this
paper are extracted from [5], where the Fisher information matrix of a stationary time
series process is interconnected with a solution to a Stein equation. The matrix £ is
the Fisher information matrix of a stationary time series process, whereas matrix R
is a solution to a Stein equation for an extended version of M. (p). The matrices X
and Y are equal and this enables the interconnections to be successfully implemented.
In this paper, stationary processes do not play any role, contrary to [5]. However,
it is worth noticing that the interconnection between Toeplitz forms and stationary
processes has been extensively studied in [3].

In [5], ¢ is the degree of a polynomial d,(z) in z € C, o is a root of polynomial
dq(z) with algebraic multiplicity v+ 1. In other words, ¢, o, and v are interconnected
through polynomial d,(z), whereas in this paper ¢, o, and v are arbitrary scalar
values with no link to a common polynomial and ¢, v > 0. The algorithm derived
in [5] constructs a vector belonging to the null space of K, (¢), which requires matrix
multiplications.

A property proved in [6] is used in [5] to derive an algorithm for the kernel of
M (p), it concerns an interconnection between adj(zI — C},) and the basis vector
up(z), this holds for p = ¢, 0 = p, v = 7 and when p is an eigenvalue of C,,. The
vectors y € Ker (M,(p)) and = € Ker (K,(p)), where Ker(X) is the kernel of the
matrix X, are then interconnected. Consequently, the algorithm of the null space
of M, (p) given by vector y is based on the algorithm of the null space of K, (p)
expressed by vector x. The computation of the vector y involves an inversion of
a lower triangular and Toeplitz matrix. However, this is combined with pr matrix
multiplications of the inverted matrix with the corresponding vector z € Ker (I, (p)).
This is in agreement with the dimension of the null space of M (p).

In this paper the approach is different, (1.1) and (1.2) are two different linear
systems of equations without a common matrix, and we develop a new algorithm for
the null space of the coefficient matrices K, () and M, (p) independently.

A solution of the linear systems of (1.1) and (1.2) is considered when ¢ = v+1 and
p =7+ 1. In this case, the newly developed algorithms for the null spaces and right-
inverses are equivalent for both coefficient matrices. The appropriate right-inverse
is expressed in terms of a generalized Vandermonde matrix. A new algorithm is also
developed for the kernel of K, (¢) for the case ¢ > v + 1. The newly displayed algo-
rithms for the null space do not require matrix multiplications and matrix inversions.
The main computational exercise consists of evaluating factorials and binomial coef-
ficients, the latter can be computed by applying the Pascal triangle, combined with
recursions that consist of addition of two vectors. However, the problem set forth in
this paper is algebraical. The purpose is to write a solution of new linear systems of
equations as a function of z and the problem studied is therefore not numerical. For
that purpose one will subsequently consider the coefficient matrix I, (z). When we
consider the coefficient matrix M (z), for technical reasons that shall be specified in
section 4, we will then consider the case z = p.
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When ¢ = v + 1 and p = 7 + 1, the representation of the null space Ker(M,(p))
is obtained by simply transposing certain matrices in the representation of the null
space Ker (K, (0)). This means that when the algorithm of Ker (M, (p)) needs to
be evaluated one can use the algorithm for the null space Ker (K, (o)). Contrary to
the corresponding algorithm displayed in [5], where a matrix inversion and matrix
multiplications are involved, there is no need for a computational exercise of any kind
when the algorithm set forth in this paper is applied.

Another fundamental difference with the approach in [5] is that the algorithms
developed in this paper cover the entire span of the null spaces of K, (o) and M (p)
and not just a vector as in [5].

Consequently, we may apply these results to provide explicit expressions of the
solutions to the systems (1.1) and (1.2); more specifically, for g =v+1landp=7+1
we have

(1.5) X =(Ky(o))” £+ W(o) with W(o)e Ker (K,(0)),
Y = (Mz(p))” R+ L(p) with L(p)€ Ker (M-(p)).

The similarity of the null spaces of the coefficient matrices in (1.1) and (1.2) is inter-
esting. It implies a connection between adjoints of companion-related matrices and
rectangular generalized Vandermonde matrices of the block Toeplitz type.

Solutions of linear systems of equations are also presented in, e.g., [1], [2], and
[4], where the coefficient matrices are Toeplitz, Hankel, Hilbert-type, Cauchy, and
Vandermonde-type matrices.

The paper is organized as follows. In section 2, a right-inverse representation
of the coefficient matrices K, (z) and M (p) is introduced. In sections 3 and 4, a
corresponding algorithm for the kernel of the coefficient matrices K, (2) and M (p)
is developed for the case ¢ = v + 1, respectively, p = 7 + 1. The main conclusions
are formulated in section 5. An algorithm for the kernel of K, (z), when ¢ > v 41, is
displayed in section 6.

2. A right-inverse: Case ¢ = v + 1. A right-inverse of K,(z) is given for
g = v+ 1, which is a special form of the right-inverse presented in [5]. We introduce
the ¢ X ¢ generalized Vandermonde matrix 7,7(z) where

v v

i) = (T, T 0), - T )

and

aufk

T(Vik)(z) - o l,_kuq
z

v

(2), k=0,1,...,v.

The following lemma can now be formulated.
LEMMA 2.1. When q = v + 1 the relations

Ku(2) (I ® eq) = T,](2),
() (1) 0 eg) =1y

hold true. Clearly, an appropriate right-inverse is then (IC,(2))p = (T2(2) " @ ey,
where eq is the last standard basis vector in RY.
Proof. Straightforward computation confirms the property. ]
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Consider the matrices A and B of size m x n and p X ¢, respectively; then the
mp x ng Kronecker product of the two matrices is defined as A ® B = (a;;)B for all
i and j.

A choice for an appropriate right-inverse of M (p) when p = 7+ 1 is given in the
following corollary.

COROLLARY 2.2. When p =71+ 1 a right-inverse of M,(p) is given by

(TF(p)) " @ ey,

where e, is the last standard basis vector in RP. We then have

Mep) (T2(0) " @ 6y) = 1.

Proof. We have the property that the last column of adj(zI — C}) is up(2); this
can be shown by equality (4.4), and this coincides with the last column of the matrix
up(z)u;T (2). This implies equality of the last column of the blocks composing K, (2)
and M, (z). Since the construction of the right-inverse displayed in Lemma 2.1
is based on the last column of the blocks in K,(z), the right-inverse set forth in
Lemma 2.1 then also holds for M (z). O

In the next section an algorithm for the null space Ker (K0, (z)) is displayed.

3. Ker (K,(z)) for the case v +1 = q. We shall specify the dimension of
the null space Ker (K, (z)) in the next proposition.

PROPOSITION 3.1. The null space Ker(KC,,(2)) has dimension equal to qu and the
rank of the coefficient matriz IC,(2) is q, when v +1=q.

Proof. In Lemma 2.1, a right-inverse of the coefficient matrix /C, (z) is set forth.
This implies that the g x ¢(v + 1) coefficient matrix K, (z) is surjective or has full row
rank; its rank is then g. By virtue of the dimension rule it can be concluded that dim
Ker (K,(2)) = qv. O

We are going to prove that a basis of the null space Ker(/C, (2)) is formed by the
columns of the matrix

(3.1) N = (MJ(;)) :

where J,, is the qv rotation matrix

00 ... 01
00 ... 10
01 ... 00
10 ... 00

and where the ¢ x gv matrix U(z) will be specified later on.

Observe that A has full rank gv since Jg, is a nonsingular submatrix of .
Therefore the columns of A form a basis of Ker(KC,,(2)).

The matrix U(z) is represented in the following form:

(3.2) Uz) = % (Uo(2), U (2),Us (2), ..., Uy_1(2)).

The submatrices constituting (3.2) shall be specified in the next sections.
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3.1. A representation of Uy(z). In Lemma 3.2 we prove that a column of the
matrix Up(z) which has the form

(3.3) Uo(2) = (€ O ug(2)) ® 1y (2)),

and where the vector ¢ is given by

(3.4) £=(6). &= ((—W‘(i ! 1)>1_1 n

=1,...,

belongs to the null space Ker(K, (z)). The Hadamard product ® is defined by A®B =
(@i;bi;) for A = (a;;) and B = (b;;) which are matrices of the same size.
Recall that the mth row of K, (z) is given by

v

v
—2 -3 —1 —i—v—1 .
— (2 +m7zq +m7'.'7zm ): Lqtm—i—v H(n_l_])

(35 =

J=1 i=1,....q
We have the following lemma.

LEMMA 3.2. The q(v+ 1) column vector composed of an arbitrary column of
Uo(z) and the corresponding standard basis vector in R? belongs to the null space of
the coefficient matriz IC, (z).

Proof. The kth column of Uy(z) has elements

(3.6) % ((—1)%’”1’—2 (Z ’ 1)) L i=1,....q.

The scalar product of (3.5) and (3.6) provides a monomial in z
q + m, whose coefficient is given by

n=v+k=3 where n =

7

Sz @ ale )

i=0

(3.7) %Z(—w‘“ (”) (n—2—i)(n—3—i)---(n—v—1—1)
T i=0

The application of the Leibnitz rule to v-fold differentiation of a product of two func-
tions yields the value —%{x"_Q_”u!}wzl = —1. Consequently, the scalar product of
(3.5) and (3.6) is —2" "+ =3, This should be added to the product of the appropri-
ate z-variable in the coefficient matrix K, (z) by the nonzero element of the standard
basis vector in the rotation matrix Jg, which is 2"V k=3 5o the sum is null. This
completes the proof. 0

3.1.1. Summary of the construction of Up(z). Step 1. Introduce the vector
& according to (3.4).
Step 2. Define the columns of Uy (o) according to (3.3).

3.2. A representation of U;(z) when j = 1,2,...,v — 1. We shall now
describe the form of the matrices U (z),Uz(2), . . . ,U,—1(z) that consist of the following
structural representation:

U(o) = (U U (),

for j=1,2,...,v—1.
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3.2.1. A representation of L{;l)(z). In this section the matrix U;l)(z) is dis-
played. It is Hankel type with the following configuration:

(3.8) U () = (812183 (=) - 67 (2).

where the (v + 1) basis column vector 6§+1(z) has components

0 fori<j—florv+1—i<Y¢
041 _ o = =
(3.9) (657 (2)], = {j!(z)’”f1 (ip0—i—1) otherwise

for £ =0,1,...,7. The following lemma is proved.

LEMMA 3.3. The q(v+ 1) column vector composed of any arbitrary column of
U;l)(z) and the corresponding standard basis vector in R? belongs to the null space
of the coefficient matriz I, (2).

Proof. Set j = p and £ = g in (3.9). As can be seen from (3.5), the appropriate
nonzero elements of the scalar product of (3.9) with (3.5) provide a monomial in
2f=P=2=V where f = ¢+ m + g. Its coefficient is given by

(3.10)

e (O T T e R R R R

V! 4 i
=0

_p! 4’ = i+l (V=P f-p—2—i
_V!{dx’/ Z(_l) 1 zr

=0

r=1

— E d” f—2—v — i(Vv—Pp v—p—1i
=— {da?” [x EO(—I) ; T
1= r=1

V[ adr
= —pf {,I‘fzu(l' - l)l/p}
r=1

vl dzv
p! v\ A, d B

= 2Jo+0+.-- = v WP 4440
l/!{ o +<1/—p> dzr” dac”*P(x JEAO z=1

—(f=2=n) (3= (f-p—1-v).

The scalar product is then given by —(f —2—v)(f—-3—v)--- (f—p—1—v)z/7P=277,
The appropriate element of the mth row of the coefficient matrix IC,, (z) that is multi-
plied by the nonzero element of the corresponding standard basis vector in the rotation
matrix Jg, is z4~wtm=1 where w = v — g + 1, and the appropriate derivative is p.
We therefore have

(3.11) (dI"/clzp)zf_”_2 =(f-2-v) (f—3—V)~-~(f—p—1—y)zf_p_2_”.

Adding (3.10) to (3.11) confirms that the ¢ (v 4+ 1) column vector composed of 6f+1(z)
given in (3.9) and the corresponding standard basis vector in the rotation matrix
Jqv belongs to the null space of the coefficient matrix IC,(z). This completes the
proof. ]

3.2.2. Summary of construction of the matrix I/I;l)(z). Step 1. Define
vector 6?“(2) according to (3.9) for £ =0,1,...,5.

Step 2. Derive the columns of matrix L{;l)(z) according to (3.8).
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3.2.3. A representation of U, (z). For j = 1,2,3,...,v — 1, the submatrix

Z/{J@(z) admits the structure

2 oy
(3.12) U? (z) = (H;(z)ng(z) R J(z)) .
To specify the basis vectors #}(z) £3(z) ... K;-/_j (z), we first compute recursively for
j=1and k=2,3,...,v — j the appropriate column vectors according to
(3.13) kP =k g,

where ¢ is given in (3.4). A solution to recursion ( 3.13) in terms of the initial vector

n} whose form shall be introduced below is

(3.14) kY =K1 + (k- 1)¢.

We can now compute recursively for 5 = 2,3,...,v — 1, according to
kE_ k=1 - k

(3.15) Kj =Ky +jKj_q.

In the next proposition, an explicit solution to recursion equations (3.15) and (3.13)
shall be displayed for j =1,2,3,...,v — 1.

PROPOSITION 3.4. An explicit solution to the recursion equations (3.15) and
1

(3.13), expressed in terms of the initial vectors K, lﬁjl-_l, ..., ks, k1 and the known
vector &, is given by
o (5 (k=24 ktj—2
k=N (7 AT L) J -
(3.16) K z;z. (z) ( b — 9 )Iijz-i-j. E_ 9 €.

7=

Proof. The proof consists of using the recursion equations (3.15) and (3.14). Take
j =2, a combination of (3.15) and (3.14) yields for k = 2,3,4, ...

K3 = Ky + 2r] + 2¢
K3 = Ky + 4k1 + 6¢
K3 = Kb + 6Kk] + 12¢

(3.17) kY = Kkl +2(k — 1)k} + k(k - 1)¢.
Similarily when j = 3,4, the recursion exercise yields for the kth column

(3.18) k& = ki 4+ 3(k — 1)kd + 3k(k — 1)s} + k(E* — 1)¢,

(3.19) Kk = kL 4+ 4(k — D)rd + 6k(k — 1)kl + 4k(k* — Dkl + E(k* — 1) (k +2) €.
From (3.17), (3.18), and (3.19) can be concluded that for all values of j, the solution
is then given by (3.16), where the case 7 = 1 is also included. When j = 1, (3.16)

becomes (3.14). O
The columns /{? for k=1,2,...,v—jand j =1,2,3,...,v — 1 are essential for

displaying the corresponding columns of the submatrix I/{]@) (z) set forth in (3.12) and
to obtain

(3.20) mf(z) = mf ® 2Fuy 1 (2).
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In order to start the recursions, the (v + 1) initial column vector #} shall be introduced.

For j =1,2,...,v — 1, the components of the vector m} are given by
[w1], =G+ k)], = (G + 1)!/2) (2v =),
(3.21) (K], =31 = s i=3,....v—],

[Hﬂiz_jl(”"'l) i:y—j—l—l LU+,

where the terms sy, encountered if v > 5, are defined by

G (V=] _ L _ B
(3.22) Sy = ]'( Y , £=3,4,...,v—j forj 1,2,...,v—3,

0, a>v—3 for k1.

From (3.22) it can be concluded that when j = v —2 and j = v -1, s, = 0 for
the corresponding initial vectors k. _, and k. _; of the submatrices L{( 2 _,(2) and
Z/lJ(Q)V 1(2), respectively. For the case ¢ < 5, the initial vectors lijl- do not contain the
terms sy so the elements of n; to be considered are the two first elements and then
pursuing the reading upwards, starting from the last term at the bottom.

The first part of the right-hand side of (3.16) is displayed in order to better

understand the development of the proof of Lemma 3.6 by setting 9 = >/ (k A 2;’),

Z (k 2+7‘)(‘]—Z—|—1)

S (NG i+ 1)/2) (20— j+ 1)
95 =250 (233
I3 = (D ()
(3.23) 4!
(u+1) Z (k 2+l)(1/;i’eri)
%iﬁl)
a1

The sign pattern of the elements in each column of Z/l]@)

(=1,2,...,v+1.
First some results which shall be used in the proof of Lemma 3.6 are set forth.
PROPOSITION 3.5. The following equalities hold true:

o () ()
(3.25) j_z:(k‘—kQ_—;i)i:j(jk—l) (k_kQ_;J>
(3.26) J_le(k—kz:;zy _ (J—lli((k+(13$—1)k) (k_kg_?)

Proof. We shall prove the equalities (3.24), (3.25), and (3.26) by applying math-
ematical induction.

(z) is given by (—1) with
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It is straightforward to see that the left-hand side of equality (3.24) yields the
right-hand side when j = 1.

Assume for j = p that

= —2—|—z (k—2+p
2 =\ k-1 )

K3

This implies that for j =p+ 1,
i k—2+i 7”5 k—2+i) , (k—2+p
, k—2 ) < k—2 k—2
=0 1=0
_(k—=24+p " kE—2+p
N k—1 k—2
_(k—=1+p
- k-1 )
The last equality is based on the elementary identity for integers n and j:

(3.27) (?) * <;Z 1> N (?ID '

The proof of (3.24) is completed. When j = 2, the left—hand side of equality (3.25)
is (1~1) and equals the right-hand side which becomes 2 (,* ,) Assume that (3.25) is

k—2
true for j = p. Then
p—1 .
k—2+41 Z._p(p—l) k—2+p
4 k—2 o k k-2 )’

ey (e Ry
:p(pk— 1) (k;%;p) +p(1€;2;p>
__ (ktp-1) :p(p+1)<k:—1+p>'
k—2)i(p— 1)k K k-2

This confirms (3.25). Finally we prove (3.26). When j = 2, the left-hand side of
equality (3.26) is (Z:;) and equals the right-hand side which becomes %(kk—Q) Assume

for j = p that
() ().

=0
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This implies that for j =p+ 1,

P lk—2410) 0 = (k244 k—2+

;( k—2>12;( k—2)12+p2< k—2p>
pp—D(A+(p—-1k) (k—2+ k—2+
= H D) ( k—2p>+p2< k_zp)

_ (+pk)(k+p—1)(k+p—2)!

(k—2)(p— Dlk(k+1)
_p@+1>(1+p’f>(k—1+p)
 k(k+1) k-2 )°

This completes the proof. ]

We shall now continue with the following lemma.

LEMMA 3.6. The q (v + 1) column vector composed of n’;(z), described in (3.16)
and (3.20), and the corresponding standard basis vector in R? belongs to the null
space of the coefficient matriz IC,(2).

Proof. The scalar product of (3.20) and (3.5) provides a monomial in z
The z-variables will be reintroduced at a later stage for typographical brevity. The
scalar product is first computed for the last v — 1 entries of the first column of (3.23),
then sets j = p in (3.16) and takes (3.24) into consideration yielding

(3.28)

n+k—v—2

Then set j =3+

v+1
P (kE=24p L PR s (v +LlY v
(3.29) = i ( E—1 ) {da:” x E (-1 j x

The following holds:

g:l(—l)j <,/_; 1) =i = Vzﬂ(fl)j <V-]F 1) e i(,l)j <V—;— 1) v

=3 =0 =0

r=1

Equation (3.29) becomes

(3.30)
gl k—=2+p a” n—2—v _ 1wt _ v+l v_ V(l/ + 1) v—1
y!< k-1 ) o " (- —a v e 2 M

—(n—-1)n—-2)---(n—v)
_p!<k7€2ﬁ;p> +w+1)n-2)n—3)---(n—v—1)
V! — v(v
f%(nf?))(n—ll)-u(n—yf@
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We shall now focus on the part of (3.23) that contains s,. For that purpose an explicit
representation is displayed,

(ugp (V—§+i
A
() e

+._._~_(k—|];]i—23> (V?lg
(1)

The scalar product of (3.5) with each of the columns above can be expressed as
follows, consider the index ¢ =0,1,2,...,p — 1, to obtain

S0 R e (Y aesmaeva

V!
i=0

. 21 k+£_2 ﬂy_pz—‘rz—g(il)i V_p"!_g n—4—1
ol k—2 dxv 3+i )7 ’
=1

=0

Set j = 3 4 4; it then yields

v v—p+L
p(k4+0—-2 d Z (—1)i3 V—P'-i-f i1
V! k—2 dxv 7

i=3 r=1
v v—p+{
— 72! k+e—2 dixn—erprfl ( 1)] V_p.+£ v—pt+l—j
V! ki -2 dx” — J
7= =1
v—p+~L
— pt(k+t-2 d” n—v+p—L—1 : i(v—pt ¢ v—p+L—j
—‘m( k—2> " > (=D )
=0
2
o Z(—l)j (V - p.-ﬁ- g) gV PH—d
=0 ’ r=1
! _ &
- _% (k 41;67 22) {dxl’ (xn_y+p_€_l($ — 1P g (b —p o+ £)2™ 2
_ —p+€—1)(u—p+£)xn_3)}
2 r=1

The first term can be expanded according to Leibnitz rule for v-fold differentiation of
a product of two functions,

v dpiz n—v+p—~0—1 dV?eré v—p+{
{0+0+'~+<V_p+€)dxp_ém @ =1) FOk0p
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The result is then

(3.31)
(n—1)n—-2)---(n—v)
p!<k+€—2> —~w=p+0n—-2)(n—3)---(n—v—1)
v b2 +(V_p+€_21)(V_p—’—é)(n—3)(n—4)...(n—1/—2)
P! k+0—2
(3.32) _(pﬁ)!( k2)(n—y—&—p—ﬁ—1)(n—u—|—p—€—2)---(n—y).

Since ¢ = v + 1, the terms (n —v),(n —v — 1), and (n — v — 2) in (3.31) are positive
and (n —v —2) > 0.

The terms involving l’j—:(n —1)(n —2)---(n — v) appearing in (3.30) and (3.31),
the latter for £ =0,1,2,...,p — 1, when added yield

—1
k—24p\ = (k—2+i

i=0
_ k—2+p k—=2+p\ _
()= ()
The last equality is established by virtue of (3.24). A more explicit expression for the

first term in (3.23) is now considered, with the corresponding minus sign. By virtue
of (3.24) and (3.25) it can be seen that

p—1 .
p! k—241 . p! k—2+
I () ey =-2{ern (*277)
e !
plp—1) (k—=2+p
k k—2 ‘
In the scalar product, the first term of (3.23) is multiplied by (n—2)(n—3) - - - (n—v—1).

Summing up all of the terms involving this product, which also appears in (3.30) and
(3.31), yields

{—@+J)<kkitp>+p@gﬁ)(kkizp)+(k;€12)@+ﬁ)

:-%p+u(k;2tp)+p@gq><k;2;p>+<k2pzz)@+d)

w-n (NP - () o

The last equality is established by virtue of (3.24) and (3.25).
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We focus now on an explicit form of the second term of (3.23). By virtue of (3.24),
(3.25), and (3.26) we obtain

(3.33)

7;'2(’“;2_*;) (p—i+1) (20 —p+i)

=0

| @rDer=p) (kf_?v +(2p—2u+1)@ (’:2_;19)

2 )1+ (p—1k) (k—2+
k(k+1) ( k2p)

2 p(p—

In the scalar product, the term (3.33) is multiplied by (n—3)(n—4) - - - (n—v— 2). Sum-
ming up all of the terms involving this product, without (p!/v!), which also appears
n (3.30) and (3.31), yields next to (3.33),

E—24p\ viv+1) 1% —2+z . .
(3.34) {—( k—l) +§Z% v—p+i—-1)(wv—p+1i),.
We now collect all of the terms involved to obtain

(p+1)(2v—p) (k;EJ{p> F2p—2w+1) (2; 1) (kziﬂ;p>

plp— DA+ (p—1k) <k7€2_;p> B @ <k;Eﬂle>

N (v—p—1)(v—p) (k‘—2+p) N (21/_2])_1)29(2927;1) (k;242rp)

plp— 11+ (p—1)k) <k -2 +p>
2k(k + 1)

as in the other cases, this result is obtained by using (3.24), (3.25), and (3.26).
Consequently, the remaining terms are now collected—it concerns the term
involving ¢ in (3.16), the appropriate scalar product is by virtue of (3.7) fp!(kgz‘gp),

and the terms derived from (3.32), for £ =0,1,2,...,p — 1, to obtain

p—1 P! _
(k+z_22) (n_V+p—i—1)(n—V—f—p—i—Q)...(n_l/).
= O

The remaining terms can be summarized according to

o B

Concerning (3.35), the following property will be proved:

P ) .
k+i-2\ (n—v+p—i—-1\ (n—v+k+p-—2
s EET ) ()

7=
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For proving (3.36), we consider, for all nonnegative integers I, p and n > p,

- (s (Y ()

The proof is based on (3.27), which we rewrite as

(3.38) (7) N (jT1> N (;n ++11> '

First we prove the formula for n = p. In this case the identity (3.37) reduces to

(l+1;+1> :éCTZ)

We use induction w.r.t. the variable p. The case p = 0 is a triviality. Assume
that (3.37) holds true for a certain value of p. Then

()58

=0 =0

The first term on the right-hand side is equal to by hypothesis. Then adding

the second term gives (l‘;if) by virtue of (3.38).

The rest of the proof is by induction w.r.t. the variable n, n > p, since we
have settled the case n = p. Consider the right-hand side of (3.37) with n + 1
instead of n and compute using the induction hypothesis two times and repeatedly

the identity (3.38),
DO (eier) B o 0y [ E5 ] G [ Aired)
(n l+1> (n+iJ1r1)
:(n+;+2>'

From (3.35) and (3.36) it can be concluded that the scalar product is equal to

l 1
5

(3.39) ~(n—v+k+p-2)n—v+k+p—3)--(n—v+k—1)"TFr2

The corresponding nonzero element of the standard basis vector in the rotation matrix
Jgv is multiplied by 2"~%~! for w = v — p+ 1 — k, and the appropriate derivative is
(3.40)

(dP)d2P) 2"V HRP=2 — (ke p—2)(n—v+k+p—3) - (n—v+Ek—1)2" T2,

Adding (3.39) to (3.40) confirms that the ¢ (v + 1) column vector composed of vector
n? (%), described in (3.16) and (3.20), and the corresponding standard basis vector in
the rotation matrix Jg, belongs to the null space of the coefficient matrix IC, () when
se # 0 1in (3.21).
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We now proceed with the proof when s, = 0 in (3.21), the cases j = v — 1 and
j = v — 2 are therefore considered. The initial vector (3.21) for the former case is

(3.41) K = (v —1)! <y, (”;1) , (”;1) (Zﬁ))T

The scalar product involving the first v+ 1 elements is displayed, and the last v entries
of (3.41) are first considered to obtain

v—1
(1/;!1)! Z(_1)i <;jr’21> n—3-—(n—4—i)-(n—v—2—1).
0

The same approach as we used to derive (3.29) yields

(y—1)!{ —(n—=1D(n—-2)-(n—v) }

vl +v+1)(n—-2)n—3)---(n—v—1)
Adding the scalar product involving the first element of (3.41) and (3.5) yields
—n=2)n—=3)---(n—v—1)
N (v — 1)V!!(V +1)
U 1) -2)- ()
=—(n-2)n=3)---(n—v).

(n=2)n=3)---(n—v—-1)

This result is obtained through straightforward calculation. It can now be concluded
that the scalar product is

(3.42) —(n—2)(n—3)---(n—v)z"""" .

Note for the case under study, ¥ = 1 (it concerns the initial vector x._;). The
corresponding nonzero element of the standard basis vector in the rotation matrix
Jgv is multiplied by 2"~ for w =2 —k, w = v —p+1—k in the general case. The
appropriate derivative is then

(3.43) (du—l/dzl/—l) SN2 (n—2)(n—3)-(n— V)Z"_V_l.

Adding (3.42) to (3.43) confirms that when in (3.21) s, = 0 and j = v—1, the ¢ (v + 1)
column vector, composed of vector . _;, given in (3.41), and the corresponding stan-
dard basis vector in the rotation matrix Jg, , belongs to the null space of the coefficient
matrix K, (2).

The case j = v — 2 is considered next. The initial vector (3.21) is then

(3.44) nll,2:(1/—2)!((1/—1)7((1/—1)/2)@-1—2),(V—gl>7...,<Zi}>>T.

The scalar product involving the first v + 1 elements is displayed, and the last (v — 1)
entries of (3.44) are first considered to obtain

Sy (V“) (n—4=i)(n=5—i) - (n—v—3-i)
=0

v! 3+
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According to (3.28) we have

—n=1)(n-2)---(n—v)
n—2)n—-3)---(n—v-1)

—(n-3)(n—4)---(n—v—2)
The scalar product involving the first and second elements of (3.44) and (3.5) are

=3y (- —1)

v!
(v=11/2) (v +2)
v!

and (n=3)n—4)---(n—v—2),

respectively. Summing all of the terms yields

(r=2)!(v+1)—(v—1)! (’/l B 2)(n - 3) . (n oy 1)

v!

v—1)!(v —(v—2)lv(v
+( 1)(+2)2(V(!) 2) (+1)(n—3)(n—4)-"(n—1/—2)

—=D Y —2) - (n—v)

v!

=—(n-3)(n—-4)---(n—v).

This result is obtained through straightforward computation. It can now be concluded
that the scalar product is

(3.45) —(n=3)(n—4)---(n—v)z""L

Note for the case under study, k = 1 (it concerns the initial vector k. _,).

The corresponding nonzero element of the standard basis vector in the rotation
matrix Jy, is multiplied by 2"~ ~! for w = 3—k and w = v —p+1—k in the general
case. The appropriate derivative is then

(346) (du72/dzyf2) Zn73 _ (n o 3)(77, o 4) . (TL o V)anyfl.

Adding (3.45) to (3.46) confirms that when in (3.21) s, = 0 and j = v—2, the ¢ (v + 1)
column vector, composed of vector k. _,, given in (3.44), and the corresponding stan-
dard basis vector in the rotation matrix Jg, , belongs to the null space of the coefficient
matrix K, (2).

It can be concluded that the ¢ (v 4+ 1) column vector, composed of vector n?(z),
described in (3.16) and (3.20), and the corresponding standard basis vector in the
rotation matrix Jg,, belongs to the null space of the coefficient matrix K, (z). The

proof of Lemma 3.6 is now complete. ]

3.2.4. Summary of the construction of matrix U;Z)(z). Step 1. Define
the initial vectors /<;]1 given in (3.21) for the values of j =1,2,3,...,v — L.

Step 2. Expand (3.16) for the corresponding values of j =1,2,3,...,v — 1.

Step 3. Compute the columns of Llj@(z) according to (3.20) for the corresponding
values of 7 =1,2,3,...,v — 1.

In the next section an example will illustrate the results set forth in previous
sections.
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3.3. Example Ker (K,(z)) for the case v + 1 = 6. This case will be
illustrated for ¢ = 6 and v = 5. The first submatrix contained in the null space of

Koy (%) is then

2

—1 —z -z
5z 522 523
—1022 —10z23 —10z*
U)=| 105 1024 1055
—5z4  —Bz® 56
25 28 27

—28 — 2 — 25
524 52° 528
—10z° —1026 —1027
1026 10 27 1028
527 528 —529
8 29 210

This is followed by the second class of submatrices U;(z) when j =1,2,3,4,

0 -1 0 0 -2
-1 4z 0 -2 6z
(1) . 4z —622 (1) -2 62 —622
uj:l(z) - —622 423 ) uj:2(z) - 62 —622 223 )
423 —z4 —622 223 0
—z4 0 223 0 0
0 0 0 —6
0 0 -6 12z
(1) . 0 -6 122 —622
Uis(2) = | _g 12z —622 0 |’
122 —622 0 0
—622 0 0 0
and
0 0 0 0 —-24
0 0 0 -—-24 24~
(1) . 0 0 -—-24 24z 0
Uj—y(2) = 0 —24 242 0 0
—24 24~ 0 0 0
24z 0 0 0 0

This is then followed by a class of submatrices Z/lJ@)(z) when j=1,2,3,4,

-2z
922
—1623

142*
—62°

P

U, () =

— 6z

2422
@ . | —3823
uj:2(z) - 3024
—1225
226

—322 —423 —5z4
1423 19 24 2425
—262%  —362° — 4625
2425 34 26 4477 ’
—1126  —1627 —2128
227 328 429
—1222 —2023
5223 902z*
—90z%  —1622°
782° 14625 |~
—3425 —6627
627 1228
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—24z —6022
8422 24023
(2) | —1202%  —3902*
UZs(2) =] g0t 39405 | 20d
-362° —1382°
628 2427
—120z
36022
(2) | —48023
UiZa(2) = | 360,
—1442°
2426

in (3.2) yields the form

The columns that compose (Zill(;)) span Ker (K, (z)) when ¢ =6 and v = 5.
In the next section the null space of the coefficient matrix M. (p) is set forth.

4. A representation of Ker (M,(p)). In this section a representation of the
subspace Ker(M(p)) is displayed for the case 7+ 1 = p. The coefficient matrix
M (z) is considered for z = p, and a motivation is formulated below. We shall first
focus on the dimension of the null space Ker(M,(p)) .

PROPOSITION 4.1. The null space Ker(M,(p)) has dimension equal to pr and
the rank of the coefficient matriz (M. (p)) is p, when 7 +1 = p.

Proof. By virtue of Corollary 2.2, a similar argument as in Proposition 3.1 holds
for the coefficient matrix M. (p); see also Lemma 2.4 in [5]. It can be concluded
that the p X p(r + 1) coefficient matrix M, (p) is surjective or has full row rank;
its rank is then p. By virtue of the dimension rule, it can be concluded that dim
Ker(K,(2)) = pr. d

We can essentially reduce the problem of computing the null space Ker(M.(p))
to the computation of the kernel of the matrix K, (p). The vectors contained in

y(ﬂ))

4.1 G = (

(1) Y

span the null space of M (p), where J,. is the pr rotation matrix.

Observe that G has full rank pr since J,, is a nonsingular submatrix of G.
Therefore the columns of G form a basis of Ker(M,(p)).
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Write
(42) V(o) = 5 Gb(p) V1(0). Y2(0), - Ve (p)).
where
Yo(p) = Uy (p)
and

The matrices Up(p), L{j( )( ), and U;z) (p) are given in section 3.
In section 3.2 of [5], the vector y € Ker (M (p)) is computed according to

(4.3) y=(Irs1 © S(f)) 'z,

where z € Ker (IC;(p)) and the px p symmetrizer S(f) is associated with a polynomial
f(2) of degree p. Consider f(z) = 2P + a12P~! + azP~2 + -+ + a,, then the p x p
matrix S(f) is

1 0 O 0
a1 1 0
S(f) = 0
1 0
ap—1 a; 1

Formula (4.3) is derived from an equality which connects the matrices adj(zI — C),)
and u,(z)us’ (2), where u,(z) and u}(2) are defined in (1.4). From [6], we take
Proposition 3.1 which gives the identity

(44) adj (ZI — Cp) = up(z) J — 7T Z 2 S’L-‘rl

The vector a (z) is the p-vector (ag (2),...,ap—1 (2)), where a (2) is the Hérner poly-
nomial defined by ag (2) = 1 and aj, (2) = zax—1 (2) + ag, and a, is an entry of C,.
Note that a, (z) is the characteristic polynomial of C,. We further have that the
rotation matrix J, € RP*P, 7(z) is the characteristic polynomial of C}, and S denotes
the shift matrix, so S;; = &; j11. Observe that the property a' (2 )J = uy(2)"S(f)
is used in (4.4) to obtain (4.3).

If z = p, where p is an eigenvalue of the companion matrix ), then the second
term in the right-hand side of (4.4) vanishes. It is then possible to derive form (4.3)
(see [5]), and this is the reason why in this section one chooses working with z = p
instead of z.

A relation between the submatrices Y(p) in (4.2) and U(p) in (3.2) can now
be displayed through equality (4.3). For that purpose we denote the vectors vg(p),
v1(p), v2(p),...,vr—1(p) as being the first columns of the submatrices Uy(p), U (p),
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Us(p),...,Ur—1(p), given in (3.2). Whereas the vectors wo(p), wi(p), w2(p),...,
wy—1(p) represent the first rows of the same submatrices. The following property
is now summarized in the lemma.

LEMMA 4.2. By virtue of (4.3), the following equalities hold true fori =0,1,2,...,
T—1:

yi(p) = ST H(Huip) = w] (p),

where yo(p), v1(p), y2(p),...,y._,(p) are the first columns of the submatrices Yo(p),
Vi(p), Ya(p), .-  Vr1(p) given in (4.2).

Proof. Straightforward matrix multiplications S™1(f)v;(p) confirm the prop-
erty. 0

This leads to the main result of this section.

COROLLARY 4.3. For the case 7 + 1 = p, the span of the null space of M (p) is

(y(p)>
Ipr )’
where Y(p) is given by (4.2).

Proof. It can be verified through matrix multiplications that
Yy
Mz (p) ( J('O)> =0
pT

holds. This is in agreement with the appropriate dimensions specified above. 0

It can be seen from (4.3) that for every vector y € Ker (M.(p)) computed
according to the approach suggested in [5], the symmetrizer S(f), a lower trian-
gular and Toeplitz matrix has to be inverted once. However, this is combined with
pr matrix multiplications by the corresponding vector x € Ker (IC;(p)). This is in
agreement with the dimension of the null space of M. (p). In this paper there are
neither matrix multiplications nor inversions involved in the construction of the span
of the null spaces of K, (p) and M (p). The null space of M (p) is obtained by trans-
posing the submatrices contained in the null space of K (p). Consequently, when the
algorithm of the null space of K, (p) is available, the new approach does not require
any computational exercise for displaying the span of the null space of M. (p). In the
next section an example of the null space of M, (p) is set forth so that the property
emphasized in this section will be illustrated.

4.1. Example Ker (M,(p)) when 7+ 1 = 7. This case will be illustrated
for p =7 and 7 = 6. The first matrix is then

—-1 6p —15p% 20p°> —15p* 6p° —p°
—p 6p* —15p% 20p* —15p° 6p° —p”
2 6p3 —15p* 20p° —15p% 6p° —pB
3 6pt —15p° 200 —15p7 6p® —p°
_p4 6p5 —15,06 20,07 _15p8 6p9 _p10
5 6p6 715/77 20p8 715p9 6,010 7P11
_ 6 6,07 _15p8 20 p9 _15p10 6p11 _p12

The following class of matrices are for j = 1,2,3,4,5:

3}(1)(): 0 -1 op —10p% 10p®> —5p* p°
i=1\P 1 5p —10p% 10p° —5p* p°  0)°
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0 0 -2 8p  —12p%2  8p3 —2p*
Y, =0 -2 8 1202 8* -2p* 0 |,
-2 8p —12p* 8>  —2p* 0 0
0 0 0 -6 18p  —18p* 6p°
YO () 0 0 —6 18p —18p> 6p> 0
=3P =0 —6 18 —18p®  6p° 0 E
—6 18p —18p*>  6p? 0 0 0
0 0 0 0 —24  48p  —24p?
0 0 0 —24 48p  —24p? 0
YWipy= 0 0 -24 48 249> 0 o |,
0 —24 48p —24p> 0 0 0
—24 48p —24p? 0 0 0 0
0 0 0 0 0 —120 120p
0 0 0 0 —120 1200 O
W, | o 0 0 —120 1200 O 0
Vi) =1 0 —120 120p O 0 0
0 —120 1200 O 0 0 0
—120 1200 0 0 0 0 0
The matrices yf) (p) with 7 =1,2,3,4,5 are now displayed:
—2p 11p? —=25p% 30p* —20p° Tp®  —pT
—3p% 17p3 —40p* 50p° —35p5 13p7 —2p°
V(o) = | —4p° 23p* —55p> 7005 —50p7 198 —3p° |,
—5p* 29p° —T70p% 90pT —65p% 25p7 —4p'®
—6p° 3505 —85p7 110p8 —80p° 31pl0 —5plt
—6p  30p%  —62p>  68pT  —42p°  14p%  —2p7
(2) —12p%  64p> —142p* 168p° —112p5 40p7  —6p°
yj:2<p)_ _ 3 4 5 6 7 3 . 9 |
20p°> 110p 252p°  308p 212p° T8 p 12p
—30p* 168p°> —392p5 488p" —342p% 128 p° —20p'°
@ —24p 108p> —204p> 210p* —126p°>  42p° —6p”
ViZi(p) = | —60p> 300p° —630p* T14p>  —4620° 162 pT —24 p° |,
—120p° 630p* —1386p° 163805 —1098p" 396 p* —60p°
) —120p  480p> —840p®  840p*  —504p° 168p°  —24p7
yj:4(/)): _ 2 3 4 5 6 7 8 |
360p% 1680p° —3360p* 3696p 2352p% 816 p 120p

J

Insertion of the matrix Yy(p) in (4.2) followed by

(Y0 (Y00
Vilp) = <yj(-2)1(p) , Yalp) = yj(i)z(P) )
(VY0 (VUi _
Va(p) = <yj(i)3(,0) . Malp) = yj(-22)4(p) . Vs(p) =

VP (p) = (~720p 2520p7 —4200p° 4200p* —25200° 840p° —120p7).
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yields the representation

V() = g (o(p):Y1(0). Yal0), Ya(0). Ya(), Vs(p)).

The vectors contained in (Jj]i’;)) span the null space of M, (p) when p =7 and 7 = 6.
It is straightforward to verify that when the matrices Yo(p), y](-l)(p), and yj(-Z)(p),
with j = 1,2,3,4,5, are transposed and inserted in (3.2) accordingly, one obtains the
null space of I, (p).

A summary of the results will be given in the next section.

5. Main conclusions. The results displayed in sections 2—4 allow us to present
an explicit representation of the solutions to the linear systems of equations introduced
in this paper. The solutions, (1.5) and (1.6), to the linear system of (1.1) and (1.2)
are given by

X = (Ku(2)” €+ W(z) with W(z)e Ker (K,(z)),
Y = (M ()™ R+ £(p) with £(p) € Ker (M (p))

An explicit expression for (10, (2))~ and W(z) has been developed in sections 2 and 3,
respectively, and a solution to the linear system of equations (1.1) is implementable.
Analogously for the expressions (M. (p))~ and L(p), constructed in sections 2 and 4,
respectively, a solution to the linear system of (1.2) is implementable.

In the next section an algorithm for the null space Ker(/C,(z)), for the case v +
1 < gq, is presented. It is a variant of the algorithm displayed in section 3.

6. Ker (IC,(z)) for the case v + 1 < g. In this section the case v +1 < ¢
is considered for the null space Ker (K,(z)). We then have rank(K,(z)) = v+ 1 so
that dim Ker(K,(z)) = (¢—1) (¥ +1). In this case the coefficient matrix K, (z) is
not surjective, so a Moore—Penrose generalized inverse should be used when one is
interested in a solution of (1.1). This can be a subject for future research. Consider
the null space of the coefficient matrix K, (z),

Uz)
Ker I, (z) = span ( ) ,
) Jg-1)w+1)

where Ji_1)(,41) is the (¢ — 1) (v + 1) rotation matrix. An algorithm of the matrix
U(z) contained in Ker(/C,(z)) will be set forth to obtain

Uz) = % Uo(2), Uy (2),Us (), - Uy 1(2)) .

In this section no proofs are provided since they are similar to the proofs done in
section 3.

6.1. A representation for Uy(z). An appropriate partition is Uy(z) = ( él)(z)
Uo(z)(z)). For evaluating L{O(l)(z) we introduce the (v + 1) x ¢ matrix

(6.1) Q=(§¢....9),

where the vector £ is given in (3.4), and we put

(6.2) U (2) = Q@ 2D (uya (2, (2))
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for v =1, 2,...,q — 2. The signs of the elements of each column vector of L{él)(z)
follow the same pattern as for Up(z) in section 3. The second part of Up(z) is
2 *
(6.3) Up? (2) = x O U (2),
where

. _ JUf(z) for v=2,3,...,q—2
ul’Q(Z>_{U2”‘(z) for v=1

and
Ui (z)=u:", 1z ® uz(27") for v=2,3 -2
1 - Yq—v—-1 ZUV_Q(Z) =4,9,...,4
Us(z) =uil, ((z7H) @z tus(z71) for v=1.
The matrix x has the form x = (Xg—v—1, Xg—v—2;- - -, X2, X1), Where the columns are
computed recursively for k =2,3,...,q—v — 1:
(6.4) Xk = Xk—1 + &

The (v + 1) column vector x; is for v =1,2,..., ¢ —2

(6.5) xi=| G+

)+ (o)
The sign pattern of each column of Z/léQ)(z) is (fl)é with £ =0,1,...,v. In the next
section we shall summarize the construction of Uy (z).

6.1.1. Summary of the construction of Uy(z). Step 1. Introduce the vector
¢ according to (3.4).
Step 2. Define matrix 2 according to (6.1).

Step 3. Define the columns of Z/l(gl)(z) according to (6.2).
Step 4. Introduce the vector x; given in (6.5).
Step 5. Compute the vectors x2, X3, - - -, Xq—v—1 by means of the recursions (6.4).

Step 6. Compute the columns of L{éQ)(z) according to (6.3).

6.2. Example for Uy(z) when g = 6, v = 4. An example is chosen when
g =6 and v = 4 so the first matrices to consider are Z/Iél)(o) and Z/{éz) (o) to obtain

-1 -1 -z — 22 — 23 -2t
4 4z 4 22 473 4 24 425
UM ()= | -6z —622 —623 —62 —62° —62°
422 423 424 475 4 26 427
e B 5 _,6 T _,8
and
1
22
_5
2 z
U ()= o
—Tz
222
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6.3. A representation of U;(z) when j = 1,2,...,v — 1. The matrices
Ui (2),Uz2(2),...,U,_1(%) are now considered to obtain for j =1,2,...,v —1

Us(z) = (U () UP (U(2))

Since the submatrices U;l) (2) and L{J@)(z) have the same structure as the correspond-
ing submatrices in section 3, the case ¢ = v + 1, we therefore omit the description of

1) ()
U; 7 (z) and U7 (2).

6.3.1. A representation of Mf') (z). We shall now focus on matrix L[;g)(z)

and for that purpose the following matrix is considered for j =1,2,..., v —1:
—v—1 q—v—2

(6.6) jtj = (u? pimrme -u?u}) :

The first recursion to consider is when j =1 and k=2,3,...,¢ — v — 1, to obtain

(6.7) i =yt 2xe

The vectors X2, X3, ---,Xq—v—1 are obtained recursively for L{éz)(z); see (6.4). The
solution to (6.4) is

Xk = X1+ (k - l)ga
where x; is given in (6.5). A solution to (6.7) is then given by

i = i+ 2(k = Dxa + k(k = 1)E.

A generalization can now be given for j=2,...,v—1land k=1,2,3,...,q—v — 1.
The column vectors are computed recursively as follows:
k— .
(6.8) ﬂ? = Hy Y4+ (j+1) H?-y
A solution to recursion (6.8) in terms of initial vectors ,u}, ujl_l, ooy b,k specified

in (6.10), and the known vectors x; and &, is given by

Jj—1 . .
Fo3 J+1\ (k—2+i\ .
(69) :uj - — Z'( : > ( k—2 ):u‘j—i

+(j+1)! (k;{_22>xl+(j+1)!(k;j_gl)g.

The explicit solution (6.10) is derived in a similar manner as in Proposition 3.4.

For j=1,2,...,v — 1, the components of the vector u} are given by
3], =G+, i=0,1,...,j+1,
(6.10) 3], =G+ —rije, i=G+2,.,v—1,

[15] 00 = G+ 2,

where the terms ry, are defined by

l
0 forv—j < 3.

Ty =

(G + 1) <”_7_1) for £=0,1,...,v—j—3
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The submatrix Z/IJ(?’)(Z) can now be given according to
(6.11) U (2) = 1y © 279U (2) for j=1,2,...,v—1.

The matrix U; (=) has also been used for specifying L{éz)(z). The sign pattern of the
elements of each column of U;S) (o) follows the ordering (—1)**7 with £ =0,1,...,v.

6.3.2. Summary of the construction of matrix L{f’) (o). Step 1. Define the
initial vector uj displayed in (6.10) for j = 1,2,...,v — 1.

Step 2. Compute the columns of matrix (6.6) by applying recursions (6.8) for the
corresponding values of j =1,2,...,v — 1.

Step 3. Compute the columns of matrix L{;B)
sponding values of 7 =1,2,..., v —1.

6.4. Example U;(z) when ¢ = 6, v = 4 and j = 1,2,3. The matrix
U;l)(z) = (6;(2)63(2) - -- 65“(,2)) will be illustrated for j = 1, 2, 3, to obtain

(2) according to (6.11) for the corre-

0 -1 0 0 -2
-1 3z 0 -2 4z
Z/{J(lz)l(z) = 3z =322 |, U](i)2(z) =|-2 4z =222 |,
—322 23 4z —22° 0
23 0 —222 0 0

and

0 0 0 -6
0 0 —6 6z

UL, (z) = 0 -6 62z 0
6 6z 0 0
62 0 0 0

The matrix M;Q)(z) is, for j =1, 2,3,

—2z =322 —423 —62z —1222
722 1123 1524 1822 4023
U (2) = | 922 —1524 —212° |, UP,(2) = | —202% —502* |,
524 025 1326 1024 2825
—2° —226 —327 —22° —626
—24z
6022
2
U;:);g() = | —6023
3024
—62°

The matrix L[;S)(z) is, for j =1,2,3,

_2 6
z3 z4
10 _30
22 23
3 3
UL = -2, Uz =| 2,
60
18 -
—6z 24
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and

results in the scheme

Uz) = 5 (U U2 (2), 1 (=), (), U () )

U(z

T ) span the null space of K, (z) when ¢ =6

The columns that compose the matrix (
and v = 4.

7. Conclusions. In this paper a solution to new linear systems of equations
is displayed. This is done when ¢ = v + 1 and p = 7 4+ 1. The newly developed
algorithms for the null space and right-inverse are then equivalent for both coefficient
matrices. Explicit solutions to both linear system of equations can then be straight-
forwardly implemented by using the same algorithms. The algorithms for the null
space do not require matrix multiplications and matrix inversions. The main compu-
tational exercise consists of evaluating factorials and binomial coefficients combined
with recursions that consist of the addition of two vectors. The binomial coefficients
can be computed by applying the Pascal triangle.

A connection between adjoints of companion-related matrices and rectangular
generalized Vandermonde matrices of the block Toeplitz type is then confirmed through
the corresponding null spaces.

An algorithm for the null space for I, (2) is also set forth when ¢ > v+ 1. To
compute a solution to the linear systems of (1.1) and (1.2) under these conditions can
be considered for future research.
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