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Abstract. In this paper we study Stein equations in which the coefficient matrices are in
companion form. Solutions to such equations are relatively easy to compute as soon as one knows
how to invert a Vandermonde matrix (in the generic case where all eigenvalues have multiplicity one)
or a confluent Vandermonde matrix (in the general case). As an application we present a way to
compute the Fisher information matrix of an autoregressive moving average (ARMA) process. The
computation is based on the fact that this matrix can be decomposed into blocks where each block
satisfies a certain Stein equation.
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1. Introduction. In this paper we investigate some properties of (confluent)
Vandermonde and related matrices aimed at and motivated by their application to a
problem in time series analysis. Specifically, we show how to apply results on these
matrices to obtain a simpler representation of the (asymptotic) Fisher information
matrix of an autoregressive moving average (ARMA) process. The Fisher informa-
tion matrix is prominently featured in the asymptotic analysis of estimators and in
asymptotic testing theory, e.g., in the classical Cramér–Rao bound on the variance
of unbiased estimators. See [10] for general results and see [2] for time series models.
However, the Fisher information matrix has also attracted considerable attention in
the signal processing literature, e.g., [6], [19], and [12]. We have previously shown
(see [14]) that the Fisher information matrix of an ARMA process is the solution of a
so-called Lyapunov equation. More precisely, although we don’t go into detail about
ARMA processes until section 5, the Fisher information matrix in this case can be
decomposed into blocks that are solutions of equations such as

X +MXN� = R.

The coefficients M and N in this equation turn out to be in companion form in
the given context of time series analysis, and the right-hand side R is another given
matrix.

The plan of attack that we follow to solve such an equation is to break up the
solution procedure into a number of steps that are each relatively easy to perform.
First, we replace by a basis transformation the coefficient matrices with their Jordan
forms, thereby also changing the variable matrix X and the right-hand side R. Since
a basis of (generalized) eigenvectors of companion matrices can be represented as
the columns of a (confluent) Vandermonde matrix, the basis transformation needed
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214 ANDRÉ KLEIN AND PETER SPREIJ

for this can be expressed in terms of the above-mentioned Vandermonde matrices.
Performing the basis transformation requires knowing how to compute inverses of
confluent Vandermonde matrices. One of the aims of our paper is to derive rather
simple, but explicit, representations for these inverses. Of course this whole procedure
would be meaningless if the equation in the new coordinate system were more complex
than the original one. In section 4 we will see that, fortunately, the resulting equation
is much easier to solve than the original one, especially in a generic case, where
the solution becomes almost trivial. By applying the developed procedure to the
computation of the Fisher information matrix for an ARMA process, we reach our
goal of giving an alternative way to represent this Fisher information matrix. This
application also motivates, from a statistical perspective, the interest of analyzing
(confluent) Vandermonde matrices.

The remainder of the paper is organized as follows. In section 2 we introduce the
basic notation that we use throughout the paper. Section 3 is devoted to technical
results on companion matrices and confluent Vandermonde matrices, the main results
concerning inversion of confluent Vandermonde matrices. In section 4 we apply these
results to describe solutions to Stein equations in which the coefficient matrices are
in companion form. Finally, in section 5 we investigate the special case where the
solutions to certain Stein equations are given by blocks of the Fisher information
matrix of an ARMA process.

2. Notation and preliminaries. Consider the matrix A ∈ R
n×n in the com-

panion form

A =




0 1 0 · · · 0
... 0 1

...
...

. . .
. . . 0

0 0 1
−an −a2 −a1



.(1)

Let a� = (a1, . . . , an), u(z)
� = (1, z, . . . , zn−1), and u∗(z)� = (zn−1, . . . , 1) (where �

denotes transposition). Define recursively the Hörner polynomials ak(·) by a0(z) = 1
and ak(z) = zak−1(z) + ak. Notice that an(z) is the characteristic polynomial of A.
We will denote it by π(z) and, occasionally, by πA(z) if we want to emphasize the role
of the A-matrix.

Write a(z) for the n-vector (a0(z), . . . , an−1(z))
�. Furthermore S will denote

the shift matrix, so Sij = δi,j+1, and P will denote the backward or antidiagonal
identity matrix, so Pij = δi+j,n+1 (assuming that P ∈ R

n×n). As an example we have
Pu(z) = u∗(z). The matrix P has the following property: If M is a Toeplitz matrix,
then PMP =M�, in particular P 2 = I, the identity matrix.

We associate with the vector a the matrix Ta ∈ R
n×n given by

Ta =




1 0 · · · 0

a1
. . .

...
...

. . .
. . .

an−1 · · · a1 1


 .

Notice that the matrices Ta and S commute and that a(z) = Tau(z).
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VANDERMONDE MATRICES AND TIME SERIES ANALYSIS 215

Denoting the kth basis vector in R
n by ek, we can write

A = −ena�P + S�.(2)

If q(·) is a polynomial and if for some natural number k the term (z − α)k is a factor
of q(z) (which happens if α is a zero of q(·) with multiplicity greater than or equal to

k), then we define the polynomial qk(·;α) by qk(z;α) =
q(z)

(z−α)k
. Notice the identity

qk(α;α) = q
(k)
k (α)/k!. In what follows we will often use D for differentiation (w.r.t. z).

For instance, instead of d
dz qk(z;α) we then write Dqk(z;α), and Dqk(z;α) in z = α

is denoted by Dqk(α;α). Notice also the formula

π(z)− π(α) = (z − α)u∗(z)�a(α),(3)

which follows from the definition of the Hörner polynomials by a direct computation.
We also need some results on Lagrange and Hermite interpolation problems. As-

sume we are given s pairwise different complex numbers α1, . . . , αs (so αi �= αj iff
i �= j) and we want to find n polynomials p1, . . . , pn of degree at most n − 1 such
that pj(αi) take on certain given values. Notice that we have n2 unknown parameters
to determine, but only ns conditions. Therefore we add constraints by prescribing

certain values of the derivatives p
(k)
j (αi) for k = 1, . . . ,mi − 1, where the mi are such

that
∑s

i=1 mi = n. In this way we obtain n2 constraints. The total set of prescribed
values of the polynomials pj and their derivatives that we consider is given by the
equations

p
(k−1)
j (αi)

(k − 1)!
= δ∑i−1

l=1 ml+k,j ,

where j = 1, . . . , n, i = 1, . . . , s, k = 1, . . . ,mi, and δ denotes the Kronecker symbol.
Notice that in the case where s = n, all mi are equal to 1, and we only require
pj(αi) = δij .

In order to give the solution to this interpolation problem an elegant form we
present the conditions as described below. We need some notation. First, we denote
by p(z) the column vector (p1(z), . . . , pn(z))

�. For each i we denote by Π(i) the

n×mi matrix with columns Π(i)k = p(k−1)(αi)
(k−1)! , with k = 1, . . . ,mi. The constraints

are now given in compact form by the equality (Π(1), . . . ,Π(s)) = I, where I is the
n× n identity matrix.

Write π(z) =
∏s

i=1(z − αi)
mi =

∑n
j=0 ajz

n−j and let A be the associated com-
panion matrix of (1) so that π is its characteristic polynomial. Let Ui(z) be the n×mi

matrix with kth column equal to 1
(k−1)!u

(k−1)(z) and write Ui = Ui(αi). We define

the n× n matrix V (often called the confluent Vandermonde matrix associated with
the eigenvalues of A) by V = (U1, . . . , Us). Similar interpolation problems involving
one polynomial only are known to have a unique solution; see e.g., [17, p. 306] or [5,
p. 37]. Here the situation is similar and, as an almost straightforward result from the
current setup, we have the following proposition.

Proposition 2.1. The unique solution to the interpolation problem is p(z) =
V −1u(z).

Write p∗(z) = zn−1p( 1
z ) and notice that we use multiplication with the same

power of z for all entries of p( 1
z ).

Let Π∗ be defined by Π∗ = V −1PV . Then the matrix Π∗ is involutive, i.e.,
(Π∗)2 = I.
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216 ANDRÉ KLEIN AND PETER SPREIJ

Proposition 2.2. The polynomials p and p∗ are related by

p∗(z) = V −1PV p(z) = Π∗p(z).(4)

In particular, p∗(0) = V −1en.
Proof. This follows from

p∗(z) = zn−1V −1u

(
1

z

)
= V −1Pu(z) = V −1PV p(z).

3. Confluent Vandermonde matrices. The main point of this section is to
give some formulas for the inverse of a confluent Vandermonde matrix. We need some
auxiliary results. First we give an expression for adj(z −A), where A is a companion
matrix of the form (2). The next proposition is an alternative to formula (31) in [7,
p. 84].

Proposition 3.1. Let A be a companion matrix with π as its characteristic
polynomial. The following equation holds true:

adj(z −A) = u(z)a(z)�P − π(z)

n−1∑
j=0

zjSj+1.(5)

Proof. First we show that

a(z)�P (z −A) = π(z)e�1 .(6)

Using (2), we have

a(z)�P (z −A) = a(z)�P (z − S� + ena
�P )

= a(z)�(z − S + Pena
�)P

= (π(z)e�n − a� + a(z)�Pena�)P
= π(z)e�nP,

which gives (6). Multiply the right-hand side of (5) by (z − A). First we consider
a(z)�P (z −A). In view of (6), this is just

π(z)e�1 .(7)

Then we consider
∑n−1

j=0 z
jSj+1(z − A) =

∑n−1
j=0 z

j+1Sj+1 +
∑n−1

j=0 z
jSj+1(−S� +

ena
�P ). Since Sen = 0, this reduces to

∑n−1
j=0 z

j+1Sj+1 −∑n−1
j=0 z

jSj+1S�. Now use

the equality SS� = I − e1e
�
1 to rewrite this as

∑n−1
j=0 z

jSj(zS − I + e1e
�
1 ), which

equals
∑n−1

j=0 z
jSj(zS − I) +

∑n−1
j=0 z

jej+1e
�
1 . However, this is equal to −I + u(z)e�1

because the first summation is just −I and the latter one equals u(z)e�1 . Hence

n−1∑
j=0

zjSj+1(z −A) = −I + u(z)e�1 .(8)

So we obtain from (7) and (8) that the right-hand side of (5) multiplied by z − A is
equal to

u(z)π(z)e�1 + π(z)(I − u(z)e�1 ),
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VANDERMONDE MATRICES AND TIME SERIES ANALYSIS 217

which is π(z)I, precisely what we have to prove.
For the application to time series that we have in mind, as explained in the

introduction, we need the inverse of a (confluent) Vandermonde matrix. In the 1970s
this was an especially popular topic and many papers appeared on the subject. Quite
often attention has been paid to the finding of efficient procedures to carry out the
inversion numerically. Recently, there has been a renewed interest in a related subject,
the inversion of Cauchy–Vandermonde matrices. These matrices appear in rational
interpolation problems and are beyond the scope of this paper.

Below we provide inversion formulas for confluent Vandermonde matrices. Some
of these can be found in the older literature, but the derivation below is different.
Of the many possible references we mention [11] and [4], which give results for the
relatively simple case of a genuine Vandermonde matrix or, in the spirit of our Propo-
sition 3.3 (but obtained by different methods), for a confluent Vandermonde matrix,
and mention [20] which has elementwise expressions. Related results of a different
nature include [9], [3], and [18].

We need the Jordan decomposition of A. We use the notation Smi to denote the
shift matrix of size mi × mi. Recall that the confluent Vandermonde matrix as we
defined it is such that the columns are independent eigenvectors of A. The Jordan
form of A is determined by the relation V −1AV = JA, and JA is block diagonal with
the ith block given by αiImi

+S�
mi

. As a first step toward expressions for the inverse
of a Vandermonde matrix we will use the next proposition.

Proposition 3.2. Let JA be the Jordan form of the companion matrix A. Then

adj(z − JA) = p(z)a(z)�PV − π(z)V −1
n−1∑
j=0

zjSj+1V.(9)

In particular

adj(αk − JA) = π(αk)a(αk)
�PV.(10)

Proof. This follows from Propositions 3.1 and 2.1.
Next we proceed with some results of a general nature. Let M be the block

diagonal matrix with s blocks M(i) of size mi ×mi specified by

M(i)kl =

{ 1
(k+l−mi−1)!D

k+l−mi−1πmi
(αi;αi) if k + l −mi − 1 ≥ 0,

0 else.
(11)

Notice that the M(i) are symmetric Hankel matrices and that the M(i)kl are zero for
k + l ≤ mi. We have for the matrices M(i) the alternative expression

M(i) =

mi−1∑
l=0

δlS
lP, where δl =

1

l!
Dlπmi(αi;αi).

Here we denoted by S the mi × mi shift matrix and by P the mi × mi backward
identity matrix.

The computation of the inverse of an M(i) is simple because of its triangular
structure and the fact that it is Hankel. Indeed, it is sufficient to know the first row
of M(i)−1, call it r1, since all rows rj are of the form r1S

j−1. As a matter of fact,
the inverses of the matrices M(i) have a particular simple structure. To clarify this
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218 ANDRÉ KLEIN AND PETER SPREIJ

we introduce, for a given m− 1 times continuously differentiable real function f , the
matrix valued function Lf (z) of size m×m defined by

Lf
kl(z) =

{ 1
(k−l)!D

k−lf(z) if k ≥ l,

0 else.

Notice that the matrices Lf (z) are lower triangular and Toeplitz. One readily verifies

that (Lf (z))−1 = L
1
f (z) in the points z where f doesn’t vanish. In particular, the

last row of (Lf (z))−1 is given by
(

1

f(z)
, . . . ,

1

(m− 1)!
Dm−1

(
1

f(z)

))
P,

where P is, as above, of size m×m.
Now we apply this result to f(z) = πmi(z;αi) and m = mi to get the inverse

of M(i). We then have for this choice of f that M(i) = Lf (αi)P . The first row of
M(i)−1 is then seen to be

(
1

πmi(αi;αi)
, . . . ,

1

(mi − 1)!
Dmi−1

(
1

πmi(αi;αi)

))
P.(12)

Next we define a matrix N consisting of blocks N(ij) of sizemi×mj . To do so we need
some additional notation. We write π∗(z) = znπ( 1

z ) and π∗
k(z;α) = zn−1πk(

1
z ;α).

Then we define the entries of the N(ij) by

N(ij)kl =
1

(k − 1)!
Dk−1π∗

l (αi;αj).

Unfortunately, the matrix N doesn’t share the nice properties (block diagonal, block
Hankel, block symmetric) with the matrix M above.

Proposition 3.3. The following equalities hold:

u∗(z)�Ta = a(z)�P,(13)

u∗(z)�TaV = (π1(z;α1), . . . , πm1(z;α1), . . . , π1(z;αs), . . . , πms(z;αs)),(14)

V �PTaV =M,(15)

u(z)�TaV = (π∗
1(z;α1), . . . , π

∗
m1

(z;α1), . . . , π
∗
1(z;αs), . . . , π

∗
ms

(z;αs)),(16)

V �TaV = N,(17)

V −1 =M−1V �PTa =M−1(TaV )
�P.(18)

Proof. The equality (13) is the result of the string u∗(z)�Ta = u(z)�PTa =
u(z)�T�

a P = a(z)�P .
We continue with showing (14). Consider (3) and differentiate k times w.r.t. α.

We obtain −Dkπ(α) = u∗(z)�((z − α)Dka(α)− kDk−1a(α)).
If α is a zero with multiplicity m, then Dkπ(α) = 0 for k ≤ m − 1. So we get

the system of equations 0 = u∗(z)�((z − α)Dka(α)− kDk−1a(α)) for 1 ≤ k ≤ m− 1

and π(z) = (z − α)u∗(z)�a(α). Now write qk(z) = u∗(z)�Dka(α), then q0(z) =
π(z)
z−α ,

and we have the recursive system of equations 0 = (z − α)qk(z) − kqk−1(z) for k =

1, . . . ,m− 1. Solving this system yields qk(z) = k! π(z)
(z−α)k+1 = k!πk+1(z;α). In other

words, we find

u∗(z)�Dka(α) = k!πk+1(z;α).(19)
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VANDERMONDE MATRICES AND TIME SERIES ANALYSIS 219

Consider now a(w) = Tau(w) = TaV p(w), where p is the interpolation polynomial.
Then we also have u∗(z)�a(w) = u∗(z)�TaV p(w). Take in this equation derivatives
w.r.t. w, substitute αi for w, and use the definition of the interpolation polynomial
to get

u∗(z)�TaV =

(
a(α1), . . . ,

Dm1−1a(α1)

(m1 − 1)!
, . . . , a(αs), . . . ,

Dms−1a(αs)

(ms − 1)!

)
.(20)

Combining (19) and (20) yields (14).
To prove (15) we start from (14). Take the appropriate jth order derivatives,

divide by j!, and substitute the αi in the resulting expression. Doing so results in a
block diagonal matrix, with the M(i) on the diagonal.

Equation (16) immediately follows from (14) by definition of the polynomials
π∗
k(z;α).

The proof of (17) completely parallels that of (15) and is therefore omitted. Now
we turn to (18). First we observe that all the matrices M(i) are invertible because of
their triangular structure and the nonzero elements πmi(αi;αi) (αi had multiplicity
mi) on the antidiagonal. Therefore M also is invertible and, taking inverses in (15),
yields the first equality of (18). The second then follows from PTa = T�

a P .
Remark 3.4. The most important formula of Proposition 3.3 is (18), which gives

an expression for the inverse of the confluent Vandermonde matrix. We see that the
only inversion that has to be carried out is that of M . For that we have (12) at our
disposal.

Corollary 3.5. The matrices M and N are related through the identities

M = N�Π∗,(21)

N = (Π∗)�M.(22)

Moreover NM−1 =MN−1, and thus NM−1 is involutive.
Proof. From (17) we get V −� = TaV N

−1, and hence V �PV −�N = V �PTaV
and, in view of (15), this equals M . Now Π∗ was defined as Π∗ = V −1PV , so we
get (Π∗)�N =M and, since M is symmetric, we obtain (21). However, we also have
N = (Π∗)−�M = (Π∗)�M since Π∗ is involutive. For the same reason the final
assertion of the corollary follows.

In the next proposition we present integral representations for the matrices M
and M−1. Below we use the notation umi(z)

� = (1, z, . . . , zmi−1) and u∗mi
(z)� =

(zmi−1, . . . , z, 1), and the Γαi are sufficiently small contours around αi.
Proposition 3.6. The following integral representations for the matrices M(i)

and M(i)−1 are valid:

M(i) =
1

2πi

∮
Γαi

u∗mi
(z − αi)u

∗
mi

(z − αi)
� π(z)

(z − αi)2mi
dz,(23)

M(i)−1 =
1

2πi

∮
Γαi

umi
(z − αi)umi

(z − αi)
� 1

π(z)
dz.(24)

As we have previously noticed, M(i)−1 is completely determined by its first row
(or column). From Proposition 3.6 we get, using Cauchy’s theorem, that this first
row is given by

1

2πi

∮
Γαi

umi(z − αi)
� 1

π(z)
dz =

(
1

πmi(αi;αi)
, . . . ,

1

(mi − 1)!
Dmi−1 1

πmi(αi;αi)

)
P ,

in agreement with what we already found in (12).
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220 ANDRÉ KLEIN AND PETER SPREIJ

4. Application to Stein equations. The goal of this section is to obtain a
way to compute the solution of Stein’s equation, where the coefficients are matrices in
companion form. Apart from its interest this is chiefly motivated by the computation
of Fisher’s information matrix of an ARMA process. As we stated in the introduc-
tion, the blocks of Fisher’s information matrix are solutions to such a Stein equation;
see [14]. We postpone the application to ARMA processes until section 5.

Let A be a complex matrix of size n× n (not necessarily in companion form). If
f is a C

n×l valued analytic function, then we define f(A) as
∑∞

k=0
1
k!A

kf (k)(0). We
use the following known result (see, for instance, [17, section 9.9, Theorem 2]).

Lemma 4.1. Let A be a complex matrix (n × n) whose eigenvalues lie strictly
inside the unit disk Γ. Then for a C

n×l valued analytic function f one has

1

2πi

∮
Γ

(z −A)−1f(z)dz = f(A).

As an application of Lemma 4.1 we solve the Stein equation. Given matrices A,
C, and H of appropriate dimensions (we also assume that the eigenvalues of both A
and C lie inside the unit disk), we are looking for the solution for S of

S −ASC� = H.(25)

This equation is of interest in matrix and operator theory (e.g., the operator that
takes S to S − ASC is called a displacement operator; see [8]). In [15] we study this
equation further and relate solutions of various Stein equations to a certain Fisher
information matrix.

The solution to (25) (see [16]) is given by 1
2πi

∮
Γ
(z − A)−1f(z)dz, with f(z) =

H(I − zC)−�, and hence is equal to
∑∞

k=0 A
kH(C�)k.

We continue with presenting an alternative way to obtain a solution for the special
case where both the matrices A and C are in companion form. Let VA be the Vander-
monde matrix associated with A and let VC be associated with C. Let Ŝ = V −1

A SV −�
C

and Ĥ = V −1
A HV −�

C . The results of section 3 on inverses of confluent Vandermonde

matrices enable us to compute Ĥ.
Premultiplication of (25) with V −1

A , together with postmultiplication with V −�
C ,

results in

Ŝ − JAŜJ
�
C = Ĥ,(26)

where JA and JC are the Jordan forms of A and B, respectively.
Let v = vec (Ŝ) and h = vec (Ĥ). Then it is known (see [16]) that v is given by

v = (I − JC ⊗ JA)
−1h under the assumption that no product of an eigenvalue of A

and an eigenvalue of C equals 1. This assumption is typically fulfilled in the context
of stationary and invertible ARMA processes, where these eigenvalues are the zeros
of both AR- and MA-polynomials and thus lie inside the unit circle; see section 5.

The computation of the inverse of the matrix I − JC ⊗ JA can now be done in
an efficient way. Let JA,i be the Jordan block of JA associated with the eigenvalue
αi and let JC,j be the Jordan block of JC associated with the eigenvalue γj . Then
I − JC ⊗ JA is block diagonal with diagonal blocks I − JC,j ⊗ JA,i. Moreover, these
blocks are upper triangular and even almost block diagonal. On the diagonal we find
the blocks I − γjJA,i and on the subdiagonal just above it find the blocks −JA,i.
Therefore, (I − JC,j ⊗ JA,i)

−1 is again upper triangular with, on the diagonal, the
blocks (I − γjJA,i)

−1 and, on the kth subdiagonal above it (k ≤ mj − 1 with mj the
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multiplicity of γj), one finds the blocks (I − γjJA,i)
−k−1Jk

A,i. Finally, the inverses
of the I − γjJA,i are upper triangular Toeplitz matrices with kl-element given by
γk−l
j (1− αiγj)

−k+l−1 for k ≥ l.
The generic case is that in which all the eigenvalues of A and all the eigenvalues

of C have multiplicity 1. Consequently the matrices JA and JC are diagonal. In this
case (26) has a very simple solution: Ŝ has elements Ŝij =

1
1−αiγj

Ĥij .

5. Application to ARMA processes. Consider an ARMA(p, q) process y, a
stationary discrete time stochastic process that satisfies

yt + a1yt−1 + · · ·+ apyt−p = εt + c1εt−1 + · · ·+ cqεt−q,(27)

where ε is a Gaussian white noise sequence with unit variance. The real constants
a1, . . . , ap and c1, . . . , cq will be fixed throughout the rest of this section.

Introduce the monic polynomials a(z) =
∑p

i=0 ap−iz
i and c(z) =

∑q
i=0 cq−iz

i and
let a∗ and c∗ be the corresponding reciprocal polynomials so that a∗(z) =

∑n
i=0 aiz

i

and c∗(z) =
∑q

i=0 ciz
i. We make the common assumption that the ARMA process is

causal and invertible, meaning that a and c have their zeros strictly inside the unit
circle [2, Chapter 3].

Write θ = (a1, . . . , ap, c1, . . . , cq)
�. Notice that the observations y (given random

variables or their realized values) of course don’t depend on the parameter θ, but then
the noise sequence ε does. The Fisher information matrix Fn(θ) for n observations
is defined (see [1]) as the covariance matrix of the score function and, because of
the assumed Gaussian distribution of ε, it is asymptotically equal to n times the
stationary Fisher information matrix

F (θ) = Eθ
∂ε

∂θ

∂ε

∂θ

�
,

where Eθ denotes expectation under the parameter θ. Knowledge of the Fisher infor-
mation matrix is crucial for asymptotic statistical analysis. For instance, it is known
(see, e.g., [2]) that maximum likelihood estimators of the parameters of an ARMA
process are consistent and have (using n observations) an asymptotic covariance ma-
trix that is n−1 times the inverse (provided that it exists) of the stationary Fisher
information matrix. The inverse exists if the polynomials a and c have no common
zeros; see [13].

The matrix F (θ) has a representation in the spectral domain given by the block
decomposition

F (θ) =

(
Faa Fac

F�
ac Fcc

)
,(28)

where the matrices appearing here have the elements

F jk
aa =

1

2πi

∮
|z|=1

zj−k+p−1

a(z)a∗(z)
dz, (j, k = 1, . . . , p),

F jk
ac =

1

2πi

∮
|z|=1

zj−k+q−1

c(z)a∗(z)
dz, (j = 1, . . . , p, k = 1, . . . , q),

F jk
cc =

1

2πi

∮
|z|=1

zj−k+q−1

c(z)c∗(z)
dz, (j, k = 1, . . . , q).
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With k(z) = a(z)a∗(z)c(z)c∗(z), up(z) = (1, . . . , zp−1)�, uq(z) likewise, and u∗p and
u∗q their reciprocal polynomials, we have the following compact expression for the
whole Fisher information matrix:

F (θ) =
1

2πi

∮
|z|=1

1

k(z)

(
c∗(z)up(z)
−a∗(z)uq(z)

)(
c(z)u∗p(z)

� −a(z)u∗q(z)�
)
dz.(29)

As in section 2 we let A ∈ R
p×p be the companion matrix associated with the polyno-

mial a(·) (its precise form is given by (1) for n = p). The matrix C ∈ R
q×q associated

with the polynomial c(·) has an analogous form.
Let the matrix Ã ∈ R

(p+q)×(p+q) be given by

Ã =

(
A 0
0 C

)
.

In [14] we showed that the Fisher information matrix F (θ) is the solution of the Stein
equation

F (θ)− ÃF (θ)Ã� = ee�,(30)

where e� = (e�pp, e
�
qq) with epp the pth standard basis vector in R

p and eqq the qth
standard basis vector in R

q. Using for F (θ) the block decomposition (28), we see that
each of the blocks involved satisfies a Stein equation with appropriate coefficients. For
instance, for Fac ∈ R

p×q we have

Fac −AFacC
� = Hac,(31)

with Hac = eppe
�
qq. As we already announced in the introduction, (31) as well as

the analogous equation for the other blocks of Fisher’s information matrix motivated
the study of solutions to Stein’s equation, in which the coefficient matrices are in
companion form.

We apply the results of the previous sections as follows. Let VA be a matrix
whose columns are the generalized eigenvectors of A, and let VC be the corresponding
matrix for C. As we have seen, these matrices are confluent Vandermonde matrices.
By JA and JC we denote the Jordan forms of A and C, respectively. Let also F̂ac =
V −1
A FacV

−�
C and Ĥac = V −1

A HacV
−�
C . Then we can replace (31) with the equivalent

equation

F̂ac − JAF̂acJ
�
C = Ĥac.(32)

A little more can be said. The matrix Ĥac here becomes V −1
A epp(V

−1
C eqq)

� and
we observe that both V −1

A epp and V −1
C eqq are the last columns of the inverse of a

Vandermonde matrix. We have already seen in section 2 how these columns are
related to interpolation polynomials. We have, for instance, that V −1

A epp is equal to
p∗A(0), where p

∗
A(z) = zp−1pA(

1
z ) and pA is the interpolation polynomial related to

the eigenvalues of A as described in Proposition 2.2. Likewise V −1
C eqq = p∗C(0).

Let us finish by considering the generic case of Fisher’s information matrix; i.e.,
we assume that A and C only have eigenvalues of multiplicity 1. It then follows that
F̂ac has as its ijth element

p∗A(0)ip
∗
C(0)j

1− αiγj
.

Now it is easy to compute Fac = VAF̂acV
�
C . To the other blocks of the Fisher infor-

mation matrix the same procedure applies.
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