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Vandermonde matrices are well known. They have a number
of interesting properties and play a role in (Lagrange)
interpolation problems, partial fraction expansions, and
finding solutions to linear ordinary differential equations, to
mention just a few applications. Usually, one takes these
matrices square, q × q say, in which case the i-th column
is given by u(zi), where we write u(z) = (1, z, . . . , zq−1)�. If
all the zi (i = 1, . . . , q) are different, the Vandermonde matrix
is non-singular, otherwise not. The latter case obviously takes
place when all zi are the same, z say, in which case one could
speak of a confluent Vandermonde matrix. Non-singularity is
obtained if one considers the matrix V (z) whose i-th column
(i = 1, . . . , q) is given by the (i− 1)-th derivative u(i−1)(z)�.
We will consider generalizations of the confluent Vandermonde
matrix V (z) by considering matrices obtained by using as
building blocks the matrices M(z) = u(z)w(z), with u(z)
as above and w(z) = (1, z, . . . , zr−1), together with its
derivatives M (k)(z). Specifically, we will look at matrices
whose ij-th block is given by M (i+j)(z), where the indices i, j
by convention have initial value zero. These in general non-
square matrices exhibit a block-Hankel structure. We will
answer a number of elementary questions for this matrix.
What is the rank? What is the null-space? Can the latter be
parametrized in a simple way? Does it depend on z? What
are left or right inverses? It turns out that answers can be
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obtained by factorizing the matrix into a product of other
matrix polynomials having a simple structure. The answers
depend on the size of the matrix M(z) and the number of
derivatives M (k)(z) that is involved. The results are obtained
by mostly elementary methods, no specific knowledge of the
theory of matrix polynomials is needed.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and notations

1.1. Motivation

Vandermonde matrices are well known. They have a number of interesting properties
and play a role in (Lagrange) interpolation problems, partial fraction expansions, and
finding solutions to linear ordinary differential equations, to mention just a few applica-
tions. Usually, one takes these matrices square, q × q say, in which case the i-th column
is given by u(zi), where we write u(z) = (1, z, . . . , zq−1)�. If all the zi (i = 1, . . . , q)
are different, the Vandermonde matrix is non-singular, otherwise not. The latter case
obviously takes place when all zi are the same, z say, in which case one could speak of a
confluent Vandermonde matrix. Non-singularity is obtained if one considers the matrix
V (z) whose i-th column (i = 1, . . . , q) is given by the (i− 1)-th derivative u(i−1)(z)�, or
by u(i−1)(z)�/(i− 1)!. In the latter case, one has det(V (z)) = 1. A slightly more general
situation is obtained, when one considers in general the non-square q × ν matrix V (z),
with i-th column u(i−1)(z)�, i = 1, . . . , ν − 1. In this case one has that V (z) has rank
equal to min{q, ν} and for ν > q, the kernel of V (z) is the (ν − q)-dimensional subspace
of Rν consisting of the vectors whose first q elements are equal to zero. Note that the
building elements of the matrix V are the column vectors ui(z) and a number of its
derivatives.

The observations above can be generalized in many directions. In the present paper
we opt for one of them, in which we will consider generalizations of the confluent Van-
dermonde matrix V (z) by considering matrices obtained by using as building blocks the
matrices M(z) = u(z)w(z) ∈ R

q×r, with u(z) as above and w(z) = (1, z, . . . , zr−1),
together with its derivatives M (k) with 0 ≤ k ≤ ν − 1. Note that M(z) = V (z) if r = 1.

A special case of what follows is obtained by considering the matrix

M0(z) =
(
M(z), . . . ,M (ν−1)(z)

)
∈ R

q×νr.

In a recent paper [8], the kernel of the matrix M0(z) (or rather, a matrix obtained
by a permutation of the columns of M0(z)) has been studied for the case q = r and
ν ≤ q. More precisely, the two aims of the cited paper were to find a right inverse and
a parametrization of the kernel of the matrix M0(z). The two cases ν = q or ν < q
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have been analyzed in detail. For these two cases two algorithms have been proposed to
construct the kernel and the rank and the dimension of the kernel have been computed.
This was of relevance for the characterization of a matrix polynomial equation having
non-unique solutions. The origin of this problem was of a statistical nature and lied in
properties of the asymptotic Fisher information matrix for estimating the parameters of
an ARMAX process and a related Stein equation.

The results on the parametrization of the kernel obtained in [8] turned out to be un-
necessary complicated, partly due an apparently irrelevant distinction between different
cases, and not transparent. In the present paper we reconsider the problem by embed-
ding it into a much more general approach to obtaining properties of matrix polynomials
that can be viewed as generalizations of a confluent Vandermonde matrix (in a single
variable) as indicated above. The solution, which is shown to exhibit a very simple and
elegant structure, to the original problem of describing the kernel under consideration,
now follows as a byproduct of the current analysis. These are special cases of the unified
situations of Corollary 2.5 and Proposition 4.1 of the present paper. In this way we gen-
eralize in the present paper the results of [8]. Another approach to find a basis for the
kernel has been followed in [7], which is also subsumed by Proposition 4.1. The results
of [7] are closer in spirit to those of the present paper than the results in [8]. Both cited
papers contain some examples of right inverses of M0(z), that are special cases of what
will be obtained in the present paper. Moreover, we will generalize the results for M0(z)
to results for the matrix M(z) that is defined by

M(z) =

⎛⎜⎝ M(z) · · · M (ν−1)(z)
...

...
M (μ−1)(z) · · · M (μ+ν−2)(z)

⎞⎟⎠ ∈ R
μq×νr,

whose blocks we denote M(z)ij , i = 0, . . . , μ−1, j = 0, . . . , ν−1, so M(z)ij = M (i+j)(z).
We will also consider the related matrix N (z) whose blocks are N (z)ij = M(i+j)(z)

i!j! .
A special case occurs for the choices of the parameters r = 1, μ = 1 and ν = q.

Then we write M(z) = Uq(z) and N (z) = Ũq(z), ordinary (normalized) q × q confluent
Vandermonde matrices. The results in the next sections (almost) reduce to trivialities
for ordinary confluent Vandermonde matrices, so the contribution of the present paper
originates with allowing the parameters μ, ν, q and r to be arbitrary.

Classical Vandermonde matrices and confluent Vandermonde matrices have often been
studied in the literature, see [9,3] for definitions. More recent papers often focussed on
finding formulas for their inverses and on efficient numerical procedures to compute them,
a somewhat random choice of references are the papers [1,2,4–6,10–12]. Nevertheless it
seems that the generalization M(z) of the confluent Vandermonde matrix is, to the best
of our knowledge, unknown in the literature.
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1.2. Notations and conventions

Derivatives of a function z �→ f(z) (often matrix valued) are denoted by f (k)(z) or by
( d
dz )kf(z). The variable z is in principle C-valued. If A is an m×n matrix, for notational

convenience we adopt the convention to label its elements Aij with i = 0, . . . ,m − 1
and j = 0, . . . , n − 1. We will see shortly why this a convenient convention. Entries of
a matrix are also indicated both by superindices, according to what is typographically
most appropriate. When dealing with matrix polynomials A(z), in proving results we
usually suppress the dependence on z and simply write A.

If A is a block matrix, we sometimes use subindexes to indicate its constituting blocks,
but more often denote its blocks by superindices, so we write Aij or Aij in the latter
case. Also single superindices are used and we will come across notations like Ak. These
should not be confused with powers of A. The meaning of Ak will always be clear from
the context.

Throughout the paper q, r, μ and ν are fixed positive integers, although often certain
relations among them are supposed (e.g. q + 1 ≤ ν < q + r). Given the integers q, r, μ

and ν and the variable z, we consider a number of matrix polynomials. The first are
u(z) = (1, . . . , zq−1)� and w(z) = (1, . . . , zr−1). With the above labelling convention,
valid throughout the paper, we have for the elements of u(z) the expression ui(z) = zi

for i = 0, . . . , q − 1. Next to these we consider the matrix polynomials

M(z) = u(z)w(z) ∈ R
q×r,

M0
j (z) = M (j)(z) =

(
d
dz

)j

M(z) ∈ R
q×r,

M0(z) = (M0
0(z), . . . ,M0

ν−1(z) ) ∈ R
q×νr,

N 0
j (z) = 1

j!M
(j)(z) = 1

j!

(
d
dz

)j

M(z) ∈ R
q×r,

N 0(z) = (N 0
0 (z), . . . ,N 0

ν−1(z) ) ∈ R
q×νr.

We also consider the μq × νr matrix polynomial M(z) which is defined by its ij-blocks

Mij(z) = M (i+j)(z), (1.1)

for i = 0, . . . , μ− 1, j = 0, . . . , ν − 1. The size of M(z) is equal to μq × νr. If μ = 1, we
retrieve M0(z). Note that M(z) has a block Hankel structure, even for the case μ �= ν.

Along with M(z) we consider the matrix N (z) that has a block structure with blocks

N ij(z) = 1
M (i+j)(z),
i!j!
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for i = 0, . . . , μ − 1 and j = 0, . . . , ν − 1. Note that N (z) also has dimensions μq × νr

and that N (z) reduces to N 0(z) for μ = 1. Unlike M(z), N (z) doesn’t exhibit a block
Hankel structure. The following obvious relation holds.

M(z) = (Dμ ⊗ Iq)N (z)(Dν ⊗ Ir), (1.2)

where Dμ is the diagonal matrix with entries Dii = i!, i = 0, . . . , μ− 1 and Dν likewise.
Let us now introduce the matrices Uq(z) (of size q × q) and Wr(z) (of size r × r) by

Uq(z) =
(
u(z), . . . , u(q−1)(z)

)
and

Wr(z)� =
(
w(z)�, . . . , w(r−1)(z)�

)
.

Along with the matrices Uq(z) and Wr(z), we introduce the matrices

Ũq(z) =
(
ũ0(z), . . . , ũq−1(z)

)
, (1.3)

with

ũj(z) = 1
j!u

(j)(z), j = 0, . . . , q − 1,

and W̃r(z) given by

W̃r(z)� =
(
w̃0(z), . . . , w̃r−1(z)

)
, (1.4)

with

w̃j(z) = 1
j!w

(j)(z), j = 0, . . . , r.

We have the obvious relations

Uq(z) = Ũq(z)Dq, Wr(z) = DrW̃r(z),

where Dq and Dr are diagonal matrices, similarly defined as Dμ. One easily verifies
that Ũq(z) has elements Ũ ij

q (z) = zi−j
(
i
j

)
and by a simple computation that Ũq(z)−1 =

Ũq(−z). Similar properties hold for W̃r(z). Later on we will also come across the matrices
Uμ(z) and Wν(z), which have the same structure as Uq(z) and Wr(z) and only differ in
size (unless μ = q and ν = r).

Finally we introduce the often used square shift matrices Sk ∈ R
k×k (k arbitrary),

defined by its ij-elements δi+1,j (Kronecker deltas). Other matrices will be introduced
along the way.
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The structure of the remainder of the paper is as follows. After having fixed some
notation and other conventions, in Section 2 we shall introduce an auxiliary matrix
polynomial A(z) that is instrumental in deriving properties of M(z) and N (z). Among
them are factorizations, which will be treated in Section 3. These lead to establishing
the rank of M(z), which is shown to be independent of z. A major issue in the present
paper is to find a simple and transparent parametrization of the kernels of the matrices
M(z) and N (z). This is done first in Section 4 for the special case of N 0(z). The results
of that section will be used in Section 5 to characterize the kernel of N (z). The results
of Section 6 form the cornerstone of finding right inverses of M(z), especially those that
are not dependent on z, which is a main topic of the final Section 7.

2. The matrix A(z)

This section is devoted to the matrix A(z), to be defined below, that is instrumental
in deriving properties of M(z) and N (z). In particular it is used for obtaining useful
factorizations in Section 3. The matrix A(z), also of block Hankel type and of size μq×νr

is defined by its blocks Aij(z) := Ai+j(z) (here i + j is used as a super index) of size
q × r, for i = 0, . . . , μ− 1, j = 0, . . . , ν − 1. The matrices Ak(z) for k ≥ 0 are the q × r

quasi-symmetric matrix polynomials (this matrix polynomial is only square for q = r)
given by their elements (i, j = 0, . . . , q − 1)

Ak
ij(z) := 1

i!j!

(
d
dz

)i+j

zk

=
(

k

i + j

)(
i + j

i

)
zk−i−j =

{
k!

i! j! (k−i−j)!z
k−i−j if i + j ≤ k

0 else.
(2.1)

Note that k in Ak(z) is used as a super index and in zk as a power. The block Hankel
matrix A(z) of size μq×νr is then defined by its blocks Aij(z) which are equal to Ai+j(z),
for i = 0, . . . , μ−1 and j = 0, . . . , ν−1. One easily verifies that (with Ak−1

−1,j = Ak−1
i,−1 = 0)

for k ≥ 1 it holds that

Ak
ij(z) = zAk−1

ij (z) + Ak−1
i−1,j(z) + Ak−1

i,j−1(z).

In matrix notation this relation becomes

Ak(z) = zAk−1(z) + Ak−1(z)Sr + S�
q Ak−1(z). (2.2)

Let Jq(z) = zIq + S�
q . Then we can rewrite (2.2) as

Ak(z) = Jq(z)Ak−1(z) + Ak−1(z)Sr, (2.3)
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or as

Ak(z) = S�
q Ak−1(z) + Ak−1(z)Jr(z)�. (2.4)

By induction one easily proves that the recursion (2.3) leads to the explicit expressions,
involving powers of S�

q and Sr,

Ak(z) =
k∑

i=0

(
k

i

)
Jq(z)iA0Sk−i

r

and

Ak+l(z) =
k∑

i=0

(
k

i

)
Jq(z)iAl(z)Sk−i

r . (2.5)

Likewise one shows that (2.4) leads to

Ak(z) =
k∑

i=0

(
k

i

)(
S�
q

)i
A0(Jr(z)�)k−i

. (2.6)

On the other hand, the recursion (2.2) has solution

Ak(z) =
k∑

j=0

(
k

j

)
zk−j

j∑
i=0

(
j

i

)(
S�
q

)i
A0Sj−i

r . (2.7)

It also follows that

Ak(0) =
k∑

i=0

(
k

i

)(
S�
q

)i
A0Sk−i

r .

Look back at the Ak(z) as defined in (2.1). One computes for k ≥ 0

Ak
ij(0) =

{ (
k
i

)
if i + j = k

0 else.
(2.8)

Henceforth we shall write Ak instead of Ak(0). Note that Ak, which is in general not
square, has only nonzero elements on one ‘anti-diagonal’, the one with ij-elements having
sum i + j = k. We have the following result.

Proposition 2.1. The matrices Ak = Ak(0) satisfy the recursion for k ≥ 0

Ak+1 = AkSr + S�
q Ak,
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and hence

Ak =
k∑

j=0

(
k

j

)(
S�
q

)j
A0Sk−j

r .

Moreover, we also have the polynomial expansion

Ak(z) =
k∑

j=0

(
k

j

)
zk−jAj .

Proof. The recursion follows by taking z = 0 in (2.2). The expansion follows from Propo-
sition 2.1 and Eq. (2.7). �

Two more matrices will be introduced next. First, let Ā be the μq × νr block-matrix
whose ij-th block (of size q × r) is given by Āij = (S�

q )jA0Si
r for i = 0, . . . , μ − 1 and

j = 0, . . . , ν − 1.
Second, we introduce the matrix Lμ,q(z) of size μq × μq with blocks Lμ,q(z)ij =(

i
j

)
Jq(z)i−j for i ≥ j and zero else, i, j = 0, . . . , μ − 1. Since Lμ,q(z) is block lower

diagonal with identity matrix as diagonal blocks, it follows that Lμ,q(z) is invertible and
that its inverse has ij-block equal to

(
i
j

)
Jq(z)i−j(−1)i−j . Likewise one defines the matrix

Lν,r(z) of size νr × νr.

Theorem 2.2. The factorization

A(z) = Lμ,q(z)ĀLν,r(z)� (2.9)

holds true. For z = 0 and with A = A(0) and Lμ,q = Lμ,q(0) and Lν,r = Lν,r(0), this
becomes

A = Lμ,qĀL�
ν,r. (2.10)

Moreover, det(A(z)) = det(Ā), when both matrices are square.

Proof. We compute the ij-block on the right hand side of (2.9). Using the definitions of
Lμ,q(z), Lν,r(z) and Ā, we obtain (see the explanation below)

(
Lμ,q(z)ĀLν,r(z)�

)
ij

=
∑
k,l

Lμ,q(z)ikĀklLν,r(z)�lj

=
i∑

k=0

j∑
l=0

(
i

k

)
Jq(z)i−k

(
S�
q

)l
A0Sk

r

(
j

l

)(
Jr(z)�

)j−l

=
i∑(

i

k

)
Jq(z)i−k

(
j∑(

S�
q

)l
A0

(
j

l

)(
Jr(z)�

)j−l

)
Sk
r

k=0 l=0
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=
i∑

k=0

(
i

k

)
Jq(z)i−kAj(z)Sk

r

= Ai+j(z).

In the third equality above we used that Jr(z)� and Sr commute, in the fourth equal-
ity we used (2.6) with an appropriate change of the indices, whereas the last equal-
ity similarly follows from (2.5). The relation between the determinants follows from
det(Lμ,q(z)) = 1. �

Let ei be the i-th standard column basis vector of Rq, i = 0, . . . , q−1 and let fi be the
i-th standard column basis vector of Rr, i = 0, . . . , r − 1. For convenience of notation,
we put ei = 0 for i ≥ q and fj = 0 for j ≥ r. With this convention, we always have for
example (S�

q )ie0 = ei.

Theorem 2.3. It holds that the block Āij = ejf
�
i , the rank of Ā is equal to min{μ, r} ×

min{ν, q}. If Ā is a fat matrix, i.e. μq ≤ νr, then Ā has full (row) rank iff μ ≤ r and
ν ≥ q. If Ā is a tall matrix, so μq ≥ νr, then it has full (column) rank iff μ ≤ r and
ν ≤ q. In the special case that Ā is square, so μq = νr, we get that Ā has full rank, and
it is then invertible, iff μ = r and ν = q, in which case Ā is a matrix of size qr × qr.
In this case we have for the inverse (Ā)−1 = (Ā)� and det(Ā) = (−1) 1

4 qr(q−1)(r−1).
Specializing even more to q = r, we get det(Ā) = (−1) 1

2 q(q−1).

Proof. Since A0 = e0f
�
0 and Āij = (S�

q )jA0Si
r, it follows that Āij = fje

�
i .

The rank of Ā is equal to the rank of Ā(Ā)�, which is easy to compute. We get
for its ij-th block

∑ν−1
l=0 elf

�
i fje

�
l = f�

i fj
∑q

l=0 ele
�
l =: f�

i fjIq,ν−1, where Iq,ν−1 =∑ν−1
l=0 ele

�
l . It follows that rank(Iq,ν−1) = min{q, ν}. Furthermore we have f�

i fj = 0 for
i �= j and f�

i fi = 1 iff i ≤ r − 1. We conclude that Ā(Ā)� is block diagonal, where
the diagonal ii-blocks are equal to Iq,ν−1 for i ≤ r − 1 and zero otherwise. The number
of nonzero diagonal blocks is equal to min{μ, r}, hence the rank of Ā(Ā)� is equal to
min{μ, r} × min{ν, q}.

Assume that Ā is fat and that μ ≤ r and ν ≥ q. Then the rank of Ā equals μq,
the number of rows of Ā. For the converse statement we assume that μ > r (the case
ν < q can be treated similarly). In this case the rank becomes r × min{ν, q}, which is
strictly less than μq, the number of rows of Ā, which then has rank deficiency. The dual
statements for a tall Ā follow by symmetry.

Assume next that the matrix Ā is square. It has full rank iff the two sets of conditions
for the tall and fat case hold simultaneously, which yields the assertion on invertibility.
Assume then that μ = r and ν = q. By the computations in the first part of the proof
we see that the diagonal blocks of Ā(Ā)� are all equal to Iq. Since there are now r of
these blocks, we obtain that Ā(Ā)� is the qr × qr identity matrix.

To compute the determinant for this case, we observe that the columns of Ā consist
of all the basis vectors of Rqr, but in a permuted order. Therefore, the determinant is
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equal to plus or minus one. To establish the value of the sign, we compute the number
of inversions of the permutation. This turns out to be equal to 1

4qr(q − 1)(r − 1), which
results in a determinant equal to +1 iff this number is even, and −1 in the other case. If
r = q, then (−1) 1

4 q
2(q−1)2 = (−1) 1

2 q(q−1). A way of computing the number of inversions
is to write the order of the numbering of the column basis vectors in rectangular array.
Decomposing every number x ∈ {0, 1, . . . , qr − 1} in a unique way as x = nq + m with
m ∈ {0, . . . , q−1} and n ∈ {0, . . . , r−1}, we can identify every such x with a pair (m,n).
An inversion i(x, y) occurs when x < y, but in the permuted order x is preceded by y.
For every x the number of inversions i(x, y) is the number of elements in the rectangle
strictly to the South-West of x in the rectangular array. So, if x corresponds to (m,n)
then the number of inversions i(x, y) is equal to (q − 1 −m)n. Summing these numbers
for m = 0, . . . , q − 1 and n = 0, . . . , r − 1 yields the total number of inversions. �
Remark 2.4. In the case were Ā is square and invertible, it is the permutation matrix
having the property vec(X�) = Ā vec(X), for any X ∈ R

q×r.

Corollary 2.5. The rank of the matrix A(z) is for all z ∈ C equal to min{μ, r}×min{ν, q}.
If μq = νr, then A(z) is square and invertible and det(A(z)) = (−1) 1

4 qr(q−1)(r−1).

Proof. The assertion on the rank follows from Theorems 2.2 and 2.3 upon noting that
the matrices Lμ,q(z) and Lν,r(z) are invertible. Since det(Lμ,q(z)) = 1, also the assertion
about the determinant follows. �
3. Factorizations of the matrices M(z) and N (z)

In the present section we obtain a factorization of the matrix polynomial M(z),
from which a factorization of the matrix N (z) follows as a simple corollary. In the next
proposition we use the Kronecker symbol ⊗ to denote tensor products.

Proposition 3.1. The factorization

M(z) =
(
Iμ ⊗ Uq(z)

)
A
(
Iν ⊗Wr(z)

)
(3.1)

holds true. Moreover, M(z) and A have the same rank equal to min{μ, r} × min{ν, r}.

Proof. Computation of the product (Iq ⊗ Uq(z))A(Iq ⊗ Wr(z)) by using the definition
of A as block matrix, yields a matrix that consists of blocks

Uq(z)AkWr(z) =
q−1∑
i=0

r−1∑
j=0

Ak
iju

(i)(z)w(j)(z).

Using Eq. (2.8), we get that this expression reduces to
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q−1∑
i=0

r−1∑
j=0

(
k

i

)
u(i)(z)w(j)(z)δj,k−i =

(q−1)∧k∑
i=0∨(k−r+1)

(
k

i

)
u(i)(z)w(k−i)(z)

=
k∑

i=0

(
k

i

)
u(i)(z)w(k−i)(z),

since u(i)(z) = 0 for i ≥ q and w(k−i)(z) = 0 for i ≤ k − r. Recall that the blocks
M(z) consist of the derivatives dk

dzk (u(z)w(z)). The product rule for differentiation then
yields (3.1). The statement concerning the rank immediately follows from Theorem 2.3,
since Uq(z) and Wr(z) are invertible. �
Remark 3.2. The factorization in Proposition 3.1 exhibits a nice form of symmetry.
Therefore it would be nice if also the matrix A could be factorized in some symmetric
way. There doesn’t seem to be an easy way to do this. Consider a truly symmetric case,
for instance μ = ν = q = r = 2. In this case A is non-singular and we have

A =

⎛⎜⎜⎝
1 0 0 1
0 0 1 0
0 1 0 0
1 0 0 2

⎞⎟⎟⎠ .

A first reasonable factorization in this symmetric case would be of the form A = AA�,
which would imply that A is positive definite. One easily sees that this is not the case.
As a next attempt, one could try to use the singular value decomposition of A, but the
eigenvalues of A are not particularly nice, so this look as a dead end too.

Remark 3.3. Instead of the matrices Uq(z) and Wr(z), one can also use the matrices
Ũq(z) (see (1.3)) and W̃r(z) (see (1.4)) to get a factorization of M(z). One then has to
replace the matrix A with Ã, whose blocks Ãij are equal to Ãi+j , where the matrices
Ãk are specified by their elements

Ãk
ij =

{
k! if i + j = k

0 else.

One then gets

M(z) =
(
Iμ ⊗ Ũq(z)

)
Ã
(
Iν ⊗ W̃r(z)

)
, (3.2)

which can be proved in the same way as (3.1), or by using this identity and the relation

Ãk = DqA
kDr. (3.3)
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Next we derive a factorization of the matrix N (z). Let the matrix Â be defined by its
μ × ν blocks Âij , for i = 0, . . . , μ − 1, j = 0, . . . , ν − 1, where the matrices Âij ∈ R

q×r

have elements

Âij
kl =

{ (
i+j
i

)
if k + l = i + j

0 else,

for k = 0, . . . , q − 1, l = 0, . . . , r − 1.

Proposition 3.4. The factorization

N (z) =
(
Iμ ⊗ Ũq(z)

)
Â
(
Iν ⊗ W̃r(z)

)
(3.4)

holds true. The matrices A and Â are related through

(Dμ ⊗ Iq)Â(Dν ⊗ Ir) = (Iμ ⊗Dq)A(Iν ⊗Dr). (3.5)

Further relations between A, Ã and Â are

Ã = (Dμ ⊗ Iq)Â(Dν ⊗ Ir) (3.6)

= (Iμ ⊗Dq)A(Iν ⊗Dr) (3.7)

Proof. The proof of the factorization (3.4) is similar to the proof of (3.1). Relation (3.5)
follows by an elementary computation. Likewise one proves (3.6) and (3.7). �
Proposition 3.5. Additionally we have the following factorizations of M(z) and N (z).

A(z) =
(
Ũμ(z) ⊗ Iq

)
A(0)

(
W̃ν(z) ⊗ Ir

)
(3.8)

M(z) =
(
Iμ ⊗ Ũq(z)

)
M(0)

(
Iν ⊗ W̃r(z)

)
(3.9)

M(z) =
(
Ũμ(−z) ⊗ Uq(z)

)
A(z)

(
W̃ν(−z) ⊗Wr(z)

)
(3.10)

N (z) =
(
Uμ(z)−1 ⊗ Uq(z)

)
A(z)

(
Wν(z)−1 ⊗Wr(z)

)
(3.11)

N (z) =
(
Iμ ⊗ Ũq(z)

)
N (0)

(
Iν ⊗ W̃r(z)

)
(3.12)

Proof. First we show an auxiliary result. Let Pμ,q(z) = Lμ,q(z)Lμ,q(0)−1. Then

Pμ,q(z) = Ũμ(z) ⊗ Iq. (3.13)

Indeed, by direct computation starting from the definition of Lμ,q(z), one finds that the
ij-block Pμ,q(z)ij equals

(
i
j

)
zi−jIq for 0 ≤ j ≤ i ≤ μ − 1. Since Ũμ(z)ij =

(
i
j

)
zi−j , the

result follows.
We now proceed to prove the indentities. Use (2.9), both for arbitrary z and z = 0,

and Eq. (3.13) to get (3.8). To obtain (3.9), in the same vain we use (3.1) twice. Then
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(3.10) follows upon combining (3.8) and (3.1). Finally, (3.11) follows from (3.10) and
(1.2) and (3.12) follows from (3.9) and (1.2). �

In the situation where M(z) and N (z) are square, we are able to compute their
determinants.

Corollary 3.6. Let μq = νr. Then all relevant matrices are square and we have the
following expressions for the determinants of M(z) and N (z).

det
(
M(z)

)
=

(
q−1∏
i=0

i!
)μ( r−1∏

j=0
j!
)ν

det(A),

det
(
N (z)

)
= det(Â),

=
(

μ−1∏
i=0

i!
)q( ν−1∏

j=0
j!
)r

det(A),

with det(A) given in Corollary 2.5. Hence the matrices M(z) and N (z) are unimodular.

Proof. The matrix Iμ⊗Ũq(z) has determinant one, which gives the first equation in view
of (3.4). Use (3.2), (3.3) and its consequence

det(Ã) =
(
det(Dq)

)μ(det(Dr)
)ν det(A)

to get the formula for det(M(z)). Then the last equation follows from (3.5). �
In the next sections we investigate and characterize the kernel of the matrix N (z) for

different values of the parameters. It turns out that characterizing the kernel of N (z)
yields more elegant results than characterizing the kernel of M(z). On the other hand, a
factorization of M(z) leads to more elegant expressions than factorizations of N (z). Of
course, in view of (1.2), results for one of the two can easily be transformed into results
for the other. We will focus on the kernel of N (z) only, simple because the obtained
results have a more elegant appearance. As it turns out, it is instrumental to consider
the kernel of N 0(z) (which is N (z) for μ = 1) first, since the results obtained for this
case, serve as building blocks for the kernel of N (z).

4. Characterization of the kernel of N 0(z)

We will investigate the kernel of N 0(z) for different values of ν, q and r. This is
in different notation the problem alluded to in the introduction and earlier investigated
in [8] for a special case. Notice that N 0(z) is q×rν-dimensional. Furthermore for ν ≤ q all
derivatives u(k)(z) (k ≤ ν − 1) are nonzero and moreover linearly independent vectors,
whereas u(k)(z) ≡ 0 for k ≥ q. It follows that the set span{u(z), . . . , uν−1(z)} has
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dimension equal to min{ν, q}. It is then an easy exercise to directly see that the rank
of N 0(z) is also equal to min{ν, q}. Of course, this also follows from Proposition 3.4.
In order to characterize the kernel of N 0(z), we have to discern three different cases.
These are ν ≤ q, q + 1 ≤ ν < q + r and ν ≥ q + r, each case being treated in a
separate section. In all cases, our aim is to find simple, transparent parametrizations of
the kernels.

4.1. The case ν ≤ q

Let F (z) be the r × (r − 1) matrix given by

F (z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−z 0 · · · · · · 0
1 −z 0 · · · 0
0 1

. . . . . .
...

...
. . . . . . . . . 0

...
. . . . . . −z

0 · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Observe the trivial but crucial property, that the columns of F (z) span the (r−1)-dimen-
sional null space of w(z).

Next we consider the matrix K(z) that has the following block structure. It consists of
matrices Kij(z) (i = 0, . . . , ν− 1, j = 0, . . . , ν− 1) where each Kij(z) has size r× (r− 1)
and is given by

Kii(z) = F (z),

Ki,i+1(z) = −F ′(z),

whereas all the other blocks are equal to zero. For r = 1 the matrix K(z) is empty and
by convention we say that the columns of K(z) in this case span the vector space {0}.
Note that K(z) has dimensions νr × ν(r − 1).

The matrix K(z) looks as follows, where we suppress the dependence on z and omit
zero blocks.

K = Iν ⊗ F + Sν ⊗ F ′ =

⎛⎜⎜⎜⎜⎜⎝
F F ′

F F ′
. . . . . .

. . . F ′

F

⎞⎟⎟⎟⎟⎟⎠ , (4.1)

where Iν is the ν-dimensional unit matrix and Sν the ν-dimensional shift matrix, with
elements Sij = δi+1,j .
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Proposition 4.1. Let ν ≤ q. The νr× ν(r− 1) matrix K(z) has rank ν(r− 1) and is such
that N 0(z)K(z) ≡ 0. In other words, the columns of K(z) form a basis for the kernel
of N 0(z).

Proof. Pick the j-th block column of K(z), Kj(z) say (j ∈ {0, . . . , ν − 1}). We compute
N 0(z)Kj(z). For j = 0, this reduces to M(z)F (z), which is zero, since w(z)F (z) = 0.
Then, for j ≥ 1 we have Kj−1,j(z) = F ′(z). Hence, for j ≥ 1 we get (using that
F (k)(z) = 0 for k > 1),

N 0(z)Kj(z) =
ν−1∑
i=0

N 0
i (z)Kij(z)

= 1
j!M

(j)(z)F (z) + 1
(j − 1)!M

(j−1)(z)F ′(z)

= 1
j!
(
M (j)(z)F (z) + jM (j−1)(z)F ′(z)

)
= 1

j!
(
M(z)F (z)

)(j)

= 0.

Hence N 0(z)K(z) = 0, so all columns of K(z) belong to kerN 0(z). Since we know that
the rank of N 0(z) is equal to ν, we get that dim kerN 0(z) = rν − ν = (r − 1)ν, which
equals the number of columns of K(z). Since K(z) is upper triangular with the full rank
matrices F (z) on the block-diagonal, it has full rank. Therefore, the columns of K(z)
exactly span the null space of N 0(z). �
Remark 4.2. A nice feature of the matrix K(z) in Proposition 4.1 is that it is a matrix
polynomial of degree 1, only whereas the matrix polynomial N 0(z) has degree q+ r− 2.

4.2. The case q + 1 ≤ ν < q + r

Next we consider what happens if q + 1 ≤ ν ≤ q + r − 1. Note that this case is void
if r = 1. Henceforth we assume that r ≥ 2. Let the matrix G(z) ∈ R

r×r have elements
Gij(z) = zj−i−1 for j > i and zero else. With S = Sr the r-dimensional shift matrix, we
have the compact expression G(z) = S

∑∞
k=0(zS)k, since Sk = 0 for k ≥ r. We now give

some auxiliary results.

Lemma 4.3. Let G(z) be as above and let S be the shifted r×r identity matrix, Sij = δi+1,j.
It holds that

G(z) = S(I − zS)−1 (4.2)
1
G(j)(z) = Sj+1(I − zS)−j−1 (4.3)
j!
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1
j!G

(j)(z) = G(z)j+1 (4.4)

1
(j + 1)!G

(j+1)(z) = 1
j!G

(j)(z)G(z), (4.5)

and the matrices G(j)(z) and G(i)(z) commute for all i, j ≥ 0. One also has the following
two equivalent properties

1
j!w

(j)(z) = w(z)G(z)j , (4.6)

1
(j + l)!w

(j+l)(z) = 1
j!w

(j)(z)G(z)l. (4.7)

Moreover,

(
w(z)G(z)

)(k) = (k + 1)!w(z)G(z)k+1. (4.8)

Proof. To prove (4.2), we recall that Sj = 0 for j ≥ r. Hence

G(z) = S

∞∑
k=0

(zS)k = S(I − zS)−1.

Then (4.3) simply follows by differentiation, which immediately yields (4.4), from which
(4.5) also follows.

We next prove (4.6) for j = 1. This is then equivalent to w′(z)(I − zS) = w(z)S,
which can be verified by elementary calculations. We proceed by induction and assume
that (4.6) holds. Then we have

1
(j + 1)!w

(j+1)(z) = 1
(j + 1)!

d
dzw

(j)(z)

= j!
(j + 1)!

d
dz

(
w(z)G(z)j

)
= j!

(j + 1)!
(
w′(z)G(z)j + jw(z)G(z)j−1G′(z)

)
= j!

(j + 1)!
(
w(z)G(z)j+1 + jw(z)G(z)j+1)

= w(z)G(z)j+1.

This proves (4.6), which is easily seen to be equivalent to (4.7). Eq. (4.8) follows by
induction, using (4.6). �
Remark 4.4. In fact, above statements about G(z) also follow from the parallel ones
concerning w(z) and the relation
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G(z) =

⎛⎜⎝ w(z)S
...

w(z)Sr

⎞⎟⎠ .

Indeed, since the matrices G(z) and S commute, one has for instance

1
j!w

(j)(z)S = w(z)SG(z)j ,

which together with similar relations leads to (4.4).

Lemma 4.5. One has for j ≥ 1

1
j!
(
M (j)(z) − u(j)(z)w(z)

)
= 1

(j − 1)!M
(j−1)(z)G(z). (4.9)

For j ≥ q, this reduces to

1
j!M

(j)(z) = 1
(j − 1)!M

(j−1)(z)G(z). (4.10)

More generally, one has for m, p ≥ 0

M (q−1+p+m)(z)
(q − 1 + p + m)! = M (q−1+m)(z)

(q − 1 + m)! G(z)p = M (q−1)(z)
(q − 1)! G(z)p+m. (4.11)

Proof. Recall that M(z) = u(z)w(z). Below we use (4.7) to compute

1
j!M

(j)(z) = 1
j!

j∑
i=0

(
j

i

)
u(j−i)(z)w(i)(z)

=
j∑

i=0

u(j−i)(z)
(j − i)!

w(i)(z)
i!

=
j∑

i=1

u(j−i)(z)
(j − i)!

w(i−1)(z)
(i− 1)! G(z) + u(j)(z)

j! w(z)

= 1
(j − 1)!

j∑
i=1

(
j − 1
i− 1

)
u(j−i)(z)w(i−1)(z)G(z) + u(j)(z)

j! w(z)

= 1
(j − 1)!

j−1∑
l=0

(
j − 1
l

)
u(j−1−l)(z)w(l)(z)G(z) + u(j)(z)

j! w(z)

= 1
M (j−1)(z)G(z) + u(j)(z)

w(z).
(j − 1)! j!
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Eq. (4.10) follows from (4.9), because u(j) = 0 for j ≥ q. Finally, (4.11) follows by
iteration of (4.10). �

We consider the matrix polynomial K̄(z) which for the present case has the following
structure. For i, j = 0, . . . , q − 1 it has blocks K̄ij(z) of size r × (r − 1) such that
K̄jj(z) = F (z) and K̄j−1,j(z) = F ′(z), F (z) as before. For i, j = q, . . . , ν − 1 the
blocks are K̄jj(z) = Ir and K̄j−1,j(z) = −G(z), all of size r × r. Finally, we have that
K̄q−1,q(z) = −G(z). All other blocks are equal to zero. Notice that K̄(z) is of size
νr × (νr − q). One easily verifies that K̄(z) has full column rank.

The matrix K̄(z) looks as follows, where again we suppress the dependence on z and
omit zero blocks.

K̄ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F F ′

F F ′

. . . . . .
. . . F ′

F −G

Ir −G

Ir −G

. . . . . .
. . . −G

Ir

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.12)

A compact expression for K̄ is

K̄ =
(
Iq ⊗ F + Sq ⊗ F ′ −�qf�ν−q ⊗G

0 Iν−q ⊗ Ir − Sν−q ⊗G

)
, (4.13)

where fν−q is the first standard basis vector of Rν−q and �q the last standard basis vector
of Rq.

Proposition 4.6. Let q + 1 ≤ ν ≤ q + r − 1. The νr × (νr − q) matrix K̄(z) is such
that N 0(z)K̄(z) ≡ 0. In other words, the columns of K̄(z) form a basis for the kernel
of N 0(z).

Proof. Next we proceed as in the proof of Proposition 4.1. We pick the j-block col-
umn K̄j(z). If 0 ≤ j ≤ q − 1, then K̄jj(z) = F (z) and K̄j−1,j(z) = F ′(z), whereas all
other K̄ij(z) are zero. The computation of N 0(z)K̄j(z) is then exactly as in the previous
proof. Next we consider the case where q ≤ j ≤ ν − 1, which is quite different. Again
we pick the j-th block column of K̄(z). Recall the definition of the K̄ij(z) for this case.
We get,
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N 0(z)K̄j(z) =
ν−1∑
i=0

N 0
i (z)K̄ij(z)

= 1
j!M

(j)(z) − 1
(j − 1)!M

(j−1)(z)G(z)

= 0,

in view of Eq. (4.10). This shows that K̄(z) belongs to the kernel of N 0(z). Since N 0(z)
has rank q, the dimension of the kernel is equal to νr − q, which is equal to the rank of
K̄(z). Hence the columns of K̄(z) span this kernel. �

Post-multiplying the matrix K̄(z) by

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ir−1 0
Ir−1 0

. . . . . .
. . . 0

Ir−1

Ir G · · · · · · Gν−q−1

Ir G · · · Gν−q−2

. . . . . .
. . . G

Ir

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we obtain ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F F ′

F F ′

. . . . . .
. . . F ′

F −G −G2 · · · · · · −Gν−q

Ir
Ir

. . .
. . .

Ir

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

an alternative matrix whose columns span kerN 0(z).
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4.3. The case ν ≥ q + r

For this case, the kernel of N 0(z) is closely related to what we have obtained in the
previous case.

Proposition 4.7. Let ν ≥ q + r. Consider the matrix K̄∗(z) of (4.12) in the special case
that ν = q+ r−1, then K̄∗(z) has (q+ r)(r−1) columns. We have that kerN 0(z), which
is now νr − q-dimensional, is the product of the space spanned by the columns of K̄∗(z)
and R

r(ν+1−q−r).

Proof. Since the highest power of z that appears in N 0(z) is q + r − 2, we have
that the matrices M (j)(z) are identically zero if ν ≥ q + r − 1, whereas the ma-
trix ( 1

0!M(z), . . . , 1
(q+r−2)!M

(q+r−2)(z)) is the same as the matrix N 0(z) for the case
ν = q + r − 1. The assertion follows by application of Proposition 4.6. �
5. Characterization of the kernel of N (z)

We have seen that we had to distinguish three different cases to describe the kernel
of N 0(z). The same distinction has to be made in the present section.

5.1. The case ν ≤ q

First we introduce some more notation. For the matrix K(z) of (4.1) we now write
K0(z) and for k = 1, . . . , r− 2, we define Kk(z) in the same way as K(z), but now with
F replaced with Fk(z), an (r− k)× (r− 1− k) matrix having the same structure as the
original F (z) of Section 4.1, so Fk(z)ij = −z, if i = j and Fk(z)ij = 1, if i = j + 1. In
particular F0(z) = F (z). Formally, for 1 ≤ j ≤ r − 2, we have

Fk(z) = ( Ir−k 0(r−k)×k )F (z)
(

Ir−k−1
0k×(k−j−1)

)
,

whereas Fk(z) is the empty matrix for k ≥ r − 1. By Kμ−1(z) for μ < r, we denote the
product K0(z)K1(z) · · ·Kμ−1(z) of size νr× ν(r−μ), whereas we take Kμ−1(z) the zero
matrix for μ ≥ r.

For j = 0, . . . , r − 1 we put

wj(z) = w(z)
(

Ir−j

0j×(r−j)

)
=

(
1, z, . . . , zr−1−j

)
and Mj(z) = u(z)wj(z). With this convention, we have w0 = w, M0 = M .
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Lemma 5.1. Let w1(z) = (1, z, . . . , zr−2) and M1(z) = u(z)w1(z). For j ≥ 1 one has

w(j)(z)F (z) = −jw(j−1)(z)F ′(z) = jw
(j−1)
1 (z) (5.1)

M (j)(z)F (z) = −jM (j−1)(z)F ′(z) = jM
(j−1)
1 (z). (5.2)

Proof. Since w(z)F (z) = 0, also dj

dzj (w(z)F (z)) = 0 for all j ≥ 1. It then follows that
w(j)(z)F (z) + jw(j−1)(z)F ′(z) = 0, since all higher order derivatives of F vanish. Using
−w(z)F ′(z) = w1(z), we arrive at (5.1). Similarly, one obtains (5.2). �
Theorem 5.2. The kernel of N (z) is spanned by the columns of Kμ−1(z) and its dimension
is equal to ν(r − μ)+. Hence the rank of N (z) is equal to ν min{μ, r}. In particular the
matrix N (z) has full rank iff μ ≥ r.

Proof. The arguments used in the proof of Proposition 4.1 can also be applied to this
more general case. Let for k ≥ 0

N k(z) = 1
k!

(
1
0!M

(k), . . . ,
1

(ν − 1)!M
(k+ν−1)(z)

)
.

Proposition 4.1 yields N 0(z)K0(z) = 0, and therefore N 0(z)Kμ−1(z) = 0. Consider
now k ≥ 1. As before, Kj(z) denotes the j-th block-column of K0(z) = K(z). Then,
from (5.2) it follows that

N k(z)K0(z) = 1
k!M

(k)(z)F (z) = 1
(k − 1)!M

(k−1)
1 (z).

For j ≥ 1 we get

N k(z)Kj(z) = 1
k!

(
1

(j − 1)!M
(k+j−1)(z)F ′(z) + 1

j!M
(k+j)(z)F (z)

)
= 1

(k − 1)!j!M
(k+j−1)
1 (z),

where we used (5.2) again. It follows that for k ≥ 1

N k(z)K0(z) = N k−1
1 (z), (5.3)

where

N k−1
1 (z) = 1

(k − 1)!

(
1
0!M

(k−1)
1 , . . . ,

1
(ν − 1)!M

(k+ν−2)
1 (z)

)
,

which is a matrix of size q×ν(r−1). Invoking Proposition 4.1 again, we obtain for k = 1
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N 1(z)K0(z)K1(z) = N 0
1 (z)K1(z) = 0,

and hence N 1(z)Kμ−1(z) = 0. Assume that μ < r. To have N (z)Kμ−1(z) = 0, we need
N k(z)Kμ−1(z) = 0 for k = 0, . . . , μ − 1. This now follows by iteration of (5.3). In fact,
by induction, one can show

N k(z)K0(z) · · ·Kj−1(z) = N k−j
j (z) for j ≤ k, (5.4)

where

N k−j
j (z) = 1

(k − j)!

(
1
0!M

(k−j)
j , . . . ,

1
(ν − 1)!M

(k+ν−j−1)
j (z)

)
.

For j ≥ k + 1 one has N k(z)K0(z) · · ·Kj−1(z) = 0.
Since each of the matrices Kk(z) for k < r − 1 has full rank, which is equal to

ν(r − k − 1), we get that Kμ−1(z) has rank equal to ν(r − μ). All assertions for μ < r

now follow. On the other hand, for μ ≥ r, the matrix N (z) has rank equal to νr, and
therefore has a zero kernel. �
Remark 5.3. The matrix Kμ−1(z) for μ ≤ r−1, which is of size νr×ν(r−μ) turns out to be
upper block-triangular. Consider for this case the product Fμ−1(z) = F0(z) · · ·Fμ−1(z).
Then one has for j ≥ i the ij-block

Kμ−1(z)ij = 1
(j − i)!F

(j−i)
μ−1 (z),

which can easily be shown by induction.

5.2. The case q + 1 ≤ ν < q + r

Next we extend the result of Proposition 4.6 to obtain the kernel of the matrix N (z)
for the present case. The approach that we follow is the same as the one leading to
Theorem 5.2.

To obtain our results, we need to introduce additional notation. Let Gkj(z) denote
the upper left block of G(z) having size (r − k) × (r − j) for 0 ≤ k, j ≤ r − 1. So

Gkj(z) = ( Ir−k 0(r−k)×k )G(z)
(

Ir−j

0j×(r−j)

)
.

We also need the matrices G0(z) = Ir, and Gi(z) = Gi,i−1(z) · · ·G10(z) ∈ R
(r−i)×r, for

0 < i ≤ r − 1.
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Lemma 5.4. It holds that Gjj(z)Gj,j−1(z) = Gj,j−1(z)Gj−1,j−1(z) for j ≥ 1 and for
j > i > k ≥ 0 one has Gji(z)Gik(z) = Gj,i−1(z)Gi−1,k(z) = Gjk(z)Gkk(z).

Proof. The first assertion follows from the decomposition

Gj−1,j−1 =
(
Gj,j−1

0

)
=

(
Gjj g

0 0

)
,

where g is the last column of Gj,j−1. For the proof of the second assertion we need the
following property of the shift matrix S ∈ R

k (k according to the context): ĨS = S,
where

Ĩ =
(
Ik−1 0

0 0

)
.

Since any Gii(z) is of the form S(I−zS)−1 (with S of size (r−i)×(r−i), see Lemma 4.3),
we have I0Gii(z) = Gii(z). Then we compute

GjiGik = ( I 0 )Gi−1,i−1

(
I

0

)
( I 0 )Gi−1,i−1

(
I

0

)
= ( I 0 )Gi−1,i−1

(
I 0
0 0

)
Gi−1,i−1

(
I

0

)
= ( I 0 )Gi−1,i−1ĨGi−1,i−1

(
I

0

)
= Gj,i−1Gi−1,k. �

Lemma 5.5. For i ≥ 1, it holds that

1
i!G

(i)
i,0(z) = Gi0(z)G(z)i

Gi(z) = Gi0(z)G(z)i−1 (5.5)

Gii(z)Gi(z) = Gi(z)G(z). (5.6)

Proof. Using the definition of Gi0, the equality 1
i!G

(i)
i,0 = Gi0G

i immediately follows
from (4.4). The second equality (5.5) is obviously true for i = 0. We use induction. Let
i ≥ 1 and assume that Gi = Gi0G

i−1. Then, using Lemma 5.4, Gi+1G = Gi+1,iGiG =
Gi+1,iGi0G

i = Gi+1,0G
i+1. To prove (5.6), we use (5.5) and Lemma 5.4 to write GiiGi =

GiiGi0G
i = Gi0GGi = GiG. �

Lemma 5.6. Let wj(z) and Mj(z) be as in Section 5.1. It holds that

w
(k)
j (z)Gj(z) = w(k)Gj(z) (5.7)
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1
k!w

(k)
j (z)Gj(z) = 1

(k + j)!w
(k+j)(z) (5.8)

M
(k)
j (z)Gj(z) = M (k)(z)G(z)j . (5.9)

Moreover, for k ≥ 0 it holds that

M
(q−1+k)
j (z)

(q − 1 + k)! Gj(z) = 1
(q − 1)!M

(q−1)(z)Gk+j+1. (5.10)

Proof. We need the following observation. For a row vector x of appropriate length and
a scalar y, one has

(x, y)Gjj = xGj,j−1, (5.11)

because

Gjj =
(
Gj,j−1

0

)
.

We now show (5.7). It is obviously true for j = 0. Assume it holds for some j ≥ 0.
We get, using (5.6) and (5.11)

w
(k)
j+1Gj+1 = w

(k)
j+1Gj+1,jGj

= w
(k)
j GjjGj

= w
(k)
j GjG

= w(k)Gj+1.

Eq. (5.8) follows by combining (5.7) and (4.7), whereas (5.9) is an immediate consequence
of (5.7). Next we compute, using (5.9) and (4.11),

M
(q−1+k)
j (z)

(q − 1 + k)! Gj(z) = M (q−1+k)(z)
(q − 1 + k)! G(z)j

= M (q−1)(z)
(q − 1)! G(z)k+j+1,

which yields (5.10). �
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Let for j ≤ r − 2 the matrix K̄j(z) be given by

K̄j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Fj F ′
j

Fj F ′
j

. . . . . .
. . . F ′

j

Fj − 1
j!G

(j)
j0

I −G
I −G

. . . . . .
. . . −G

I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.12)

Here K̄j has q diagonal entries Fj and ν − q diagonal entries I = Ir. Hence K̄j has
dimensions (νr− qj)× (νr− q(j + 1)). A compact expression of K̄j is as follows. Let �q
be the last standard basis vector of Rq, fν−q the first basis vector of Rν−q, and Sq the
shift matrix of size q × q. Then, similar to (4.13),

K̄j =
(
Iq ⊗ Fj + Sq ⊗ F ′

j −�qf�ν−q ⊗ 1
j!G

(j)
j0

0 Iν−q ⊗ Ir − Sν−q ⊗G

)
.

Note that the matrices Fj are empty for j ≥ r− 1, 1
(r−1)!G

(r−1)
r−1,0(z) = (0, . . . , 0) and that

G
(j)
j0 is empty for j ≥ r. Hence we define

K̄r−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0q×r

I −G
I −G

. . . . . .
. . . −G

I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.13)

a matrix of size (νr − q(r − 1)) × (ν − q)r, whereas for j ≥ r we define

K̄j =

⎛⎜⎜⎜⎜⎜⎜⎝

I −G
I −G

. . . . . .
. . . −G

I

⎞⎟⎟⎟⎟⎟⎟⎠ , (5.14)

a matrix of size (ν − q)r × (ν − q)r.
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In what follows, we need the matrices K̄i(z) = K̄0(z) · · · K̄i(z), where the matri-
ces K̄i(z) have been introduced in (5.12), (5.13), (5.14). Then K̄i(z) is of size νr ×
(νr− q(i+1)) for i ≤ r− 2 and of size νr× (ν− q)r for i ≥ r− 1. Note that K̄i is always
of full column rank. The next lemma extends Eq. (5.4), obtained for the case ν ≤ q.

Lemma 5.7. Let 0 ≤ i ≤ r − 1. For 0 ≤ i < k one has

N k(z)K̄i(z) = N k−i−1
i+1

(
Iq ⊗ Ir 0

0 Iν−q ⊗ Gi+1

)
=

(
R1

ik(z),R2
ik(z)

)
(5.15)

where R1
ik(z) ∈ R

q×(r−i−1)q and R2
ik(z) ∈ R

q×(r−i−1)(ν−q) are explicitly given by

R1
ik(z) = 1

(k − i− 1)!

(
M

(k−i−1)
i+1 (z)

0! , · · · ,
M

(k+q−i−2)
i+1 (z)
(q − 1)!

)
,

R2
ik(z) = 1

(k − i− 1)!

(
M (k+q−i−1)(z)G(z)i+1

q! , · · · , M
(k+ν−i−2)(z)G(z)i+1

(ν − 1)!

)
.

For i ≥ k it holds that N k(z)K̄i(z) = 0.

Proof. The case k = 0 has been verified in the proof of Proposition 4.6. Let therefore
k ≥ 1. To prove that the assertion holds true for i < k, we assume the right hand side
of formula (5.15) to be valid for N k(z)K̄i−1(z) and proceed by induction. To that end
we multiply it by K̄i and verify the answer. As before, we denote the j-th block column
of K̄i by K̄j

i , for j = 0, . . . , ν − 1. We will discern the four cases j = 0, j = 1, . . . , q − 1,
j = q and j = q + 1, . . . , ν − 1.

Let j = 0. Then the product N kK̄i−1K̄0
i becomes 1

(k−i)!M
(k−i)
i Fi. The ana-

logue of (5.2), with Mi and Fi substituted for M and F , yields that this equals
1

(k−i−1)!M
(k−i−1)
i+1 , as should be the case.

Let 1 ≤ j ≤ q − 1. One obtains

N kK̄i−1K̄j
i = 1

(k − i)!

(
M

(k+j−i−1)
i

(j − 1)! F ′
i + M

(k+j−i)
i

j! Fi

)
. (5.16)

The analogue of Eq. (5.2) yields M
(k+j−i−1)
i F ′

i = −M
(k+j−i)
i

k+j−i . Hence the right hand side
of (5.16) becomes

1
(k − i)!

1
j!

(
− j

k + j − i
M

(k+j−i)
i Fi + M

(k+j−i)
i Fi

)
= 1

(k − i− 1)!
1
j!
M

(k+j−i)
i Fi

k + j − i
.

Invoking the analog of (5.2) again, we can rewrite this as 1
(k−i−1)!

M
(k+j−i−1)
i+1

j! , a typical
block of R1

ik, as required.
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Next we consider the more involved case j = q. In this case the block column K̄q
i has

entry −GiG on the (q − 1)st row (see Lemma 5.5) and I on the q-th row. Hence we get

N kK̄i−1K̄j
i = 1

(k − i)!

(
−M

(k−i+q−1)
i

(q − 1)! GiG + M (k−i+q)

q! Gi

)
. (5.17)

Using (5.9) we obtain M
(k−i+q−1)
i GiG = M (k−i+q−1)Gi+1. In view of (4.11), it holds

that M (k−i+q) = (q + k − i)M (k−i+q−1)G. Hence we van rewrite the right hand side
of (5.17) as

1
(k − i)!

(
−M (k−i+q−1)

(q − 1)! + (q + k − i)M
(k−i+q−1)

q!

)
Gi+1

which is equal to

1
(k − i− 1)!

M (k−i+q−1)

q! Gi+1,

the first block of R2
ik, as was to be shown.

Finally we treat the case q + 1 ≤ j ≤ ν − 1. The block columns K̄j
i have −G at the

(j − 1)st row and I at the j-th row. Hence, we obtain

N kK̄i−1K̄j
i = 1

(k − i)!

(
−M (k−i+j−1)Gi

(j − 1)! G + M (k−i+j)Gi

j!

)
. (5.18)

Since k− i+ j − 1 > q, we apply (4.11) to get M (k−i+j) = (k− i+ j)M (k−i+j−1)G, and
the right hand side of (5.18) reduces to

1
(k − i− 1)!

M (k−i+j−1)Gi+1

j! ,

a typical block of R2
ik, as desired. This settles the proof of the validity of Eq. (5.15). �

Theorem 5.8. It holds that N k(z)K̄i(z) = 0, for i ≥ k. For μ ≤ r−1, the matrix K̄μ−1(z)
is of size νr × (νr − qμ) and has full rank, equal to νr − qμ. If μ ≥ r, K̄μ−1(z) is of
size νr× (ν − q)r and has full rank, equal to (ν − q)r. Summarizing, the kernel of N (z)
is (νr − qmin{μ, r})-dimensional and spanned by the columns of K̄μ−1(z). The rank of
N (z) is equal to qmin{μ, r} < νr and therefore N (z) never has full column rank.

Proof. We show that N k(z)K̄i(z) = 0 for i ≥ k, for which it is clearly sufficient to show
that N k(z)K̄k(z) = 0. Starting point is Eq. (5.15) for i = k − 1. We have

N k(z)K̄k−1(z) =
(
M

(0)
k (z)

, · · · , M
(q−1)
k (z)

,
M (q)(z)G(z)k

, · · · , M
(ν−1)(z)G(z)k

)
.
0! (q − 1)! q! (ν − 1)!
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We multiply this equation with the block columns K̄j
k and, as above, we discern the case

j = 0, 1 ≤ j ≤ q − 1, j = q and j = q + 1, . . . , ν − 1.
For j = 0 we get N k(z)K̄k−1K̄0

k = M
(0)
k Fk = uwkFk = 0, whereas for 1 ≤ j ≤ q − 1

one computes

N kK̄k−1K̄j
k =

M
(j−1)
k

(j − 1)!F
′
k +

M
(j)
k

j! Fk = 0,

in view of an analogue of (5.2).
For j = q, we obtain

N kK̄k−1K̄q
k = −M

(q−1)
k GkG

(q − 1)! + M (q)Gk

q! . (5.19)

We can now use Eqs. (5.10) and (4.10) to get

M
(q−1)
k GkG

(q − 1)! = M (q−1)Gk+1

(q − 1)! = M (q)Gk

q! .

Hence, the right hand side of (5.19) is zero.
Next we consider the case q + 1 ≤ j ≤ ν + 1. We then get, parallel to (5.18),

N kK̄i−1K̄j
k =

(
−M (j−1)G

(j − 1)! + M (j)

j!

)
Gk,

which is zero, in view of Eq. (5.10).
To show that N (z)K̄μ−1(z) = 0, one has to show that N k(z)K̄μ−1(z) = 0, for all

k ≤ μ − 1, but this has implicitly been shown above. The other statements in the
theorem have already been addressed before. The theorem is proved. �
5.3. The case ν ≥ q + r

We follow the approach leading to Proposition 4.7. We observe that the matrix N (z)
for ν ≥ q + r can be decomposed as

N (z) = (N∗(z) 0μq×r(ν−q−r−1) ) ,

where N∗(z) is the “N (z) matrix” for the case ν = q+r−1, since all derivatives of M(z)
of order higher than q + r − 2 vanish. Let K̄μ−1

∗ (z) be the K̄μ−1(z) matrix for the case
ν = q + r − 1. Put

¯̄K
μ−1

=
(
K̄μ−1

∗ 0
)
,
0 I
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where I is the identity matrix of order r(ν − q− r− 1). If μ < r, then K̄μ−1
∗ (z) is of size

(q + r− 1)r× (r(r− 1) + (r− μ)q), and if μ ≥ r, then it has size (q + r− 1)r× r(r− 1).
Then ¯̄K

μ−1
(z) has size νr × (νr − μq) for μ < r and has size νr × (ν − q)r for μ ≥ r. In

short, ¯̄K
μ−1

(z) has dimensions νr × (νr − qmin{μ, r}).

Theorem 5.9. Let ν ≥ q + r. The kernel of the matrix N (z) is spanned by the columns
of ¯̄K

μ−1
(z), has dimension νr − μq if μ < r and dimension (ν − q)r if μ ≥ r. So

dim ker(N (z)) = νr − qmin{μ, r}.

Proof. Similar to the proof of Proposition 4.7, using the results of Theorem 5.8 for the
case ν = q + r − 1. �
6. Intermezzo, properties of A0(z)

The results of this section will be used in Section 7, where we want to find (special)
right inverses of the matrix M0(z).

We focus on the matrix A0 = (A0, . . . , Aν−1) ∈ R
q×νr, the first block row of A,

the matrix defined in Section 2. One directly sees that the rank of A0 is equal to
min{q, ν}, although it also follows from Theorem 2.3 with μ = 1. Hence A0 has full
rank iff ν ≥ q. We introduce the matrix B0 ∈ R

νr×q consisting of the r× q blocks Bk as
follows.

B0 =

⎛⎝ B0
...

Bν−1

⎞⎠ (6.1)

where each Bk has elements

Bk
ij =

{
(−1)i

(
q

k+1
)

if i + j = k

0 else,

for i = 0, . . . , r − 1, j = 0, . . . , q − 1.

Lemma 6.1. Let ν ≥ q. Then A0 has full row rank and A0B0 = I. In other words, B0 is
a right inverse of A0.

Proof. We have to compute the ij-elements of T :=
∑ν−1

k=0 A
kBk. Using the definitions of

the matrices Ak and Bk that only have nonzero entries on corresponding anti-diagonals,
we see that AkBk is a diagonal matrix. Hence we only have to consider the ii-entries
of T . Note that Bk = 0 for k ≥ q. One obtains
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Tii =
q−1∑
k=0

(
AkBk

)
ii

=
q−1∑
k=0

(
k

i

)
(−1)k−i

(
q

k + 1

)

= q!
i!(q − 1 − i)!

q−1∑
k=i

(
q − 1 − i

k − i

)
(−1)k−i

k + 1 .

To compute the latter summation, we write it as

1∫
0

q−1∑
k=i

(
q − 1 − i

k − i

)
(−1)k−ixk dx =

1∫
0

q−1−i∑
j=0

(
q − 1 − i

j

)
(−x)jxi dx

=
1∫

0

(1 − x)q−1−ixi dx

= B(q − i, i + 1),

by definition of the β-function B(·, ·). Using the well-known fact that this can be com-
puted in terms of Γ -functions (B(α, β) = Γ (α)Γ (β)/Γ (α + β)) we obtain

B(q − i, i + 1) = (q − 1 − i)!i!
q! .

It follows that Tii = 1. �
We need some additional properties.

Lemma 6.2. It holds that Xk := BkS�
q + SrB

k = 0, if k ≥ q or k ≤ r − 1. For the case
r ≤ k ≤ q − 1 (which requires q > r) only the last row of this matrix is nonzero. In fact,
this row is equal to (−1)r−1( q

k+1
)
e�k−r, with the convention that ei denotes the i-th basis

vector of Rq (i = 0, . . . , q − 1).

Proof. We compute the ij-element of Xk = BkS�
q + SrB

k. For i = 0, . . . , r − 1 and
j = 0, . . . , q − 1 it is equal to

Xk
ij =

q−1∑
l=0

Bk
il1{l=j+1} +

r−1∑
l=0

1{i+1=l}B
k
lj

=
q−1∑
l=0

Bk
i,j+11{l=j+1} +

r−1∑
l=0

1{i+1=l}B
k
i+1,j

= Bk
i,j+11{0≤j+1≤q−1} + 1{0≤i+1≤r−1}B

k
i+1,j
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= Bk
i,j+11{0≤j≤q−2} + 1{0≤i≤r−2}B

k
i+1,j

=
(

q

k + 1

)
1{i+j+1=k}

(
(−1)i1{0≤j≤q−2} + (−1)i+11{0≤i≤r−2}

)
=

(
q

k + 1

)
1{i+j+1=k}(−1)i(1{0≤j≤q−2} − 1{0≤i≤r−2}).

Clearly, for i = 0, . . . , r− 2 and j = 0, . . . , q− 2, the last expression in the display equals
zero, as is the case for i = r−1 and j− q−1. We next consider the two remaining cases,
the first being i ≤ r − 2 and j = q − 1. Since we only have to consider i = k − j − 1, we
get i = k− q, which has to be nonnegative, so k ≥ q. But then the binomial coefficient is
equal to zero. The remaining case is i = r− 1. Then we only have to consider j = k− r,
the other values of j again give zero. Note that this implies that k ≥ r is necessary
to get a nonzero outcome, whereas we already know that also k ≤ q − 1 is necessary.
Hence nonzero elements in the last row of Xk can only occur if r ≤ q − 1. Under this
last condition we find Xk

r−1,j =
(

q
k+1

)
(−1)r−11{j=k−r}. Hence the bottom row of Xk

equals
(

q
k+1

)
(−1)r−1(1{k=r}, . . . , 1{k=r+q−1}), which is equal to

(
q

k+1
)
(−1)r−1e�k−r, for

k = r, . . . , q − 1. �
Remark 6.3. Here is an example where Xk as defined in Lemma 6.2 is not equal to zero.
Take k = r = 1 and q = 2. Then B1 = (0 1) and X1 = (1 0).

Proposition 6.4. Define Hk : R → R
r×q by Hk(z) = W̃r(z)D−1

r BkD−1
q Ũq(z). Then Hk

is a constant mapping, Hk(z) ≡ D−1
r BkD−1

q , under the condition k ≥ q or k ≤ r − 1.

Proof. First we prove the following auxiliary results. One has

Ũ ′
q(z) = Ũq(z)DqS

�
q D−1

q (6.2)

W̃ ′
r(z) = D−1

r SrDrW̃r(z). (6.3)

Eq. (6.2) follows from the definition of Ũq(z) and the elementary identity U ′
q(z) =

Uq(z)S�
q . Eq. (6.3) can be proved similarly.

We now compute

H ′
k(z) = W̃ ′

r(z)D−1
r BkD−1

q Ũq(z) + W̃r(z)D−1
r BkD−1

q Ũ ′
q(z)

= D−1
r SrDrW̃r(z)D−1

r BkD−1
q Ũq(z) + W̃r(z)D−1

r BkD−1
q Ũq(z)DqS

�
q D−1

q ,

according to Eqs. (6.2) and (6.3). Putting Ŝr = D−1
r SrDr and Ŝq = DqSqD

−1
q , we see

that Hk satisfies the linear differential equation

H ′
k(z) = ŜrHk(z) + Hk(z)Ŝ�

q . (6.4)
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This equation has a unique solution and we claim that it is given by the constant function
as asserted. To that end we check

ŜrD
−1
r BkD−1

q + D−1
r BkD−1

q Ŝ�
q = D−1

r

(
SrB

k + BkS�
q

)
D−1

q

= 0,

by Lemma 6.2, since k ≥ q or k ≤ r − 1. Furthermore, we have Hk(0) = D−1
r BkD−1

q ,
since Ũq(0) = Iq. �
Remark 6.5. Eq. (6.4) has as the general solution

Hk(z) = exp(Ŝrz)Hk(0) exp
(
Ŝ�
q z

)
, (6.5)

where the exponentials can be computed as finite sums, since S�
q and Sr are nilpotent.

Elementary computations yield for instance that the ij-element of exp(Ŝ�
q z) is given by(

i
j

)
zi−j for i ≥ j and zero otherwise. Hence we obtain exp(Ŝqz) = Ũq(z), which is in

agreement with the definition of Hk(z).
An example of a solution that is not constant is obtained for r = 1 and q = 2. For

the case k = 1 one finds directly from the definition of Hk(z) that H1(0) = B1 = (0 1)
and Hk(z) = ( z 1 ) in view of Remark 6.3. This is in agreement with Eq. (6.5), whose
right hand side is equal to

(0 1)
(

1 0
z 1

)
.

7. The equation M0(z)C = I

We return to one of our original aims, finding a right inverse of the q × νr matrix
M0(z) = (M(z), . . . ,M (ν−1)(z)) ∈ R

q×rν . Recall from Theorem 2.3 and Proposition 3.1
that M0(z) has rank equal to min{ν, q}. Hence the matrix is of full rank iff ν ≥ q.
Equations like M0(z)X = b will in general not have a solution X for a given b ∈ R

νr×1,
if ν < q. In fact, we are interested in solutions X that are independent of z. It is easy to
see that such solutions only exist if b = 0 and then X = 0. The uninteresting case ν < q

will therefore be ignored and the standing assumption in the remainder of this section
is ν ≥ q. Under this assumption, there are two subcases to discern, r ≥ q and r < q.

Proposition 7.1. Assume that r ≥ q and ν ≥ q. Let Iq be the q-dimensional unit
matrix. There exists a constant (not depending on z) matrix C ∈ R

νr×q such that
M0(z)C = Iq for all z. The equation M0(z)X = b for b ∈ R

q then has the constant
solution X = Cb. The constant matrix C is unique iff ν = q. In all cases one can take
C = (Iν ⊗D−1

r )B0D−1
q , with B0 as in (6.1).
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Proof. In this proof we simply write I for Iq. Suppose that we have found a constant
matrix C with the desired property

M0(z)C = I. (7.1)

By differentiation of (7.1) k times, with k = 0, . . . , r− 1, we obtain, recall the definition
of M(z) with μ = r, that

M(z)C =

⎛⎜⎜⎝
I

0
...
0

⎞⎟⎟⎠ . (7.2)

We note that now M(z) is of size rq×rν and has rank equal to rq. Hence M(z) has a right
inverse, M(z)+ say, and a true inverse in the case that ν = q, see e.g. Corollary 3.6. It
follows that C should be the first block-column of M(z)+. Next we use the factorization
(3.1) and note that also A has a right inverse, A+ say. Then

M(z)+ =
(
Iν ⊗Wr(z)−1)A+(Ir ⊗ Uq(z)−1).

Hence, we can choose

C =
(
Iν ⊗Wr(z)−1)A+(Ir ⊗ Uq(z)−1)

⎛⎜⎜⎝
I

0
...
0

⎞⎟⎟⎠ ,

which means that C is the first block-column of M(z)+, so

C =
(
Iν ⊗Wr(z)−1)A+

⎛⎜⎜⎝
Uq(z)−1

0
...
0

⎞⎟⎟⎠ =
(
Iν ⊗Wr(z)−1)(A0)+Uq(z)−1, (7.3)

where (A0)+ is a right inverse of the matrix A0, since A0 is the first block-row of A.
But, a right inverse of A0 is in Proposition 6.1 shown to be B0. Therefore, we can now
explicitly pose our candidate for C,

C =
(
I ⊗Wr(z)−1)B0Uq(z)−1, (7.4)

where B0 as defined in (6.1). Hence we have to show that
(1) the matrix C in (7.4), in fact doesn’t depend on z,
(2) M0(z)C = I. Using matrices introduced in Section 3, we write
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C =
(
I ⊗

(
W̃r(z)−1D−1

r

))
B0D−1

q Ũq(z)−1

=
(
I ⊗ W̃r(−z)D−1

r

)
B0D−1

q Ũq(−z).

Decomposing C as

C =

⎛⎝ C0
...

Cν−1

⎞⎠ ,

where each block Ck (k = 0, . . . , ν − 1) is of size r × q, we get

Ck = W̃r(−z)�D−1
r BkD−1

q Ũq(−z).

Hence we see that Ck = Hk(−z), which was in Proposition 6.4 shown to be constant
and equal to D−1

r BkD−1
q , if we have k ≤ r − 1 or k ≥ q. Obviously, this is true of

k = 0, . . . , r− 1, but for k = r, . . . , ν − 1, we have k ≥ r ≥ q by assumption. This proves
claim (1). Since C is constant in z, we can take z = 0 in (7.4).

For the second one we have

M0(z)C = Uq(z)A0(I ⊗Wr(z)
)
C

= Uq(z)A0(I ⊗Wr(z)
)(
I ⊗Wr(z)−1)BUq(z)−1

= Uq(z)A0BUq(z)−1

= I,

in view of Lemma 6.1. Finally, if ν = q, then M(z) is invertible, which implies that C

is the unique constant matrix solving M0(z)C = I, since in this case Eq. (7.2) has a
unique solution. �
Remark 7.2. The special choice (Ā0)+ = B0 in the proof of Proposition 7.1 is rather
crucial in finding a right inverse of M0(z) that doesn’t depend on z. We illustrate this
with the following example. Our point of departure is Eq. (7.3) with μ = 1.

Recalling (2.10), we can take (A0)+ = Lν,r(0)−1Ā+L1,q(0)−1, with Ā+ any right
inverse of Ā. We choose Ā+ = Ā� and compute

B̄ := Lν,r(0)−1Ā�L1,q(0)−1 = Lν,r(0)−1Ā� ∈ R
νr×q,

because L1,q(0) = Iq. Since Ā�
j = f0e

�
j (Theorem 2.3) and Lν,r(0)−1

ij =
(
i
j

)
(−Sr)i−j , for

the k-th block B̄k of B̄ we get B̄k =
∑ν−1

l=0
(
l
k

)
(−1)l−kfk−le

�
l = f0e

�
k (k = 0, . . . , ν − 1).

We conclude that B̄ = Ā�.
In order to see that this may result in a right inverse of M0(z) that depends on z, we

choose q = r = ν = 2. The conditions of Proposition 7.1 are then satisfied. We have
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M0(z) =
(

1 z 0 1
z z2 1 2z

)
and it follows from the above that

M0(z)+ =
(
I2 ⊗W2(z)−1)B̄U2(z) =

⎛⎜⎜⎝
1 0
0 0
−z 1
0 0

⎞⎟⎟⎠ .

We close this remark by noting that there also other right inverses of M0(z), depending
on z, but still having a simple structure. An example (essentially taken from [8], where
it was only given for ν = q = r in a slightly different situation) is

M0(z)+ =
(
Uq(z)−1

0(ν−q)×q

)
⊗ f0,

where f0 is the first basis vector of Rr. This follows from the easy to verify identity

M0(z)(Iν ⊗ f0) = (Uq(z) 0q×(ν−q) ) .

The assertion of Proposition 7.1 is not true if r < q (the second subcase). Indeed, in the
proof of this proposition we used the fact that all Ck are indeed constant matrices, under
the condition r ≥ q. If this is not the case, r < q, the matrices Ck for k = r, . . . , q − 1
are not constant, in view of Proposition 6.4. Let us give an example to illustrate this.
Consider the case q = ν = 2 and r = 1. Then

M0(z) =
(

1 0
z 1

)
and the equation M0(z)C = I2 has the unique on z depending solution C = C(z) =
M0(z)−1.

We now treat the case ν > q in more detail. To that end we need the following
auxiliary result.

Lemma 7.3. The subspace of the kernel of M0(z) that consists of vectors that are constant
in z, i.e. the intersection

⋂
z ker(M0(z)), is (ν − q)+r-dimensional. This subspace is

equal to the kernel of M(z) with μ = r, which is the same for all z and hence can be
parametrized free of z.

Proof. The first observation is that a vector x in kerM0(z) that doesn’t depend on z

also satisfies M(z)x = 0 for arbitrary μ, in particular for μ = r. The case ν ≤ q follows
from Theorem 5.2, since in this case the kernel of M(z) is the null space for all μ ≥ r.

Let then ν > q. Let x be a column vector consisting of r-dimensional sub-vectors
x0, . . . , xν−1 that don’t depend on z. Recalling that M0 consists of a row of blocks
(uw)(n), we have
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M0x =
ν−1∑
n=0

(uw)(n)xn

=
ν−1∑
n=0

n∑
k=0

(
n

k

)
u(k)w(n−k)

=
ν−1∑
k=0

u(k)
ν−1∑
n=k

(
n

k

)
w(n−k)xn.

The vectors u(k) are zero for k ≥ q and otherwise linear independent. Hence, to have the
above sum equal to zero is equivalent to

ν−1∑
n=k

(
n

k

)
w(n−k)xn = 0 for k = 0, . . . , q − 1.

The equation for arbitrary 1 ≤ k ≤ q − 1 can be differentiated to get

ν−1∑
n=k

(
n

k

)
w(n+1−k)xn = 0,

which, subtracting from the equation for k − 1 yields(
n

k − 1

)
w(0)xk−1 = 0,

valid for k = 1, . . . , q. The only constant solutions to these equations are the zero vectors,
so x0 = · · · = xq−2 = 0.

On the other hand, for k = q − 1 we keep the equation

ν−q∑
m=0

(
m + q − 1

q − 1

)
w(m)xm+q−1 = 0.

Now we relabel the unknowns by setting ym =
(
m+q−1
q−1

)
xm+q−1 to get

ν−q∑
m=0

w(m)ym = 0.

We differentiate this equation j times, with j = 0, . . . , r − 1 to get

⎛⎝ w(0) · · · w(ν−q)
...

...
(r−1) (ν−q+r−1)

⎞⎠ y = 0, (7.5)

w · · · w
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where y is obtained by stacking the ym. The first block-column in the above matrix is W ,
the second can be written as SrW , up to the last one equal to Sν−q

r W . Hence the above
system of equations can be compactly written as

(W SrW · · · Sν−q
r W ) y = 0.

Let Δ be the diagonal matrix with elements Δii = i. A simple computation shows that
SrW = WSrΔ, and therefore Sk

rW = W (SrΔ)k. Writing SrΔ = T , we can rewrite the
last equation in y as

(W WT · · · WT ν−q ) y = 0.

Since W = Wr(z) is invertible for any z, this reduces to

( I T · · · T ν−q ) y = 0.

Since the coefficient matrix has full row rank equal to r, its kernel has dimension
(ν − q + 1)r − r = (ν − q)r. Actually, this kernel is spanned by the columns of the
(ν − q + 1)r × (ν − q)r matrix

⎛⎜⎜⎜⎜⎜⎝
−T

Ir −T

Ir
. . . −T

Ir

⎞⎟⎟⎟⎟⎟⎠ .

This proves the claim. �
Remark 7.4. The result of Lemma 7.3 is also valid for μ > r. This can be seen from
Eq. (7.5). Indeed, if μ > r one has to extend the coefficient matrix with additional rows,
all involving derivatives w(k), with k ≥ r. But these are all equal to zero.

One might think that the assertion of the lemma can alternatively be proven by
explicitly computing the matrix K̄μ−1(z) for μ = r (noting that (D−1

ν ⊗ Ir)K̄μ−1(z)
represents the kernel of M(z) in view of (1.2)) and showing that it is not depending
on z. It turns out that this idea is false, as shown by the following simple exam-
ple.

Let q = 1, r = μ = ν = 3. We compute K̄μ−1(z) and show that it is not free of z.
According to the results of Section 5.2 we find for K̄0, K̄1 and K̄2 the following.
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K̄0(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−z 0 0 −1 −z 0 0 0
1 −z 0 0 −1 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 −1 −z
0 0 0 1 0 0 0 −1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

K̄1(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−z 0 0 −1 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 −1 −z
0 0 1 0 0 0 −1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, K̄2(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 0 −1 −z
0 1 0 0 0 −1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and the product K̄2(z) = K̄0(z)K̄1(z)K̄2(z) yields the kernel of M(z) spanned by the
columns of

(
D−1

3 ⊗ I3
)
K̄2(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 2
0 0 −2 0 0 0
0 0 0 0 0 0
1 0 0 0 −3 −3z
0 1 0 0 0 −3
0 0 1 0 0 0
0 0 0 1

2 0 0

0 0 0 0 1
2 0

0 0 0 0 0 1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We see that the last column of K̄2(z) has a term −3z in the fourth row, hence this
parametrization of ker(M(z)) is not the one we are looking for. The reparametrization
of ker(M(z)) given by (D−1

3 ⊗ I3)K̄2(z)R(z) with

R(z) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 5 6z
0 1 0 0 0 4
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎠

yields (D−1
3 ⊗ I3)K̄2(z)R(z) =: K̂, with



70 A. Klein, P. Spreij / Linear Algebra and its Applications 455 (2014) 32–72
K̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 0
0 0 −2 0 0 0
0 0 0 0 0 0
1 0 0 0 −1 0
0 1 0 0 0 −2
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is free of z. The procedure in the proof of Lemma 7.3 (in this case ym = xm, since
q = 1) yields a kernel of M(z) spanned by column vectors that are not depending on z.
The result of that procedure is the matrix K̂ above.

Proposition 7.5. Let q < ν ≤ r. Then the equation M0(z)C = Iq admits a constant
solution C ∈ R

νr×q. The dimension of the affine space of constant solutions is equal to
(ν − q)rq.

Proof. According to Proposition 7.1 a constant solution C exists. Any other constant
right inverse C ′ is such that the q columns of C ′ − C belongs to the kernel of M0 and
hence to the kernel of M for μ = r. In view of Lemma 7.3, a basis of this kernel can be
obtained can be obtained by choosing (ν − q)r linearly independent vectors. Applying
this result to each the columns of C ′ − C, we obtain the result. �

To illustrate the fact that the constant solution C of Proposition 7.5 is in general not
unique, we consider the case q = 1, r = ν = 2. Then M0(z) = ( 1 z 0 1 ) and all
constant solutions are given by C = Ca,b = ( a 0 b 1 − a )� with a, b ∈ R, which
form an affine space of dimension (ν − q)qr = 2.

Of course all right inverses of N 0(z), also those that depend on z, are given by a much
larger affine subspace. Assume ν ≥ q and let C0(z) be any right inverse of N 0(z). Then
any matrix C(z) = C0(z)+X(z), with X(z) ∈ R

νr×q a matrix whose columns belong to
kerN 0(z) is a right inverse. Since, dim kerN 0(z) = νr − q, the affine subspace of these
right inverses has dimension (νr − q)q.

The natural extension of the equation M0(z)C = Iq is M(z)C = Iμq, with M(z) of
order μq× νr and Iμq the identity matrix of order μq. The matrix M(z) has rank equal
to min{μ, r} × min{ν, q} and therefore has full row rank if and only if ν ≥ q and μ ≤ r.
Hence, under the latter condition, and only then, a right inverse exists, and the equation
M(z)C = Iμq has a solution. This equation can be decomposed as

⎛⎜⎝ M0(z)
...

Mμ−1(z)

⎞⎟⎠ (C0 · · · Cμ−1 ) =

⎛⎜⎜⎜⎜⎝
Iq 0 · · · 0

0 Iq
...

...
. . .

...

⎞⎟⎟⎟⎟⎠ ,
0 · · · 0 Iq
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where every Cj has size νr × q. Parallelling our previous aim, also here one could be
interested in finding solutions C that are constant in z. For C0 we are in the previous
situation, since a constant C0 satisfying M0(z)C0 = Iq, also satisfies Mk(z)C0 = 0 for
all k ≥ 1. The situation for the other Ck is different. Consider for example C1. It should
satisfy M0(z)C1 = 0 and M1(z)C1 = Iq. However, this is impossible for a C1 that is
constant in z, since differentiating M0(z)C1 = 0 yields M1(z)C1 = 0. We conclude that
the equation M(z)C = Iμq for μ ≥ 2 has no constant solutions.

Nonconstant solutions are for instance Moore–Penrose inverses. These can be obtained
by using the Moore–Penrose inverse of the matrix Ā. It follows from the proof of Theo-
rem 2.3 that for μ ≤ r and ν ≥ q, the matrix Ā(Ā)� is the identity matrix. Hence (Ā)�
is a right inverse of Ā. Using then Theorem 2.2 and Proposition 3.1 we obtain that

M(z)+ =
(
Iν ⊗Wr(z)−1)Lν,r(z)−1Ā�Lμ,q(z)−1(Iμ ⊗ Uq(z)−1)

is a right inverse of M(z). The inverses Uq(z)−1 and Wr(z)−1 can be computed eas-
ily, since one has for instance Ũq(z) = Uq(z)Dμ and Ũq(z)−1 = Ũq(−z). The inverses
L−1
ν,r and L−1

μ,q can be computed in view of the formulas just above Theorem 2.2. Since
L−1
ν,r = Lν,r(0)−1, one obtains that its ij-block (i ≥ j) is given by

(
i
j

)
(S�

q )i−j(−1)i−j .
Summarizing, we have

Proposition 7.6. The matrix M(z) has a right inverse iff ν ≥ q and μ ≤ r, in which case
a right inverse is

M(z)+ =
(
Iν ⊗Wr(z)−1)Lν,r(0)−1Ā�Lμ,q(0)−1(Iμ ⊗ Uq(z)−1).

All right inverses form an affine space of dimension (νr − μq)μq.
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