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Risk-neutral default probabilities can be implied from credit default swap (CDS) market
quotes. In practice, mid-CDS quotes are used as inputs, as their risk-neutral counterparts
are not observable. We show how to imply risk-neutral default probabilities from bid
and ask quotes directly by means of formulating the CDS calibration problem to bid
and ask market quotes within the conic finance framework. Assuming the risk-neutral
distribution of the default time to be driven by a Poisson process we prove, under mild
liquidity-related assumptions, that the calibration problem admits a unique solution that
also allows to jointly calculate the implied liquidity of the market.
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1. Introduction

Risk-neutral default probabilities play a crucial role in modeling (counterparty)
credit risk, as for instance in valuation adjustment calculations, and an approach
that is often followed is that of computing them starting from credit default swap
(CDS) market quotes. This paper aims to relate risk-neutral default probabilities

§Corresponding author.

2150017-1

https://dx.doi.org/10.1142/S0219024921500175


July 21, 2021 17:53 WSPC/S0219-0249 104-IJTAF SPI-J071
2150017

M. Michielon, A. Khedher & P. Spreij

and CDS quotes in a two-price economy within the conic finance paradigm by
means of providing a methodology to extract the former from bid and ask quotes
directly, i.e. without relying on any mid-price approximation. Before explaining our
contribution in detail, we first provide a review of the relevant literature concerning
bid-ask pricing and conic finance.

Bid-ask pricing can be modeled, in a consistent manner with risk-neutral val-
uation, in different manners. A possible way to do so is that of transforming the
risk-neutral measure via appropriate concave distortion functions as per Cherny &
Madan (2009). This approach, known as conic finance and introduced in Cherny &
Madan (2010), is based on the idea of modeling illiquid markets as abstract entities
accepting, at zero cost, a convex cone of random variables containing the nonnega-
tive cashflows. By balancing risks and rewards to assess the “quality” or “expected
performance” of contingent claims via the concept of index of acceptability, this
framework allows to use Choquet expectations (Choquet 1953) as building blocks
for computing bid and ask prices.

The former conic modeling framework, which has triggered extensive research
and of which several applications are available in Madan & Schoutens (2016a),
employs a static notion of index of acceptability, which allows to choose amongst
cashflows, at the valuation date, based on their (cumulative) expected terminal
value. This idea has been further extended by Bielecki et al. (2014) and later by
Biagini & Bion-Nadal (2014), amongst others, to a dynamic setup, where dynamic
indices of acceptability are defined in a multi-period setting. Dynamic acceptability
indices allow to re-assess the initial classification of the traded cashflows on the basis
of the latest information available, consistently over time, in the sense that future
preferences are conforming with the current ones. This has led to the possibility
of pricing and hedging in a dynamic conic finance framework for finite probability
spaces in a discrete-time setting as in Bielecki et al. (2012a), where time-dependent
bid and ask prices of contingent claims, potentially including dividends and trans-
action costs, are expressed in terms of dynamic indices of acceptability, and where a
(dynamically-consistent) version of the First Fundamental Theorem of Asset Pric-
ing is provided in terms of no-good-deal conditions. For a unified framework for the
time-consistency between dynamic risk measures and dynamic performance mea-
sures in discrete time, see Bielecki et al. (2018), while a survey concerning the
time-consistency property of dynamic risk and performance measures is available
in Bielecki et al. (2017).

Security prices do not only depend on the direction of the transaction but also
on the size of the order, and different approaches can be considered to include
this additional liquidity charge in the relevant pricing equations. Bion-Nadal (2009)
introduces, in continuous time, an approach providing dynamic bid and ask pro-
cesses for contingent claims which include both the aforementioned liquidity effect,
as well as transaction costs. By replacing scale-invariance with sub-scale-invariance
Rosazza Gianin & Sgarra (2013) develop a dynamic framework, in a continuous-
time setup and given a general probability space, that also captures this additional
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liquidity cost and that allows to value financial securities in terms of g-expectations
(Peng 1997) (comparisons between the definitions of g- and Choquet expectations
are available in Chen et al. (2005, 2013)). Again on general probability spaces,
both liquidity and transaction costs can be included within a dynamic conic finance
approach where pricing is based on g-expectations as in Bielecki et al. (2014).

Within the conic finance paradigm different studies deal with credit-related top-
ics. Eberlein et al. (2001) show that, if assets and liabilities are marked at the bid
and at the ask, respectively, then the potential accounting profitability of a firm
induced by its own credit quality deterioration is eliminated. These ideas are fur-
ther applied in Madan & Schoutens (2016b) in the case of credit and debit valuation
adjustments. Madan (2014) proposes an approach to estimate the parameters of risk
acceptability of CDSs and their time dependence, and applies the methodology to
a period including, but not limited to, the 2008 financial crisis. Therein, the indus-
try practice of taking mid CDS quotes to proxy their risk-neutral counterparts is
adopted and, for each CDS, a flat hazard rate term structure is considered in the
calibration. Further, within the dynamic conic finance framework, bid and ask price
processes for CDSs are constructed in Bielecki et al. (2012a, 2014).

A methodology that allows to jointly calibrate a CDS model to bid and ask
market quotes and to imply risk-neutral default probabilities without computing
them from mid quotes is not yet available. In this paper, we provide an approach
to tackle this problem within the conic finance paradigm. The economic rationale
behind our research question is given by the fact that, while in practice model
parameters are usually calibrated starting from mid quotes as proxies for their risk-
neutral counterparts, in reality a security trades neither at the risk-neutral nor at
the mid-price, but instead either at the bid or at the ask, depending on the direction
of the trade. Thus, one might then want to be able to include in a simple manner
the liquidity effect within their CDS pricing equations, for instance as CDS markets
for single name CDSs not being amongst the most liquid; see Junge & Trolle (2015).
Given our aim of extracting risk-neutral probabilities from the currently-observed
bid and ask CDS quotes, a static approach to conic finance suffices. Moreover, this
allows to easily define a term structure for the liquidity level of the CDS market,
and also to restate the bid-ask calibration problem in terms of recursively solving a
nonlinear constrained system. In the case of CDSs, modeling the default time via a
reduced-form model by explicitly specifying the functional form of its distribution
is a popular choice. In particular, we consider the case of a Poisson process driving
the dynamics of the credit event, of which the standard International Swaps and
Derivatives Association (ISDA) model (White 2014), which is a common choice
amongst financial practitioners, is a possible specification. In these settings, we
show that the bid-ask CDS calibration process has, under some mild assumptions,
a unique solution. Further, the methodology proposed here allows to jointly strip
implied liquidity parameters for CDS markets in the spirit of Corcuera et al. (2012)
with a term structure. To the best of our knowledge, this is the first attempt to
calibrate a credit model using Choquet expectations to bid and ask CDSs quotes
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directly without relying on approximating their risk-neutral counterparts with the
respective mid quotes and, thus, our contribution is novel.

This paper is organized as follows. In Sec. 2, we recall the basics of CDS valuation
in the risk-neutral framework, how Poisson processes can be used to model the
default time for CDS valuation purposes, as well as their calibration to market data.
In Sec. 3, we briefly recall how pricing via distorted expectations works, while in
Sec. 4, we introduce the CDS bid-ask calibration problem in the settings of Cherny
& Madan (2010). We show that the problem admits, under simple assumptions, a
unique solution. We also provide a calibration example, based on the standard ISDA
model, which is a special case of Poisson-based CDS model. Section 5 concludes.

2. Basic Notions and Valuation of CDSs

A CDS is a bilateral derivative contract which involves the transfer of the credit risk
arising from bonds or other forms of debt issued, amongst others, by corporates,
municipalities, or sovereign states. Thus, a CDS is a sort of insurance policy, as it
provides the protection buyer, who might or might not own the underlying credit,a

with protection against a credit event. The formal definition of a credit event is
contract-specific and complex from the legal angle. Therefore, from here onward,
the expressions credit event and default will be used to refer to a set of circumstances
that trigger the protection payment.

A CDS contract involves two parties, i.e. a protection buyer and a protection
seller. The protection seller commits to compensate for the (potential) loss of the
counterparty if a default event for the reference entity occurs within a predeter-
mined time frame. A CDS can be therefore seen as a derivative contract where
the underlying is the default time of the issuing entity. CDSs were initially mainly
physically settled: if default event occurs, then the protection buyer delivers one
of the defaulted bonds of the reference entity to the protection seller, in return for
its par value. However, due to the size of the CDS market it might happen that,
should there not be enough supply of defaulted bonds in the market, an auction is
conducted to determine what the recovery value of the defaulted bond is. In this
case the CDS contract is, thus, cash settled, and this is nowadays the most common
settlement practice (for further details refer to ISDA (2003)). The standardization
process of credit derivatives led by the ISDA, see ISDA (1998, 2003, 2014), has intro-
duced conventions on the way these contracts are traded. These conventions can be
region specific: for example, some conventions for North-American CDSs (CDS big
bang; see Markit (2009b)) might differ from those of European CDSs (CDS small
bang; see Markit (2009a)). Before the CDS standardization process, in a similar
fashion to interest rate swaps, CDSs used to be quoted at par, i.e. the coupon rate
was defined such that the contract had zero value at inception, for both parties.
However, CDSs have now standard coupons and, as a consequence, a nonzero entry

aAs CDSs do not require the buyer of the contract to hold the insured asset.
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cost called upfront payment, which is played on the cash settlement date and that
is usually quoted as a percentage (i.e. as points upfront) of the notional amount.
The upfront payment can be interpreted as an amount reflecting the difference in
value between a par CDS and one with a given standard coupon.

CDSs can be used to estimate the default probabilities of a wide range of issuing
entities by means of appropriate pricing models calibrated using the available CDS
market data. These implied probabilities can be used, for instance, as inputs in
various valuation adjustment calculations, which makes CDS useful for hedging
purposes; see Green (2016, Chaps. 4 and 12).

We introduce now the essential notations and conventions that define CDSs;
refer, for instance, to White (2014) for a detailed overview. In a standard CDS con-
tract the CDS dates are the semi-annual termination dates of the CDS, and fall on
20 March and 20 December of each year.b From the protection effective date (i.e. tp)
the protection starts; this date is generally defined as the valuation date plus one
day. The cash settlement date (i.e. ts) is when any upfront payments are made, and
can be lagged by a few business days compared to the valuation date (the standard
ISDA model defines it as the valuation date plus three business days; see White
(2014)). The accrual start dates (i.e. s1, . . . , sN) are used as starting points for cal-
culating the coupon payments. This increasing sequence contains all the CDS dates
before the maturity date, with s1 set as the previous CDS date before the protection
effective date. This is because holding a CDS over a coupon payment entails paying
or receiving the full coupon payment amount. The accrual end dates (i.e. e1, . . . , eN)
are the dates used as end points for calculating the premium payments, with eN the
maturity of the contract. Premium payments are made by the protection seller to
the protection buyer at the payment dates (i.e. t1, . . . , tN ). We denote with LGD the
loss-given-default expressed per unit of notional (i.e., one minus the recovery rate),
that we assume to be constant, and with Δ(t, s) the year fraction between t and
s (t < s); see White (2014) for further details concerning day-count conventions.
In particular, we use the shorthand notation Δi instead of Δ(si, ei). Further, N
denotes the notional amount, τ the default time, and 1{ · } the indicator function.

The protection leg is the contingent payment the protection seller makes to the
protection buyer. Despite in practice there is usually a lag between the default time
and the protection payment, modeling-wise at τ the protection seller is assumed to
pay to the counterparty the amount

LGD ·N · 1{tp≤τ≤eN}. (2.1)

The premium leg is defined as the series of payments the protection buyer
makes to the counterparty until either a credit event occurs or the contract expires.
We denote its fixed coupon, per unit of notional, with C. The amount paid by the

bBefore 20 December 2015 the frequency of the CDS roll dates was quarterly instead of semi-
annual, with resulting termination dates falling on 20 March, 20 June, 20 September and 20
December of each year; see ISDA (2015).
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protection buyer to the protection seller on each payment date ti is given by

C ·N · Δi · 1{τ>ei}. (2.2)

In the case of a credit event, the protection buyer pays to the counterparty the
accrued coupon, i.e. if τ ∈ [si, ei], the accrued coupon played upon default equals

C ·N · Δ(si, τ) · 1{si≤τ≤ei}. (2.3)

On a filtered probability space (Ω,F , (Ft)t∈[0,T ],P), with P the real-word prob-
ability measure, we denote with Q a risk-neutral measure, with EQ( · ) the expec-
tation, at valuation date, with respect to Q, with DF(t) the discount factor from t

to valuation date, while with QS(t) the survival probability of the reference entity
until time t, i.e. QS(t) := Q(τ > t). From here onward we assume, without loss of
generality, unit notionals.

For the protection buyer the value of a CDS equals the value of its protection
leg minus the one of its premium leg. In symbols

PVprot = LGD · EQ(DF(τ) · 1{tp≤τ≤eN}), (2.4)

while the value of the premium leg is given by

PVprem = C

N∑
i=1

EQ(DF(ti) · Δi · 1{τ>ei} + DF(τ) · Δ(si, τ) · 1{si≤τ≤ei}).

(2.5)

The present value of the CDS, from the perspective of the protection buyer, is
defined as

PVCDS := PVprot − PVprem. (2.6)

2.1. Dynamics of the survival probabilities

There are different approaches to model the dynamics of the default time of an
issuing entity, and the category of reduced-form (or intensity) models is one of
these. In reduced-form models the probability distribution of the credit event is
modeled directly; two well-known illustrations of models belonging to this class are,
amongst others, Jarrow & Turnbull (1995), where a discrete Poisson bankruptcy
process is presented, and Duffie & Singleton (1999), where the risk-free discounting
short-rate process is augmented with an instantaneous intensity process to account
for credit risk. Reduced-form models are fundamentally different, for instance, from
structural (or firm-value) models, which characterize defaults as consequences of
events such as the value of a firm being too low for covering its liabilities, of which
the so-called Merton’s 1974 firm-value model (Merton 1974) is an illustration. This
idea has been later extended in Black & Cox (1976), where default occurs when
the value of the firm’s asset falls below a given threshold level, and that is consid-
ered the first prototype of the so-called first passage time models. While the main
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advantage of structural models is that of their consistency with the capital struc-
ture of the firm, they require firm-specific information that is not necessarily easily
available. Thus, the main difference between the reduced-form and the structural
approaches is given by the fact that default is something exogenous in the for-
mer, while endogenous in the latter. The idea of modeling the default probability
distribution directly as done in reduced-form models allows, at least in theory, to
simplify the problem tractability, as modeling the default event per se is easier than
modeling the economic situations that might cause it. This often makes reduced-
form models preferable to structural ones for practical applications, as done in this
paper, given that we explicitly consider the CDS market as source of information.
For more details concerning different approaches to credit risk modeling the reader
can refer, amongst others, to Bielecki & Rutkowski (2010).

In the context of reduced-form models a possible approach to introduce a term
structure for the distribution of the default time is that of defining the survival
probability QS via

QS(t) := e−
R

t
0 λ(s) ds, (2.7)

where the deterministic function λ : [0,+∞) → (0,+∞) is called hazard rate (or
default intensity) function.

Assuming that K CDS quotes for a given reference entity with the same fixed
coupon are available in the market, maturing respectively at eN1 , . . . , eNK , where
eN1 < · · · < eNK , a possible way to define the hazard rate function with a term
structure is given by setting

λ(t) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

l1(λ1; t) if 0 ≤ t ≤ eN1 ,

l2(λ1, λ2; t) if eN1 < t ≤ eN2 ,

...

lK(λ1, . . . , λK ; t) if eNK−1 < t,

(2.8)

where λi > 0, li(λ1, . . . , λi; · ) is deterministic and continuous, and with the func-
tion li(λ1, . . . , λj−1, · , λj+1, . . . , λi; t) increasing, for 1 ≤ j ≤ i. The parameters
λ1, . . . , λK are those that, once set, specify the distribution of the default time. Com-
mon specifications for (2.8) are, among others, piecewise-constant and piecewise-
linear.c The first option provides the simplest assumption possible concerning the
behavior of the hazard rate function across CDS maturities, and it as well results
in better numerical stability compared to its piecewise-linear counterpart; further,
modeling the default time via this simple approach is often enough for practical
applications such as for its usage in several credit valuation adjustment calcula-
tions; see Green 2016, Sec. 4.4. Moreover, note that (2.6) is a model-independent

cThat is, given K positive values λ̄1, . . . , λ̄K , in the piecewise-constant case, for every i,
li(λ1, . . . , λi; t) ≡ λ̄i. For the piecewise-linear case, on the other hand, we have l1(λ1; t) ≡ λ̄1,

li(λ1, . . . , λi; t) = λ̄i−1 +
λ̄i−λ̄i−1

eNi
−eNi−1

· (t−eNi−1) for 2 ≤ i ≤ K−1, while lK(λ1, . . . , λK ; t) ≡ λ̄K .
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relationship which assumes interest rates being independent from the default time.
In this case, see Brigo et al. (2010), CDS models can be calibrated to match CDS
quotes exactly, and the resulting implied default probabilities calculated using dif-
ferent model specifications are expected to be in line with each other. In Brigo
et al. (2010), this fact is illustrated by taking into account Lehman Brothers CDSs
during different periods between August 2007 until the bank files for bankruptcy
in September 2008. In particular, therein a comparison between the default prob-
abilities implied using the Analytically-Tractable First Passage (AT1P) model and
the intensity model with hazard rate function defined as per (2.8) in a piecewise-
constant manner is provided (the AT1P model is a first-passage time structural
model where default events are triggered by a firms’ assets value hitting a deter-
ministic threshold). The results show that the two models, despite their differences
in terms of specifications, produce extremely close default probabilities (i.e. the
largest difference observed at the calibration maturities is of the order of 0.8%).
Hence, as we are interested in implying default probabilities at the valuation time,
this further justifies the choice of the modeling approach we have followed: if little
model risk is linked to the model specifications used to extract the default proba-
bilities, then model simplicity and tractability should be encouraged.

To calibrate the model parameters, we denote with UFbid
i (UFask

i ) the bid
(ask) upfront premium of the ith quoted CDS contract. Their mid counterparts
are denoted as UFmid

i . The values λ1, . . . , λK are computed to match the quoted
CDS market values. Risk-neutral premia are not observable, and they are usually
proxied with their mid counterparts.

Due to quoting convention, the first upfront premium is defined such that the
equality

PVCDS
1 (λ1) + Acc = DF(ts) · UFmid

1 (2.9)

holds, where PVCDS
1 (λ1) denotes the present value of the first CDS, as a function

of λ1, and where Acc equals DF(ts) · C · Δ(s1, tp). We can solve for λ1 > 0 such
that (2.9) is satisfied.d

Then, we can consider the second upfront premium. By using the value of λ1

computed above, one can imply λ2 > 0 such that

PVCDS
2 (λ2) + Acc = DF(ts) · UFmid

2 , (2.10)

dThe higher the values reached by the hazard rate function, the higher the chances are that there
will be a default. Thus, the more the protection seller wants to be paid to sell insurance. One
would then intuitively expect PVCDS

1 (λ1), . . . ,PVCDS
K (λK) to be strictly increasing in λ1, . . . , λK ,

respectively. In Appendix A, we show that, for common coupon and LGD values, the value of
the ith CDS calculated using the setup outlined in the current section is strictly increasing in
λi when i > 1, and that the same holds when i = 1, at least when λ1 belongs to an interval
wide enough for practical purposes. The strict monotonicity of PVCDS

i (λi) guarantees that, if
Acc − DF(ts) · UFmid

i ∈ PVCDS
i ([0,+∞)), the equation PVCDS

i (λi) + Acc = DF(ts) · UFmid
i

admits a unique solution and, as a consequence, that the CDS calibration problem is well-defined.
From here onwards we will always assume this to be the case.
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with PVCDS
2 (λ2) the present value of the second CDS as a function of λ2.

By proceeding inductively for the remaining indices this procedure allows to
define a term structure for the default probabilities that is in line, via (2.8), with
the mid quotes “observed” in the market.

Note that no choice of the hazard rate function in (2.7) comes without problems.
For instance, the simple possible choice of assuming piecewise-constant hazard rates,
which is at the base of the so-called standard ISDA model, can produce negative
hazard rates under specific market circumstances; see Green (2016, Chap. 4.4.3).
Therefore, depending on the market conditions, some functional forms for the haz-
ard rates can be more suitable than others. It is thus necessary to assume, for the
chosen functional form of the hazard rate function, that risk-neutral quoted values
allow the model to be properly specified, as well as the calibration problem under
one-price settings to be successful.

3. Bid-Ask Pricing via Distorted Expectations

An index of acceptability is a map α :L∞(Ω,F ,P) → [0,+∞] aiming to measure
the quality of random cashflows, i.e. for a given contingent claim X the higher the
value of α(X), the higher X is ranked. We say that X is acceptable by the market
at level γ whenever α(X) ≥ γ. An index of acceptability α is expected to satisfy
some basic properties. Namely, if both X and X ′ are acceptable at level γ, then
also λ · X + (1 − λ) · X ′ for λ ∈ [0, 1] is (quasi-concavity property). α is assumed
to be monotonic, i.e. if X ≥ X ′ then α(X) ≥ α(X ′), as well as scale-invariant, i.e.
α(λ ·X) = α(X) for every λ > 0. Lastly, α is assumed to satisfy the Fatou property,
which means that, if (Xn)n is a sequence of random variables such that, for every
n, |Xn| ≤ 1 and α(Xn) ≥ γ, then if (Xn)n converges in probability to a random
variable X , also α(X) ≥ γ. It can be proven, see Cherny & Madan (2009), that
given an index of acceptability α, for every x ≥ 0 there exists a set Qx of probability
measures absolutely continuous with respect to P such that

α(X) = sup
{
x ≥ 0 : inf

Q∈Qx

EQ(X) ≥ 0
}

(3.1)

and, further, if x ≤ x′ then Qx ⊆ Qx′ .
A coherent risk measure is a functional ρ :L∞(Ω,F ,P) → [0,+∞] that satisfies

the transitivity, sub-additivity, positively homogeneity and monotonicity proper-
ties; see Madan & Schoutens 2016a, Chap. 4.1).e It can be shown, see Delbaen
(2009), that a coherent risk measure can be identified with a functional of the form

eρ is said to be transitive (or translation-invariant) when ρ(X + λ) = ρ(X) + λ for every λ ∈ R,
sub-additive when ρ(X +X′) ≤ ρ(X) + ρ(X′), positively homogeneous when ρ(λ ·X) = λ · ρ(X)
for every λ > 0, and monotonic when ρ(X) ≤ ρ(X′) if X ≤ X′. Note that the definition of
coherent risk measure introduced in Artzner et al. (1999) differs from the one provided here in
the sense that, in Artzner et al. (1999), cash-invariance reads ρ(X + λ) = ρ(X) − λ, where λ ∈ R,
while monotonicity as ρ(X) ≥ ρ(X′) when X ≤ X′ (refer to Grabisch & Ridaoui (2016, Sec.
4.2.1) for some remarks concerning these differences). Given that we consider here coherent risk
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supQ∈Q EQ(X), where Q is a set of probability measures absolutely continuous with
respect to P. Therefore, the level of acceptability of a cashflow X can be rewritten
in terms of coherent risk measures, i.e. as

α(X) = sup{x ≥ 0 : ρx(−X) ≤ 0}, (3.2)

where (ρx)x≥0 is a family of coherent risk measures such that ρx(−X) ≤ ρx′(−X)
whenever x ≤ x′. From this, it then follows that α(X) ≥ γ if and only if ργ(−X) ≤
0.f Note that, for every x ≥ 0, one can define the acceptability set associated with
α as Ax := {X ∈ L∞(Ω,F ,P) : ρx(−X) ≤ 0}. It then follows that (Ax)x≥0 is a
family of convex cones, each containing the nonnegative random variables, with
size decreasing in x. Thus, given an index of acceptability and a family of coherent
risk measures (ρx)x≥0, for every acceptability level x we obtain a convex cone Ax

of contingent claims that are acceptable for the market, from which the term conic
finance originates.

The (asymmetric) Choquet integral of X with respect to a nonadditive proba-
bility μ is defined as

(C)
∫

Ω

X dμ :=
∫ 0

−∞
μ(X ≥ t) − 1 dt+

∫ +∞

0

μ(X ≥ t) dt, (3.3)

whenever it exists; see Denneberg (1994, Chap. 5). Choquet integration provides a
natural extension to the Lebesgue integral able to deal with nonadditive probabil-
ities, as if μ in (3.3) is σ-additive, then (3.3) would reduce to a Lebesgue integral;
see Mesiar et al. (2010).

We denote with ψ( · ) a concave distortion from [0, 1] to [0, 1], i.e. a con-
cave function such that ψ(0) = 0 and ψ(1) = 1, where ψ(Q)(A) := ψ(Q(A)),
for every Q-measurable set A; note that the distorted probability measure just
defined is not, in general, additive. Let (ψx)x≥0 be an increasing family of con-
cave distortion functions, and assume a risk-neutral measure Q ∈ ⋂x≥0 Qx.g We
recall, see Delbaen (2009), Grabisch & Ridaoui (2016), that the functional ρx such
that X �→ (C)

∫
ΩX dψx(Q) defines a coherent risk measure. This is because the

(asymmetric) Choquet integral with respect to any nonadditive measure guarantees
the transitivity, positive homogeneity and monotonicity properties to be satisfied;
see Denneberg (1994, Proposition 5.1). Further, the distorted probability measure
ψx(Q) is a submodularh set function, see Denneberg (1994, Example 2.1), which
guarantees subadditivity; see Denneberg (1994, Theorem 6.3). Thus, as suggested

measures within the conic finance paradigm, we adopt therefore the definition outlined in Madan
& Schoutens (2016a).
f If ργ(−X) ≤ 0, by (3.2) it follows that α(X) ≥ γ. On the other hand, assume that ργ(−X) > 0.
Then, ρx(−X) ≥ ργ(−X) > 0 when x ≥ γ, from which α(X) < γ, contradiction.
gGiven that Qx ⊆ Qx′ when x′ ≥ x, it is sufficient to assume that a risk-neutral measure Q

belongs to Q0.
hA nonadditive probability μ is said to be submodular (or concave) if, for every μ-measurable sets
A and A′, it results that μ(A ∪A′) + μ(A ∩A′) ≤ μ(A) + μ(A′).
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in Cherny & Madan (2009), we can employ functionals of this form as tools for
modeling indices of acceptability via the relationship

α(X) = sup
{
x ≥ 0 : (C)

∫
Ω

−X dψx(Q) ≤ 0
}
. (3.4)

Indices of acceptability defined as in (3.4) are named operational indices of accept-
ability; see Cherny & Madan (2009).

We now assume that the market considers acceptable only the cashflows with an
acceptability level of, at least, γ. The market is willing to buy X , which we assume
to pay off at T , at a price b if and only if α(X−DF(T )−1 · b) ≥ γ (recall footnote f),
i.e. if and only if b ≤ −DF(T ) · (C)

∫
Ω −X dψγ(Q). It follows that, if the market

considers acceptable all the cashflows with a level of acceptability of at least γ, then
the (γ-dependent) bid price of X , denoted as bidγ(X), would equal

bidγ(X) = −DF(T ) · (C)
∫

Ω

−X dψγ(Q). (3.5)

Denoting the ask price ofX given a level of acceptability γ as askγ(X), by observing
that askγ(X) = −bidγ(−X), from (3.5) it follows that

askγ(X) = DF(T ) · (C)
∫

Ω

X dψγ(Q). (3.6)

Thus, if the distribution function of X , as well as its bid or ask prices, are available,
one can compute the level of γ needed to obtain the quoted price.

4. CDSs in a Two-Price Economy

Given a parametric family of distortion functions (ψγ)γ≥0, one can set a term struc-
ture for the liquidity parameter γ by assigning a value γi to each maturity eNi . These
values can be then interpolated, once the model has been calibrated, if one wants
to calculate bid and ask prices for nonquoted maturities. We still assume a Poisson
process as in Sec. 2.1 driving the risk-neutral dynamics of τ . We denote with X̃CDS

i

the sum of the cashflows of the ith CDS where all the cashflows are deferred to
maturity, i.e. cashflow(t) �→ cashflow(t) · DF(t)

DF(eNi
) . The bid and ask prices of X̃CDS

i

are denoted as bidCDS
i and askCDS

i , respectively.
We start with the first CDS. We need then to solve for λ1 > 0 and γ1 > 0 such

that {
bidCDS

1 (λ1, γ1) + Acc = DF(ts) · UFbid
1 ,

askCDS
1 (λ1, γ1) + Acc = DF(ts) · UFask

1 ,
(4.1)

with

DF(ts) · UFbid
1 < PVCDS

1 (λ1) + Acc < DF(ts) · UFask
1 , (4.2)

where the constraint (4.2) guarantees that the risk-neutral price of the CDS lies
between its corresponding bid and ask prices.
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By proceeding in a similar way as done in Sec. 2.1, at every step we need to
solve a system of the form{

bidi(λi, γi) + Acc = DF(ts) · UFbid
i ,

aski(λi, γi) + Acc = DF(ts) · UFask
i ,

(4.3)

with

DF(ts) · UFbid
i < PVCDS

i (λi) + Acc < DF(ts) · UFask
i . (4.4)

Above, λi represents the implied hazard rate for the ith maturity, while γi the
corresponding implied liquidity in the sense of Corcuera et al. (2012).

The problem of determining whether a (potentially unique) solution for this con-
strained nonlinear system will be addressed in this section. We start by simplifying
the notation in the constrained system above by rewriting it as{

bid(λ, γ) = b,

ask(λ, γ) = a,
(4.5)

with

b < PVCDS(λ) < a. (4.6)

In both (4.5) and (4.6) we have set b := DF(ts) · UFbid
i − Acc and a := DF(ts) ·

UFask
i − Acc.
We provide now three lemmas that, under some mild assumptions related to

the liquidity of the market, will be used in Theorem 4.1 to prove the existence
and the uniqueness of a solution for the constrained nonlinear system (4.5). We
start by assuming that the quoted bid and ask prices of the chosen CDS are within
the interval of possible risk-neutral prices that can be obtained by changing the
parameter λ. In practice, this technical condition translates into the possibility of
being able to calibrate the risk-neutral parameter λ to match bid and ask market
quotes, respectively, from which Lemma 4.1 follows.

Assumption 1. The inequalities infλ>0 PVCDS(λ) < b and supλ>0 PVCDS(λ) > a

hold.

Lemma 4.1. Under Assumption 1, there exists an interval [λb, λa] such that there
is equivalence between b ≤ PVCDS(λ) ≤ a and λ ∈ [λb, λa].

Proof. PVCDS(λ) is an increasing and continuous function of λ. From Assump-
tion 1 the result follows.

We now introduce a second assumption that guarantees that, for λ in a given
range, theoretical bid-ask spreads can exceed the observed one.i Intuitively, Assump-
tion 2 is a technical condition stating that, for every fixed λ in [λa, λb], it is always

iObserve that, when γ = 0, then bid and ask prices reduce to the ones calculated with respect
to Q and that, for a given λ, the function ask(λ, γ) − bid(λ, γ) is strictly increasing in γ. When
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possible to construct a bid and an ask price that reflect the bid-ask spread observed
in the market. Lemmas 4.2 and 4.3 follows.

Assumption 2. For every λ ∈ [λb, λa] there exists γ > 0 such that ask(λ, γ) −
bid(λ, γ) = a− b.

Lemma 4.2. Under Assumptions 1 and 2, for every λ ∈ [λb, λa] there exists a
unique γ > 0 such that ask(λ, γ) − bid(λ, γ) = a− b.

Proof. Fix λ ∈ [λb, λa]. By Assumption 2 there exists (at least) one γ > 0 such that
ask(λ, γ) − bid(λ, γ) = a− b. Assume there exists γ∗ and γ∗ such that ask(λ, γ∗) −
bid(λ, γ∗) = ask(λ, γ∗) − bid(λ, γ∗) = a − b, with γ∗ < γ∗. The ask price is an
increasing function of γ, while the opposite holds for the bid. Therefore, ask(λ, γ∗) <
ask(λ, γ∗) and bid(λ, γ∗) > bid(λ, γ∗). Then a − b = ask(λ, γ∗) − bid(λ, γ∗) <

ask(λ, γ∗) − bid(λ, γ∗) = a− b, contradiction.

Lemma 4.3. Under Assumptions 1 and 2, for every λ ∈ [λb, λa] the function such
that λ �→ γ(λ), where ask(λ, γ(λ)) − bid(λ, γ(λ)) = a− b, is continuous.

Proof. Fix λ̄ in [λb, λa] and let (λn)n be a sequence in [λb, λa] that converges to
λ̄. We define φ(λ, γ) := ask(λ, γ) − bid(λ, γ). We proceed in steps.

Claim (i). The sequence (γ(λn))n is bounded. Say this is not the case. Then, there
exists a subsequence (γ(λnk

))k that diverges to +∞. (λnk
)k converges to λ̄, as

subsequence of a convergent sequence, and φ is continuous in both arguments.
Therefore, limk φ(λ̄nk

, γ(λnk
)) = φ(λ̄,+∞) = a−b, as φ(λ̄nk

, γ(λnk
)) always equals

a−b, by construction. By Assumption 2, there exists γ̄ > 0 such that φ(λ̄, γ̄) = a−b.
Therefore, as φ is increasing in its second argument, it follows that a−b = φ(λ̄, γ̄) <
φ(λ̄,+∞) = a− b, contradiction.

Claim (ii). The sequence (γ(λn))n has limit. As this sequence is bounded, it
admits a convergent subsequence. Say there are two subsequences, namely (γ(λnk

))k

and (γ(λnh
))h, that converge to γ∗ and γ∗, respectively, where γ∗ < γ∗. Then

(λnk
)k and (λnh

)h both converge to λ̄, as subsequencies of the same convergent
sequence. So we obtain that a − b = limk φ(λnk

, γ(λnk
)) = φ(λ̄, γ∗) < φ(λ̄, γ∗) =

limh φ(λnh
, γ(λnh

)) = a − b, contradiction (the first and the last equalities follow

γ → +∞, then ψγ(Q) approximate the distribution that assigns zero to the null sets and one to
any other set. ask(λ, γ)−bid(λ, γ) can be rewritten, see Sec. 4.1, as askprot(λ, γ)−bidprem(λ, γ)−
bidprot(λ, γ)+askprem(λ, γ), where the superscripts identify the two legs of the contract. Ignoring
discount factors for simplicity, askprot(λ, γ) has magnitude of the order of LGD · ψγ(Q)(tp ≤
τ ≤ eN ) = LGD; see (2.4). Further, as (C)

R
Ω −X dμ = (C)

R
ΩX dμ with μ denoting the dual

measure of μ, see Denneberg (1994, Proposition 5.1), from bid(X) = −ask(−X) it follows that
bidprot(λ, γ) = −LGD ·ψγ(Q)(tp ≤ τ ≤ eN ) = 0. Therefore, for extreme values of γ the theoretical
bid-ask spread ask(λ, γ)−bid(λ, γ) reaches high values due to its positive components askprot(λ, γ)
and askprem(λ, γ), and to bidprem(λ, γ) being below its counterpart calculated when γ = 0. Thus,
for practical purposes, this assumption is in general satisfied.
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from the definitions of (λnk
)k and (λnh

)h, respectively, the second and the penulti-
mate equalities from the continuity of φ, while the inequality from φ being increasing
in its second argument). Then, every convergent subsequence of (γ(λn))n has the
same limit. As (γ(λn))n is bounded, then it admits limit.j

Claim (iii). The limit of (γ(λn))n is γ(λ̄). Denote limn γ(λn) as γ̄. Observe that
φ is continuous in both arguments. The sequence (φ(λn, γ(λn)))n is constant by
construction, i.e. it always equals a− b. Therefore, it converges to a− b. Its limit is
φ(λ̄, γ̄), as φ is continuous. Due to Lemma 4.2, there exists a unique γ(λ̄) such that
φ(λ̄, γ(λ̄)) = a− b. So, γ̄ = γ(λ̄).

We now can, under Assumptions 1 and 2, use Lemmas 4.1, 4.2 and 4.3 to prove
that the calibration problem (4.5) has a unique solution. Therefore, Theorem 4.1
guarantees that, under the hypotheses considered, risk-neutral default probabilities
can be implied in a unique manner from bid and ask CDS quotes without relying
on their mid counterparts.

Theorem 4.1. Under Assumptions 1 and 2, there exists a solution of the con-
strained nonlinear system (4.5), and it is unique.

Proof. Consider the interval [λb, λa] as per Lemma 4.1. There exists a unique γb

such that ask(λb, γb)−bid(λb, γb) = a− b. Observe that bid(λb, γb) < PVCDS(λb) =
b, so b < ask(λb, γb) < a.

Similarly, consider λa. There exists a unique γa such that ask(λa, γa) −
bid(λa, γa) = a − b. Because a = PVCDS(λa) < ask(λa, γa), it follows that
b < bid(λa, γa) < a.

The functions ask(λ, γ), bid(λ, γ), and — see Lemma 4.3 — γ(λ), are continuous
in λ. Thus, there exists λ̄ ∈ (λb, λa) and corresponding γ̄ such that ask(λ̄, γ̄) =
a and bid(λ̄, γ̄) = b. By virtue of Lemma 4.2, the pair (λ̄, γ̄) satisfying (4.5) is
unique.

Note that to obtain the existence and uniqueness result of Theorem 4.1, we have
relied on the fact that, for each given maturity, the model describing the risk-neutral
default distribution has a single free parameter, i.e. the hazard rate corresponding
to the maturity considered. Therefore, considering the distortion parameter related
to that maturity as additional degree of freedom allows the calibration problem
to be defined, up to the constraint, by two equations and two unknowns. If more
complex models with additional parameters were to be used, then the problem
should have been approached in a least-square sense, and the best possible outcome
would have been that of finding an unique minimum. This very favorable situation,

jHere, we have used the following elementary result: if a bounded real sequence has the property
that all its convergent subsequences converge to the same real limit, then the sequence itself also
converges to it; see Abbott (2015, Example 2.5.5).
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however, would not necessarily guarantee observed market quotes to be matched
by the model, and therefore would as well not guarantee the implied risk-neutral
distribution to be the “true” one.

4.1. A calibration example

The simplest possible manner to specify model (2.8) consists in defining it as a
piecewise-constant function, as done in the ISDA CDS standard model commonly
used in practice, which is based on the approach of O’Kane & Turnbull (2003). Note
that there is no information available on the hazard rate level between CDS maturi-
ties. Therefore, these specifications provide the smallest possible set of assumptions
concerning the default intensity process and is a common choice amongst financial
practitioners.

To compute bid and ask prices, one would need to approximate Choquet integrals
numerically. To do so, a simple approximation of (C)

∫
Ω
X dμ can be performed, see

Wang & Klir (2009, Chap. 11.5), as follows. Given a partition of Ω as
⋃M

i=1 Ai

choose, for every i, xi ∈ X(Ai). Let σ denote a permutation of {1, . . . ,M} such
that xσ(1) ≤ . . . ≤ xσ(M). Then, (C)

∫
Ω
X dμ can be then approximated as

M∑
i=1

(xσ(i) − xσ(i−1)) · μ
(

M⋃
k=i

Ak

)
, (4.7)

where x0 := 0. In the case of a CDS, one can then set a grid (for instance, daily
for simplicity), namely, A1 := {τ ∈ [0, d1]}, . . . , AM := {τ ∈ [dM−1, dM ]}, where M
denotes the total number of points (i.e. dates) in the grid, and set xi := X̃CDS|τ=di

(recall that, using the notation introduced in Sec. 4, the superscript tilde indicates
that cashflows are deferred at the maturity of the CDS contract considered).

We recall, see Eberlein et al. (2001), that the bid and ask prices of a contin-
gent claim X can be calculated as bid(X) = bid(X+) − ask(X−) and ask(X) =
ask(X+) − bid(X−), respectively, where the X+ (X−) denotes the positive (neg-
ative) part of X . We denote with X̃prot (X̃prem) the protection (premium) leg of
X̃CDS. From (2.6), and by noting that with our conventionsX+ coincides with X̃prot

and X− with X̃prem, it follows that bid(X̃CDS) = −ask(−X̃prot)− ask(X̃prem) and
that ask(X̃CDS) = ask(X̃prot)+ ask(−X̃prem). Therefore, in principle it is sufficient
to separately calculate the ask prices of the (signed) CDS legs only.

As an example, we consider the specifications of the standard ISDA model, i.e.
we assume a piecewise-constant hazard rate function. We take into account a set of
market quotes for a BBB European financial institution with maturities 6 months
and 1, 2, 3, 4, 5, 7 and 10 years, respectively, as of 13 February 2020. The recovery
rate equals 40%, and the coupon 1%. Discounting performed with OIS EUR curve.

Figure 1(a) represents the bid and ask quoted upfront premia, expressed per
unit of notional, while Fig. 1(b) the aggregated calibration errors, i.e. each value
represents the sum of the bid and ask calibration errors, respectively.
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(a) (b)

Fig. 1. Bid and ask CDS upfront premia used in the calibration example, panel (a), and calibration
errors, panel (b). In particular, the calibration errors of panel (b) represent aggregated figures, i.e.
each point corresponds to the sum of the calibration error for the bid quote and of that of the
related ask quote.

In this example, we consider two common choices to define the family of dis-
tortion function, i.e. the minmaxvar distortion (Cherny & Madan 2009), defined
via

ψγ(x) := 1 −
(
1 − x

1
1+γ

)1+γ

, (4.8)

and the Wang distortion (Wang 2000), defined by setting

ψγ(x) := Φ(Φ−1(x) + γ), (4.9)

with Φ( · ) denoting the cumulative distribution function of a standard normal ran-
dom variable; in both (4.8) and (4.9) it is assumed that x ∈ [0, 1] (in the case
of the latter, right and left limit should be considered for 0 and 1, respectively)
and that γ ≥ 0. Other examples of families of distortion functions are outlined,
for instance, in Madan & Schoutens (2016a, Chap. 4.7) and in Föllmer & Schied
(2016, Chap. 4.6). For each of the two choices we have made in terms of the dis-
tortion function, Fig. 2(a) shows the piecewise-constant hazard rate function, while
Fig. 2(b), the linearly interpolated distortion parameter. Note that for each of the
two choices of the distortion function we have made, the minimum of the γ parame-
ter in Fig. 2(b) lies in proximity of the 5Y CDS, where the latter is usually the most
liquid maturity. We also note how the pattern of the implied distortion parameter
in Fig. 2(b) follows that of the (relative) bid-ask CDS premium spread available in
Table B.1 (last column therein).

Note that, as illustrated by Figs. 2(a) and 2(b) results obtained using the min-
maxvar and Wang transforms are very similar, indicating little model risk. For
completeness, the CDS input quotes of Fig. 1(a), the implied hazard rates of
Fig. 2(a) and the implied distortion parameters of Fig. 2(b) have been reported
in Appendix B; see Tables B.1 and B.2, respectively.
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(a) (b)

Fig. 2. Implied parameters provided as a result of the calibration procedure to the bid and ask
CDS quotes of Fig. 1(a): hazard rates (i.e. λ) are depicted in panel (a), while distortion parameters
(i.e. γ) in panel (b).

5. Conclusion

In this paper, we have considered the problem of calibrating a CDS model to the
available bid and ask quotes within the conic finance paradigm of Cherny & Madan
(2010). In particular, in the context of reduced-form models, we have considered
the default time as modeled by a Poisson process. The bid-ask calibration problem
requires to iteratively solve a constrained nonlinear system in two equations and
two unknowns. We have showed that, under reasonable assumption for practical
purposes, the calibration problem admits a unique solution. We have as well illus-
trated, with a practical example based on real market data, how the calibration to
bid and ask CDS quotes works under the specifications of the standard CDS ISDA
model and by considering two different choices for the distortion function. In both
the cases considered, as expected from the theory, the model could be calibrated
to exactly match the observed market quotes. Despite our work outlined in Sec. 4
is specific to CDSs, the fact that financial instruments trade neither at the risk-
neutral nor at the mid-price apply to all contingent claims. Therefore, being able
to fit valuation models solely to bid and ask quotes in such a way that risk-neutral
parameters are implied as a result of the calibration routines is a desirable model
feature that allows to drop the common assumption of equating risk-neutral and
mid prices without additional ones being added. Hence, investigating how to cali-
brate models to bid and ask quotes without relying on mid quote approximations
is a field on which further research is encouraged.

Appendix A. A Remark on the Monotonicity of CDS Prices

We consider here the ith CDS outlined in Sec. 2.1, i.e. the one maturing at eNi ,
and we denote with N(i) the number of coupon periods related to it.
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From (2.5), the present value of its premium leg can be rewritten as

C

N(i)∑
j=1

(DF(tj) · Δj · QS(ej) + EQ(DF(τ) · Δ(sj , τ) · 1{sj≤τ≤ej})). (A.1)

We define j(i) := min{j : ej > eNi−1, 1 ≤ j ≤ N(i)}, with the convention that
j(i) = 1 if i = 1. If λi increases, from (2.7) and (2.8) it follows that QS(ej) strictly
decreases for each j ≥ j(i), leaving the others, if any, unchanged. We can also
rewrite the present value of the protection leg, see (2.4), minus the accrual payments
in (A.1), as

N(i)∑
j=1

EQ(DF(τ) · (LGD − C · Δ(sj , τ)) · 1{max(tp,sj)≤τ≤ej})

−EQ(DF(τ) · C · Δ(s1, τ) · 1{0≤τ≤tp}), (A.2)

due to sj = ej−1 whenever j > 1.
If i > 1, when λi increases then Q(max(tp, sj) ≤ τ ≤ ej) strictly increases for

each j ≥ j(i), leaving the other probabilities with j < j(i), as well as Q(0 ≤ τ ≤ tp),
unchanged. Thus, if the condition

LGD > C · max
j(i)≤j≤N(i)

Δ(sj , ej) (A.3)

holds, then (A.2) strictly increases if λi increases.
In practice, condition (A.3) is verified for usual values of LGD and C: for

instance, if the often-standard value for LGD of 60% is chosen and C = 5%,
then the right-hand side of (A.3) would be equal, up to day-count rounding, to
5% · 0.25 = 1.25%, due to the quarterly payments of each CDS contract. A graphi-
cal illustration is provided in Fig. A.1.

Note that, when i = 1, the second summand in (A.2) is, in general, negligible.
This is because the event {0 ≤ τ ≤ tp} means observing a default between the
valuation date and the protection start date of the CDS, where the latter is usually
one day after the former. With a good approximation DF(τ) equals 1, as when
0 ≤ τ ≤ tp the year fraction between the valuation date and the default time is
almost zero. Further, we can bound Δ(s1, τ) from above, up to day-count rounding,
with 0.25. Thus, an approximate upper bound for EQ(DF(τ)·C ·Δ(s1 , τ)·1{0≤τ≤tp})
is given by C · 0.25 · Q(0 ≤ τ ≤ tp). To give an idea about the magnitude of this
term, if we consider as a simple case a piecewise-constant hazard rate functional
form for (2.8), we than have that Q(0 ≤ τ ≤ tp) = 1−e−λ1·Δ(0,tp). If λ1 increases by
an amount δ, by using a first order Taylor expansion we obtain that Q(0 ≤ τ ≤ tp)
increases by approximately δ · Δ(0, tp). Thus, if λ1 increases by δ then the change
in EQ(DF(τ) · C · Δ(s1, τ) · 1{0≤τ≤tp}) is approximately bounded from above by
C ·0.25 ·δ ·Δ(0, tp). Again, assume C equals 5% and that tp occurs one day after the
valuation date. Using the Act/360 day-count convention we obtain that this amount
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Fig. A.1. Present value of the 6th CDS used for the calibration example provided in Sec. 4.1
(5Y maturity) with risk-neutral default probabilities implied via the minmaxvar distortion, as a
function of λ6. Notional assumed unitary.

(a) (b)

Fig. A.2. Present value of the first CDS used for the calibration example provided in Sec. 4.1
(6M maturity) with risk-neutral default probabilities implied via the minmaxvar distortion, as a
function of λ1 for the same range for λ1 as in Fig. A.1, panel (a), and when λ1 diverges, panel
(b). Notional assumed unitary.

equals 1.25% · δ · 1
360 , which is negligible when δ not too large; see Fig. A.2(a) for

an example.
When i = 1, if λ1 = 0 then the present value of the protection leg would be

zero, making the value of the contract negative. When λ1 increases, the present
value of the contract increases as well, and for λ1 large enough it would reach a
positive value. However, when λ1 diverges to +∞, then a default would occur while
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the contract is being signed, which would make the value of the contract drop.
Therefore, the monotonicity would be guaranteed, when i = 1 and when usual
coupon and LGD amounts are considered, on an interval [0, λ̃1], which is usually
wide enough for practical applications. This is illustrated in Fig. A.2(b).

Therefore, for parameters usually considered in practice, assuming that the price
of the ith CDS strictly increases when λi increases (eventually within an interval
that is large enough for practical applications in the case i = 1) is a reasonable
assumption, that we have used throughout the paper.

Appendix B. Tables

Table B.1. Bid and ask CDS premia depicted in Fig. 1(a), rounded to
the basis-point digit. For comparison purposes, the mid CDS premia
(UFmid), as well as the absolute value of the bid-ask CDS premium
spreads with respect to mid CDS premia have been reported.

Tenor UFbid
i UFask

i UFmid
i |(UFask

i − UFbid
i )/UFmid

i |
6M −0.0033 −0.0026 −0.0030 23.73%
1Y −0.0074 −0.0068 −0.0071 8.45%
2Y −0.0149 −0.0126 −0.0138 16.73%
3Y −0.0192 −0.0169 −0.0181 12.74%
4Y −0.0221 −0.0198 −0.0210 10.98%
5Y −0.0219 −0.0198 −0.0209 10.07%
7Y −0.0162 −0.0095 −0.0129 52.14%
10Y −0.0073 0.0047 −0.0013 932.08%

Table B.2. Calibrated parameters: hazard rates λ, panel (a), and dis-
tortion parameters γ, panel (b). Implied hazard rates and distortion
parameters are depicted in Figs. 2(a) and 2(b), respectively.

Tenor λminmaxvar
i λWang

i

6M 0.001302 0.002235
1Y 0.003348 0.003353
2Y 0.004790 0.005615
3Y 0.009759 0.009705
4Y 0.011977 0.011906
5Y 0.017028 0.016865

7Y 0.022719 0.023514
10Y 0.023259 0.023671

Tenor γminmaxvar
i γWang

i

6M 0.159982 0.202429
1Y 0.055352 0.063821
2Y 0.076611 0.083899
3Y 0.040828 0.042300
4Y 0.027284 0.027351
5Y 0.017690 0.017241

7Y 0.033905 0.032033
10Y 0.041636 0.038361
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