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Abstract

In this paper, we consider the problem of calculating risk-neutral implied volatilities of European
options without relying on option mid prices but solely on bid and ask prices. We provide an
approach, based on the conic finance paradigm, that allows to uniquely strip risk-neutral implied
volatilities from bid and ask quotes, and that does not require restrictive assumptions. Our
methodology also allows to jointly calculate the implied liquidity of the market. The idea outlined in
this paper can be applied to calculate other implied parameters from bid and ask security prices as
soon as their theoretical risk-neutral counterparts are strictly increasing with respect to the former.

Keywords: Bid–ask spread; conic finance; distorted expectation; implied volatility; liquidity.

1. Introduction

The implied volatility of an option is defined as the value of the volatility of the
underlying asset which, when used as input in a given pricing model, returns a

Email addresses: §matteo.michielon@nl.abnamro.com, ¶a.khedher@uva.nl, kp.j.c.spreij@uva.nl

§Corresponding author.

International Journal of Financial Engineering
Vol. 8 (2021) 2150041 (27 pages)
© World Scientific Publishing Company
DOI: 10.1142/S2424786321500419

2150041-1

https://dx.doi.org/10.1142/S2424786321500419


theoretical value matching the current market price of the option considered. In
this paper, we propose a methodology which allows to compute risk-neutral im-
plied volatilities of European options.1 This is accomplished without relying on
any mid quote approximations. Instead, our approach can be applied starting from
bid and ask quotes directly, and we outline how to use our technique under both
Black–Scholes and Bachelier modeling settings.

The concept of implied volatility is relevant for different reasons. First of all,
Black–Scholes (but also Bachelier) implied volatilities are important quoting
conventions in financial markets. They are, therefore, useful as benchmarks for the
calibration of option pricing models. Nonetheless, several applications of the
notion of implied volatility have been investigated outside the valuation frame-
work, and, more precisely, in forecasting analysis: there are studies investigating
the use of implied volatilities to predict, amongst other things, realized volatilities
(Szakmary et al., 2003), asset returns (An et al., 2014; Fu et al., 2016) and
financial market bubbles (Sornette et al., 2017). Moreover, implied volatility
spreads, i.e., the differences in call and put implied volatilities, have been used to
forecast option returns (Doran et al., 2013) and equity premia (Cao et al., 2020).
Thus, the more accurately one can calculate implied volatilities from option prices,
especially far from the at-the-money point where liquidity is lower, the better.

In practical applications and analyses, implied volatilities are often calculated
starting from mid option prices, as for instance in Ulrich and Walther (2020). It is a
known fact that the risk-neutral price of a contract lies within an interval with
lower and upper bounds given by the bid and the ask prices, respectively. However,
the risk-neutral price, in general, does not coincide with the mid, despite the latter
is, usually, employed as a proxy for the former. To be able to calculate the correct
risk-neutral implied volatility of an option without relying on mid market
approximations, one would need to model option prices in a two-price economy.
One possible approach to do so is that of conic finance, introduced in Cherny and
Madan (2010). This allows to evaluate bid and ask prices of contingent claims by
recognizing that, in an economy, risk cannot be fully eliminated. Therefore,
markets should quote based on the notions of (static) index of acceptability and
coherent risk measure, consistently with the risk-neutral paradigm. By charac-
terizing the structure of the contingent claims that are considered acceptable by the
market, computing bid and ask prices can be performed by means of Choquet
expectations (Choquet, 1953) of the relevant terminal payoffs with respect to
distorted versions of the risk-neutral distribution of the underlying asset. This static
approach to conic finance has found disparate practical applications. These

1Here, options are always assumed to have European-style exercise. Thus, the exercise type will be
often omitted, for brevity.

M. Michielon, A. Khedher & P. Spreij

2150041-2



applications range from exotic and structured products (Guillaume and Schoutens,
2013; Madan and Schoutens, 2012) to contingent convertibles (Madan and
Schoutens, 2011), from capital calculations (Madan, 2009, 2012) to credit valu-
ation adjustments (Madan and Schoutens, 2016b; van Bakel et al., 2020), and
again from hedging insurance risk (Carr et al., 2016) to implied liquidity (Corcuera
et al., 2012). For a better overview of the applications of conic finance, see Madan
and Schoutens (2016a). We observe that the approach to conic finance based on
static indices of acceptability can be extended to a time-dependent framework, as
in Bielecki et al. (2013), via the notion of dynamic index of acceptability (Bielecki
et al., 2014). However, as our aim is that of extracting market information from the
currently-available market data (i.e., European option prices), a static approach to
conic finance already suits our needs.

Our approach to imply risk-neutral volatilities without relying on any mid quote
approximation is based on the conic finance theory of Cherny and Madan (2010)
and, in particular, on Michielon et al. (2021), where a methodology to imply risk-
neutral default probability distributions from bid and ask credit default swaps
(CDSs) is outlined. Note that our methodology can be used to compute risk-neutral
market-implied quantities from quoted bid and ask prices of any type of contingent
claim, provided that some basic assumptions are satisfied. In particular, in the
specific case of European options, our methodology requires some technical
conditions to be fulfilled concerning the liquidity level of the market and the
infima and suprema of the option prices with respect to changes in the volatility
parameter. We observe that the fact that European option prices are strictly in-
creasing with respect to the volatility parameter is essential for our technique to be
applied (therefore, for other products, to imply a given model parameter a
monotonicity condition needs to be satisfied; see Theorem 1 for the technical
details).

Within the conic finance framework the concept of conic implied volatility has
been introduced in Sec. 5.4.3 of Madan and Schoutens (2016a). Therein it is
illustrated how, given market bid and ask quotes, a distortion function, and a
liquidity level, one can compute the implied volatilities that allow to price back the
observed bid and ask prices, named conic implied volatilities. This approach is
different from that of calculating bid and ask implied volatilities, that is, the
implied volatilities that allow to match quoted bid and ask option prices under risk-
neutral settings. Bid implied volatilities are lower than ask implied volatilities
given that bid prices are below their ask counterparts. On the contrary, Sec. 5.4.3
of Madan and Schoutens (2016a) shows that this condition does not need to hold
when conic implied volatilities are calculated. Note that the technique proposed in
Sec. 5.4.3 of Madan and Schoutens (2016a) is outlined in the specific case of
options with European exercise features under Black–Scholes specifications for
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underlyings paying continuous dividends. However, it can be also applied, for
instance, in the case of Bachelier specifications, and it is not restricted to the equity
asset class only. Our idea is fundamentally different from both the above, as in our
approach we imply a single volatility given a bid and an ask, and not an implied
volatility per quote (i.e., one for the bid and one for the ask) as done in the standard
case and in Sec. 5.4.3 of Madan and Schoutens (2016a). This is because we are
interested in computing implied volatilities which can be interpreted as risk-neutral
ones. Further, our approach still allows to compute implied volatility spreads, as
the methodology can be followed for calls and puts separately. Our method
guarantees that implied risk-neutral volatilities and liquidity levels, the latter in the
spirit of Corcuera et al. (2012), can be uniquely determined. Further, the meth-
odology outlined here is also simple from a computational perspective, as it only
requires to solve a (constrained) non-linear system with two equations and two
unknowns.

We highlight here that it is not our intention to advocate the usage of Black–
Sholes (or Bachelier) settings in financial modeling. The reason why we provide a
method to strip liquidity-free implied risk-neutral volatilities is that option prices
are often quoted in terms of Black–Scholes (or Bachelier) volatilities. In addition,
both Black–Scholes and Bachelier settings can be seen as option price inter-
polators, and the implied volatilities they generate are often benchmark inputs in
several pricing models. Therefore, their accurate calculation, which we show can
be performed without relying on mid quote approximations, is of key importance
in financial modeling.

This paper is organized as follows. Section 2 provides a brief introduction to the
theory of conic finance. Section 3 outlines how to compute risk-neutral implied
volatilities starting from bid and ask option prices using the conic finance theory.
In particular, it highlights how to do so in the case distortions are modeled as Wang
transforms (Wang, 2000) by recalling the conic Black–Scholes formulae available
in Sec. 5.4 of Madan and Schoutens (2016a) and by providing conic Bachelier
option pricing formulae. Section 4 provides an illustration of the methodology
outlined in this paper, while Sec. 5 concludes. The proof of Theorem 1 can be
found in Appendix A. For completeness, in Appendix B the derivation of risk-
neutral Bachelier option pricing formulae is available, while in Appendix C a
remark on a property of the Wang transform is provided.

2. Pricing in a Two-Price Economy

The theory of conic finance introduced in Cherny and Madan (2009) is based on
the idea that, in financial markets, risks cannot be fully hedged. Therefore, posi-
tions are taken after having weighted the possible risks and rewards connected to
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the instruments traded in the market. Hence, financial markets are modeled as
abstract counterparties that allow trades to take place after they have passed some
sort of “quality assessment”. To do so, financial markets would need a machinery
to perform this appraisal. In Cherny and Madan (2009), this is based on the
concept of index of acceptability. Given a probability space ð�,F ,PÞ, a functional
� : L1ð�,F ,PÞ ! [0, þ1] which assigns higher (lower) values to random
variables that are expected to perform better (worse) is what an index of accept-
ability is. Cherny and Madan (2009) impose some technical conditions on the
notion of index of acceptability, otherwise their class would be too wide for being
of practical use. In particular, if two random cashflows are acceptable at a given
level � (i.e., if their level of acceptability is at least �), then the same applies to any
convex combination of them. Moreover, indices of acceptability are assumed to be
monotonic: if a random cashflow always outperforms a second one, then the
former would be better ranked than the latter. Indices of acceptability are also
supposed to be scale-invariant, i.e., the expected performance of a cashflow X is
the same of that of �X, for every � > 0. Finally, the technical Fatou property needs
to be satisfied: given ðXnÞn a sequence of random cashflows such that, for every n,
jXnj � 1 and �ðXnÞ � �, then if ðXnÞn converges in probability to a random
cashflow X, then also �ðXÞ � �. Cherny and Madan (2009) prove that, provided
an index of acceptability �, for every x � 0 there exists a set Qx of probability
measures absolutely continuous with respect to P such that x � x 0 implies
Qx � Qx 0 , and that

�ðXÞ ¼ sup x � 0 : inf
Q2Qx

E
QðXÞ � 0

� �
:

The concept of index of acceptability can be then linked to that of coherent risk
measure, i.e., a map � : L1ð�,F ,PÞ ! [0, þ1] that is transitive, subadditive,
positively homogeneous and monotonic, see Sec. 4.1 of Madan and Schoutens
(2016a). Delbaen (2002) shows that a coherent risk measure can be identified with
a functional such that X 7! supQ2QEQðXÞ, where the setQ contains measures that
are absolutely continuous with respect to P. The concepts of index of acceptability
and that of coherent risk measure can be tied together via the relationship

�ðXÞ ¼ supfx � 0 : �xð�XÞ � 0g, ð1Þ
where ð�xÞx�0 is a family of coherent risk measures such that �xð�XÞ � �x 0 ð�XÞ
whenever x � x 0. From this, it follows that �ðXÞ � � is equivalent to ��ð�XÞ � 0.
For this reason, indices of acceptability with the aforementioned properties are
often called coherent indices of acceptability.

We now recall the definition of (asymmetric) Choquet integral (Choquet, 1953)
(we will, from here onwards, always omit the word “asymmetric”, as symmetric
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Choquet integrals are not relevant in this framework, and we refer the interested
reader to Sec. 7 of Denneberg (1994)). For a non-additive probability � and a
random variable X, the Choquet integral is defined as

ðCÞ
Z
�
X d� :¼

Z 0

�1
�ðX � tÞ � 1 dt þ

Z þ1

0
�ðX � tÞ dt: ð2Þ

In (2), the integrals on the right-hand side should be interpreted as improper
Riemann integrals. Therefore, they both exist given that their arguments are
monotonic functions, which guarantees that the sets of their discontinuities have a
Lebesgue measure of zero. Note, however, that their sum does not necessarily
exist2: see Sec. 5 of Denneberg (1994) for a detailed treatment of Choquet
integrals.

Let a risk-neutral measure Q 2 T
x�0Qx. A distortion function is a function

from [0, 1] to [0, 1] that maps 0 to 0 and 1 to 1. For a concave distortion function
 ð � Þ we denote with  ðQÞðAÞ the (potentially non-additive) probability measure
that assigns to each measurable set A the probability mass  ðQðAÞÞ. Given ð xÞx�0

an increasing family of concave distortion functions, the map �x such that X 7!
ðCÞR�Xd xðQÞ defines a coherent risk measure. Hence, as per Cherny and Madan
(2009), functionals of this form can be employed to describe indices of accept-
ability by setting

�ðXÞ :¼ sup x � 0 : ðCÞ
Z
�
� X d xðQÞ � 0

� �
: ð3Þ

The tools just introduced can be now used to characterize direction-dependent
pricing in financial markets.

Assume that a threshold of at least � has been set by the market for a given
contingent claim to be considered acceptable and, thus, tradable. We assume a
constant risk-free rate r3 and consider a contingent claim X with a terminal payoff
at time T . The market is then willing to buy X at a price b if and only if
�ðX � e�rTbÞ � �. This is equivalent, given the assumption that the market
evaluates the performances of contingent claims by means of Choquet integrals, to
the condition b � �e�rTðCÞR� � X d �ðQÞ. Thus, the bid price of X, bid�ðXÞ,
equals

bid�ðXÞ ¼ �e�rTðCÞ
Z
�
� X d �ðQÞ: ð4Þ

2If X is non-negative(positive), then (2) is guaranteed to be well-defined.
3Note that the constant risk-free rate assumption has been made only for consistency with the fact
that, in this paper, we consider Black–Scholes and Bachelier models. However, in the case of a time-
dependent risk-free rate, all the steps outlined from here onwards would still hold.
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As the ask price of X, ask�ðXÞ, equals �bid�ð�XÞ, from (4) it then immediately
follows that

ask� Xð Þ ¼ e�rTðCÞ
Z
�
X d �ðQÞ: ð5Þ

Note that should more than one risk-neutral measure exist, then one would need to
choose which risk-neutral measure to use within formulae (4) and (5). Further, we
observe that, in the formulae provided above, the choice of the distortion function
provides the modeler with a degree of freedom to describe the liquidity dynamics
of the market. In addition, to different values of the distortion parameter � there
correspond different market liquidity specifications. This framework reminds that
of modeling preferences towards risk by means of utility functions. Despite utility
theory characterizes agents’ behavior from a microeconomic perspective (i.e., the
individual preferences of each agent) while conic finance describes risk attitudes of
financial markets, there are some similarities between the two approaches worth of
attention. In particular, in utility theory, the modeler has to choose the functional
form of the utility function to be used. This is similar to the conic finance case,
where a choice related to the distortion function also has to be made. Further, in
utility theory, one has to choose the parameter(s) of the utility function in order to
describe the level of risk aversion (or risk tolerance) of an agent. Similarly, on the
conic finance side, the behavior of the market is further described by the distortion
parameter �. In addition, we also point out that Choquet integrals are common
tools in decision theory. In particular, we recall the results of Schmeidler (1989)
which characterize choices under uncertainty, the latter in the sense of Knight
(1921), in terms of Choquet integrals (for a representation result concerning
Choquet integrals, see Schmeidler (1986), on which Schmeidler (1989) is based
on). We further highlight that Choquet integrals can be also applied to option
pricing problems under uncertainty by means of Choquet–Brownian motions,
introduced in Kast et al. (2014), as done in Driouchi et al. (2015).

3. Liquidity-Free Option Implied Volatilities

From here onwards, we consider European options only, and we assume to be
either within the Black–Scholes or the Bachelier framework. This is because we
are interested in backing out either log-normal or normal implied volatilities.

Given a filtered probability space ð�,F , ðF tÞt2[0,T],PÞ, we denote with
ðXtÞt2[0, T] the process representing a “generic” underlying. In particular, by in-
troducing an adjusted risk-neutral drift r � �, one can define Black–Scholes dy-
namics via the stochastic differential equation (SDE) given, under the risk-neutral
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measure Q equivalent to P on F , by

dX ¼ ðr � �ÞXdt þ �XdW , ð6Þ
where � denotes the volatility term, and ðWtÞt2[0,T] a Brownian motion adapted to
the filtration ðF tÞt2[0,T]. The parameter � can be defined according to the asset
class considered. For instance, setting � ¼ 0 outlines the standard Black–Scholes
framework on a non-dividend paying underlying, setting � ¼ q with q denoting
the continuous dividend yield corresponds to the Black–Scholes framework for an
underlying paying continuous dividends, while setting � ¼ r corresponds to the
Black model for futures options; see Sec. 1.1.6 of Haug (2007) for further possible
specifications.

To take into account the possibility that the underlying asset can reach negative
values, e.g., in the case of rates and oil prices,4 option prices can also be quoted in
terms of Bachelier (i.e., normal) implied volatilities. Therefore, in a similar manner
as per (6) and using the same notation conventions, one can define the Bachelier
SDE as

dX ¼ ðr � �ÞXdt þ �dW: ð7Þ
Via (7) we have chosen to describe a generalized variant, in the sense of Sec. 1.1.6
of Haug (2007), of the “contemporary” version of the Bachelier model as per Sec.
3.3 of Musiela and Rutkowski (2004). Note, however, that in the literature
sometimes the SDE corresponding to the Bachelier model slightly differs from that
outlined in (7), for instance by not considering the drift term (see Sec. 1.3.1 of
Haug (2007)). In any case, independently on the exact specifications of the
Bachelier SDE considered, all the Bachelier-related calculations available in this
paper can be performed in the same manner, up to minor rearrangements.

For a given strike K and maturity T, we denote with C and with P the prices of a
call and a put option written on X with such strike and maturity. However, when
considering the Black–Scholes model (6) (Bachelier model (7)), we will use CBS

(CB) and PBS (PB), instead. Note that, depending, on the context, we will make
option prices explicitly depend on specific parameters only, as it will be clear in the
next sections. This is to keep the notation as light as possible. In any case, the
dependency on both strike and maturity will be always omitted, as redundant in
our context.

In practice, implied volatilities, either normal or log-normal, are backed out
from call and put options separately. More precisely, implied volatilities for call

4See https://www.cmegroup.com/content/dam/cmegroup/notices/clearing/2020/04/Chadv20-152.pdf
for a note of the Chicago Mercantile Exchange concerning the possible use of the Bachelier formula
due to the negative oil prices observed in 2020.
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options are computed starting from the mid prices of these options and, similarly,
the same applies to put implied volatilites. However, in principle, one would like to
compute real risk-neutral implied volatilities, without relying on approximating
risk-neutral prices by their mid counterparts. A similar problem to this has been
analyzed in Michielon et al. (2021). Therein, it is shown that, in the case of CDSs,
under mild assumption concerning the liquidity level of the market and the
characteristics of the default time process, it is possible to strip risk-neutral default
probabilities from bid and ask CDS quotes directly in a unique manner. The
considerations available in Michielon et al. (2021) are now extended to a more
general setup. In particular, the methodology we highlight here is quite general.
That is, it can be applied to any contingent claim whose risk-neutral price depends
on a single unknown parameter provided that the former is strictly increasing with
respect to the latter, and as soon as two basic additional conditions are satisfied.
That is, the range of theoretical prices obtainable by changing the free parameter,
as well as the liquidity level of the market, should be “wide enough”, as we will
explain more technically in Theorem 1.

Let Y be a contingent claim, and denote with PV Yð�Þð Þ its risk-neutral price,
assumed dependent on an unknown parameter �. Further, let b and a denote its
quoted bid and ask prices, respectively. The main result available in Michielon
et al. (2021) is recalled in Theorem 1 in a more general fashion. The proof of
Theorem 1 follows from Lemmas 1–3 and Theorem 1 in Michielon et al. (2021),
as the steps outlined therein can be followed in the same manner. For complete-
ness, we have provided the aforementioned results, adapted to the more general
context considered in this paper, in Appendix A.

Theorem 1. Let Y be a contingent claim whose price depends on a parameter
� > 0 such that the risk-neutral price of Y is strictly increasing with respect to �.
Assume that inf�>0 PV Yð�Þð Þ < b and that sup�>0PV Yð�Þð Þ > a. This uniquely
identifies an interval [�a,�b] such that � 2 [�b,�a] if and only if inf�>0 PV Yð�Þð Þ
< b and sup�>0PV Yð�Þð Þ > a. Moreover, assume that for every � 2 [�b,�a] there
exists � > 0 such that ask Yð�Þ, �ð Þ � bid Yð�Þ, �ð Þ ¼ a� b. Then, the constrained
non-linear system

bid Yð�Þ, �ð Þ ¼ b

ask Yð�Þ, �ð Þ ¼ a

(
ð8Þ

with

b < PV Yð�Þð Þ < a

admits a solution, which is also unique.
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We observe that both call and put option prices are strictly increasing with
respect to the volatility of the underlying.5 Denote with bC (bP) and with aC (aP)
the quoted bid and ask price of the call (put), respectively. Ideally, one would aim
to find an implied risk-neutral volatility � and two distortion parameters �C and �P
such that the equalities

bid C �ð Þ, �Cð Þ ¼ bC
ask C �ð Þ, �Cð Þ ¼ aC
bid P �ð Þ, �Pð Þ ¼ bP
ask P �ð Þ, �Pð Þ ¼ aP

8>>>><
>>>>:

ð9Þ

with the constraints

bC < PV C �ð Þð Þ < aC
bP < PV P �ð Þð Þ < aP

(

are satisfied. Notwithstanding, it is in general not possible to solve (9) due to the
obvious lack of degrees of freedom. Therefore, separate volatility and liquidity
parameters should be used for calls and puts, as done in practice to compute call–
put volatility spreads. In particular, one can solve

bid C �ð Þ, �ð Þ ¼ bC
ask C �ð Þ, �ð Þ ¼ aC

�

with

bC < PV Cð�Þð Þ < aC

and obtain that a unique solution, in virtue of Theorem 1, exists, denoted with
ð�C, �CÞ. Similarly, one can solve

bid P �ð Þ, �ð Þ ¼ bP
ask P �ð Þ, �ð Þ ¼ aP

(

with

bP < PV Pð�Þð Þ < aP

separately, and again obtain a unique solution, due to Theorem 1, denoted as
ð�P , �PÞ. We call �C and �P the liquidity-free call and put implied volatilities,

5Note that the conditions inf�>0 PV Yð�Þð Þ < b and that sup�>0PV Yð�Þð Þ > a can be made more
explicit in the case of European options. In particular, for a call option it results that
inf�>0 C �ð Þ ¼ e�rT ðeðr��ÞTX0 � KÞþ, while sup�>0C �ð Þ ¼ e��TX0. Similarly, for a put option, it
results that inf�>0 P �ð Þ ¼ e�rTðK � eðr��ÞTX0Þþ, and that sup�>0P �ð Þ ¼ e�rTK.
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respectively. The quantities �C and �P denote the implied liquidity levels of the
market for calls and puts, respectively.

The approach proposed here is different from that proposed in Sec. 5.4.3 of
Madan and Schoutens (2016a). Therein, the notion of conic (Black–Scholes)
implied volatility is introduced. In particular, for a fixed (and known) distortion
parameter, one can then imply a volatility for the bid and one for the ask. However,
our approach allows to simultaneously imply both the distortion parameter and the
implied volatility directly, without, therefore, relying on an initial estimation
procedure for the distortion itself. This is because our goal is that of computing
implied volatilities that can be interpreted as risk-neutral ones.

In time series analysis, call–put volatility spreads, as outlined in Sec. 1, can be
used as regression variables for forecasting analysis. By taking into account the
approach outlined here, one would not only have the possibility to introduce
liquidity-free call–put volatility spreads in the regression model considered, but
also to take into account the implied distortion (i.e., liquidity) parameters as re-
gression variables as well. Potentially, this could enhance the explanatory power of
the regression models used for prediction purposes (see van Bakel et al. (2020) for
an illustration of the explanatory power of the distortion parameter as far as
liquidity is concerned).

3.1. Implied volatilities with the Wang transform

The choice of the distortion function to be used in the bid–ask calibration problem
is arbitrary, provided that it is concave. Consequently, different possibilities are
available, see Cherny and Madan (2009) and Sec. 4.7 of Madan and Schoutens
(2016a). However, for distributions of normal or log-normal random variables,
which are often employed in financial applications, the Wang transform (Wang,
2000), which is defined as

 �ðxÞ :¼ �ð��1ðxÞ þ �Þ, ð10Þ

with �ð � Þ denoting the cumulative distribution function of a standard normal
random variable, is a convenient choice. This is because (10) still allows to obtain
closed-form solutions for call and put option prices, see Sec. 5.4 of Madan and
Schoutens (2016a).6 Therefore, under both Black–Scholes (6) and Bachelier (7)
settings, exact formulae can be used to calculate bid and ask option prices via the

6See Appendix C for a remark concerning how the Wang transform can be a useful tool as soon as
the distribution of a normal random variable is transformed via a non-decreasing and left-continuous
function.
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Wang transform.7 Thus, our procedure to back out implied volatilities (and,
consequentially, implied distortion parameters) can be easily implemented, with
the advantage that it does not require to compute the integrals (4) and (5)
numerically should the Wang transform be used.

In the case of the Black–Scholes framework, one obtains that the risk-neutral
price of a call option is given by

CBS �ð Þ ¼ e��TX0�ðdþÞ � e�rTK�ðd�Þ,
where

dþ :¼ ln X0
K

� �þ ðr � �þ 1
2 �

2ÞT
�

ffiffiffiffi
T

p ,

and with

d� :¼ dþ � �
ffiffiffiffi
T

p
¼ ln X0

K

� �þ ðr � �� 1
2 �

2ÞT
�

ffiffiffiffi
T

p :

Further

PBS �ð Þ ¼ e�rTK�ð�d�Þ � e��TX0�ð�dþÞ:
In Sec. 5.4.2 of Madan and Schoutens (2016a) it is observed that, by considering
the Wang transform under Black–Scholes settings, bid and ask prices for

European calls and puts can be computed as bid� CBS �ð Þð Þ ¼ CBS �þ ��ffiffiffi
T

p
� �

,

ask� CBS �ð Þð Þ ¼ CBS �� ��ffiffiffi
T

p
� �

, bid� PBS �ð Þð Þ ¼ PBS �� ��ffiffiffi
T

p
� �

and, finally,

ask� PBS �ð Þð Þ ¼ PBS �þ ��ffiffiffi
T

p
� �

.

We now provide similar relationships in the case the Bachelier model (7) is
considered.8 Let FQ

XT
�ð Þ denote the time T risk-neutral distribution of the under-

lying asset. First of all, we recall that for European vanilla options, if the

7Some other cases where the Wang transform produces analytical option prices formulae are those of
the Sprenkle, Boness and Samuelson models (see Secs. 1.31–1.33 of Haug (2007)). However, note
that computing the Wang transform is computationally expensive, as this requires the evaluation of
both the cumulative distribution and quantile functions of a standard normal random variable.
Therefore, for large datasets and when the Wang transform does not guarantee analytical formulae to
exist, then other choices for the distortion function might be more convenient (see Sec. 4.7 of Madan
and Schoutens (2016a) for an overview).
8Risk-neutral call and put option pricing formulae for the Bachelier model are available in
Appendix B, for completeness.
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underlying can reach negative values, in line with Sec. 5.5 of Madan and
Schoutens (2016a) the following formulae can be used to calculate bid and ask
European option prices:

bid� Cð Þ ¼ e�rT

Z 1

K
ðx� KÞ d �ðFQ

XT
xð ÞÞ, ð11Þ

ask� Cð Þ ¼ e�rT

Z 1

K
ðK � xÞ d �ð1� FQ

XT
xð ÞÞ, ð12Þ

bid� Pð Þ ¼ e�rT

Z K

�1
ðx� KÞ d �ð1� FQ

XT
xð ÞÞ, ð13Þ

and

ask� Pð Þ ¼ e�rT

Z K

�1
ðK � xÞ d �ðFQ

XT
xð ÞÞ: ð14Þ

Observe that under both the Black–Scholes and Bachelier specifications (6)
and (7), continuous probability density functions for the terminal risk-neutral
distribution of the underlying asset are available. Therefore, the relationships
(11)–(14) can be interpreted as both Riemann–Stieltjes and Lebesgue–Stieltjes
integrals.

Under the Bachelier dynamics (7), the risk-neutral distribution of the under-
lying, at time T , is normal with mean �� and variance �� 2 as per (B.2) and (B.3) in
Appendix B. If we consider a Wang transformation with distortion parameter � we
obtain that, at time T , the underlying XT is still normally distributed with the same
variance �� 2, but this time with mean given by ��� :¼ �� � ���, see Wang (2000).
Therefore, we can apply relationship (11) and obtain that

bid� CB
� � ¼ e�rT

Z 1

K
ðx� KÞ d �ðFQ

XT
xð ÞÞ

¼ e�rT

Z 1

K

x� K

��
ffiffiffiffiffiffi
2�

p e�
1
2

x����
��ð Þ 2

dx

¼ e�rT

Z 1
K����

��

��� þ ��x� Kffiffiffiffiffiffi
2�

p e�
x 2
2 dx

¼ e�rT ð��� � KÞ
Z 1

K����
��

1ffiffiffiffiffiffi
2�

p e�
x2
2 dx� ��

Z 1
K����

��

�xffiffiffiffiffiffi
2�

p e�
x 2
2 dx

	 


¼ e�rT ð��� � KÞ� ��� � K

��

� �
þ ��	

��� � K

��

� �	 

:

Liquidity-free implied volatilities: An approach using conic finance

2150041-13



We can now calculate the call ask price via (12). First we observe, see Wang
(2000), that

 � 1� FQ
XT

xð Þ
� �

¼  � 1� �
x� ��

��

� �� �
¼  � �

�� � x

��

� �� �

¼ �
�� � xþ ���

��

� �
: ð15Þ

By setting ��þ :¼ �� þ ��� we obtain that

ask� CB
� � ¼ e�rT

Z 1

K
ðK � xÞ d �ð1� FQ

XT
xð ÞÞ

¼ e�rT

Z 1

K

x� K

��
ffiffiffiffiffiffi
2�

p e�
1
2

x���þ
��ð Þ 2

dx

¼ e�rT ð��þ � KÞ� ��þ � K

��

� �
þ ��	

��þ � K

��

� �	 

:

We now calculate the ask price of an European put option via (14). It results that

ask� PB
� � ¼ e�rT

Z K

�1
ðK � xÞ d �ðFQ

XT
xð ÞÞ

¼ e�rT

Z K

�1
K � x

��
ffiffiffiffiffiffi
2�

p e�
1
2

x����
��ð Þ 2

dx

¼ e�rT

Z K����
��

�1
K � ��� � ��x

��
ffiffiffiffiffiffi
2�

p e�
1
2x

2
dx

¼ e�rT ðK � ���Þ
Z K����

��

�1
1

��
ffiffiffiffiffiffi
2�

p e�
1
2x

2
dxþ ��

Z K����
��

�1
�x

��
ffiffiffiffiffiffi
2�

p e�
1
2x

2
dx

" #

¼ e�rT ðK � ���Þ�
K � ���

��

� �
þ ��	

K � ���
��

� �	 

:

Recalling (15), the bid price of the put can be calculated using (13), from which
it follows that

bid� PB
� � ¼ e�rT

Z K

�1
ðx� KÞ d �ð1� FQ

XT
xð ÞÞ

¼ e�rT

Z K

�1
K � x

��
ffiffiffiffiffiffi
2�

p e�
1
2

x���þ
�ð Þ 2

dx

¼ e�rT ðK � ��þÞ�
K � ��þ

��

� �
þ ��	

K � ��þ
��

� �	 

:
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To summarize, see notation in Appendix B, one obtains that bid� CBð Þ ¼
CB ���ð Þ, ask� CBð Þ ¼ CB ��þð Þ, bid� PBð Þ ¼ PB ��þð Þ, while ask� PBð Þ ¼ PB ���ð Þ.

4. Example

Here, we show how liquidity-free implied volatilities can be extracted from bid
and ask prices. In particular, we consider European options on four different
underlyings, i.e., European call options on the S&P 500 index, European put
options on the FTSE MIB index, European call options on UBS shares, and
European put options on Deutsche Telekom shares. For each of the cases con-
sidered we compute, for a given maturity (not kept unchanged for all the under-
lyings), bid and ask prices, risk-neutral and mid prices, absolute liquidity spreads,
relative liquidity spreads, implied risk-neutral and mid volatilities, as well as
implied distortion parameters. All the aforementioned calculations have been
performed for all the quoted options available for which both bid and ask prices
could be retrieved.9 The Wang transform has been chosen as distortion in all the
cases analyzed.

We start by considering European call options on the S&P 500 index, for which
a wide range of strikes is available. These options are very liquid, as illustrated by
Figs. 1(a) and 2(a) (note that the relative bid–ask spreads for deep out-of-the-
money options in Fig. 2(b) are large due to those options having small market
value). This results in risk-neutral and mid prices that are very close to each other,
as shown in Fig. 1(b). Also the risk-neutral and mid implied volatility smiles, see
Fig. 3(a), are basically overlapping, as expected. The implied distortion para-
meters, illustrated in Fig. 3(b), closely follow the trend of the relative bid–ask
spreads of Fig. 2(b).

We now consider European put options on the FTSE MIB index. In this case,
fewer strikes are traded compared to the S&P 500 case. However, as illustrated in
Fig. 4(a), these options are still very liquid; see also Figs. 5(a) and 5(b). This is
further confirmed by the low levels of the implied liquidity parameter of Fig. 6(b).
We, therefore, still obtain risk-neutral implied volatilities and prices that are
closely approximated by their mid counterparts; see Figs. 6(a) and 4(b),
respectively.

We now consider European call options on UBS. As it is clear from Figs. 7(a),
8(a), 8(b) and 9(b), these options are less liquid than those considered in the two
cases above (i.e., those on the S&P 500 and the FTSE MIB indices, respectively).

9In this section, plots have been constructed with respect to moneyness, defined here as the ratio
between a given strike price and the value of the underlying.
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(a) (b)

Fig. 1. Bid and ask prices for European call options on the S&P 500 index expiring in 886 days
(Options Price Reporting Authority), panel (a), and their corresponding risk-neutral and mid
counterparts, panel (b).

(a) (b)

Fig. 2. Absolute bid–ask spreads for the options considered in Fig. 1, panel (a), and their relative
counterparts (calculated with respect to mid prices), panel (b).

(a) (b)

Fig. 3. Risk-neutral and mid implied volatilities, panel (a), and implied liquidity levels, panel (b), for
the options considered in Fig. 1.
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(a) (b)

Fig. 4. Bid and ask prices for European put options on the FTSE MIB (Milan Stock Exchange)
expiring in 249 days, panel (a), and their corresponding risk-neutral and mid counterparts, panel (b).

(a) (b)

Fig. 5. Absolute bid–ask spreads for the options considered in Fig. 4, panel (a), and their relative
counterparts (calculated with respect to mid prices), panel (b).

(a) (b)

Fig. 6. Risk-neutral and mid implied volatilities, panel (a), and implied liquidity levels, panel (b), for
the options considered in Fig. 4.
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(a) (b)

Fig. 7. Bid and ask prices for European call options on UBS (Eurex) expiring in 345 days, panel (a),
and their corresponding risk-neutral and mid counterparts, panel (b).

(a) (b)

Fig. 8. Absolute bid–ask spreads for the options considered in Fig. 7, panel (a), and their relative
counterparts (calculated with respect to mid prices), panel (b).

(a) (b)

Fig. 9. Risk-neutral and mid implied volatilities, panel (a), and implied liquidity levels, panel (b), for
the options considered in Fig. 7.
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Therefore, this results in risk-neutral and implied volatility smiles that, for deep
out-of-the-money, but especially for deep in-the-money options, exhibit non-
negligible differences, with mid implied volatilities overestimating their risk-
neutral counterparts up to 2–3% in the former case, and up to 9–10% in the latter
case; see Fig. 9(a). Note that deep in-the-money and out-of-the-money options
have small vegas, which leads to risk-neutral and mid option prices being close to
each other; see Fig. 7(b).

As the last case, we consider that of European put options on Deutsche Tele-
kom; see Fig. 10(a). Also in these circumstances, liquidity is not as high as in the
cases of options on the S&P 500 and FTSE MIB indices. This is illustrated by the
high levels of bid–ask spreads displayed in Figs. 11(a) and 11(b), and reiterated by
the high implied liquidity levels of Fig. 12(b). Due to the low liquidity for both
in-the-money and out-of-the-money options for this particular underlying, differ-
ences between risk-neutral and mid implied volatilities are considerable; see
Fig. 12(a). In the former case, we observe mid implied volatilities underestimating
their risk-neutral counterparts up to 9–10%, while in the latter case mid implied
volatilities overestimate risk-neutral ones, with differences up to 14–15%. Also in
this case, mid prices are good proxies for their risk-neutral counterparts; see
Fig. 10(b). This is again due to the fact that close to the at-the-money point
liquidity is high, and far from it, even if liquidity decreases, options are not very
sensitive to volatility changes.

Overall, we see that for very liquid instruments mid implied volatilities are very
well approximated by their risk-neutral counterparts, as expected. When liquidity
decreases, however, for in-the-money and out-of-the-money options implied risk-
neutral volatilities might differ noticeably from mid volatilities. Predictably, this
does not have a considerable impact on option prices. This is because close to the
at-the-money point liquidity is in general high, making risk-neutral and mid

(a) (b)

Fig. 10. Bid and ask prices for European put options on Deutsche Telekom (Eurex) expiring in 345
days, panel (a), and their corresponding risk-neutral and mid counterparts, panel (b).
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implied volatilities close to each other. On the other hand, for in-the-money and
out-of-the-money options liquidity can considerably affect volatilities. However,
these options have low vegas, which makes their prices not very sensitive to
changes in the volatility of the underlying. Nonetheless, whether risk-neutral and
mid prices are close to each other is beside the point: for both risk-neutral and mid
prices there is no liquidity in the market, so from a trading perspective only bid and
ask prices matter. What we are interested in is assessing whether implied volati-
lities can be extracted from traded option quotes in a consistent manner with the
risk-neutral framework. In particular, what we believe is important is to assess how
considering bid and ask prices as a starting point instead of their mid counterparts
can affect the shape of the volatility smile. As we have seen in the examples
considered, computing implied volatilities from bid and ask prices instead of from
mid prices in some cases can have a large impact on the implied volatility figures,

(a) (b)

Fig. 11. Absolute bid–ask spreads for the options considered in Fig. 10, panel (a), and their relative
counterparts (calculated with respect to mid prices), panel (b).

(a) (b)

Fig. 12. Risk-neutral and mid implied volatilities, panel (a), and implied liquidity levels, panel (b),
for the options considered in Fig. 10.
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and this can have implications in different contexts. As an example, if a smile
model is calibrated by means of a least-square approach to the available implied
volatilities, then differences as those observed in Figs. 9(a) and 12(a) would result
in risk-neutral and mid volatility smiles with different shapes, as in-the-money and
out-of-the-money implied volatilities would affect the calibration as a whole.
Furthermore, when simulation models for over-the-counter derivatives, as for in-
stance credit models, calibrated to implied volatilities are used, then choosing to
input risk-neutral rather than mid implied volatilities might have a non-marginal
impact for running contracts which, trough time, due to market movements ended
up being in-the-money or out-of-the-money. Therefore, the examples considered,
as well as the theoretical consistency of the methodology outlined in this paper
with the risk-neutral paradigm (paradigm that is not satisfied when mid prices are
considered), make liquidity-free implied implied volatilities a potentially useful
tool in financial modeling.

5. Conclusion

In this paper, we have considered the problem of computing implied volatilities
from bid and ask European option prices directly, i.e., without relying on mid price
approximations. The methodology we have outlined relies on the conic finance
framework of Cherny and Madan (2009). Based on the results of Michielon et al.
(2021) it is possible, given the bid and ask prices of an option, to imply both the
risk-neutral volatility and the liquidity level of the market at the same time. In
particular, in the case of Black–Scholes and Bachelier specifications, this proce-
dure results particularly efficient when the Wang transform is used, as the latter
allows to analytically compute bid and ask option prices. In the case of the
Bachelier model, these analytical formulae have been provided. The methodology
outlined in this paper relies on some intuitive and simple assumptions concerning
the liquidity level of the market and the wideness of the range of option prices with
respect to changes in the volatility parameter. A potential application for the
technique we propose is that of constructing liquidity-free implied volatilitiy
surfaces (and, consequently, corresponding implied liquidity surfaces at the same
time). These liquidity-free implied volatility surfaces could be used as calibration
inputs for different models under risk-neutral settings in a consistent manner.
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Appendix A. Proof of Theorem 1

In order to prove Theorem 1, we provide two technical lemmas. The results
presented here are based on Michielon et al. (2021), and they have been made
available here to make the paper self-contained. If we assume that the quoted bid
and ask prices of the contingent claim Y lie within the interval of all the possible
risk-neutral prices that can be obtained by changing the parameter �, and that for
every � in a given interval it is always possible to find a distortion parameter �
such that the observed bid–ask spread can be reproduced, Lemma A.1 follows.

Lemma A.1. Let Y be a contingent claim whose price depends on a parameter
� > 0 such that the risk-neutral price of Y is strictly increasing with respect to �.
Assume that the inequalities inf�>0 PV Yð�Þð Þ < b and sup�>0PV Yð�Þð Þ > a hold.
Then, there exists an interval [�b,�a] such that there is equivalence between
b � PV Yð�Þð Þ � a and � 2 [�b,�a]. Further, assume that for every � 2 [�b,�a]
there exists � > 0 such that ask Yð�Þ, �ð Þ � bid Yð�Þ, �ð Þ ¼ a� b. Then, such � is
unique.

Proof. The existence of the interval [�b,�a] immediately follows from PV Yð�Þð Þ
being an increasing and continuous function of �.

We now consider a fixed � 2 [�b,�a]. There exists at least one � > 0 such that
ask Yð�Þ, �ð Þ � bid Yð�Þ, �ð Þ ¼ a� b. To derive a contradiction, suppose that there
exist �� and � � satisfying the relationships ask Yð�Þ, ��ð Þ � bid Yð�Þ, ��ð Þ ¼
ask �, � �ð Þ � bid �, � �ð Þ ¼ a� b, where �� < � �. We recall that the ask (bid) price
of Yð�Þ is an increasing (decreasing) function of �. From this it follows that
ask �, ��ð Þ < ask �, � �ð Þ, and that bid �, ��ð Þ > bid �, � �ð Þ. Therefore, we obtain
that a� b ¼ ask �, ��ð Þ � bid �, ��ð Þ < ask �, � �ð Þ � bid �, � �ð Þ ¼ a� b, which
leads to a contradiction.

We now prove the following continuity-related result.

Lemma A.2. Under the hypotheses of Lemma A.1, for every � 2 [�b,�a] the
function such that � 7! �ð�Þ, where askðYð�Þ, �ð�ÞÞ � bidðYð�Þ, �ð�ÞÞ ¼ a� b,
is continuous.

Proof. We consider �� in [�b,�a] fixed, as well as a sequence ð�nÞn in [�b,�a]
converging to ��. Further, we set 	ð�, �Þ :¼ ask Yð�Þ, �ð Þ � bid Yð�Þ, �ð Þ. We
proceed in three steps.
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(i) We first prove that the sequence ð�ð�nÞÞn is bounded. By contradiction,
assume this is not the case. It then follows that there exists a subsequence
ð�ð�nkÞÞk of ð�ð�nÞÞn diverging to þ1. The sequence ð�nkÞk converges to ��,
as it is a subsequence of a convergent sequence. Further, recall that 	 is
continuous in both arguments. Therefore, limk 	ð��nk , �ð�nkÞÞ ¼ 	ð��, þ
1Þ ¼ a� b, as 	ð ��nk , �ð�nkÞÞ always equals a� b, by construction. As
assumed in Lemma A.1, there exists �� > 0 such that 	ð��, ��Þ ¼ a� b. Due
to 	 being increasing in its second argument, we obtain that
a� b ¼ 	ð��, ��Þ < 	ð��, þ1Þ ¼ a� b, contradiction.

(ii) We now prove that the sequence ð�ð�nÞÞn admits limit. As ð�ð�nÞÞn is
bounded, it has a convergent subsequence. Assume that there exist two
subsequences, denoted as ð�ð�nkÞÞk and ð�ð�nhÞÞh, that converge to �� and
� �, respectively, with �� < � �. The sequences ð�nkÞk and ð�nhÞh are
subsequencies of the same convergent sequence. Therefore, they both
converge to ��. We then obtain that a� b ¼ limk 	ð�nk , �ð�nkÞÞ ¼
	ð��, ��Þ < 	ð ��, � �Þ ¼ limh 	ð�nh , �ð�nhÞÞ ¼ a� b, contradiction (the first
and the last equalities are due to the definitions of ð�nkÞk and ð�nhÞh,
respectively, the second and the penultimate equalities follow from the conti-
nuity of 	, while the inequality is a result of 	 being increasing in its second
argument). This means that every convergent subsequence of ð�ð�nÞÞn has the
same limit. As ð�ð�nÞÞn is bounded, it admits a limit itself (recall that if all the
convergent subsequences of a bounded sequence converge to the same real
limit, then the sequence itself also converges to the same limit as well).

(iii) Lastly, we now prove that the limit of ð�ð�nÞÞn is �ð ��Þ. Let limn �ð�nÞ be
denoted as �� , and recall that 	 is continuous in both arguments. The
sequence ð	ð�n, �ð�nÞÞÞn is constant by construction, as it always equals
a� b, and thus it converges to a� b. Its limit equals 	ð��, ��Þ due to the
continuity of 	. As a consequence of Lemma A.1, there exists a unique �ð��Þ
such that 	ð��, �ð��ÞÞ ¼ a� b. From this, it follows that �� ¼ �ð��Þ.

Now, as a consequence of the lemmas above, Theorem 1 can be proven.

Proof of Theorem 1 Consider the interval [�b,�a] as per Lemma A.1. It follows
that there exists a unique �b such that ask �b, �bð Þ � bid �b, �bð Þ ¼ a� b. As
bid �b, �bð Þ < PV �bð Þ ¼ b, we obtain that b < ask �b, �bð Þ < a.

Analogously, consider �a. There exists a unique �a such that ask Yð�aÞ, �að Þ�
bid Yð�aÞ, �að Þ ¼ a� b. Because a ¼ PV Yð�aÞð Þ < ask Yð�aÞ, �að Þ, it results that
b < bid Yð�aÞ, �að Þ < a.

The functions ask Yð�Þ, �ð Þ, bid Yð�Þ, �ð Þ and �ð�Þ are continuous in �

(the latter statement is a consequence of Lemma A.2). Therefore, there exists
�� 2 ð�b,�aÞ and a corresponding �� such that ask Yð��Þ, ��� � ¼ a and such that
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bid Yð ��Þ, ��� � ¼ b. From Lemma A.1, the pair ð��, ��Þ satisfying (8) is unique.

Appendix B. Derivation of the Bachelier Option Pricing Formulae

Equation (7) describes the dynamics of an Ornstein–Uhlenbeck process. Thus, (7)
admits a solution which, at time T , is of the form

XT ¼ eðr��ÞTX0 þ �

Z T

0
eðr��ÞðT�tÞ dWt: ðB:1Þ

From (B.1) it follows that, under Q, XT is normally distributed and, further, its
mean and variance can be calculated analytically. More precisely, we have that its
mean equals

�� :¼ eðr��ÞTX0, ðB:2Þ
while its variance

�� 2 :¼ �2ðe2ðr��ÞT � 1Þ
2ðr � �Þ : ðB:3Þ

The present value of an European call option written on X, with maturity T and
strike price K, is given by

CB ��ð Þ ¼ e�rT
E

QððXT � KÞþÞ

¼ e�rT

Z þ1

K

x� K

��
ffiffiffiffiffiffi
2�

p e�
1
2

x���
��ð Þ2

dx

¼ e�rT ð�� � KÞ� �� � K

��

� �
þ ��	

�� � K

��

� �	 

: ðB:4Þ

One can then retrieve the value of the put option in a similar manner

PB ��ð Þ ¼ e�rT
E

QððK � XTÞþÞ

¼ e�rT

Z K

�1
K � x

��
ffiffiffiffiffiffi
2�

p e�
1
2

x���
��ð Þ 2

dx

¼ e�rT ðK � ��Þ� K � ��

��

� �
þ ��	

K � ��

��

� �	 

: ðB:5Þ

Observe that (B.4) and (B.5) satisfy the generalized put–call parity relationship

e��TX0 � e�rTK þ P � C ¼ 0,

see Sec. 1.2.1 of Haug (2007).
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Appendix C. A Remark on a Property of the Wang Transform

As noted in Wang (2000), transforming a (log-)normal random variable via the
Wang transform allows to still obtain a (log-)normal random. However, we point
out that this property still holds every time a normal random variable is transformed
by means of a non-decreasing and left-continuous function. To show this, assume
that a random variable X is normally distributed with mean � and variance �2 with
respect to a probability measure P. Further, let f : R ! R be a non-decreasing
function. Denote with f �1ð � Þ its inverse should f ð � Þ be strictly increasing, or its
pseudo-inverse otherwise. In the latter case this means, given y 2 R, that

f �1ðyÞ :¼ inffx 2 R : f ðxÞ > yg: ðC:1Þ
Let Z be a standard normal random variable. We obtain that10

Pðf ðXÞ � uÞ ¼ Pðf ð�þ �ZÞ � uÞ ¼ P Z � f �1ðuÞ � �

�

� �
¼ �

f �1ðuÞ � �

�

� �
:

ðC:2Þ
Therefore, by applying the Wang transform with distortion parameter � to (C.2),
which we denote with  �ð � Þ, it follows that

 �ðPðf ðXÞ � uÞÞ ¼ �
f �1ðuÞ � �þ ��

�

� �
: ðC:3Þ

Thus, (C.3) shows that the distribution of X is invariant with respect to the Wang
transform, up to upgrading its mean from � to �� ��.
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