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This paper studies one-dimensional Ornstein–Uhlenbeck (OU)
processes, with the distinguishing feature that they are reflected on
a single boundary (put at level 0) or two boundaries (put at levels
0 and d> 0). In the literature, they are referred to as reflected OU
(ROU) and doubly reflected OU (DROU), respectively. For both
cases, we explicitly determine the decay rates of the (transient)
probability to reach a given extreme level. The methodology relies on
sample-path large deviations, so that we also identify the associated
most likely paths. For DROU, we also consider the ‘idleness process’
Lt and the ‘loss process’ Ut, which are the minimal non-decreasing
processes, whichmake theOUprocess remain ≥0 and ≤d, respectively.
We derive central limit theorems (CLTs) for Ut and Lt, using techniques
from stochastic integration and the martingale CLT.

Keywords and Phrases: Ornstein–Uhlenbeck processes, reflection,
large deviations, central limit theorems.

1 Introduction

Ornstein–Uhlenbeck (OU) processes are Markovian, mean-reverting Gaussian
processes. They well describe various real-life phenomena and allow a relatively high
degree of analytical tractability. As a result, they have found widespread use in a
broad range of application domains, such as finance, life sciences, and operations
research. In many situations, though, the stochastic process involved is not allowed
to cross a certain boundary, or is even supposed to remain within two boundaries.
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The resulting reflected (denoted in the sequel by ROU) and doubly reflected OU
(DROU) processes have hardly been studied, though, a notable exception being the
works by Ward and Glynn (2003, 2003, 2005), where ROU processes are used to
approximate the number-in-system processes in M/M/1 and GI/GI/1 queues with
reneging under a specific, reasonable scaling; the DROU process can be seen as an
approximation of the associated finite-buffer queue. Srikant and Whitt (1996) also
showed that the number-in-system process in a GI/M/n loss model can be approxi-
mated by ROU. For other applications, we refer to, for example, the introduction
of Giorno et al. (2012) and references therein.
Throughout this paper, a probability space (Ω, ,ℙ) equipped with a filtration

F ¼  tf gt∈ℝþ is fixed. As known, the OU process is defined as the unique strong

solution to the stochastic differential equation (SDE):

dXt ¼ α� γXtð Þdt þ σdBt; X0 ¼ x∈ℝ;

where α ∈ℝ, γ,σ> 0, and Bt is a standard Brownian motion. The choice σ> 0 is only
made for definiteness; from a distributional point of view, nothing changes if it is
replaced with �σ. The OU process is mean reverting towards the value α/γ. To
incorporate reflection at a lower boundary 0, thus constructing ROU, the following
SDE is used, where we, throughout the paper, additionally assume α> 0,

dYt ¼ α� γYtð Þdt þ σdBt þ dLt; Y0 ¼ x⩾0;

where Lt could be interpreted as an ‘idleness process’. More precisely, Lt is defined as
the minimal non-decreasing process such that Yt⩾ 0 for t⩾ 0; it holds that
∫ 0;T½ � 1 Yt>0f gdLt ¼ 0 for any T> 0.
Likewise, reflection at two boundaries can be constructed. DROU is defined

through the SDE

dZt ¼ α� γZtð Þdt þ σdBt þ dLt � dUt; Z0 ¼ x∈ 0; d½ �;
where Ut is the ‘loss process’ at the boundary d, that is, we have ∫ 0;T½ � 1 Zt>0f gdLt ¼ 0 as
well as ∫ 0;T½ � 1 Zt<df gdUt ¼ 0 for any T> 0. In the case of DROU, we assume that the
upper boundary d is larger than α/γ throughout this paper, to guarantee that hitting
d does not happen too frequently (which is a reasonable assumption for most of
applications). For the existence of a unique solution to the aforementioned SDEs with
reflecting boundaries, we refer to, for example, Tanaka (1979). In the context of
queues with finite capacity, Ut is the continuous analog to the cumulative amount
of loss over [0,t], and that explains why we refer to it as the loss process.
The first objective of this paper is to obtain insight into transient rare-event

probabilities. We do so for an ROU process with ‘small perturbations’, that is, a
process given through the SDE

dYϵ
t ¼ α� γYϵ

t

� �
dt þ ffiffiffi

ϵ
p

σdBt þ dLϵt ;

with ϵ> 0 is typically small. The transient distribution (at time T≥ 0, for any initial
value x≥ 0) of the OU process being explicitly known (it actually has a Normal

26 G. Huang, M. Mandjes and P. Spreij

© 2014 The Authors. Statistica Neerlandica © 2014 VVS.

 14679574, 2014, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/stan.12021 by U

va U
niversiteitsbibliotheek, W

iley O
nline L

ibrary on [07/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



distribution), we lack such results for the ROU process. (As an aside, we note that the
stationary distribution of ROU is known (Ward and Glynn, 2003); it is a truncated
Normal distribution.) This motivates the interest in large-deviations asymptotics of
the type

lim
ϵ→0

ϵ logℙ Yϵ
T⩾bjYϵ

0 ¼ x
� �

; (1)

for x≥ 0, T≥ 0, and b > E Yϵ
T jYϵ

0 ¼ x
� �

(so that the event under consideration is rare).
We follow the method used for computing blocking probabilities of the Erlang
queue in Shwartz and Weiss (1995), that is, relying on sample-path large deviations.
In our strategy, a first step is to study the aforementioned decay rate for the ‘normal’
(that is, non-reflected) OU process. This decay rate is computed as the solution of a
certain variational problem, relying on standard calculus-of-variations: it minimizes
an ‘action functional’ over all paths f such that f(0) = x and f(T ) ≥ b. The optimizing
path f ⋆ has the informal interpretation of ‘most likely path’ (or ‘minimal cost path’):
given the rare event under study happens, with overwhelming probability, it does so
through a path ‘close to’ f ⋆. In fact, f ⋆ does not hit level 0 between 0 and T. For
ROU, one can compute the cost of staying at the boundary 0, and performing all
calculations, it turns out that the most likely path for ROU stays away from
0 and coincides with the most likely path for OU.
The computations for OU are presented in Section 2. The results are in line with

what could be computed from the explicitly known distribution of Xϵ
T conditional

on Xϵ
0 ¼ x but provide us, additionally, with the most likely path. Section 3 then

focuses on the computation of the decay rate for ROU. Earlier, we described the
intuitively appealing approach we followed, but it should be emphasized that at the
technical level, there are some non-trivial steps to be taken. The primary complication
is that the local large-deviations rate function at the reflecting boundary is different
from this function in the interior (Doss and Priouret, 1983). Inspired by Robert
(1976), we derive explicit expressions of the large-deviations rate function for ROU
by properties of the reflection map in the deterministic Skorokhod problem. Unfortu-
nately, calculus-of-variation techniques cannot be used immediately to identify the
most likely path; this is due to the fact that we need to minimize over all non-negative
continuous paths. However, the non-negativity of the optimizing path for the OU
process facilitates the computation of the decay rates for ROU. In Section 4, we
compute the decay rate for DROU by the same strategy as the one for ROU.
The second part of the paper focuses on DROU, with emphasis on properties of the

loss process Ut (and also the idleness process Lt), for t large. Zhang and Glynn’s mar-
tingale approach, as developed in Zhang and Glynn (2011), is employed to tackle a
problem of this type. With h(�) being a twice continuously differentiable real function,
we apply Itô’s formula on h(Zt) and require h(�) to satisfy certain ordinary differential
equations (ODEs) and specific initial and boundary conditions in order to construct
martingales related to Ut and Lt. The presence of Zt in the drift term leads to ODEs
with non-constant coefficients, which seriously complicates the derivation of exact
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solutions. In Section 5, we use this approach to identify a central limit theorem (CLT) for
Ut: we find explicit expressions for qU and ηU such that Ut � qUtð Þ= ffiffi

t
p

converges to a
Normal random variable withmean 0 and varianceη2U; a similar result is established forLt.

2 Transient asymptotics for Ornstein–Uhlenbeck

The primary goal of this section is to compute the decay rate (1) withYϵ replaced byXϵ;
in other words, we now consider the OU case (that is, no reflection). Before we attack
this problem, we first identify the OU process’ average behavior. To this end, we first
describe the so-called zeroth-order approximation of one-dimensional diffusion
processes. The SDE (more general than the one defining OU) we here consider is

dJϵt ¼ b Jϵt
� �

dt þ ffiffiffi
ϵ

p
σ Jϵt
� �

dBt; Jϵ0 ¼ x;

and the corresponding ODE is

dx tð Þ ¼ b x tð Þð Þdt; x 0ð Þ ¼ x:

Theorem 1. (Freidlin and Wentzell, 1984, Thm. 2.1.2)
Suppose that b(�) and σ(�) are Lipschitz continuous and increase no faster than linearly,
that is,

b xð Þ � b yð Þ½ �2 þ σ xð Þ � σ yð Þ½ �2⩽K2 x� yj j2;
b2 xð Þ þ σ2 xð Þ⩽K2 1þð jxj2Þ;

where K is a constant. Then for all t> 0 and ϵ> 0, we have

EjJϵt � x tð Þj2⩽ϵa tð Þ;
where a(t) is a monotone increasing function, which is expressed in terms of |x| and K.
Moreover, for all t> 0 and δ> 0,

lim
ϵ→0

ℙ sup
0⩽s⩽t

Jϵs � x sð Þ�� �� > δ
� �

¼ 0:

In the specific case of OU processes, the corresponding small perturbation process
Xϵ
t (on a finite time interval) satisfies

dXϵ
t ¼ α� γXϵ

t

� �
dt þ ffiffiffi

ϵ
p

σdBt; X0 ¼ x⩾0: (2)

It is readily checked that the limiting process x(t) is given by

ẋ tð Þ ¼ α� γx tð Þ; x 0ð Þ ¼ x;

which has the solution

x tð Þ ¼ α
γ
þ x� α

γ

� �
e�γt:

28 G. Huang, M. Mandjes and P. Spreij
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Note that x tð Þ ¼ EXϵ
t . Popularly, as ϵ ↓ 0, with high probability, Xϵ

t is contained in
any δ-neighborhood of x(t) on the interval [0,T]. Assuming that b> x(T ), it is now
seen that the probability of our interest, of which we wish to identify the decay rate,
relates to a rare event.
We now recall the Freidlin–Wentzell theorem (Dembo and Zeitouni, 1998, Thm.

5.6.7), which is the cornerstone behind the results of this section. To this end, we first
define C[0,T](ℝ) as the space of continuous functions from [0,T ] toℝ, with the uniform
norm ∥ f∥ ∞ := supt ∈ [0,T]|f(t)| and the metric d( f,g) :=∥ f� g∥ ∞. The Freidlin–
Wentzell result now states that Xϵ satisfies the sample-path large deviations principle
(LDP) with the good rate function

Ix fð Þ :¼ 2σ2ð Þ�1∫T0 f ′ tð Þ � αþ γf tð Þ� �2
dt if f∈Hx;

∞ if f∉Hx;

(

where Hx :¼
�
f : f tð Þ ¼ xþ ∫t0ϕ sð Þds;ϕ∈L2 0; T½ �ð Þg . The LDP states that for any

closed set F and open set G in (C[0,T](ℝ),∥ �∥ ∞),

limsup
ϵ→0

ϵlogℙ Xϵ
t ∈F

� �
⩽� inf f∈F Ix fð Þ;

lim inf
ϵ→0

ϵlogℙ Xϵ
t ∈G

� �
⩾� inf f∈G Ix fð Þ:

These upper and lower bounds obviously match for Ix-continuity sets S, that is, sets
S such that inff ∈ClSIx( f ) = inff∈ intSIx( f ).
We now return to the decay rate under consideration. Let us first introduce some no-

tation, following standard conventions in Markov process theory. We write ℙx(E) for
the probability of an event E in terms of the process Xϵ if this process starts in x. We
will mainly work with a fixed time horizon T> 0 and write X▪ for {Xt, t∈ [0,T]}. Our
first step is to express the probability under study in terms of probabilities featuring
in the sample-path LDP. Observe that we can write ℙx Xϵ

T≥b
� � ¼ ℙx Xϵ

▪∈S
� �

; with

S :¼ ∪
a≥b

Sa; Sa :¼ f∈C 0;T½ � ℝð Þ : f 0ð Þ ¼ x; f Tð Þ ¼ a
� 	

:

Later, we first solve a calculus-of-variation problem to find inf f∈Sa Ix fð Þ explicitly.
Second, we prove that S is an Ix-continuity set. A combination of these findings gives
us an expression for the decay rate.

Proposition 1. Let a≥ b> x(T ). Then

inf
f∈Sa

Ix fð Þ ¼ a� x Tð Þ½ �2
1� e�2γT½ � σ2=γð Þ ¼



a� �

α
γ þ

�
x� α

γ

�
e�γT

��2
1� e�2γT½ � σ2=γð Þ :
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The optimizing path is given by

f ⋆ tð Þ ¼ �
C � α

γ
Þeγt þ x� Cð Þe�γt þ α

γ
; where C :¼ a� α

γ þ α
γe
γT � xe�γT

eγT � e�γT :

Moreover, f⋆(t)≥ 0 on t ∈ [0,∞) when the starting point x≥ 0; f⋆(t) ∈ [0,d] on t ∈ [0,T]
when the starting point x ∈ [0,d], a ∈ [0,d] and α/γ< d.

Proof Obviously,

inf
f∈Sa

Ix fð Þ ¼ inf
1

2σ2
∫T0 f ′ tð Þ þ γf tð Þ � α
� �2

dt; f∈Hx∩Sa
� 


:

According to Euler’s necessary condition (Shwartz and Weiss, 1995, Thm. C.13), the
initial condition, and the boundary condition, we have that the optimizing path
satisfies

f ″ tð Þ � γ2f tð Þ þ αγ ¼ 0; f 0ð Þ ¼ x; f Tð Þ ¼ a:

The general solution of the ODE (unique up to the choice of the two constants) reads

f tð Þ ¼ C1e
γt þ C2e

�γt þ α
γ
:

It is now readily checked that the stated expression follows, by imposing the initial
condition and the boundary condition. Hence,

inf
f∈Sa

Ix fð Þ ¼ 2C1γð Þ2
2σ2

∫T0 e
2γtdt ¼



a� �

α
γ þ

�
x� α

γ

�
e�γT

��
2

1� e�2γT½ � σ2=γð Þ :

We proceed with proving that f ⋆(t)≥ 0 and f ⋆(t) ∈ [0,d] on t ∈ [0,∞) under the two
stipulated assumptions. First, we note that x(t) = xe� γt+ (1� e� γt) α/γ, a convex com-
bination of x and α/γ. As both of these are non-negative by assumption, so is x(t). For
f ⋆(t), we have the following alternative expressions with q(t) := sinh(γt)/sinh(γT ), as a
direct computation shows:

f ⋆ tð Þ ¼ x tð Þ þ a� x Tð Þð Þq tð Þ
¼ q tð Þaþ e�γt � q tð Þe�γTð Þxþ 1� e�γt � q tð Þ 1� e�γTð Þð Þα

γ
:

It follows from the first equality that f ⋆(t)≥ x(t), because a≥ x(T ), and hence f ⋆(t) is
non-negative. Moreover, the second equality shows that f ⋆(t) is a convex combination
of a, x, and α/γ; see succeeding discussion. As all three of these are assumed to be less
than d, the same holds true for f ⋆(t).

30 G. Huang, M. Mandjes and P. Spreij
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Finally, we show that we indeed have the claimed convex combination, by showing
that all coefficients are non-negative and sum to one. The latter is obvious, as well as
q(t) ∈ [0,1]. Furthermore e� γt� q(t)e� γT ≥ (1� q(t))e� γT ≥ 0. To prove that the third
coefficient is non-negative, we use the basic equality

sinh xð Þ ¼ 1þ exð Þ 1� e�xð Þ
2

:

Then observe that

1� e�γt � q tð Þ 1� e�γTð Þ ¼ 1� e�γt � 1þ eγtð Þ 1� e�γtð Þ
1þ eγTð Þ 1� e�γTð Þ 1� e�γT� �

¼ 1� e�γtð Þ 1� 1þ eγt

1þ eγT

� �
≥0:

This completes the proof. □

Proposition 2. S is an Ix-continuity set.

Proof Consider the topological space (C[0,T](ℝ), τ), where the topology τ is induced by the
metric d( f,g). We next consider S

�
x ¼ f∈C 0;T½ � ℝð Þ : f 0ð Þ ¼ x

� 	
with the subspace

topology τS
�
x
¼ U∩ S�x : U∈τ

� 	
. The set S is a closed subset in S

�
x because the coordinate

mapping f↦ f(T) is τ-continuous. By the same property and the fact that the coordinate
mapping is τ-open, the τS

�
x
-interior of S is int S={ f∈C[0,T ](ℝ) : f(0)=x, f(T )> b}. We

thus have

inf
f∈cl S

Ix fð Þ ¼ inf
f∈S

Ix fð Þ ¼ inf
a≥b

inf
f∈Sa

Ix fð Þ; and inf
f∈int S

Ix fð Þ ¼ inf
a>b

inf
f∈Sa

Ix fð Þ:

Using proposition 1 and the fact that a≥ b> x(T),

inf
a≥b

inf
f∈Sa

Ix fð Þ ¼ inf
a>b

inf
f∈Sa

Ix fð Þ ¼


b� �

α
γ þ

�
x� α

γÞe�γTÞ�2
1� e�2γT½ � σ2=γð Þ :

Consequently, S is an Ix-continuity set. □

Now, the decay rate under consideration can be determined.

Proposition 3. Let b> x(T). Then

lim
ϵ→0

ϵlogℙx Xϵ
T≥b

� � ¼ �

b� α

γ þ x� α
γ

� �
e�γT

� ��
2

1� e�2γT½ � σ2=γð Þ :
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Moreover, the minimal cost path is as given in proposition 1 (with a replaced by b).

Proof Apply ‘Freidlin–Wentzell’ to the Ix-continuity set S:

limϵ→0 ϵlogℙx Xϵ
T≥b

� � ¼ limϵ→0 ϵlogℙx Xϵ
▪∈S

� �
¼ � inf f∈S Ix fð Þ ¼ � infa≥b inf f∈Sa Ix fð Þ:

By the computations in the proof of proposition 2, we obtain the desired result. The
minimal cost path is directly obtained from proposition 1. □

Wementioned in Section 1 that there is an alternative method to compute the decay
rate under study. It follows relatively directly from the fact that Xϵ

T (with Xϵ
0 ¼ x) is

normally distributed with mean μT ¼ x Tð Þ ¼ α
γ 1� e�γTð Þ þ xe�γT and variance

σ2
T ϵð Þ ¼ ϵσ2

2γ 1� e�2γTð Þ , in conjunction with the standard inequality (Shwartz and

Weiss, 1995, p. 19)

1
yþ y�1

e�
1
2y

2⩽∫∞y e
�1

2t
2
dt⩽ 1

y
e�

1
2y

2
:

We have followed our sample-path approach, though, for two reasons: (i) the resulting
most likely path is interesting in itself, as it gives insight into the behavior of the system
conditional on the rare event, but, more importantly, (ii) it is useful when studying the
counterpart of the decay rate for ROU (rather than OU), which we pursue in Section 3.
We also note that

lim
T→∞

lim
ϵ→0

ϵlogℙx Xϵ
T≥b

� � ¼ ��
b� α

γÞ2
σ2=γ

:

It is known that the steady-state distribution of Xϵ
t with Xϵ

0 ¼ x is normally distrib-
uted with mean α/γ and variance ϵ σ2/(2γ). We conclude that this shows that the
result is invariant under changing the orders of taking limits (T→∞ and ϵ→ 0).

3 Transient asymptotics for reflected Ornstein–Uhlenbeck

This section determines the decay rate (1) for ROU. For the moment, we consider a
setting more general than OU and ROU, namely SDEs with reflecting boundary
conditions.
Let D∘ ∈ℝ be an open interval, and ∂D and D denote its boundary and closure. Let

ν(x) denote the function giving the inward normal at x ∈ ∂D, that is, ν(x) = 1 if x is a
finite left endpoint of D and ν(x) =� 1 if x is a finite right endpoint of D. The reflected
diffusion Hϵ w.r.t. D is defined as the unique strong solution to

dHϵ
t ¼ b Hϵ

t

� �
dt þ ffiffiffi

ϵ
p

σdBt þ dξϵt ; Hϵ
0 ¼ x∈D; (3)

32 G. Huang, M. Mandjes and P. Spreij
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where ξϵj jt ¼ ∫t0 1∂D Hϵ
s

� �
djξϵjs and ξϵt ¼ ∫t0 ν Hsð Þd ξϵj js . Here, |ξϵ|t denotes the total

variation of ξϵ by time t. We assume that b(�) is uniformly Lipschitz continuous and
grows no faster than linearly, and σ is a non-zero constant. The existence and
uniqueness of the strong solution are proved in Tanaka (1979).
We now recall the sample-path LDP for the reflected diffusion process, as it is

considerably less known than the (standard) Freidlin–Wentzell theorem for the
non-reflected case. We denote by Hþ

x the non-negative functions in Hx and by ω a
function from [0,T] to ℝ.

Theorem 2. (Doss and Priouret, 1983, Thm. 4.2)If b(�) is uniformly Lipschitz continu-
ous and bounded, and σ is a non-zero constant, then Hϵ satisfies the LDP in C[0,T](D)
with the rate function

I hð Þ ¼ inf
ω≥0

1
2σ2

∫T0 h′t � b htð Þ � ν htð Þωt1∂D htð Þ� �2
dt:

if h∈Hþ
x and ∞ else.

For reflected diffusions with a single reflecting boundary at 0, we can identify ω(t)
and have the following explicit expression of the rate function. As usual, we define
x+=max{x,0} and x�=�min{x,0}.

Proposition 4. LetD=[0,∞).When b(0)≥0, Hϵ satisfies the LDP in C[0,T]([0,∞)) with
the rate function

Iþ hð Þ ¼ 1
2σ2

∫T0 h′t � b htð Þ� �2
dt

if h∈Hþ
x and ∞ else. In short, for h∈Hþ

x and b(0) ∈ℝ, we have

Iþ hð Þ ¼ 1
2σ2

∫T0 h′t � b htð Þ� �2
dt � 1

2σ2
b 0ð Þ�ð Þ2∫T0 1 0f g htð Þ dt:

Proof In this case, D= [0,∞), ∂D={0}, and ν(0) = 1. The rate function becomes

Iþ hð Þ ¼ inf
ωt≥0f g

1
2σ2

∫T0 h′t � b htð Þ � ωt1 0f g htð Þ� �2
dt:

We minimize for each t separately under the integral. If h′t � b htð Þ < 0, then ωt= 0 is
optimal. If h′t � b htð Þ≥0 and ht> 0, then 1{0}(ht)ωt ≡ 0, which means that any value
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of ω is optimal. If h′t � b htð Þ≥0 and ht= 0, then ωt ¼ h′t � b htð Þ is optimal. Hence,
ω⋆
t ¼ h′t � b htð Þ� �þ

is the optimizer. It gives the following explicit expression:

Iþ hð Þ ¼ 1
2σ2

∫T0 h′t � b htð Þ � 1 0f g htð Þ h′t � b htð Þ� �þ� �2
dt

if h∈Hþ
x and ∞ else. For any h ∈C[0,T]([0,∞)), which is differentiable a.e., note that

h′t ¼ 0 if ht= 0. Then we have

Iþ hð Þ ¼ 1
2σ2

∫T0 h′t � b htð Þ � 1 0f g htð Þb 0ð Þ�� �2
dt

¼ 1
2σ2

∫T0 h′t � b htð Þ� �2
dt þ 1

2σ2
∫T0 1 0f g htð Þ b 0ð Þ�ð Þ2dt þ 1

σ2
∫T0 1 0f g htð Þb 0ð Þ�b 0ð Þ dt:

When b(0)≥ 0, the last two terms are zero, and for b(0)< 0, they sum to

� 1
2σ2

b 0ð Þ2∫T0 1 0f g htð Þ dt:

This completes our proof. □

Theorem 2 requires b(�) to be bounded, which is a condition that ROU does not
satisfy. But the mapping in (3) from Brownian motion Bt to reflected diffusion process
Hϵ

t is continuous because σ is a constant and b(�) is uniformly continuous. One can
directly apply the contraction principle (Dembo and Zeitouni, 1998) to the rate
function of Brownian motion. Details can be found in the proof of Theorem 2 on
page 10 in Dupuis (1987). As a result, Proposition 4 is valid for ROU.
Earlier, we observed (i) that the most likely path for OU was non-negative

(Proposition 1), and (ii) the rate functions I and I+ for OU and ROU are the same as long
as their arguments are non-negative paths on [0,T] (Proposition 4). This suggests that the
decay rates for OU and ROU (and the corresponding most likely paths) coincide.
The idea is now that we find the decay rate (1) for ROU by using the sample-path

results that we derived in the previous section for OU. Recall that the zeroth-order ap-
proximation of OU is x(t) = α/γ+ (x� α/γ)e� γt. It is readily checked that x(t)> 0
when the starting point x≥ 0. So we still assume b> x(T) in the decay rate for
ROU. We define S+ := { f ∈C[0,T ]([0,∞)) : f(0) = x, f(T)≥ b}, corresponding to the rare
event Yϵ

▪∈S
þ� 	

, so as to compute the decay rate (1); the set Sþa is defined as { f∈C[0,T ]

([0,∞)) : f (0) =x, f (T ) = a}. Later, we keep the notation ℙx for probabilities of events in
terms of Yϵ when this process starts in x.

Theorem 3. Let b> x(T ). Then, similar to the result of proposition 3,

lim
ϵ→0

ϵlogℙx Yϵ
T≥b

� � ¼ �

b� �

α
γ þ

�
x� α

γÞe�γTÞ�2
1� e�2γT½ � σ2=γð Þ :

34 G. Huang, M. Mandjes and P. Spreij

© 2014 The Authors. Statistica Neerlandica © 2014 VVS.

 14679574, 2014, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/stan.12021 by U

va U
niversiteitsbibliotheek, W

iley O
nline L

ibrary on [07/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Moreover, the minimal cost path is as given in proposition 1 (with a replaced by b).

Proof As b(0) = α> 0, by proposition 4, Yϵ satisfies the sample path LDP in C[0,T]

([0,∞)) with the rate function

Iþx hð Þ ¼ 1
2σ2

∫T0 h′t � αþ γht
� �Þ2dt

if h∈Hþ
x and ∞ else. By an argument that is similar to the one used in the proof of

Proposition 2, S+ is an Iþx -continuity set. Then

ℙx Yϵ
T≥b

� � ¼ lim
ϵ→0

ϵlogℙx Yϵ
▪∈S

þ� � ¼ � inf
h∈Sþ

Iþx hð Þ ¼ � inf
a≥b

inf
h∈Sþa

Iþx hð Þ:

We have

infh∈Sþa I
þ
x hð Þ ¼ inf

1
2σ2

∫T0 h′t þ γht � α
� �2

dt; h∈Hx∩Sþa

� 


⩾inf
1

2σ2
∫T0 h′t þ γht � α
� �2

dt; h∈Hx∩Sa
� 


¼ inf f∈Sa Ix fð Þ:
The optimizer f ⋆ of inf f∈Sa Ix fð Þ is always positive, for any starting point x≥ 0,

because of Proposition . That is, f ⋆∈Sþa . Conclude that inf h∈Sþa I
þ
x hð Þ ¼ inf f∈Sa Ix fð Þ:

Then the results follows immediately from Proposition and a≥ b> x(T),

limϵ→0 ϵlogℙx Yϵ
T≥b

� � ¼ � infa≥b



a� �α

γ
þ �

x� α
γ
Þe�γTÞ�2

1� e�2γT½ � σ2=γð Þ

¼ �
�
b� �α

γ
þ �

x� α
γ
Þe�γTÞ�2

1� e�2γT½ � σ2=γð Þ :

This proves the claim. □

4 Transient asymptotics for doubly reflected Ornstein–Uhlenbeck

This section computes the decay rate (1), but now for DROU. The case of DROU
corresponds to choose the set D= [0,d ] in thm 2. We can still derive an explicit
expression for the optimal ω⋆

t and hence have the following simplified rate function.

Proposition 5. Given D= [0,d ], the rate function I(h) in theorem 2 can be rewritten
as follows:

Iþþ hð Þ ¼ 1
2σ2

∫T0 h′t � b htð Þ � 1 0f g htð Þb 0ð Þ� þ 1 df g htð Þb dð Þþ� �2
dt

if h∈Hþþ
x :¼ f∈Hx : 0≤f≤df g and ∞ else.

Limit theorems for reflected OU processes 35
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Proof As ∂D={0,d}, the rate function becomes

Iþþ hð Þ ¼ inf
ω≥0

1
2σ2

∫T0 h′t � b htð Þ � 1 0f g htð Þ � 1 df g htð Þ
 �
ωt

� �2
dt:

Let ω⋆ denote the optimizer of the preceding problem. We discuss the value of ω⋆
t in

two cases.

• Case 1: h′t � b htð Þ < 0. If ht ∈ (0,d), then ω⋆
t can be any value; if ht= 0, then

ω⋆
t ¼ 0; if ht= d, then ω⋆

t ¼ � h′t � b htð Þ� �
.

• Case 2: h′t � b htð Þ≥0. If ht∈ (0,d), thenω⋆
t can be any value; if ht= d, thenω⋆

t ¼ 0;
if ht=0, then ω⋆

t ¼ h′t � b htð Þ.
As a consequence, we have the following explicit expression:

Iþþ hð Þ ¼ 1
2σ2

∫T0 h′t � b htð Þ � 1 0f g htð Þ h′t � b htð Þ� �þ þ 1 df g htð Þ h′t � b htð Þ� ��� �2
dt

if h∈Hþþ
x and ∞ else. Also, h ∈ [0,d] and h is differentiable a.e. imply that ∀ t ∈ (0,T),

h′t ¼ 0 when ht=0 or ht= d. So the preceding expression can be further simplified to

Iþþ hð Þ ¼ 1
2σ2

∫T0 h′t � b htð Þ � 1 0f g htð Þ �b 0ð Þð Þþ þ 1 df g htð Þ �b dð Þð Þ�� �2
dt

if h∈Hþþ
x and ∞ else. □

For DROU, b(�) is bounded, and as a consequence, it fulfills all requirements in
theorem 2, and its rate function can be obtained by proposition 5 directly. Now, by
a similar argument as employed in the last section, we prove that the decay rates (1)
for OU and DROU (and the corresponding most likely paths) coincide. Recall from
Section 1 that we have assumed α/γ< d for DROU throughout this paper. Under this
assumption, the zeroth-order approximation x(t) belongs to (0,b) when the starting
point x is in [0,d].
We consider crossing levels d≥ a≥ b> x(T). Define

Sþþ :¼ f∈C 0;T½ � 0; d½ �ð Þ : f 0ð Þ ¼ x; f Tð Þ≥b
� 	

;

so that our rare event corresponds to Zϵ
▪∈S

þþ; the set Sþþ
a is defined as {f ∈C[0,T]([0,

d]) : f(0) = x, f(T) = a}. Finally, we arrive at the main result for DROU.

Theorem 4. Let d≥ b> x(T). Then

lim
ϵ→0

ϵlogℙx Zϵ
T≥b

� � ¼ �

b� �

α
γ þ

�
x� α

γÞe�γTÞ�2
1� e�2γT½ �σ2=γ

:

Moreover, the minimal cost path is the one given in proposition 3.
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Proof As b(0) = α> 0 and b(d) = α� γd< 0, by proposition 4, Zϵ satisfies the sample-
path LDP in C[0,T]([0,d]) with the rate function

Iþþ
x hð Þ ¼ 1

2σ2
∫T0 h′t � αþ γht
� �2

dt

if h∈Hþþ
x and ∞ else. Because of Proposition , it holds that f ⋆ ¼ arginf f∈Sa Ix fð Þ is in [0,

d ] on t ∈ [0,T ], when the starting point x ∈ [0,d], a ∈ [0,d], and α/γ< d, that is, f ⋆∈Sþþ
a .

As an immediate consequence, f ⋆ ¼ arginfφ∈Sþþ
a
Iþþ
x φð Þ , and infh∈Sþþ

a
Iþþ
x hð Þ ¼

inf f∈Sa Ix fð Þ. The rest of proof is similar to that of theorem 3. □

5 Central limit theorem and weak convergence of the loss process

The main objective of this section is to derive a CLT for the loss process Ut, for t
large. We do so by relying on martingale techniques. A similar procedure can be
followed for the idleness process Lt.
To prepare for the main result of this section, we start with some preliminary cal-

culations. Let h be a twice continuously differentiable function on ℝ and Z be the
DROU process defined earlier. By Itô’s formula, we have

dh Ztð Þ ¼ α� γZtð Þh′ Ztð Þ þ σ2

2
h″ Ztð Þ

� �
dt þ σh′ Ztð ÞdBt þ h′ Ztð ÞdLt

� h′ Ztð ÞdUt:

Based on the key properties of L and U, this reduces to

dh Ztð Þ ¼ Lhð Þ Ztð Þdt þ σh′ Ztð ÞdBt þ h′ 0ð ÞdLt � h′ dð ÞdUt; (4)

where the operator L is defined through

L :¼ α� γxð Þ d
dx

þ σ2

2
d2

dx2
:

The following lemma provides a key ingredient of the proof of proposition 6. It
gives the solution to a linear ODE whose inhomogeneous term is considered as a var-
iable as well, under initial and boundary conditions.

Lemma 1. Consider the ODE with real variable right-hand side q ∈ℝ

Lhð Þ ¼ q; 0⩽x⩽d;

under the mixed initial/boundary conditions h(0)= 0, h′(0)= 0, and h′(d) = 1. It has
the unique solution (h,q) ∈C2(ℝ) ×ℝ given by

q ¼ qU :¼ σ2

2
W dð Þ

∫d0W vð Þdv
; h xð Þ ¼ 2qU

σ2
∫x0 ∫

u
0
W vð Þ
W uð Þ dv dv;

where
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W vð Þ :¼ exp
2αv
σ2

� γv2

σ2

� �
:

Proof By applying reduction of order, the ODE can be written as a system of first-order
ODEs:

h′ xð Þ ¼ f xð Þ; f ′ xð Þ þ 2α� 2γx
σ2

f xð Þ ¼ 2q
σ2

:

The integrating factor of the second first-order ODE is W(x). Hence,

f xð Þ ¼ C1

W xð Þ þ
2q
σ2

∫x0
W uð Þ
W xð Þ du:

Then the general solution is

h xð Þ ¼ C2 þ ∫x0 f uð Þdu ¼ C2 þ C1∫
x
0

1
W uð Þ duþ

2q
σ2

∫x0 ∫
u
0
W vð Þ
W uð Þ dv du:

Then the initial conditions h(0) = 0, h′(0) = 0 uniquely determine the values of
C1,C2, while h′(d) = 1 uniquely determines qU. Hence, we obtained the desired unique
solution. □

We now present some additional observations. Let X be distributed according to

the stationary distribution of the OU process, that is, X has a N α
γ ;

σ2

2γ

� �
distribution,

and denote by pX its continuous density. We see that up to a multiplicative constant,
the integrating factor W in the preceding proof is equal to pX. It then follows that

qU ¼ σ2

2
pX dð Þ

ℙ 0≤X≤dð Þ :

We will use the stationary distribution πZ of the DROU process Z. Let, with a light
abuse of notation, Z also denote a random variable with that distribution and let pZ
denote its density and FZ its cumulative distribution function. The density pZ of πZ is
obtained in Ward and Glynn (2003, Prop. 1) (see also Linetsky, 2005, Equation 31)
as, with N(m,s2) denoting a Normal random variable with mean m and variance s2,

pZ zð Þ ¼ d
dz
ℙ N

α
γ
;
σ2

2γ

� �
≤z

���� 0⩽N
α
γ
;
σ2

2γ

� �
⩽d

� �

¼
ffiffiffiffiffi
2γ
σ2

r φ z� α
γ

� � ffiffiffiffi
2γ
σ2

q� �

Φ d � α
γ

� � ffiffiffiffi
2γ
σ2

q� �
� Φ �α

γ

� � ffiffiffiffi
2γ
σ2

q� �;
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where ϕ and Φ are the density function and cumulative density function of a standard
Normal random variable. In short, for 0≤ z≤ d, we have

pZ zð Þ ¼ pX zð Þ
ℙ 0≤X≤dð Þ ;

and hence,

qU ¼ σ2

2
pZ dð Þ:

For values of u, v in [0,d], one also has

W vð Þ
W uð Þ ¼

pX vð Þ
pX uð Þ ¼

pZ vð Þ
pZ uð Þ :

Hence, the function h in lemma 1 has for x ∈ [0,d] the alternative expressions

h xð Þ ¼ pZ dð Þ∫x0
ℙ 0≤X≤uð Þ

pX uð Þ du ¼ pZ dð Þ∫x0
ℙ 0≤Z≤uð Þ

pZ uð Þ du ¼ pZ dð Þ∫x0
FZ uð Þ
pZ uð Þ du:

For the derivative h′(x), we have for x ∈ [0,d]

h′ xð Þ ¼ pZ dð Þ
pZ xð Þ FZ xð Þ:

Proposition 6. The loss process U satisfies the CLT, with η2U defined in (6),

Ut � qUtffiffi
t

p ⇒N 0; η2U
� �

; as t→∞:

Proof We insert the unique solution h(x) of lemma 1 into (4). As h′(0) = 0, h′(d) = 1,
and ( h)(Zt) = qU, we have the following integral expression:

Ut � qUt þ h Ztð Þ � h Z0ð Þ ¼ σ∫t0 h
′ Zsð ÞdBs: (5)

We then observe that Mt :=Ut� qUt+ h(Zt)� h(Z0) is a zero-mean square integrable
martingale. As usual, <M> denotes the quadratic variation process of M. By the er-
godic theorem (Gīhman and Skorohod, 1972, p. 134),

t�1 < M>t ¼ t�1σ2∫t0 h
′ Zsð Þ2ds→ℙ σ2∫d0 h

′ xð Þ2πZ dxð Þ ¼: η2U ; (6)

where πZ is the stationary distribution of Zt.
Then we obtain from lemma 1

η2U ¼ 4q2U
σ2

∫d0 ∫x0
W vð Þ
W xð Þ dv

� �2

pZ xð Þ dx:

Limit theorems for reflected OU processes 39
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By the martingale CLT (Komorowski et al., 2012, Thm. 2.1), t�1
2Mt⇒N 0; η2U

� �
as

t→∞. As Z ∈ [0,d] and h is continuous, h(Z) is bounded. So

h Ztð Þ � h Z0ð Þffiffi
t

p →0

a.s. as t→∞, which implies the claim. □

The loss process at 0 can be treated analogously. Define

qL :¼ σ2

2
1

∫d0W vð Þdv
; η2L :¼ σ2∫d0 � 1

W xð Þ þ
2qL
σ2

∫x0
W vð Þ
W xð Þ dx

� �2

π xð Þ dx: (7)

Proposition 7. The loss process L satisfies the CLT

Lt � qLtffiffi
t

p ⇒N 0; η2L
� �

; as t→∞:

Let us add some additional observations. The considerations just before proposition 6
enable us to write an alternative expression forη2U as well. Using these, we obtain from (6)

η2U ¼ σ2pZ dð Þ2∫d0
FZ xð Þ2
pZ xð Þ dx:

Analogously, one derives that the function h in lemma 1 satisfying the alternative
boundary conditions h′(0) = 1, h′(d) = 0 is, for x ∈ [0,d], given by

h′ xð Þ ¼ pZ 0ð Þ
pZ xð Þ ℙ Z≥xð Þ ¼:

pZ 0ð Þ
pZ xð Þ F xð Þ;

and for qL and η2L in proposition 7

qL ¼ σ2

2
pZ 0ð Þ

η2L ¼ σ2pZ 0ð Þ2∫d0
FZ xð Þ2
pZ xð Þ dx:

The duality between the expressions for qU, η2U and qL, η2L can be completely
explained by looking at the OU process X′ := d�X, its doubly reflected version,
and the associated increasing processes U′ and L′. One easily shows that Z′, denoting
a random variable having the stationary distribution of this doubly reflected process,
has the property ℙ(Z′≥ x) =ℙ(Z≤ d� x), for all x ∈ [0,d], so that pZ ′ 0ð Þ ¼ pZ dð Þ. Sim-
ilarly, the processes U′ and L′ can be interpreted as U and L swapped.
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We proceed to refine the assertions of Propositions 6 and 7 to weak convergence
results. Let C denote the space of real-valued continuous functions on [0,∞), endowed
with the topology of uniform convergence on compacts and its Borel σ-algebra.

Proposition 8. Let η2U and qU be defined in (6) and lemma (1), respectively. The scaled
loss process

Un
t :¼

Unt � qUnt

ηU
ffiffiffi
n

p converges weakly in C to Bt; as n→∞;

where Bt is a standard Brownian motion. Likewise, the scaled loss process Lnt :¼ Lnt � qLnt

ηL
ffiffiffi
n

p ,
with η2L and qL as in (7), converges weakly in C to a standard Brownian motion.

Proof It suffices to give the proof forUn
t . By speeding up the time and scaling down the

space, the expression (5) in the proof of proposition 6 becomes

Unt � qUntffiffiffi
n

p ¼ h Z0ð Þ � h Zntð Þffiffiffi
n

p þ σffiffiffi
n

p ∫nt0 h′ Zsð ÞdBs:

By the ergodic theorem (Gīhman and Skorohod, 1972, p. 134), for arbitrary
t ∈ [0,∞),

<
σffiffiffi
n

p ∫n�0 h′ Zsð ÞdBs>t ¼ σ2t

nt
∫nt0 h′ Zsð Þ2ds→ℙ η2Ut; as n→∞:

As Znt ∈ [0,d] and h is continuous, h(Znt) is bounded. So

sup
t≥0

h Z0ð Þ � h Zntð Þffiffiffi
n

p →0 a:s: as n→∞:

Then the claim is proved by applying the functional limit theorem for semi-martingales
(Shiryayev, 1981) to Un

t . □
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