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Abstract 

In this paper we study the Fisher information matrix for a stationary 
ARMA process with the aid of Sylvester's resultant matrix. Some 
properties are explained via realizations in state space form of the 
derivates of the white noise process with respect to the parameters. 

1. Introduction 

The Cramer-Rao bound is of considerable importance for evaluating the 
performance of (stationary) autoregressive moving average (ARMA) mod­
els, where the focus is on the error covariance matrix of the estimated pa­
rameters. See Cramer [Cr) and Rao [Ra). For computing the Cramer-Rao 
bound and the asymptotic distribution of a Wald test statistic (Klein [KI)) 
the inverse of Fisher's information matrix is needed. The latter is singular 
in the presence of common roots of the AR and the MA polynomial and 
vice versa. This fact is considered to be well-known in time series analysis, 
see [Pol) or [McL] for a proof along different lines than the ones we follow 
below. 

In this paper we give an elementary proof of this equivalence by linking 
Fisher's information matrix to Sylvester's resultant matrix and an inter­
pretation in terms of a state space realization. 

In the literature the resultant matrix has been used in various studies 
in the fields of time series and systems theory. For instance, in [AS) this 
matrix shows up in a convergence analysis of maximum likelihood estima­
tors of the ARMA parameters (more precisely in the study of the conver­
gence of the criterion function), in Barnett [Bal] a relationship between 
Sylvester's resultant matrix and the companion matrix of a polynomial is 
given. Kalman [Ka] has investigated the concept of observability and con­
trollability in function of Sylvester's resultant matrix. Similar results can 
be found in Barnett [Ba2] which contains discussions on these topics and a 
number of further references. 

Fisher's information matrix is studied in [Ro] for problems of local and 
global identifiability in a static context, whereas identifiability problems for 
parameterizations of linear (stochastic) systems are studied by Glover and 
Willems in [GW]. 
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Furthermore in Soderstrom & Stoica [SoJ (pages 162 ff.) a discussion 
on overparameterization in terms of the transfer function of a system can 
be found. 

We now introduce some notation. Consider the following two scalar poly­
nomials in the variable z. 

A(z) 

C(z) 

zP + alzp- l + ... + ap 

zq + CIZq- 1 + ... + cq 

(1.1) 

(1.2) 

By A* and C* we denote the reciprocal polynomials, so A*(z) = ZPA(Z-l) 
and C*(z) = zqC(Z-I), and also write aT = [al, '" ,apJ and cT = 

[CI, ... ,cqJ . 
The Sylvester resultant matrix of A and C is defined as the (p+q) x (p+q) 
matrix 

q{ 
1 al ap 0 

0 1 al ap 
S(a, c) = --- - ------- - ---------- (1.3) 

p{ 
1 CI cq 0 

0 1 CI cq 

In the presence of common roots of A and C the matrix S(a, c) becomes 
singular. Moreover it is known (see e.g. [VW, page 106]) that 

p q 

det S(a, c) = IT IT {-yj - (ti) (1.4) 
i=l j=l 

where the (ti and the Ij are the roots of A and C respectively. 

Remark. The origin of Sylvester's matrix lies in the following prob­
lem, see [VWJ. Find monic polynomials K(z) = zP + L:f=l kizP- i and 
L(z) = zq + L:?=lliZq-i such that A(z)L(z) + C(z)K(z) = O. Writing the 
coefficients of K and L in column vectors k and l, one can cast this problem 
as solving a set of linear equations in k and l with S(a, c)T as coefficient 
matrix. Clearly, the solution of the problem is then given by the affine 

subspace [ ~a ] + kerS(a,cf. Notice that for any solution K and L of 

the problem the rational function K/L coincides with A/C in the points 
where both are defined. 



On Fisher's infonnation matrix of an ARMA process 275 

Remark. Let Jp+q the matrix in R(p+q)x(p+q) with ij-entries Oi ,j+1 (a 
shifted identity matrix), aT = (1, all"" ap , . . . , 0) E Rp+q and "? = 
(1, Cll"" cq , .. . , 0) E Rp+q. Then up to a permutation of its columns, 
the matrix S( a, C)T consists of the first p + q columns of the controllability 
matrix of the pair (Jp+q, (a, 'Y)), 

2. A key result 

First we specify Fisher's information matrix of an ARMA(p,q) process. 
Let A and C be the same monic polynomials as in the previous section. 
Consider then the stationary ARMA process y that satisfies 

A*(L)y = C*(L)c (2.1) 

with L the lag operator and c a white noise sequence. We make the as­
sumption (to give the expressions that we use below the correct meaning) 
that both A and C have zeros only inside the unit circle. 
Let () = (al " '" ap , Cll . . . . cq ) and denote by cf' the derivative of Ct with 
respect to (}i' Then we have 

a ' 1 
c ' = a(z)ct- j t 

cC! 1 
t = - c(z(t-l 

With cf the column vector with elements cf· the Fisher information matrix 
F(B) is equal to EefefT. As can be found in for instance Klein & Melard 
[KM] F«(}) then has the following block decomposition 

F(B) = [Fa; Fac] 
Fac Fcc , 

(2.2) 

where the matrices appearing here have the following elements 

1 i zj-k+p-l 
-2 . A( )A*( )dz,(j,k = 1, .. . ,p) 

'In Izl=l Z z 
Fjk = aa 

-1 i zj-k+q-l 
-2 . C( )A*( )dZ, (j=I, ... ,p,k=I, ... ,q) 

71"2 Izl=l z z 
Fjk = ac 

1 i j-k+q-l 
-2 . ~()C*( )dz,(j,k=I, .. . ,q) 

71"2 Izl=l z z 
Fjk = cc 

The key result of this paper is the easy to prove lemma 2.1 below. First 
we have to introduce some auxiliary notation. Write for each positive 
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integer k 

Uk(Z) = [1,z, ... ,zk-ljT 

Uk(Z) [zk-l, . .. , If = zk-1Uk(Z-1) 

and let 
K(z) = A(z)A*(z)C(z)C*(z). 

Define moreover 

( ) 1 i up+q(z)u;+q(zf P() =- dz 
2ni Izl=l K(z) 

(2.3) 

Notice that we can alternatively write 

P«()) = _1_ J u;+q(z)u;+q(~)T dz 
2ni lIzl=l A(z)A(~)C(z)C(~) z 

(2.4) 

Lemma 2.1 The following factorization holds. 

F«()) = S(c, -a)P«())S(c, _a)T (2.5) 

Proof. A simple computation shows that we can write F( ()) in matrix form 
as 

( ) _ 1 J 1 [ C*(Z)Up(Z)] [ () *( )T ( ) *( )T ] d 
F () - 2ni lIzl=l K(z) -A*(z)uq(z) C z up z -A z uq z z 

(2.6) 
It also straightforward to verify that the following identities hold. 

S(c, -a)up+q(z) = [ c*(Z)Up(Z)] 
-A*(z)uq(z) 

[ C(Z)U;(Z)] 
-A(z)u~(z) 

(2.7) 

(2.8) 

Hence equation (2.5) follows now immediately from equations (2.3), (2.6), 
(2.7) and (2.8). • 

Remark. It follows that with probability one cf belongs to the image 
space of S(c, -a). 

Corollary 2.2 The Fisher information matrix of an ARMA(p,q) process 
with polynomials A*(z) and C*(z) of order p, q respectively becomes singular 
iff the polynomials A and C have at least one common root. 
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Proof. Clearly the matrix F(B) becomes singular if A and C have at least 
one common root in view of equation (1.4) and lemma 2.1. In order to prove 
the converse, we only have to prove that P( B) is strictly positive definite, 
(again) because of (1.4) and (2.5). This can be shown via a straight forward 
computation (see also the next section for an alternative consideration): 

Rewrite P(B) as 

P(B) = _1_ 1 up+q (z)up+q (z-1 )T z-ldz 
211"i 1Izl=1 A(z)A(Z-I)C(Z)C(Z-I) 

Take now z = eit/>, then we get 

P B = - p+q p+q d 1 1211" U (eit/»u (e-it/»T 
() 211" 0 A(eit/»A(e-it/»C(eit/»C(e-it/» <P 

which in turn can be rewritten as 

P B = _ U p+q e Up+q e d 1 1211" ( it/» (it/» T 

() 211" 0 A(eit/»C(eit/» A(eit/»C(eit/» <P 

Let now x E Rp+q such that xT P(B) = O. Then it follows that 
T Up+ (e;~) 0 c 1 11 A.. B h" 1 1 1 'bl'f x A(e'4>1C(e;4» = lor a most a 'f'. ut t IS IS C ear y on y POSSI e I 

x = O. So P(B) > O. • 

Remark. In view of lemma 2.1, the nonsingularity of P(B) and the first 

remark in the introduction we observe that for any [ ~ ] in the affine 

subspace [ : ] + ker F(B) we find that the rational function L(z)jK(z), 

where K and L depend on k and l as before, equals the transfer function 
C(z)jA(z). This fact has also been noticed in [Pol]' although the link with 
Sylvester's matrix is absent. A fairly explicit characterization of ker F(B) 
is given in [KSj . 

As a side remark we notice that the matrix P( B) can be calculated by 
means of Cauchy's integral formula in the presence of common roots as 
follows. Let 6 be a common root of A and C that appears as a zero of AC 
of order l 2: 2. Then 

with 

P(B) = _1 1 J(z) dz 
211"i 1Izl=1 (z - 6)1 

U p+q (Z)Up+q(Z-1 f (z - 6)1 
J(z) = A(z)A(Z-1 )C(z)C(z-l) Z 
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which is analytic in a disk of radius p around 8 for sufficiently small p. 

Cauchy's theorem states that P(O) is the sum of residuals, of which in 
particular the residual in 8 can be computed as 

1(1-1)(8) = (l- ~)! 1 I(z) ldz . 
21TZ lIz-61=p (z - 8) 

(2.9) 

It then follows that the more common roots A and C have, the less residuals 
are needed for the computation of P(O). 

As a corollary to lemma 2.1 we mention the following. Consider an AR 
process of order m, with AR polynomial A*(z) of order m. According 
to equation (2.5) and the fact that the Sylvester matrix is now the m­
dimensional unit matrix, the Fisher information matrix F becomes in this 
case 

F = _1_ 1 um(z)u:n(z)T d 
21Ti lIzl=l A(z)A*(z) z 

(2.10) 

Take now in particular .A*(z) = A*(z)C*(z) (so m = p+q), then it follows 
again from equation (2.10) and the fact that now A(z)A*(z) = K(z), that 
one has P(O) = F and hence equation (2.5) reads 

F(O) = S(c, -a)FS(c, _a)T (2.11) 

So equation (2.11) gives a relationship between the Fisher information ma­
trix of an ARMA(p,q) process and that of an appropriate AR(p+q) process. 
See the next section for an explanation in state space terms of this phe­
nomenon. 

3. Computations in state space 

We start with a realization of the ARMA process in state space form. Let 
n = max{p, q}, an , 'Yn ERn, an = [a1, .. . ,an]T and 'Yn = [C1, . . . ,en]T, 
with zero entries for possibly previously undefined ak or Ck (which happens 
only if p =1= q) . We choose the following controllable realization. 

X t+1 AXt + e€t 

Yt = hn - anf X t + €t 
(3.1) 

(3.2) 

Here e is the first basis vector of the Euclidean space Rn . A is then the 
matrix J - ea~ , with J the shifted identity matrix, Jij = 1 if i = j + 1 and 
zero else. Below we also use the matrix F given by F = J - e-y;. 
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Later on we will also use the notation e for the first basis vector in 
Euclidean spaces of possibly different dimension. Similarly, we denote by 
I the identity matrix of the appropriate size and 0 stands for the zero 
vector or matrix of appropriate dimensions. Occasionally these matrices 
and vectors will have a subscript, when it is necessary to indicate the sizes. 
Furthermore we will also use non-square 'identity' matrices, like Ipn which 
is the matrix in RPxn having ij-element 8ij . 

As before we denote by superscript partial derivatives with respect to a 
parameter. Let Zt = vec (Xt, Xfl , . . . , X:v , X~l , .. . , x~q). Then we can 
represent cO after elementary computations as the output of the following 
system 

Zt+1 = AZt + eCt (3.3) 
cO 

t = CZt (3.4) 

where 

[ 
A 0 

Iq~F 1 A= 0 Ip®F 
-Iqn ® en 0 

and 

C=[ 
Ipn -Ip ® (-rn - D:n)T 0 ] -Iqn 0 - Iq ® (-rn - D:nf 

If one computes the controllability matrix of this system, it is immediately 
seen that it contains a (middle) row of zero matrices. Therefore we replace 
it by the following system, using the same notation for the state variable 
and the coefficients. 

Zt+1 = AZt + eCt (3.5) 
cO 

t CZt (3.6) 

where now 

A= [ A Iq~F ] -Iqn ® en 

and 

C=[ 
Ipn 0 ] -Iqn -Iq ® (-rn - D:nf 

Also this system is not controllable and we reduce it to one of lower order 
that is controllable by the same procedure that is used to decompose the 
state space a given system as a direct sum of the controllable subspace and 
its complement and the corresponding partitioning of the system matrices. 
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This is a well known procedure that we therefore only briefly sketch, leaving 
some computational details aside. We will work with the assumption that 
cq =I 0, although propositions 3.3 and 3.4 below and their consequences 
can also be proved if we drop this assumption by a little more complicated 
analysis. 

First we compute the controllable subspace which is the linear span 
of the set {(I - Az)-le : z E (-6, 6)}, where 6 is sufficiently small. 
Then (I - Az) -1 e after a computation turns out to be equal to « (I -
Az)-le)T,(-Iqn(I - Az)-le 0 (I - Fz)-le)T)T. Then the controllabil­
ity matrix is computed by evaluating the derivatives of all orders of this 
function at z = O. It is easily shown that the first n + q columns of the 
controllability matrix span the controllable subspace and form a basis in 
the generic case where cq =I O. In this case we form a non-singular matrix S 
consisting of these vectors augmented with a set of arbitrary independent 
vectors. Use S as a state space transformation to get a system described by 
the matrices S-1 AS, S-le = e and CS. Then we first restrict the system 
to the controllable subspace and then by also restricting it further if p < q 
in an appropriate way to a smaller subspace we get a new system (we use 
Z again to denote the state variable) that is given by 

Zt+l AZt + eet 

ef = CZt 

(3.7) 

(3.8) 

Here A is a companion matrix A = J - g[O, . . . , 0, IJ, where g is the vector 
g = [gp+q, . .. , glJT and the entries gi are given by zp+q + 2:f,!i giZP+q-i = 

A(z)C(z). 
Finally we transform this system with the aid of the matrix T E 

R(p+q)x(p+q) defined by its entries Tij = gj- i, with the convention that 

go = 1 and gk = 0 if k < O. We then arrive at 

Proposition 3.3 The process eO can be realized by the following stable and 

controllable system 

Zt+1 = AZt + eet 

e~ = CZt , 

(3.9) 

(3.10) 

where A = T- l AT = J - egT with gT = [gl, . .. ,gp+qJ, and C = S(c, -a). 
This system is observable iff the polynomials A and C have no common 
zeros. 

Proof. The procedure outlined above has already shown the validity of 
equations (3.9) and (3.10). Controllability is obvious. If one computes 
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the observability matrix one immediately sees that it has full rank iff the 
Sylvester matrix is invertible, so iff the A and C polynomials have no com­
mon factors. Furthermore the matrix A is stable, because its characteristic 
polynomial is A(z)C(z) and we had assumed that all zeros of both A and C 
lie in the open unit disk. We skip the computations leading to () = S(c, -a) . 

• 
The result of the cascade of state space transformations leading to (3.9) 

and (3.10) can be summarized as follows. Start with the system described 
by equations (3.5) ~nd (3.6). Apply a transformation with a nonsingular 
matrix M E R(n+n )x(n+n ), that is such that its upperleft block of size 
(p+ q) x (p+ q) is given by 

This matrix is nonsingular under the condition that cq #- O. Then it is a 
straightforward calculation to show that M- 1 AM =.A which has upper left 
block of size (p + q) x (p + q) equal to A. 

Next we turn to the Lyapunov equation 

(3.11) 

because we see from proposition 3.3 that EcfcfT = S(c, -a)PS(c, _a)T, 
with P the unique strictly positive solution of this Lyapunov equation, 
which exists since the pair (A, e) is controllable and A is stable. This 
solution is given (see [LR]) by 

1 f A -1 T 1 A -1 dz P = - . (z - A) ee (- - A) - . 
27rt Z Z 

(3.12) 

Because of the companion form of the matrix A we have (z - A)-Ie = 

A(lc(z)u;+q(z). So we get from (2.4) that P is nothing else but the matrix 
Po from equation (2.3) . 
Notice also that the state process in (3.9) is equal to the cO for an AR­
process with AR-polynomial equal to A*(z)C*(z), which gives an alterna­
tive explanation of (2.11) . 

The realization of the cO process of proposition 3.3 is in an alternative 
way explained if we work with transfer functions. Consider first the system 
(3.5) and (3.6), and its transfer function ¢. We had already computed the 
transfer function (I - Az)-le from c to Z as (((I - Az)-lef , (-Iqn(l-
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Az)-le ® (1 :-- Fz)-le)T)T. Premulttplying it with C gives 

¢(z) = _~~~~~ [ 

tI. (z) 1 
cFfzf 

(3.13) 

On t~e other hand the transfer function 0(1 - Az)-le of the system of 
proposition 3.3 is computed as S(c, -a) A:(z)B:~z)' Using again the relations 
(2:7) and (2.8) we get the ¢(z) of (3.13) back. 

yv~ got the system in proposition 3.3 starting from the controllable 
realization of the ARMA process y. Alternatively we could have started 
from its observable realization. Following a similar procedure one then 
arrives at another system that realizes the cO process as its state process. 
Specifically, we have 

Proposition 3.4 The process cO is the state process of the stable system 
given by 

(3.14) 

where A = [~o ~o]' Ao = J - e[al, ... ,ap ] E RPxp, Fo = J-

This system is controllable 

iff A and C have no common zeros. Moreover we have the relations 
A = S(c, -a)A with A as in proposition 3.3 and B = S(c, -a)e. 

It follows from proposition 3.4 that F(O) is also the solution to the Lyapunov 
equation 

(3.15) 

Again stability of the matrix A, which obviously has characteristic poly­
nomial A(z)C(z), ensures that this equation has a nonnegative definite 
solution, which is strictly positive definite if the pair (A, B) is controllable. 
Let R(A, B) be the controllability matrix of this pair and R(A, e) the non­
singular controllability matrix of the pair (A, e). Then we also have the 
relation R(A, B) = S(c, -a)R(A, e). Hence the pair R(A, B) is controllable 
iff S(c, -a) is nonsingular iff A and C have no common zeros, which is -of 
course- in perfect agreement with the previous results. Finally, we again 
recognize the factorization F(O) = S(c, -a)P(O)S(c, -af of lemma 2.1, 
because of the relations mentioned in proposition 3.4 and the facts that 
P(O) solves equation (3.11) and F(O) solves equation (3.15). 
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4. Final remarks 

In a sense we considered in this paper an identifiability problem for ARMA 
processes with the emphasis on the role of Sylvester's resultant matrix re­
lated to Fisher's information matrix. Some additional considerations in 
terms of state space realization were given. The factorization given in 
lemma 2.1 can be extended to a more complicated one for ARMAX pro­
cesses. This is discussed in [KS], where algebraic properties of Sylvester's 
matrix are stressed. Again non-singularity of Fisher's information matrix 
follows from the absence of common zeros of the three polynomials involved, 
although this result can alternatively be proved via a direct extension of 
the analysis in [Pol], communicated to us in [Po2] . 
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