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We study a nonparametric Bayesian approach to estimation of the volatility function of a stochastic differential
equation driven by a gamma process. The volatility function is modelled a priori as piecewise constant, and we
specify a gamma prior on its values. This leads to a straightforward procedure for posterior inference via an MCMC
procedure. We give theoretical performance guarantees (minimax optimal contraction rates for the posterior) for
the Bayesian estimate in terms of the regularity of the unknown volatility function. We illustrate the method on
synthetic and real data examples.
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1. Introduction

1.1. Problem formulation

The goal of the present paper is Bayesian nonparametric estimation of the positive local scale function
σ that appears in the Lévy-driven stochastic differential equation

dXt = σ(Xt−)dLt, X0 = 0, (1)

from observations of the solution X . Here L is a gamma process with L0 = 0 and therefore L is a sub-
ordinator, i.e. a stochastic process with monotonous sample paths. Furthermore, L has a Lévy measure
ν admitting the Lévy density

v(x) = αx−1 exp(−βx), x > 0, (2)

where α and β are two positive constants. The process L has independent increments, and Lt − Ls has
a Gamma(α(t − s), β) distribution for t > s with shape parameter α and scale parameter 1/β, as defined
in Section 1.6.

Under the assumption that the function σ (in view of financial applications we refer to it as volatility
function) is measurable and satisfies a linear growth condition, it has been shown in Belomestny et al.
(2021) that Equation (1) admits a weak solution that is unique in law. Under the stronger condition
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Figure 1. Observation Xn, n = 200, generated from (1) with the Euler scheme with volatility σ0 given in (3).
Parameters of the driving gamma process are α = 1, β = 1.

that σ is Lipschitz continuous, Equation (1) even has a unique strong solution, see (Protter, 2004,
Theorem V.6). Note that X is a Markov process.

Example 1. To get an impression of how observations of X look like, we take X to solve the Lévy SDE
(1) with the volatility function

σ0(x) =
1

500

(
3
2
+ sin(2πx)

)
. (3)

For the driving gamma process L we take parameters α = 1, β = 1. We used the Euler scheme to
generate a single trajectory to serve as observation. We simulated a path traversing the unit interval on
a time grid with time step-size δt = 0.0001 starting in X0 = 0 = b0. In Section 2.2 we will introduce
bins with boundaries bk and their hitting times τk . Approximate hitting times were obtained setting
τ′
k
= inf{iδt : Xiδt ≥ bk }. Figure 1 shows the sample path until the hitting time τ′K of bK = 1.

1.2. Motivation

Gamma processes, that form a special class of Lévy processes (see, e.g., Kyprianou (2014)), are a
fundamental modelling tool in several fields, e.g. reliability (see van Noortwijk (2009)) and risk theory
(see Dufresne, Gerber and Shiu (1991)). Since the driving gamma process L in (1) has non-decreasing
sample paths and the volatility function σ is non-negative, also the process X has non-decreasing
sample paths. Such processes find applications across various fields. A reliability model as in (1) has
been thoroughly investigated from a probabilistic point of view in Wenocur (1989b), and constitutes a
far-reaching generalisation of a basic gamma model. Furthermore, non-decreasing processes are ideally
suited to model revenues from an innovation: in Chance, Hillebrand and Hilliard (2008), the authors
study the question of pricing options on movie box office revenues that are modelled through a gamma-
like stochastic process. Another potential application is in modelling the evolution of forest fire sizes
over time, as in Reed and McKelvey (2002).

Any practical application of the model (1) would require knowledge of the volatility function σ, that
has to be inferred from observations on the process X . In this paper, we will approach estimation of
σ nonparametrically. The latter comes in handy when no apparent functional form for the volatility is
available, which usually is the case in practice. Such an approach reduces the risk of model misspec-
ification and allows a honest representation of uncertainties in inferential conclusions (see Silverman
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(1986) and Müller and Mitra (2013)). Recent years have witnessed a tremendous growth of interest
and rapid advances in nonparametric Bayesian methods (see, e.g., two monographs Ghosal and van der
Vaart (2017) and Müller et al. (2015)). Coherence, elegance and automatic uncertainty quantification
are some of the widely acknowledged attractive features of a Bayesian approach to statistics. Hence our
decision to follow a Bayesian method in this paper. However, we also note that with a careful choice
of a prior a nonparametric Bayesian method enjoys very favourable frequentist properties; see, e.g.,
Ghosal and van der Vaart (2017).

On the theoretical side, we are ultimately interested in asymptotic properties of our Bayesian proce-
dure for estimating the volatility function σ. To that end we need a sufficiently rich set of observations
and this can be accomplished by the scaled observation process in (4) below, instead of X satisfying
(1). So we consider the process Xn given as the solution to

dXn
t =

1
n
σ(Xn

t−)dLt, Xn
0 = 0. (4)

The scaling factor 1
n causes for large values of n a ‘slow growth’ of the process Xn and ‘long times’

to reach certain levels. We will thus assume that Xn is observed on a long time interval [0,Tn], where
Tn → ∞. Later we will specify Tn and we will see that Tn grows roughly proportionally with n.
Asymptotic results will be derived for n →∞. The setup above for having a rich set of observations
allows for a different, but equivalent description of the model. Let Yn

t = Xn
nt . Then Yn satisfies the SDE

Yn
t =

∫ t

0
σ(Yn

s−)dLn
s , (5)

where Ln
t =

Lnt
n . Note that Ln is again a gamma process with a Lévy density

vn(x) =
nα
x

exp(−nβx),

and (for t > s ≥ 0) Ln
t − Ln

s has a Gamma(nα(t − s),nβ) distribution. Here we see a smoother behaviour
of Ln and hence of Yn for growing n. In fact, it can be shown that Ln weakly converges to the function
L∞ given by L∞

t =
α
β t, and as a consequence Yn should then converge to a deterministic limit as well.

This behaviour of the process Yn bears some similarity to the properties of a diffusion process Yε with
small diffusion coefficient (W is a Wiener process),

Yε
t =

∫ t

0
a(Yε

s )ds + εWt,

which also has a deterministic limit as ε→ 0. The similarity becomes more pronounced, if one writes
the semimartingale decomposition of Yn,

Yn
t =

α

β

∫ t

0
σ(Yn

s−)ds +Mn
t ,

where, under appropriate conditions, the (local) martingale Mn vanishes for n →∞. This conceptual
similarity with drift estimation in a well-known diffusion model and the statistical problem there,
estimation of the function a, should be understood as a mathematical motivation for our study. Although
it is possible to present all results that follow in terms of properties of the process Yn, we opted to give
them for Xn.
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1.3. Literature overview

Statistical inference for Lévy driven SDEs is an active research with many contributions. Let us mention
recent works by Gushchin, Pavlyukevich and Ritsch (2019), Jasra, Kamatani and Masuda (2019), Jasra
et al. (2011), Uehara (2019b) and Eguchi and Uehara (2020). Such models are popular in finance and
econometrics, see e.g. Todorov (2011). In this paper we study the problem of Bayesian inference for the
volatility coefficient of a Lévy-driven SDE.

Nonparametric Bayesian literature on inference in the model (1) is non-existent, but somewhat re-
lated problems have been considered in several papers. Thus, Belomestny et al. (2019) study a nonpara-
metric Bayesian approach to estimation of the Lévy measure for Lévy processes with monotonous sam-
ple paths (subordinators), while Gugushvili, van der Meulen and Spreij (2015, 2018) and Gugushvili,
Mariucci and van der Meulen (2020) investigate the same problem for compound Poisson processes.
There exists also a limited amount of work on nonparametric Bayesian volatility estimation in diffusion
models, e.g. Batz, Ruttor and Opper (2018) and Nickl and Söhl (2017), but a paper that is most related
to the present one is Gugushvili et al. (2019). Finally, Koskela, Spanò and Jenkins (2019) is a theoreti-
cal contribution, where frequentist consistency of a Bayesian approach to inference in jump-diffusion
models is established.

1.4. Our contribution

Our work is the first contribution to nonparametric Bayesian volatility estimation for Lévy-driven
SDEs. The method we propose is easy to understand, and leads to good practical results in synthetic
and real data examples. We expect it to open up new research directions in inference for stochastic
differential equations driven by jump processes, both from the practical and theoretical point of views.
Our approach is based on a piecewise constant approximation with a proper prior on the corresponding
parameters. We show the contraction of the posterior for Hölder continuous volatility coefficients and
propose a MCMC procedure for sampling.

Example 2. We continue Example 1 and graphically illustrate our inferential results. In agreement
with the notation pertaining to the asymptotic regime detailed in (4) we took Xn as the solution to the
Lévy SDE (1) with the volatility function

σ0(x) =
3
2
+ sin(2πx) (6)

and scaled it with 1/n, n = 500. For details of our Bayesian procedure we refer to Section 2.2, in the
present example this comes down to the following.

We have partitioned the unit interval into 10 bins setting bk = kδx, δx = 0.1, k = 1, . . . ,10, and used
the piecewise constant prior of the form σ(x) =

∑
k ξk1Bk

(x), where ξ1, . . . , ξ10 are i.i.d. random vari-
ables with an inverse gamma distribution. The posterior is given in closed form by (10). Figure 2 con-
trasts the corresponding marginal 90 %-posterior credible bands for σ with the true volatility function
σ0 from (6).

1.5. Structure of the paper

The paper is organised as follows: in Section 2 we describe in detail our Bayesian method for volatil-
ity estimation. In Section 3 we present asymptotic properties of the posterior distribution when the
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Figure 2. Red: true volatility σ0 as a function of x. Shaded: marginal 90 %-posterior credible band for the piece-
wise constant posterior σ. Black: marginal posterior median.

volatility function σ is piecewise constant, whereas in Section 4 we present such properties when the
volatility function is Hölder continuous. The contraction rate we obtain in the latter case is shown to
be minimax optimal. Real data examples are considered in Section 5. In Section 6 we consider some
extensions and variations of our approach, in particular paying attention to the setting of discrete time
observations, and propose a Metropolis-Hastings approach for simulating gamma process bridges.

1.6. Notation

We denote the gamma distribution with shape parameter a > 0 and rate parameter b > 0 (hence scale
1/b) by Gamma(a,b). Recall that its density is given by

x �→ ba

Γ(a) xa−1e−bx, x > 0,

where Γ is the gamma function. The inverse gamma distribution with shape parameter a > 0 and scale
parameter b > 0 will be denoted by IG(a,b). The corresponding density is

x �→ ba

Γ(a) x−a−1e−b/x, x > 0,

and its expectation and variance are b
a−1 and b2

(a−1)2(a−2) , respectively. Following a standard Bayesian
convention, we will often use lowercase letters to write random variables. Conditioning of x on y will
be denoted by x | y.

2. Bayesian approach

To compute a posterior distribution, a likelihood ratio is needed. In this section we study likelihood
ratios and existence of a weak solution to Equation (1).
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2.1. Likelihood

Let (Ω,F ,F,P) be a filtered probability space and let (Lt )t≥0 be a gamma process adapted to F, whose
Lévy measure admits the density v given by (2). Assume that X is a (weak) solution to (1), and assume
that X is observed on an interval [0,T]. We denote by PσT (a probability measure on F X

T = σ(Xt,0 ≤
t ≤ T)) its law. In agreement with this notation we let P1

T be the law of X when σ ≡ 1, in which case
Xt = Lt, t ∈ [0,T]. The measure P1

T will serve as a reference measure. The choice σ = 1 for obtaining a
reference measure is natural, but also arbitrary. Many other choices for the function σ are conceivable,
in particular other constant functions. In Belomestny et al. (2021) the following proposition has been
proven.

Proposition 3. Let σ be a positive locally bounded measurable function on [0,∞) such that (1) admits
a weak solution that is unique in law. Assume moreover that σ is lower bounded by a strictly positive
constant. Let T be a finite (stopping) time T > 0. Then the laws PσT and P1

T are equivalent on F X
T and

the corresponding Radon-Nikodym derivative ZT has the explicit representation:

ZT = exp
(∫ T

0

∫ ∞

0
logY (t, x) μX (dx,dt) −

∫ T

0

∫ ∞

0
(Y (t, x) − 1)v(x)dx dt

)
, (7)

where both double integrals are a.s. finite.

Remark 4. For statistical inference on σ one needs a realisation of the random quantity ZT , induced
by an observed realisation of X . The realisation of ZT is then simply obtained by evaluation of the
integrals along a path of X . This causes no difficulties as the integrals in ZT are defined pathwise. We
will need (in Corollary 5 below) the result for positive piecewise constant functions σ, and we will see
there that for a realisation of ZT one only needs the observed values of the Xn

τn
k

. The stopping times τn
k

will be specified later.

2.2. Piecewise constant volatility prior

In our non-parametric Bayesian approach, we will a priori model σ as a piecewise constant function.
Namely,

σ(x) =
K∑
k=1

ξk1Bk
(x) (8)

for bins B1 = [0,b1], Bk = (bk−1,bk ], k = 2, . . . ,K − 1, and BK = (bK−1,bK ), with appropriately chosen
increasing sequence of bin endpoints {bk } and the bin number K . The bins Bk’s form a partition of the
positive halfline [0,∞). The {ξk } are positive numbers (later on positive random variables). Although
we use (8) for our model, we emphasize that the ‘true’ σ does not need to be piecewise constant.
As a final remark we note that when σ is given by (8), (4) still has a unique solution, obtained as
concatenation of stopped gamma processes.

Corollary 5. Suppose that Xn is given by (4) with σ given by (8). Let τn
k
= inf{t ≥ 0 : Xn

t ≥ bk },
k = 1, . . . ,K, and write T = τnK . Then

dPσT
dP1

T

= exp

{
β

K∑
k=1

[
1 − nξ−1

k

]
(Xn

τn
k
− Xn

τn
k−1

) − α
K∑
k=1

(
τnk − τnk−1

)
log(ξk/n)

}
.
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Proof. We have now Y (t, x) = exp(−βx( n
σ(Xn

t−)
− 1)). It follows from Proposition 3 and Remark 4 that

dPσT
dP1

T

= exp
{∫

(0,T ]

∫
(0,∞)

{
xβ

[
1 − n

σ(Xn
s−)

] }
μX (ds,dx)

−
∫ T

0

∫
(0,∞)

(
e
xβ

[
1− n

σ(Xn
s−)

]
− 1

)
v(x)dx ds

}
= exp(I1 − I2),

where

I1 =

∫
(0,T ]

∫
(0,∞)

{
xβ

[
1 − n

σ(Xn
s−)

] }
μX (ds,dx)

=

K∑
k=1

∫
(τn

k−1,τ
n
k
]

∫
(0,∞)

{
xβ

[
1 − n

σ(Xn
s−)

] }
μX (ds,dx)

=

K∑
k=1

β

[
1 − n

ξk

] ∫
(τn

k−1 ,τ
n
k
]

∫
(0,∞)

xμX (ds,dx) = β
K∑
k=1

[
1 − n

ξk

]
(Xn

τn
k
− Xn

τn
k−1

),

since σ(Xn
s−) = ξk for s ∈ (τn

k−1, τ
n
k
] if τn

k−1 < τ
n
k

. But the above expression is also valid if τn
k−1 = τ

n
k

,
since then Xn

τn
k
− Xn

τn
k−1
= 0. Furthermore, by similar reasoning,

I2 =

K∑
k=1

(
τnk − τnk−1

) ∫
R+

α

x

[
e−xβnξ

−1
k − e−βx

]
dx.

We need an intermediate result. For any c > 0 one has
∫
R+

1
x

[
e−xβ/c − e−xβ

]
dx =

∫
R+

1
x [e

−x/c −
e−x]dx and ∫

R+

1
x

[
e−x/c − e−x

]
dx =

∫ ∞

0

∫ 1/c

1
−e−ux du dx

=

∫ 1/c

1

∫ ∞

0
−e−ux dx du

=

∫ 1/c

1
−1

u
du = log c.

Application of this result to c = ξk/n gives I2 = α
∑

k

(
τn
k
− τn

k−1

)
log(ξk/n).

3. Observations with piecewise constant volatility

In this section we will provide contraction rates for the posterior distribution in our Bayesian setup,
when the true volatility function σ is piecewise constant. So, we consider the process Xn whose true
distribution results from Xn being the solution to

dXn
t =

1
n

K∑
k=1

σk1Bk
(Xn

t−)dLt, (9)
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where the constants σk are assumed to be strictly positive. So σ(x) =
∑

k σk1Bk
(x), in agreement with

(4). We assume that the process Xn is observed until the time where it surpasses the fixed and known
level bK . We aim at estimating σ, or equivalently, the sequence {σk }, in a consistent way. In order
to accomplish this, the observed process has to spend large times in the bins Bk , which is effectively
the result of the scaling factor 1

n for large n in (9). In fact, one has that the τn
k
− τn

k−1 are roughly
proportional to n for n →∞, see Proposition 8 below for the precise result. In our Bayesian approach
we model the σk as independent random variables ξk and we take inverse gamma distributions as a
prior for each of them, that is ξk ∼ IG(αk, βk). Therefore, we have to extend the original probability
space to carry the ξk as well, taking into account that L and the σk have to be independent. We can
then use Corollary 5, where PσT is to be interpreted as the conditional law of Xn on [0,T] given the ξk .

Let x1, . . . , xK denote realisations of ξ1, . . . ξK and let Xn stand for the path Xn
t , t ∈ [0,T]. With

T = τnK , we then have from Corollary 5 that the posterior joint density of (ξ1, . . . , ξK ) is given by

Π(x1, . . . , xK | Xn) ∝
K∏
k=1

exp
(
−(nβ(Xn

τn
k
− Xn

τn
k−1

) + βk)x−1
k

)
x
−α(τn

k
−τn

k−1)−αk−1
k

.

It follows that the ξk are independent under the posterior distribution, and

ξk | Xn ∼ IG(αΔτnk + αk,nβΔXτn
k
+ βk), (10)

where Δτn
k
= τn

k
− τn

k−1, ΔXτn
k
= Xτn

k
− Xτn

k−1
.

3.1. Result on the overshoot

To prepare for our first main result, we need a property of the overshoots of Xn. The overshoot POTn
k

is defined as POTn
k := Xn

τn
k
− bk ≥ 0 for k = 0, . . . ,K . Note that POTn

0 = 0.

Lemma 6. Let σ∗
K =max{σ1, . . . ,σK } and δ > 0. The probability P(POTn

k < δ) satisfies the following
bound,

P(POTn
k < δ) ≥

bK
bK + δ

(1 − exp(−nδβ/σ∗
K )). (11)

If δn → 0 such that nδn →∞, then P(POTn
k > δn) → 0.

Proof. Since POTn
0 = 0, inequality (11) is trivially true for k = 0, so we let k ∈ {1, . . . ,K} and 0 < a <

bk . We start by considering the conditional probability P(POTn
k < δ | Xn

τn
k
− = bk − a) and we claim that

P(POTn
k < δ | Xn

τn
k
− = bk − a) =

νn
k
([a,a + δ))
νn
k
([a,∞)) , (12)

where νn
k

is the Lévy measure of the process σk
n L. Note that νn

k
([a,b]) = ν([an/σk,bn/σk]) with ν the

Lévy measure of L. To see (12), we argue as follows. First we have

P(POTn
k < δ | Xn

τn
k
− = bk − a) = P(ΔXn

τn
k
< bk − Xn

τn
k−
+ δ | Xn

τn
k
− = bk − a)

= P(ΔXn
τn
k
< a + δ | Xn

τn
k
− = bk − a).
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We will now use (Kyprianou, 2014, Theorem 5.6), that states in terms of densities (which exist here)
and in notation adapted to our situation that the random vector (Xn

τn
k
− bk,bk − Xn

τn
k
−) has joint density

(for x > 0, 0 < y < bk)

fXn
τn
k
−bk ,bk−Xn

τn
k
−
(x, y) = fU (bk − y) fν(x + y),

where fU is the density of the potential function U (in Kyprianou’s terminology; it will turn out that the
precise form of fU is not relevant in our context) and fν the density of the Lévy measure of the process,
in our case νn

k
, as we effectively deal with properties of the process σk

n L. It follows that bk − Xn
τn
k
− has

marginal density

fbk−Xn
τn
k
−
(y) = fU (bk − y)νnk ([y,∞)).

Using the change of variables (Xn
τn
k
− bk,bk − Xn

τn
k
−) → (ΔXn

τn
k
,bk − Xn

τn
k
−) one gets from the transfor-

mation formula that (ΔXn
τn
k
,bk − Xn

τn
k
−) has density

fΔXn
τn
k
,bk−Xn

τn
k
−
(x, y) = fXn

τn
k
−bk ,bk−Xn

τn
k
−
(x − y, y) = fU (bk − y) fνn

k
(x),

for x > y, 0 < y < bk and zero elsewhere. It follows that the conditional density of ΔXn
τn
k

given bk −
Xn
τn
k
− = a is, for x > a,

fΔXn
τn
k
|bk−Xn

τn
k
−=a

(x) =
fU (bk − a) fνn

k
(x)

fU (bk − a)νn
k
([a,∞)) =

fνn
k
(x)

νn
k
([a,∞)) .

Hence,

P(ΔXn
τn
k
< a + δ | Xn

τn
k
− = bk − a) =

∫ a+δ

a

fνn
k
(x)

νn
k
([a,∞)) dx

=
νn
k
(a,a + δ)

νn
k
([a,∞)) ,

which proves (12). Next we show that g(a) := F(a+δ)−F(a)
1−F(a) is decreasing as a function of a for a ≥ ε,

where ε > 0 is sufficiently small. Here F is the ‘truncated distribution function’ of ν, F(x) = ν((ε, x])
for x ≥ ε. Without loss of generality, we scale F such that F(∞) = 1. Then, denoting by f the derivative
of F, one has

d
da

F(a + δ) − F(a)
1 − F(a) =

(1 − F(a)) f (a + δ) − (1 − F(a + δ)) f (a)
(1 − F(a))2︸�������︷︷�������︸
=:c>0

=
1
c

∫ ∞

a
f (x) f (a + δ)dx − 1

c

∫ ∞

a+δ
f (x) f (a)dx

=
1
c

∫ ∞

a
( f (x) f (a + δ) − f (x + δ) f (a))dx.
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With ν(dx) = f (x)dx = α
x exp(−βx)dx for every α and β (which we later replace with nβ

σk
),

d
da
P(POTn

k < δ | Xn
τn
k
− = bk − a)

=
1
c

∫ ∞

a

(
1

(a + δ)x − 1
(x + δ)a

)
exp(−β(x + δ + a))dx

=
1
c

∫ ∞

a

(
δ(a − x)

ax(x + δ)(a + δ)

)
︸�������������������︷︷�������������������︸

≤0

exp(−β(x + δ + a))dx ≤ 0.

Noting that g(a) is defined for any a away from zero, we now apply the decreasing behaviour of g,
g(a) ≥ g(bK ) as a < bk < bK , (with β replaced with nβ/σk) to get the lower bound

P(POTn
k < δ | Xn

τn
k
− = bk − a) = g(a) ≥ g(bK ) =

νn
k
([bK ,bK + δ))
νn
k
([bK ,∞)) . (13)

Next we will obtain upper and lower bounds for the fraction q(n,a, k, δ) = νn
k
([a,a+δ))

νn
k
([a,∞)) for any a and k.

We write the fraction as a fraction of integrals keeping in mind our model with volatility scaled by n
and L a gamma process. We will provide bounds on νn

k
([a,b)) with a < b ≤ ∞. We use that for Xn

t− ∈ Bk

we have to deal with the Lévy measure νn
k

with density

vnk (x) =
α

x
exp(−nβx/σk).

We compute

νnk ([a,b)) =
∫ b

a

α

x
exp(−nβx/σk)dx

=

∫ bnβ/σk

anβ/σk

α

y
exp(−y)dy

≤
∫ bnβ/σk

anβ/σk

α

anβ/σk
exp(−y)dy

=
ασk
anβ

(exp(−anβ/σk) − exp(−bnβ/σk)).

Via a similar argument, we have a lower bound

νnk ([a,b)) ≥
ασk
bnβ

(exp(−anβ/σk) − exp(−bnβ/σk)).

Hence, using the lower bound with b = a + δ and the upper bound with b =∞, we obtain

q(n,a, k, δ) ≥ a
a + δ

(1 − exp(−nδβ/σk)). (14)

Applying (14) to (13), we obtain

P(POTn
k < δ | Xn

τn
k
− = bk − a) ≥ bK

bK + δ
(1 − exp(−nδβ/σk)).
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As the above lower bound is a decreasing function of σk , we can make it smaller by replacing σk with
σ∗
K and obtain

P(POTn
k < δ | Xn

τn
k
− = bk − a) ≥ bK

bK + δ
(1 − exp(−nδβ/σ∗

K )).

Write μn
k

for the distribution of Xn
τn
k
−. Then the unconditional probability P(POTn

k < δ) can be written
as

P(POTn
k < δ) =

∫
[bk−1 ,bk )

P(POTn
k < δ | Xn

τn
k
− = x) μnk (dx)

≥
∫
[bk−1 ,bk )

bK
bK + δ

(1 − exp(−nδβ/σ∗
K )) μ

n
k (dx)

=
bK

bK + δ
(1 − exp(−nδβ/σ∗

K )),

which proves (11). The final assertion on P(POTn
k < δn) for δn → 0 immediately follows from (11).

3.2. Posterior contraction rate

Statements on convergence in probability refer to the law P = Pσ,n of the process satisfying the SDE
(4). We will denote the posterior distribution of the ξk by Πn and posterior expectation and variance
by EΠn and VarΠn , respectively. Furthermore we write Δbk := bk − bk−1 for k ≥ 1.

Lemma 7. Let δn > 0 and Gn
k
= {POTn

k > δn} for k ≥ 0. Then it holds for t ≥ 0 and k ≥ 1 that

P

(
Lt <

n(Δbk − δn)
σk

)
P((Gn

k−1)
c) ≤ P(Δτnk > t) ≤ P(Lt <

nΔbk
σk

).

Proof. Let t ≥ 0. On the event {Δτn
k
> t} we have bk−1 ≤ Xn

τn
k−1

< bk and for s ∈ (τn
k−1, τ

n
k
], one has

σ(Xn
s−) = σk . Hence

P(Δτnk > t) = P(Xn
t+τn

k−1
< bk)

= P
(
Xn
τn
k−1
+

1
n

∫ t+τn
k−1

τn
k−1

σ(Xn
s−)dLs < bk

)
= P

(
σk(Lt+τn

k−1
− Lτn

k−1
) < n(bk − Xn

τn
k−1

)
)

= P
(
Ln,k
t <

n(Δbk − POTn
k−1)

σk

)
, (15)

where Ln,k
t = Lt+τn

k−1
− Lτn

k−1
. Trivially, this implies the inequality

P(Δτnk > t) ≤ P
(
Ln,k
t <

nΔbk
σk

)
= P

(
Lt <

nΔbk
σk

)
, (16)
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where the equality follows from the strong Markov property of L and stationarity of its increments.
This gives the upper bound. Next we consider a lower bound for (15),

P

(
Ln,k
t <

n(Δbk − POTn
k−1)

σk

)
≥ P

(
{Ln,k

t <
n(Δbk − POTn

k−1)
σk

} ∩ (Gn
k−1)

c
)

≥ P
(
{Ln,k

t <
n(Δbk − δn)

σk
} ∩ (Gn

k−1)
c
)
.

By independence of Lt+τn
k−1

− Lτn
k−1

and Xn
τn
k−1

, the strong Markov property of L and stationarity of its
increments, the last probability is equal to

P

(
Lt <

n(Δbk − δn)
σk

)
P((Gn

k−1)
c),

which is the desired lower bound.

Proposition 8. Let Δτ̄n
k
=

nΔbkβ
ασk

. For cn →∞ such that cnn−
1
2 → 0 it holds that

P

(
(1 − cn√

n
)Δτ̄nk ≤ Δτnk ≤ (1 + cn√

n
)Δτ̄nk

)
→ 1.

Proof. We consider

P

(
Δτnk ≤ nΔbk β

ασk
(1 + cn√

n
)
)
= 1 − P

(
Δτnk >

nΔbk β
ασk

(1 + cn√
n
)
)

and derive an upper bound for it using the lower bound for P(Δτn
k
< t) in Lemma 7 and the fact that Lt

has the Γ(αt, β) distribution. One has, with t = un
k

:= nΔbkβ
ασk

(1+ cn√
n
), and in view of of the upper bound

in Lemma 7,

P(Δτnk > unk ) ≤ P
(
Lun

k
<

nΔbk
σk

)
.

Note that ELun
k
= α

β un
k

and Var Lun
k
= α

β2 un
k

. By the central limit theorem for gamma distributions,

L̂un
k
=

Lun
k
− α

β u
n
k√

α

β2 u
n
k

has an asymptotic standard normal distribution. The probability on the right of the

above display can be rewritten as

P

(
L̂un

k
<

nΔbk
σk

− α
β un

k√
α
β2 un

k

)
.

The term on the right-hand side of the inequality in parentheses is seen to be equal to − cn
σk

√
βσkΔbk

1+ cn√
n

.

This term tends to minus infinity and so P(Δτn
k
> un

k
) → 0. Next we consider P(Δτn

k
> ln

k
) with ln

k
:=

nΔbkβ
ασk

(1 − cn√
n
) and show that this probability tends to one. First we use the lower bound in Lemma 7,

P(Δτnk > lnk ) ≥ P
(
Lln

k
<

n(Δbk − δn)
σk

)
P((Gn

k−1)
c).
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Note that P((Gn
k−1)

c) → 1 by Lemma 6. As for the previous case, we look at the standardisation L̂ln
k

of
Lln

k
and consider

P

(
Lln

k
<

n(Δbk − δn)
σk

)
≥ P

(
L̂ln

k
<

n(Δbk−δn)
σk

− α
β ln

k√
α
β2 ln

k

)
.

The right hand side of the inequality in parentheses is seen to be equal to

1
σk

√
βσk

1 − cn√
n

(
cn

√
Δbk − δn

√
n
Δbk

)
.

This term tends to plus infinity since cn√
n
→ 0 and if we choose, as we do, δn such that δn

√
n is bounded,

then P(Δτn
k
> ln

k
) → 0.

Lemma 9. Let cn →∞ such that cnn−
1
2 → 0. Then the posterior mean squared error EΠn (ξk −σk)2 =

O( c
2
n
n ) on a set of probability tending to one for all k = 1, . . . ,K.

Proof. Recall the inverse gamma posterior distribution of the ξk as given in (10). We will first consider
the posterior bias

biask = EΠn ξk − σk =
nβΔXn

τn
k
+ βk

αΔτn
k
+ αk − 1

− σk .

and will provide upper and lower bounds for it. Let γk =
βΔbk
ασk

and δn → 0 with nδn →∞. In addition
to the events Gn

k
we need the sets

Fn
k = {Δτ

n
k > γkn(1 + cn√

n
)} (17)

Hn
k = {Δτ

n
k < γkn(1 − cn√

n
)}. (18)

It follows from Proposition 8 that P(Fn
k
) → 0 and P(Hn

k
) → 0. Furthermore, we need δn such that

nδn →∞. From Lemma 6 we obtain P(Gn
k
) → 0. A first lower bound is given by

biask ≥
nβ(Δbk − POTn

k−1) + βk
αΔτn

k
+ αk − 1

− σk,

which we split on the events (Fn
k
)c ∩ (Gn

k−1)
c and Fn

k
∪ Gn

k−1. As P(Fn
k
∪ Gn

k−1) → 0, we ignore the
behaviour on Fn

k
∪ Gn

k−1. On the event (Fn
k
)c ∩ (Gn

k−1)
c we can further bound biask from below by

nβ(Δbk − δn) + βk
nβΔbk(1 + cn√

n
)/σk + αk − 1

− σk,

which we compute further as

σk

−δn − cnΔbk√
n
+

βk−(αk−1)σk
nβ

Δbk(1 + cn√
n
) + (αk−1)σk

nβ

.
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This is seen to be of order O( cn√
n
) provided we choose δn

√
n bounded, as we can do, still keeping

nδn →∞. Next we derive an upper bound for the bias. We trivially have

biask ≤
nβ(Δbk + POTn

k ) + βk
αΔτn

k
+ αk − 1

− σk .

On the set (Hn
k
)c ∩ (Gn

k
)c , which has probability tending to one, we can further upper bound this by

σk

δn +
cnΔbk√

n
+

βk−(αk−1)σk
nβ

Δbk(1 − cn√
n
) + (αk−1)σk

nβ

,

which is again of order O( cn√
n
) for δn

√
n bounded. We conclude that biask is of order O( cn√

n
) on an event

with probability tending to one.
We move on to the posterior variance and derive upper and lower bounds on it. Recall

VarΠn ξk =
(nβΔXn

τn
k
+ βk)2

(αΔτn
k
+ αk − 1)2(αΔτn

k
+ αk − 2)

.

On the set (Fn
k
)c ∩ (Gn

k−1)
c this is larger than

(nβ(Δbk − δn) + βk)2

(nβΔbk(1 + cn√
n
)/σk + αk − 1)2(nβΔbk(1 + cn√

n
)/σk + αk − 2)

,

which is of order O( 1
n ), since δn → 0.

Next we give an upper bound for the posterior variance on the set (Hn
k
)c ∩ (Gn

k
)c , which is

(nβ(Δbk + δn) + βk)2

(nβΔbk(1 − cn√
n
)/σk + αk − 1)2(nβΔbk(1 − cn√

n
)/σk + αk − 2)

.

As for the lower bound, also this bound is of order O( 1
n ). Combining the properties of posterior bias and

variance, we obtain the posterior mean squared error EΠn (ξk −σk)2 is of order O( c
2
n
n ) with probability

tending to one.

Remark 10. The assertion of Lemma 9 can alternatively be formulated as EΠn (ξk − σk)2 =OP( c
2
n
n ).

Our main result of this section is the following theorem, which says that the posterior contraction
rate for estimating σk is n−1/2.

Theorem 11. Let (mn) be any sequence of positive real numbers converging to infinity. Then, for
n →∞,

Πn

(
|ξk − σk | >

mn√
n

)
→ 0 in probability.

Proof. It is sufficient to prove the assertion for mn increasing to infinity slow enough. For such mn,
let cn → ∞ such that cn

mn
→ 0, for instance cn =

√
mn. Then also cnn−

1
2 → 0 and by Chebychev’s
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inequality and Lemma 9 we have for all k = 1, . . . ,K , that

Πn(|ξk − σk | >
mn√

n
) ≤ n

m2
n

EΠn (ξk − σk)2 =O(
c2
n

m2
n

),

with probability tending to one.

4. Hölder continuous volatility

We consider again the process Xn satisfying (4), but the standing assumption in this section is that σ is
Hölder continuous, that is, there are constants H ≥ 0 and 0 < λ ≤ 1 such that for all x, y > 0 it holds that
|σ(x)−σ(y)| ≤ H |x− y |λ. Moreover, σ is assumed to be bounded from below by a positive constant σ.

Here is some further notation for the present section.

• The number of bins and their width depend on n. So we write Bn
k
= (bn

k−1,b
n
k
], k = 1, . . . ,K ,

K = Kn. We assume equidistant bins. Let bK be the endpoint of the last bin, assumed to be fixed.
We take the other bin boundaries bn

k
as bn

k
=

bK k
K , k = 1, . . . ,K . A given x ∈ (0,bK ] then belongs

to bin Bn
k

with k = kn(x) = �Kx
bK

�.
• Δbn

k
= bn

k
− bn

k−1. Note that for x ∈ Bn
k

it holds that |σ(x) − σn
k
| ≤ H(Δbn

k
)λ for σn

k
∈ {σ(bn

k−1),
σ(bn

k
)}.

• If x ∈ Bn
k

, we write Δτ̄n
k
(x) = nΔbn

k
β

ασ(x) .
• Furthermore, we assume the number of bins K = Kn � nκ for 0 < κ < 1. Then, given also the above

assumption on the bn
k

and the definition of τ̄n
k
(x), one has Δbn

k
� n−κ and τ̄n

k
(x) � n1−κ for all k

and x ∈ Bk .

We observe the process Xn until it crosses the last bin. It follows from Proposition 14 below that the
time this happens, τnK , is with high probability of order cn with c upperbounded by βbK

ασ .
Although σ is continuous, we model it in our Bayesian approach as a piecewise constant, that is, as

ξn(x) =
K∑
k=0

ξk1Bn
k
(x), (19)

where the ξk are assigned the inverse gamma prior distributions as in Section 3.

4.1. Behaviour of Δτn
k

We need a variation on Lemma 6. Let POTn
k = Xn

τn
k
− bk and define for δn > 0 and k = 0, . . . ,K the

events Gn
k
= {POTn

k > δn}. Note that Gn
0 =∅.

Lemma 12. Let σ∗ = max{σ(x) : 0 ≤ x ≤ bK } and δ > 0. For all n, k = 0, . . . ,K, the probability
P(POTn

k < δ) satisfies the following lower bound

P(POTn
k < δ) ≥

bK
bK + δ

(1 − exp(−nδβ/σ∗)). (20)

If δn → 0 such that nδn →∞, then P(Gn
k
) = P(POTn

k > δn) → 0.
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Proof. As in the proof of Lemma 6 we first look at P(POTn
k
< δ | Xn

τn
k
− = bn

k
− a). This probability

depends on the values of σ on the bin Bn
k−1, but for all x (in Bn

k−1) one has σ(x) ≤ σ∗. Hence

P(POTn
k < δ | Xn

τn
k
− = bnk − a) ≥ P((POTn

k )
∗ < δ | Xn

τn
k
− = bnk − a),

where (POTn
k )

∗ is the overshoot belonging to the process that has constant volatility σ∗ on [τn
k−1, τ

n
k
).

We can therefore use the lower bounds of Lemma 6 to obtain (20).

Next we derive bounds on P(Δτn
k
> t).

Lemma 13. Let 0 < x < bK and let k = kn(x) such that x ∈ Bn
k

. Let δn be a sequence of positive
numbers. Then, for Δbn

k
small enough, it holds that

P

(
Lt <

n(Δbn
k
− δn)

σ(x) + 2H(Δbn
k
)λ

)
P((Gn

k−1)
c) ≤ P(Δτnk > t) ≤ P

(
Lt <

nΔbn
k

σ(x) − 2H(Δbn
k
)λ

)
.

Proof. Let t ≥ 0. On the event {Δτn
k
> t} we have bn

k−1 ≤ Xn
τn
k−1

< bn
k
. Hence

P(Δτnk > t) = P(Xn
t+τn

k−1
< bnk )

= P
(
Xn
τn
k−1
+

1
n

∫ t+τn
k−1

τn
k−1

σ(Xn
s−)dLs < bnk

)
= P

(∫ t+τn
k−1

τn
k−1

σ(Xn
s−)dLs < n(bnk − Xn

τn
k−1

)
)

= P
(∫ t+τn

k−1

τn
k−1

σ(Xn
s−)dLs < n(Δbnk − POTn

k−1)
)
.

Note that for s ∈ (τn
k−1, τ

n
k
], one has Xn

s− ∈ (bn
k−1,b

n
k
]. Let σn

k
∈ {σ(bn

k−1),σ(b
n
k
)}, then for x ∈ [bn

k−1,b
n
k
],

one has |σ(x) − σn
k
| ≤ H(Δbn

k
)λ. Hence, with Ln,k

t = Lt+τn
k−1

− Lτn
k−1

, one has

(σn
k − H(Δbnk )

λ)Ln,k
t ≤

∫ t+τn
k−1

τn
k−1

σ(Xn
s−)dLs ≤ (σn

k + H(Δbnk )
λ)Ln,k

t .

It follows that we have the double inequality

P

(
Ln,k
t <

n(Δbn
k
− POTn

k−1)
σn
k
+ H(Δbn

k
)λ

)
≤ P(Δτnk > t) ≤ P

(
Ln,k
t <

n(Δbn
k
− POTn

k−1)
σn
k
− H(Δbn

k
)λ

)
. (21)

Trivially, this implies the inequality

P(Δτnk > t) ≤ P(Ln,k
t <

nΔbn
k

σn
k
− H(Δbn

k
)λ
).

The latter probability is by stationarity of increments and the strong Markov property of L equal to

P

(
Lt <

nΔbn
k

σn
k
− H(Δbn

k
)λ

)
.
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If we take x ∈ Bn
k

, we have for the latter probability the upper bound

P

(
Lt <

nΔbn
k

σ(x) − 2H(Δbn
k
)λ

)
(22)

as desired. Next we consider the lower bound in (21),

pnk = P
(
Ln,k
t <

n(Δbn
k
− POTn

k−1)
σn
k
+ H(Δbn

k
)λ

)
, (23)

and proceed to give a further lower bound for it. With Gn
k−1 = {POTn

k−1 > δn} one has

pnk ≥ P
({

Ln,k
t <

n(Δbn
k
− POTn

k−1)
σn
k
+ H(Δbn

k
)λ

}
∩ (Gn

k−1)
c
)
.

The latter probability is bounded from below by

P

({
Ln,k
t <

n(Δbn
k
− δn)

σn
k
+ H(Δbn

k
)λ

}
∩ (Gn

k−1)
c
)
.

By independence of Lt+τn
k−1

− Lτn
k−1

and Xn
τn
k−1

, stationarity and the strong Markov property of L, this
is equal to

P

(
Lt <

n(Δbn
k
− δn)

σn
k
+ H(Δbn

k
)λ

)
P((Gn

k−1)
c).

If we take x ∈ Bn
k

, we have for the first probability in the display the lower bound

P

(
Lt <

n(Δbn
k
− δn)

σ(x) + 2H(Δbn
k
)λ

)
. (24)

This concludes the proof.

Let 0 < x < bK and k = kn(x) such that x ∈ Bn
k

. We next present a result, Proposition 14, on the
asymptotic behaviour of Δτn

k
(x), which shows that, with high probability, it is concentrated near Δτ̄n

k
(x)

as introduced above. For the result we need the condition on the bin width, Δbn
k
� n−κ , and require

κ ≥ 1
2λ + 1

. (25)

Along with this condition we let δn � n−δ , and require

1 + κ
2

≤ δ < 1. (26)

Proposition 14. Let x ∈ (0,bK ) and x ∈ Bn
k

, for k = kn(x). Let Δτ̄n
k
(x) = nΔbn

k
β

ασ(x) . Under conditions (25)

and (26) and for cn →∞ such that cnn−
1
2 (1−κ) → 0 it holds that

P

( (
1 − cn√

nΔbn
k

)
Δτ̄nk (x) ≤ Δτ

n
k ≤

(
1 +

cn√
nΔbn

k

)
Δτ̄nk (x)

)
→ 1.
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Proof. We consider for un
k
(x) :=

nΔbn
k
β

ασ(x) (1 +
cn√
nΔbn

k

) the probability

P(Δτnk ≤ unk (x)) = 1 − P(Δτnk > unk (x))

and derive a lower bound for it using the upper bound for P(Δτn
k
< t) for t = un

k
(x) as in Lemma 13.

One has

P(Δτnk > unk (x)) ≤ P
(
Lun

k
(x) <

nΔbn
k

σn
k
− H(Δbn

k
)λ

)
.

Note that ELun
k
(x) =

α
β un

k
(x) and Var Lun

k
(x) =

α
β2 un

k
(x). Hence, by the central limit theorem applied to

gamma distributed random variables, L̂un
k
(x) =

Lun
k
(x)− α

β u
n
k
(x)√

α

β2 u
n
k
(x)

asymptotically has the standard normal

distribution. The probability on the right of the above display is, for large enough n less than P(Lun
k
(x) <

nΔbn
k

σ(x)−2H(Δbn
k
)λ ), which can be rewritten as

P

(
L̂un

k
(x) <

nΔbn
k

σ(x)−2H(Δbn
k
)λ − α

β un
k
(x)√

α
β2 un

k
(x)

)
.

The right hand side of the inequality in parentheses can be rewritten as

1
σ(x) − 2H(Δbn

k
)λ

√√√√ βσ(x)
1 + cn√

nΔbn
k

$%%&−cn +
2H
σ(x) (Δbnk )

λ
√

nΔbn
k
(1 + cn√

nΔbn
k

)
'(() .

This term tends to minus infinity if cn√
nΔbn

k

→ 0, which is assumed, and if (Δbn
k
)λ+ 1

2
√

n is bounded, the

latter happens under condition (25). Under this condition it follows from the central limit theorem that
P(Δτn

k
> un

k
(x)) → 0.

Next we consider P(Δτn
k
> ln

k
(x)) with ln

k
(x) :=

nΔbn
k
β

ασ(x) (1 − cn√
nΔbn

k

) and show that this probability

tends to one. First we use the lower bound, taken from Lemma 13,

P(Δτnk > lnk (x)) ≥ P
(
Lln

k
(x) <

n(Δbn
k
− δn)

σn
k
+ H(Δbn

k
)λ

)
P((Gn

k−1)
c).

Lemma 12 says that P((Gn
k−1)

c) → 1 and

P

(
Lln

k
(x) <

n(Δbn
k
− δn)

σn
k
+ H(Δbn

k
)λ

)
≥ P

(
Lln

k
(x) <

n(Δbn
k
− δn)

σ(x) + 2H(Δbn
k
)λ

)
.

As for the previous case, we look at the standardisation L̂ln
k
(x) of Lln

k
(x) and consider

P

(
Lln

k
(x) <

n(Δbn
k
− δn)

σn
k
+ H(Δbn

k
)λ

)
≥ P

(
L̂ln

k
(x) <

n(Δbn
k
−δn)

σ(x)+2H(Δbn
k
)λ − α

β ln
k
(x)√

α
β2 ln

k
(x)

)
.
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The right hand side of the inequality in parentheses is seen to be equal to

1
σ(x) + 2H(Δbn

k
)λ

√√√√ βσ(x)
1 − cn√

nΔbn
k

$%%&cn − δn
√

n
Δbn

k

− 2H
σ(x) (Δbnk )

λ
√

nΔbn
k
(1 − cn√

nΔbn
k

)
'(() .

This term tends to plus infinity under Condition (25) if δn
√

n
Δbn

k
is bounded, which happens un-

der condition (26), and cn√
nΔbn

k

→ 0, which is assumed. Consequently, by the central limit theorem,

P(Lln
k
(x) <

n(Δbn
k
−δn)

σn
k
+H(Δbn

k
)λ ) → 1.

4.2. Posterior contraction rate

Let x ∈ (0,bK ) and k = kn(x) such that x ∈ Bn
k

. The ξk corresponding to x is, as it depends on n, also
denoted ξn(x) instead of ξk .

As in Section 3.2, we consider the posterior mean squared error EΠn (ξk − σk)2, which we analyse
through the corresponding posterior bias and variance. Then the bias of the posterior mean for x ∈ Bn

k
is

bias(x) = EΠn ξk − σ(x) =
nβ(Xn

τn
k
− Xn

τn
k−1

) + βk
αΔτn

k
+ αk − 1

− σ(x). (27)

The posterior variance is

VarΠn ξk =
(nβΔXn

τn
k
+ βk)2

(αΔτn
k
+ αk − 1)2(αΔτn

k
+ αk − 2)

.

As before we give upper and lower bounds for posterior bias and variance. To do so we need, along
with the already introduced events Gn

k
= {POTn

k > δn}, the events Fn
k
= {Δτn

k
> Δτ̄n

k
(x)(1 + cn√

nΔbn
k

)}

and Hn
k
= {Δτn

k
< Δτ̄n

k
(x)(1 − cn√

nΔbn
k

)} for cn →∞ (arbitrarily slowly). We know from Proposition 14

that P(Fn
k
) → 0 and P(Hn

k
) → 0, and from Lemma 12 that P(Gn

k
) → 0.

Lemma 15. Assume the model with piecewise constant volatility ξ(x) as given by (3.2) whereas the
true volatility function x �→ σ(x) is Hölder continuous and bounded from below by a strictly positive
constant σ. Assume Δbn

k
� n−κ and condition (25). Let cn →∞. Then the posterior mean squared error

EΠn (ξn(x) − σ(x))2 = O( c2
n

nΔbn
k
) for all k = 1, . . . ,K, uniformly in x ∈ [0,bK ], with probability tending

to one. That is,

sup
x∈[0,bK ]

EΠn (ξn(x) − σ(x))2 =O
(
max
k

c2
n

nΔbn
k

)
with probability tending to one.

Proof. Let x ∈ Bn
k

. We consider the bias (27) first. The bias can be split into its behaviour on the sets
(Fn

k
)c ∩ (Gn

k−1)
c and Fn

k
∪ Gn

k−1. As P(Fn
k
∪ Gn

k−1) → 0, we only have to analyze what happens on
(Fn

k
)c ∩ (Gn

k−1)
c .
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We give upper and lower bounds for this bias. We start with a first lower bound. As ΔXn
τn
k
= Δbn

k
+

POTn
k − POTn

k−1 ≥ Δbn
k
− POTn

k−1, and recalling that POTn
k−1 < δn on (Gn

k−1)
c , we obtain that on

(Fn
k
)c ∩ (Gn

k−1)
c one has

bias(x) ≥
nβ(Δbn

k
− δn)1{Δτn

k
>0} + βk

nβΔbn
k
(1 + cn√

nΔbn
k

)/σ(x) + αk − 1
− σ(x),

of which the right hand side can be rewritten as

σ(x)
− δn
Δbn

k
− cn√

nΔbn
k

+
βk−(αk−1)σ(x)

βnΔbn
k

1 + cn√
nΔbn

k

+ (αk − 1) σ(x)
βnΔbn

k

.

This term is of order cn√
nΔbn

k

if δn
Δbn

k

√
nΔbn

k
stays bounded, which happens for δn = n−δ under condition

(26). By continuity of σ on [0,bK ] this bound is uniform in x. Next we turn to an upper bound for the
bias. Now we consider the bias on the events (Hn

k
)c ∩ (Gn

k
)c and Hn

k
∪ Gn

k
. As P(Hn

k
∪ Gn

k
) → 0, we

can ignore the bias on the latter event. Using ΔXn
τn
k
= Δbn

k
+ POTn

k
− POTn

k−1 ≤ Δbn
k
+ POTn

k
, we have

on the set (Hn
k
)c ∩ (Gn

k
)c

bias(x) ≤
nβ(δn + Δbn

k
) + βk

nβΔbn
k
(1 − cn√

nΔbn
k

)/σ(x) + αk − 1
− σ(x),

whose right hand side becomes

σ(x)
( 1 + δn

Δbn
k
+

βk
nβΔbn

k

1 − cn√
nΔbn

k

+
(αk−1)σ(x)

nβΔbn
k

− 1
)
,

and that is equal to

σ(x)

δn
Δbn

k
+

cn√
nΔbn

k

+
βk−(αk−1)σ(x)

nβΔbn
k

1 − cn√
nΔbn

k

+
(αk−1)σ(x)

nβΔbn
k

.

Similar to what we have seen for the lower bound of the bias, also the upper bound is of order cn√
nΔbn

k

under condition (26), and uniform in x. Summarising, under the stipulated conditions, we obtain that
bias(x) is of order cn√

nΔbn
k

on a set with probability tending to one.

We move on to the posterior variance of ξk for x ∈ Bn
k

,

VarΠn ξk =
(nβΔXn

τn
k
+ βk)2

(αΔτn
k
+ αk − 1)2(αΔτn

k
+ αk − 2)

,
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for which we will derive upper and lower bounds as well. Paralleling the computations for the bias, we
have on the event (Fn

k
)c ∩ (Gn

k−1)
c the immediate lower bound

VarΠn ξk ≥
(nβ(Δbn

k
− δn) + βk)2

(nβΔbn
k
(1 + cn√

nΔbn
k

)/σ(x) + αk − 1)2(nβΔbn
k
(1 + cn√

nΔbn
k

)/σ(x) + αk − 2)
,

where the right hand side equals

σ(x)3
βnΔbn

k

(1 − δn
Δbn

k
+

βk
βnΔbn

k
)2

(1 + cn√
nΔbn

k

+
σ(x)(αk−1)
βnΔbn

k
)2(1 + cn√

nΔbn
k

+
σ(x)(αk−2)
βnΔbn

k
)
.

This is obviously of order O( 1
nΔbn

k
), as δn

Δbn
k
→ 0. Next we give an upper bound for the posterior vari-

ance, for which we only consider what happens on (Hn
k
)c ∩ (Gn

k
)c . On that event one has

VarΠn ξk ≤
(nβ(Δbn

k
+ δn) + βk)2

(nβΔbn
k
(1 − cn√

nΔbn
k

)/σ(x) + αk − 1)2(nβΔbn
k
(1 − cn√

nΔbn
k

)/σ(x) + αk − 2)
.

One sees that this quantity is of order O( 1
nΔbn

k
), if δn

Δbn
k

tends to zero, which happens under the condition

(26) for δn = n−δ . Combining the two results on the bounds, we conclude that the posterior variance is
of order O( 1

nΔbn
k
) =O(n−1+κ) with probability tending to one. As for the bias, also this order bound is

uniform in x. As a last step, by the above established properties of posterior bias and variance, we obtain

the posterior mean squared error EΠn (ξn(x) − σ(x))2 is of order O( c2
n

nΔbn
k
) = O( c2

n

n1−κ ) with probability
tending to one. Again, this order bound is uniform in x (and k).

Here is the main result of this section, which says that the contraction rate of the posterior distribution
is (at least) n−λ/(2λ+1), λ being the Hölder exponent of σ.

Theorem 16. Assume the model with volatility (19) whereas the true volatility function x �→ σ(x) is
Hölder continuous of order λ ≤ 1 and bounded from below. Let the bin sizes shrink proportional to
n−

1
2λ+1 , and let (mn) be any sequence of real numbers (arbitrarily slowly) diverging to infinity. Then,

for n →∞

sup
x∈[0,bK ]

Πn

(
|ξn(x) − σ(x)| > mnn−

λ
2λ+1

)
→ 0 in probability.

Proof. Let x ∈ Bn
k

and cn →∞ such that cn
mn

→ 0, for instance cn =
√

mn. By Chebychev’s inequality
and Lemma 15, for Δbn

k
� n−κ with κ such that (25) is satisfied, we have uniformly in x

Πn

(
|ξn(x) − σ(x)| > mnn−

λ
2λ+1

)
≤ n

2λ
2λ+1

m2
n

EΠn (ξn(x) − σ(x))2 =O
( n

2λ
2λ+1

m2
n

c2
n

nΔbn
k

)
,

with probability tending to one. The choice κ = 1
2λ+1 satisfies (25) and Δbn

k
� n−

1
2λ+1 is assumed.

Hence, we see that the order bound becomes O( c
2
n

m2
n
), which tends to zero.
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4.3. Lower bounds

In this section we show that the contraction rates in Theorem 16 are minimax optimal. Let Σ(λ,L)
denote the Hölder class of functions f on [0,1] satisfying

| f (x) − f (y)| ≤ L |x − y |λ, x, y ∈ [0,1].

We endow Σ(λ,L) with the supnorm, denoted ‖ · ‖∞. Denote by Pσ,n
T the law of the process (Xn

t )t∈[0,T ]
solving the Levy-driven SDE, similar to (5),

dXn
t = σ(Xn

t−)dLn
t , Xn

0 = 0,

where Ln is a gamma process with a Lévy density

vn(x) =
nα
x

exp(−nβx).

We shall prove the following statement.

Proposition 17. There are constants c0,c1 > 0 not depending on n such that

lim inf
n→∞

inf
σ̂n

sup
σ∈Σ(λ,L)

P
σ,n
T

(
‖σ − σ̂n‖∞ ≥ c0n−λ/(1+2λ)

)
≥ c1, (28)

where the infimum is taken over all estimators σ̂n, that is, all measurable functions of the path Xn
t ,

t ∈ [0,T].

It is well known that the posterior cannot converge at a rate faster than the optimal rate of convergence
for point estimators, see Ghosal, Ghosh and Van Der Vaart (2000), page 507. Since we have a lower
bound and it gives the rate matching our posterior contraction rate, our Bayesian approach is optimal
from the frequentist point of view.

Proof. Our strategy is to follow the approach as in Chapter 2 of Tsybakov (2008). Therefore, our goal
is to establish

inf
σ̂n

sup
σ∈Σ(λ,L)

P
σ,n
T (‖σ − σ̂n‖∞ ≥ sn) ≥

1
2
(1 −V(Pσ0 ,n

T ,P
σ1 ,n
T )), (29)

where σ0,σ1 are two distinct elements of Σ(λ,L) such that

‖σ0 − σ1‖∞ ≥ 2sn, (30)

and V(Pσ0 ,n
T

,P
σ1 ,n
T

) is the total variation distance between Pσ0 ,n
T

and Pσ1 ,n
T

. The sn denotes the desired
convergence rate, in our case we aim at sn � n−λ/(2λ+1). The result in (29) results from the exposition
in Section 2.2 and Theorem 2.2(i) together with its proof in Tsybakov (2008).

We first select σ0 and σ1. Fix h ∈ (0,1] and set

σ0(x) ≡ 1, σ1(x) = 1 − hλψ(x/h),
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where ψ ∈ Σ(λ,1/2) is a nonnegative monotone decreasing function supported on [0,1] satisfying
‖ψ‖∞ ≤ 1, ψ(x) > 0 for x ∈ [0,1/2]. One can take, for example,

ψ(u) = a exp
(
− 1

1 − u2

)
1[0,1](u)

for a > 0 small enough. In fact, taking a = 1/e for this choice of ψ we have ‖ψ‖∞ = ψ(0) = 1. Note
furthermore ψ ∈ Σ(1,1/2), implying ψ ∈ Σ(λ,1/2) for any λ ≤ 1 and σ1 ∈ Σ(λ,1/2). Moreover, now
‖σ0 − σ1‖∞ = hλ. Later we will choose h and sn such that hλ ≥ 2sn in order that (30) holds.

We will next show that V(Pσ0 ,n
T ,P

σ1 ,n
T ) is eventually less than some constant v < 1, after which we

can choose c1 =
1
2 (1 − v) in (29) to obtain (28). The total variation distance V between the laws Pσ0 ,n

T
and Pσ1 ,n

T
satisfies (see Kabanov, Liptser and Shiryaev (1986))

V2(Pσ0 ,n
T ,P

σ1 ,n
T ) ≤ 16E

P
σ0 ,n
T

[∫ T

0

∫ ∞

0
(
√

Y (t, x) − 1)2vn(x)dx dt
]
,

Y (t, x) = 1
σ1(Xt−)

vn

( x
σ1(Xt−)

)
/vn(x).

Using the inequality 1 − e−x ≤ x holding for all x > 0,we get

V2(Pσ0 ,n
T ,P

σ1 ,n
T ) ≤ 16E

P
σ0 ,n
T

⎡⎢⎢⎢⎢⎣
∫ T

0

∫ ∞

0

(
xnβ(1 − σ−1

1 (Xt−))
2

) 2

vn(x)dx dt
⎤⎥⎥⎥⎥⎦

� E
P
σ0 ,n
T

[∫ T

0

∫ ∞

0
n2h2λψ2(Xt−/h)x2vn(x)dx dt

]
� n2h2λ

E
P
σ0 ,n
T

[∫ T

0
ψ2(Xt−/h)dt

] ∫ ∞

0
x2vn(x)dx

� nh2λ
E
P
σ0 ,n
T

[∫ T

0
ψ2(Xt−/h)dt

]
, (31)

where here and in the sequel � for inequality up to a constant depending on α and β. Furthermore

E
P
σ0 ,n
T

[∫ T

0
ψ2(Xt−/h)dt

]
=

∫ T

0

∫ ∞

0

[
ψ2(z/h)pLn

t
(z)

]
dz dt,

where pLn
t

is the density of Ln
t . Using well-known results for the Gamma function, see e.g. the sharp

version of the Stirling formula of Theorem 1.6 in Batir (2008), we have for t ≥ 2/(nα)

pLn
t
(z) = (nβ)nαt

Γ(nαt) znαt−1e−nβz � 1
z

√
nαt
2π

exp
{
nαt

(
log

(
βz
αt

)
+ 1 − βz

αt

) }
.

Fix some 0 < δ < 1/2 and consider the integral∫ ∞

0

[
ψ2(z/h)pLn

t
(z)

]
dz �

∫ ∞

0

1
y

√
nαt
2π

ψ2(αty/βh) enαt(1−y+log(y)) dy

=

∫
|y−1 | ≤δ

1
y

√
nαt
2π

ψ2(αty/βh) enαt(1−y+log(y)) dy
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+

∫
y>1+δ

1
y

√
nαt
2π

ψ2(αty/βh) enαt(1−y+log(y)) dy

+

∫
y<1−δ

1
y

√
nαt
2π

ψ2(αty/βh) enαt(1−y+log(y)) dy

=: I1 + I2 + I3.

Since 1− y + log(y) ≤ −c(1− y)2 for some c = c(δ) > 0 if |1− y | ≤ δ < 1/2,we have with z =
√

nαt(y −
1),

I1 �
∫ δ

−δ
ψ2(αt(1 + z/

√
nαt)/βh)e−cz2

dz,

I2 �
√

nαt enαt(−δ+log(1+δ)),

I3 �
√

nαt enαt(δ+log(1−δ)).

Hence for any t0 ≥ 2/(nα) we derive, using the above estimates of I1, I2, I3,∫ T

0

∫ ∞

0

[
ψ2(z/h)pLn

t
(z)

]
dz dt =

∫ t0

0

∫ ∞

0

[
ψ2(z/h)pLn

t
(z)

]
dz dt

+

∫ T

t0

∫ ∞

0

[
ψ2(z/h)pLn

t
(z)

]
dz dt

� t0 + h
∫ δ

−δ

∫ T/h

0
ψ2

(
αs
β
+

z
β

√
αs
nh

)
ds dz

+
√

nαt0
(
enαt0(−δ+log(1+δ)) + enαt0(δ+log(1−δ))

)
, (32)

where for the last term it is used that the function x �→
√

xe−xa with a > 0 is monotone decreasing for
x ≥ 1/(2a). The double integral in (32) is bounded in n,h as follows from∫ ∞

0
ψ2

(
αs
β
+

z
β

√
αs
nh

)
ds ≤ 1/α +

∫ ∞

1/α
ψ2

(
αs
β
(1 − δ)

)
ds,

where we used that φ is bounded by 1, increasing and that in this integral |z | ≤ δ. Choosing t0 = o(h)
and such that nt0 →∞, one sees that the term with h in (32) is the dominating term. Recalling (31), we
subsequently take h = cn−1/(1+2λ) for a small enough constant c > 0, to derive for some 0 < v < 1

V2(Pσ0 ,n
T ,P

σ1 ,n
T ) ≤ v2

for all n large enough. With this choice of h we take sn = 1
2 cλn−λ/(1+2λ). Then (30) is satisfied, and

from (29) we arrive at (28) with c0 =
1
2 cλ and c1 =

1
2 (1 − v), both strictly positive.

5. Real data example

The North Greenland Ice Core Project (NGRIP) obtained from drilling through arctic ice an oxygen
isotope record reaching 120 000 years into the past beyond the last glacial (North Greenland Ice Core
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Figure 3. NGRIP oxygen isotope δ18O measurements against time (years BP 2000).

Project Members (2007).) Figure 3 shows measurements of the indicator δ18O derived from oxygen
isotope measurements at times t = 0,50, . . . in Δt = 50 year intervals, with in total n = 2459 observa-
tions. In geological scales such a Δt can be considered small. The oxygen isotope record is a proxy
for past temperature, and the data shows characteristic sudden changes in global temperature, a topic
of urgent relevance. It has been suggested to model the NGRIP data as a realisation of a stochastic
differential equation with solution Y , also as a Lévy-driven SDE to account for the heavier tailed noise,
see Ditlevsen (1999). An in-depth study is given in Carson et al. (2019).

Here we are interested in estimating the volatility ς of the process Yt , observed on the equidistant time
grid 0,Δt, . . . ,nΔt with n observations. Estimating the volatility is an important step in data assimilation
and inference tasks related to rapid temperature transitions, for example during so called Dansgaard-
Oeschger events.

For a particular realisation y of Y and a fixed Δt, the realised quadratic variation process over a time
grid with step size Δt can be defined as qt+Δt − qt = Δqt with Δqt := (Δyt )2 = (yt+Δt − yt )2, q0 = 0.
See Figure 4 for a visualisation and note the resemblance (up to scaling) of this figure with Figure 1
in Example 1. We remark that the realised quadratic variation process of a diffusion process can be
considered as a measure of intrinsic progress of time, also referred to as internal clock.

For motivation of the model proposed below, suppose that Y is a diffusion process satisfying dYt =
ςtdWt , with W a Brownian motion. For small Δt one has (ΔYt )2 ≈ ς2

t (Wt+Δt −Wt )2, which has (given
the past up to time t) a Gamma( 1

2 ,
1

2Δtς2
t

) distribution.

Consider next the Lévy-driven SDE

dXt = cς2
t dLt, (33)

where L is a gamma process with parameters α, β to be specified shortly. For X solving (33) we have
that ΔXt ≈ cς2

t ΔLt , which is, conditional on the past up to time t, a Gamma(αΔt, β/(cς2
t )) random

variable. Then with α = 1
2Δt and β = c

2Δt , the conditional distributions of ΔXt and (ΔYt )2 are approxi-
mately gamma with the same parameters, for any choice of c > 0. We used c = nΔt/qnΔt , which implies
ELnΔt = qnΔt . With this in mind, we model qiΔt as observation of a realisation of the continuous time
process

dXt = σ(Xt−)dLt . (34)
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Figure 4. Realized quadratic variation process for NGRIP oxygen isotope δ18O measurements against time (years
BP 2000).

with unknown σ. As both α and β are proportional to 1/Δt � n, this corresponds to the regime detailed
after (5) with parameters of the driving gamma process proportional to n, which suggests that our
asymptotic results are practically relevant for this problem. Here, we choose to model the slope σ of
the curve of realized quadratic variation, see in Figure 4, as a function of Yt =

∫ t

0 cς2
s dLs , using the

monotonicity of the realisation.
In estimating σ with (34), using terminology common in the financial literature, we estimate volatil-

ity of δ18O as function of the time measured by the intrinsic (or business) clock. To perform the sta-
tistical analysis with our approach we set K = 20, which appears to be a good compromise in terms
of bias-variance trade-off. We take equidistant bins over the range of observations of qt . Note that a
fixed resolution in space implies a variable resolution in time, with larger bins at times where the in-
crements of X are small. Then the posterior is determined by choosing the prior parameters; here we
took weakly informative parameters αk = βk ≡ 0.1. Figure 5 gives the marginal posterior band for σ.
The figure shows that in general with higher intrinsic age Xt , the volatility of the measurements de-
creases. This phenomenon has been noted before, and a relation to aging processes in the ice has been
suggested, highlighting two periods of unusual activity.

6. Brief discussion of some extensions

In the treatment of our statistical problem the standing assumption so far was that observations were
rooted in a model derived from (1), and that the process has been observed continuously in time. In
an asymptotic setting we have derived contraction rates for the Bayesian estimator in Sections 3 and 4.
There are (at least) two variations that immediately come to mind, an extended model that includes a
drift component and a different observation regime, i.e. discrete time observations. We address these
in the next two short sections and discuss how to adapt our previous statistical procedure to these
situations.
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Figure 5. Shaded: marginal 90 %-posterior credible band for the piecewise constant posterior for the scale of the
quadratic variation process of the ice core time series. Black: marginal posterior median.

6.1. Inclusion of drift

In principle, one could also consider a modification of the original SDE model by adding a drift,

Xt =

∫ t

0
a(Xs)ds +

∫ t

0
σ(Xs−)dLs . (35)

The property that X satisfying (35) has increasing paths is guaranteed by imposing that a is nonnega-
tive. Inclusion of the drift has the consequence that the laws of X on [0,T] under presence and absence
of a drift, but keeping the

∫ t

0 σ(Xs−)dLs part the same for both cases, are automatically mutually sin-
gular. This happens because an absolutely continuous change of measure in this setting only changes
the third characteristic of a semimartingale, which excludes a change of drift. This implies that the drift
part,

∫ t

0 a(Xs)ds, can be identified with probability one.
Indeed, if X is observed in continuous time, one also observes the process

∑
s≤· ΔXs , and therefore

also the difference X −
∑

s≤· ΔXs , which is
∫ ·

0 a(Xs)ds. For the statistical problem of estimating σ, one
can apply a modification of our procedure, by incorporating the values a(Xs). For instance, if next to σ
also a is piecewise constant on bins, with known (or estimated) values ak , the assertion of Proposition 8
has to be modified by taking Δτ̄n

k
as nΔbkβ

ασk+βak
. Hence we derive analogously to Theorem 11 that for

any sequence mn →∞,

Πn

(
|ξk − σk | >

mn√
n

)
→ 0 in probability,

for k = 1, . . . ,K, where we model the (σk) as independent random variables (ξk) and Πn stands for the
posterior distribution of (ξk).

6.2. Discrete time observations

In previous sections we have assumed that Xn given by (4) is observed continuously on a long time
interval [0,Tn]. In this section the index n plays no role (in the situation we will describe shortly, we
even take n = 1 without loss of generality), it is fixed and therefore omitted below from our notation.
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The current setting is the practically relevant situation where X is observed only discretely in time
at timepoints t0, . . . , tm. We use the abbreviated notation Xd = (Xti )mi=1. It is assumed that realisations
Xti = xti , i = 0, . . . ,m have been observed. In this discrete time setting, the level hitting times τk , are
only known approximately: if bk ∈ [Xti ,Xti+1 ), then τk ∈ [ti, ti+1). Our previous inference procedure for
piecewise constant σ, assuming observation of the τk , can then still be used in a data augmentation type
Gibbs sampler, targeting the joint posterior distribution of X and σ given the observations. The sam-
pler alternates an interpolation step, where the random times τk are sampled conditional on σ and the
observations Xti , and an inference step where σ is sampled conditional on the τk as described before
to obtain the posterior distribution. In this section we propose a procedure how to sample the τk con-
ditional on σ and observations Xti to complement the continuous time inference procedure developed
before, e.g. as in Section 3. For that extension, it is enough to assume that σ is a piecewise constant
function, fixed and known. So we only consider the problem of sampling the posterior conditional on
the observation of the process Xn

ti
for piecewise constant σ given by (9). By the Markov property, the

conditional distribution of X given observations Xd factorises into independent distributions of the
path of X on time intervals [ti, ti+1). As the conditional distribution of σ only depends on the τk , it is
enough to sample the trajectory of X on intervals [ti, ti+1) that are such that bk ∈ [Xti ,Xti+1 ) for some
k. We therefore concentrate on the task of sampling X (for this purpose we can take n = 1 without loss
of generality) conditional on XS = u, XT = v, S < T with b = bk ∈ [u,v).

Simplifying, we assume that each bin contains at least one observation. Observe that if σ = 1 then
Xt , conditional on Xti = xti , Xti+1 = xti+1 for ti < t < ti+1, is just a gamma process bridge with known
distribution. By Corollary 5 the law of the conditional process is absolutely continuous with respect
the law of a conditional gamma process,

dPσT
dP1

T

= exp

{
β

K∑
k=1

[
1 − nξ−1

k

]
(Xτk − Xτk−1) − α

K∑
k=1

(τk − τk−1) log(ξk/n)
}
.

We denote the law of τ = (τ0, . . . , τK ) conditional on Xd = xd by Qσ
τ , emphasising the dependence on

σ. By the abstract Bayes formula, it holds that, with the approximation below obtained by replacing
Xτk with bk ,

dQσ
τ

dQ1
τ

(τ0, . . . , τK ) ≈
m∏
i=1

pσ(ti−1, xti−1 ; ti, xti )
p1(ti−1, xti−1 ; ti, xti )

R(τ0, . . . , τK )

where pσ(ti−1, xti−1 ; ti, xti ) denotes the transition density of the process X with volatilityσ given Xti−1 =

xti−1 to the value Xti = xti , and

R(τ0, . . . , τK ) = exp

{
β

K∑
k=1

[
1 − nξ−1

k

]
(bk − bk−1) − α

K∑
k=1

(τk − τk−1) log(ξk/n)
}
.

A random sample of τ under Q1
τ can be obtained, observing that the unnormalised density of τk given

Xti−1 = xti−1 and Xti = xti , bk ∈ [xti , xti+1 ) is approximately given by (τk is now also used for a realisa-
tion of τk)

f (τk ) = p1(ti−1, xti−1 ; τk,bk )p1(τk,bk ; ti, xti )

with the approximation obtained by again replacing Xτk by bk . So the posterior distribution of ξk given
Xd = xd can be computed using a Gibbs type Metropolis-Hastings approach where in one step every τk
is sampled conditional on ξk given Xd = xd using Q1

τ as proposal distribution with R as (approximate)
likelihood, and then in a next step, ξk are sampled given τk using (10).
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6.3. More general driving processes

In this paper, we focus on SDEs with driving gamma processes. In principle, one can consider other
driving Lévy processes, but then we will lose some nice features of the current model. The situation
here is analogous to the diffusion case with Brownian noise. The Brownian noise enables one to write
down a likelihood ratio ‘a la Girsanov. If one replaces the Brownian motion with an arbitrary continuous
local martingale, the likelihood ratio will no longer be explicit. If one changes the gamma process to
another increasing process in our setting, a similar phenomenon will arise. The exact expression of
the likelihood ratio in Corollary 9 will change, and one has to use another prior instead of the inverse
gamma one. Conceptually one can follow a similar strategy as we have proposed now, but a concrete
realization will be different, and it is doubtful whether the explicit expressions for the likelihood and
the posteriori distribution exist in this case.
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