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CHAPTER 6 
QUOMORPHISMS 

The notion of homomorphism, introduced in §§2E and 4C, has a number of 
useful refinements. Their origin lies in the circumstance that a homomorphism 
of total algebras automatically has certain pleasant properties; these do not ob-
tain in general, but they are of some interest all the same. 

Indeed, a similar, and related, phenomenon occurs with the subalgebra con-
cept: if A ⊆w B, and A is total, then in fact A ≤ B. 

Suppose f: A ––› B is a homomorphism, and again A is total. Then if f(a0) = 
QB( f(a1),…, f(an)), there must be a1ʹ′,…, anʹ′  such that f(QA(a1ʹ′,…, anʹ′)) = f(a0); 
in fact we might take aiʹ′ = ai. Or in a subtly different vein, if QB( f(a1)…, f(an)) 
exists, so does QA(a1,…, an). For total algebras, all this is trivial; for partial al-
gebras, the stated properties of weak reflectivity and closedness may, but need 
not, obtain. These properties are naturally viewed as strengthenings of the con-
cept of homomorphism. We shall consider them in the context of a weakening 
that will turn out to be rather natural in the theory of partial algebras. 

Let A and B be algebras. A quasi-homomorphism, for short quomorphism, 
from A to B is a homomorphism from a relative subalgebra of A to B. We 
write 

φ: A ––› B 
if φ is a quomorphism from A to B. If φ: A ––› B, then φ: (Dom φ)A ––› B. 
Examples 
i. Relative subalgebras may retain very little of the structure of their contain-
ing algebra, and the restrictions on quomorphism are accordingly weak. Thus, 
let N = 〈, S〉 be the algebra of natural numbers with the successor operation. 
Any map from the set 2 of even numbers into  is a quomorphism from N to 
N. Accordingly, few of these maps can be extended to homomorphisms. 
ii. Indeed, for any algebras A and B, 0⁄  is a quomorphism from A to B. 

Let A be an algebra; we call a set B ⊆ A grounded (relative to A) if for any 
basic operation Q of A, Q(a1,…, an) ∈ B implies a1,…, an ∈ B. A fortiori a 
[weak, relative] subalgebra of A is grounded if its universe is a grounded set. 

Definition. Let A and B be algebras. A quomorphism from A to B is 
grounded, or a growmorphism, if  its domain is grounded relative to A. 

Examples 
— Homomorphisms are growmorphisms. 
iʹ′. The domain of a growmorphism φ  from N to N must be an initial segment 
of N, and Domφ  and — if Domφ  ≠ 0⁄  — φ(0) completely determine φ. 
iiʹ′. The void set is grounded, so for any algebras A and B, 0⁄  is a growmor-
phism from A to B. 

Here is a simple characterization of growmorphisms: 
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Lemma. Let A and B be algebras. A partial function φ: A ––› B is a growmor-
phism from A to B if and only if for each operation symbol Q, 
(1) for all a0,…, an–1 ∈ A, φ(QA(a0,…, an–1)) ~  QB(φ(a0),…, φ(an–1)). 

Proof. Let φ: A ––› B be given. 
(⇒) Assume φ  is a growmorphism from A to B. Take a0,…, an–1 ∈ A, and as-
sume φ(QA(a0,…, an–1)) exists. In other words, QA(a0,…, an–1) ∈ Domφ, so 
by groundedness a0,…, an–1 ∈ Domφ. Since φ is a homomorphism from 
(Domφ)A to B, we must have φ(QA(a0,…, an–1)) = QB(φ(a0),…, φ(an–1)). 
(⇐) Assume (1), for each operation symbol Q. Then QA(a0,…, an–1) ∈ Domφ 
implies a0,…, an–1 ∈ Domφ, so Domφ is grounded in A. And finally, φ is a 
homomorphism from (Domφ)A to B, since if a0,…, an–1 and QA(a0,…, an–1) 
all belong to Domφ, φ(QA(a0,…, an–1)) exists, and by (1) must equal 
QB(φ(a0),…, φ(an–1)).  

Proposition. Let A, B and C be algebras; φ: A ––› B and ψ: B ––› C. 
(i) 1A is a growmorphism from A to A. 
(ii) The composite ψ  φ is a quomorphism from A to C. 
(iii) If φ and ψ are grounded, then so is ψ  φ. 

Proof. (ii) Let B0 = Domψ, B0 = (B0)B, A0 = φ–1[B0], f = φ |̀ A0, and A0 = 
(A0)A. Then f is a homomorphism from A0 to B0, so by proposition 4C2, ψ  f 
is a homomorphism from A0 to C, and since ψ  φ = ψ  f, ψ  φ is a quomor-
phism from A to C. 
(iii) If QA(a0,…, an–1) ∈ Domψφ, then by the Lemma, since φ is grounded, 

QB(φ(a0),…, φ(an–1)) = φ(QA(a0,…, an–1)) ∈ Domψ. 
Then since ψ is grounded, φ(a0),…, φ(an–1) ∈ Domψ, hence a0,…, an–1 ∈ 
Domψφ.  

By the Proposition, we have concrete categories Quom, of quomorphisms, 
and Grom, of growmorphisms. We shall use the notation 

φ: A g––› B 
for ‘φ is a growmorphism from A to B’. 

§A Reflectivity 
Let A and B be algebras. A partial mapping φ : A ––› B weakly reflects B in 

A if for every operation symbol Q, whenever 
QB(φ(a1),…, φ(an)) ∈ Ran φ, 

there are a1ʹ′,…, anʹ′ ∈ A such that  
φ(a1ʹ′) = φ(a1),…, φ(anʹ′) = φ(an), and QA(a1ʹ′,…, anʹ′) ∈ Dom φ. 

A quomorphism φ: A ––› B is weakly reflective if the underlying partial map 
φ : A ––› B weakly reflects B in A. If φ is a weakly reflective and surjective, B 
is a partial image of A. We say B is a total image, or simply an image, of A, if 
there exists a weakly reflective homomorphism f: A –—» B. 

Weakly reflective homomorphisms were called full by Grätzer [1978] and 
Burmeister [2002]. 
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A 0 Lemma. Let A and B be algebras. A quomorphism φ: A ––› B is weakly re-
flective if and only if for every operation symbol Q, for all a0,…, an such that 
φ(a0) = QB(φ(a1),…, φ(an)), there are a0ʹ′ ,…, anʹ′ ∈ A such that 

φ(a0ʹ′) = φ(a0),…, φ(anʹ′) = φ(an), and a0ʹ′  = QA(a1ʹ′,…, anʹ′). 

Proof. By the definition of weak reflectivity, there are a1ʹ′,…, anʹ′ ∈ A such that 
φ(a1ʹ′) = φ(a1),…, φ(anʹ′) = φ(an), and QA(a1ʹ′,…, anʹ′) ∈ Dom φ. Take a0ʹ′  = 
QA(a1ʹ′,…, anʹ′). Then φ(a0ʹ′) = φ(a0) since φ  is a quomorphism.  

Examples (vind betere) 
i. Let k be a positive natural number, N = 〈, +, –〉, and Zk = 〈Zk , +ʹ′, –ʹ′〉, 
where Zk = {0,…, k –1}, with x +ʹ′ y defined as x + y if x + y < k, and x + y – k 
otherwise, and x –ʹ′ y = z if and only if x = y +ʹ′ z. Define f on  by 

f(n) is the unique x ∈ Nk for which y ∈  exists with n = yk + x. 
(So f(n) is the remainder of n in division by k. In the programming languages 
C and Java, this x is denoted by n%k.) Then f is a weakly reflective homomor-
phism from 〈, +, –〉 onto 〈Zn, +, –〉. 
ii. The embedding of N into Z = 〈, +, –〉 is weakly reflective. In particular, if 
x – y ∈ Ran f, for x, y ∈ , then x – y ∈  as well. 

a1 Proposition. Let A, B and C be algebras, and A –φ––› B –ψ––› C  partial 
maps. If φ weakly reflects B in A and ψ weakly reflects C in B, and Ran φ ⊇ 
Domψ, then ψ  φ weakly reflects C in A. 

Proof. Suppose QC(ψφ(a1),…, ψφ(an)) ∈ ψφ[A]. Since ψ weakly reflects C 
in B, there are b1, …, bn ∈ B such that ψφ(a1) = ψ(b1),…, ψφ(an) = ψ(bn), 
and QB(b1,…, bn) ∈ Domψ. Since Ran φ ⊇ Domψ, there are d1,…, dn ∈ A 
such that φ(d1) = b1, …, φ(dn) = bn, and QB(φ(d1),…, φ(dn)) ∈ Ran φ. Since φ 
weakly reflects B in A, there are e1, …, en ∈ A such that φ(e1) = φ(d1),…, 
φ(en) = φ(dn), and QA(e1,…, en) ∈ Dom φ. Then ψφ(ei) = ψφ(di) = ψ(bi) = 
ψφ(ai) (1 ≤ i ≤ n).  

a1.1 Definition. Let T  be a nominator. A quomorphism φ: A ––› B is weakly 
T-reflective if it weakly reflects B|̀ T  in A. 

Corollary. If f: A –—›› B and g: B ––› C are weakly T-reflective, then 
 g  f: A ––› C is weakly T-reflective. 

Let A and B be algebras. A partial mapping φ: A ––› B reflects B in A if for 
every operation symbol Q, 

φ(a0) = QB(φ(a1),…, φ(an)) ⇒ a0 = QA(a1,…, an). 
A quomorphism φ: A ––› B is reflective if the underlying partial map reflects 
B in A. 

a2 Definition. Let T  be a nominator. A quomorphism φ: A ––› B is T-reflec-
tive if it reflects B|̀ T  in A. 

Of course, T-reflective quomorphisms are also weakly T-reflective. Con-
versely, weakly T-reflective injections are T-reflective tout court. 
Examples. iiʹ′. The canonical embedding of 〈, +, –〉 into 〈, +, –〉 is reflective. 
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iii. Isomorphisms are reflective. 

a3 Proposition. If φ: A ––› B and ψ: B ––› C are T-reflective, then 
 ψ  φ :A  ––› C is T-reflective. 

Proof. Suppose ψφ(a0) = QC(ψφ(a1),…, ψφ(an)), with Q ∈ T. Since g is T-
reflective, then φ(a0) = QB(φ(a1),…, φ(an)). Since φ is T-reflective, we get a0 
= QA(a1,…, an).  

§b Closed quomorphisms 
Let T  be a nominator. A quomorphism φ: A ––› B is weakly T-closed if for 

every operation symbol Q ∈ T , whenever QB(φ(a0),…, φ(an–1))↓, there are c0, 
…, cn–1 ∈ A such that 

φ(a0) = φ(c0),…, φ(an–1) = φ(cn–1), and QA(c0,…, cn–1) ∈ Domφ. 
If T = NomA, we also say φ is weakly A-closed. If T = NomB, we call φ 
weakly closed. 

Observe that every weakly T-closed quomorphism is weakly T-reflective. 
Examples i. (cf. §a.i) Let k be a positive natural number, N = 〈, +, –〉, and Zk 
= 〈Zk , +ʹ′, –ʹ′〉, where Zk = {0,…, k –1}, with x +ʹ′ y defined as x + y if x + y < k, 
and x + y – k otherwise, and x –ʹ′ y = z if and only if x = y +ʹ′ z. Define f on  by 

f(n) = n%k. 
Then f is a weakly closed, surjective homomorphism, and Zk is a closed image 
of N. 
ii. The embedding in §a Example ii is not weakly closed, since 0 – 1 does not 
belong to , whereas 0 and 1 do. 

b1 Proposition. If φ: A ––› B and ψ: B ––› C are weakly T-closed, and Ranφ 
⊇ Domψ, then ψ  φ: A ––› C is weakly T-closed. 

Proof. Suppose QC(ψφ(a0),…, ψφ(an–1))↓, with Q ∈ T. Since ψ is weakly T-
closed, there are b0, …, bn–1 ∈ B such that 

ψφ(a0) = ψ(b0),…, ψφ(an–1) = ψ(bn–1), and QB(b0, …, bn–1) ∈ Domψ. 
Since Ranφ ⊇ Domψ, there are d0,…, dn–1 ∈ A such that 

φ(d0) = b0, …, φ(dn–1) = bn–1. 
Then QB(φ(d0),…, φ(dn–1))↓, and since φ is weakly T-closed, there are e0,…, 
en–1 ∈ A such that 

φ(e0) = φ(d0),…, φ(en–1) = φ(dn–1), and QA(e1,…, en–1) ∈ Domφ. 
But ψφ(ei) = ψφ(di) = ψ(bi) = ψφ(ai), for all i < n.  

Corollary. If f: A –—›› B and g: B ––› C are weakly T-closed, with f surjective, 
then g  f: A ––› C is weakly T-closed. 

b2 Definition. Let T  be a nominator. A quomorphism φ : A ––› B is T-closed 
if for every sequence a0,…, an–1 of elements of A and every operation symbol 
Q ∈ T ,  

〈φ(a0),…, φ(an–1)〉 ∈ Dom(QB) implies QA(a0,…, an–1) ∈ Domφ. 
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If T = NomA, φ is A-closed. If T = NomB, φ is closed. 

Of course, T-closed quomorphisms are also weakly T-closed. Closed homo-
morphisms were called strong by Grätzer [1978]. 
Examples. iii. Let f: N ––› Zk be as in Example i. This f is not closed: 
n – (n +1) does not exist in N. 
iv. The mapping 〈Y, f 〉 ı––› 〈Y, f, Dom( f )〉 is a closed embedding of the cate-
gory Set into the category Rel. 
v. If A is a total algebra, then any homomorphism of A is A-closed. 
vi. Homomorphisms between total algebras of the same type are always 
closed. 

b3 Proposition. Let T  be a nominator. Composites of T-closed quomorphisms 
are T-closed. 

Proof. Let A, B and C be algebras, and φ: A ––› B and ψ: B ––› C T-closed. 
Suppose Q ∈ T , and 

〈ψφ(a0),…, ψφ(an–1)〉 ∈ Dom(QC). 
Then since g is T-closed, 〈φ(a0),…, φ(an–1) 〉 ∈ Dom(QB). Again since φ is T-
closed, QA(a0,…, an–1) ∈ Domφ.  

If we suppress all mention of T, the proof shows: 

Corollary. If φ: A ––› B and ψ: B ––› C are closed, then ψ  φ: A ––› C is 
closed. 

Example vii. If f: A ––› B is A-closed and g: B ––› C is B-closed, then g  f 
need not be A-closed. Let c be a nullary operation symbol, and consider A, B 
and C with the same singleton universe {*}, where IA = {0⁄  ‹––ı c}, IB = 0⁄ , and 
IC = {{* ‹––ı 0⁄ } ‹––ı c}. Then {* ‹––ı *} is a homomorphism, A-closed from A 
to B and B-closed from B to C, but not A-closed from A to C. 

b4 Proposition. (a) Let T  be a nominator, and φ: A –—›› B. 1º If φ is weakly T-
reflective, then φ is weakly T-closed; 2º if φ is T-reflective, then φ is T-closed. 
(b) Let T  be a nominator, and φ: A ––› B injective. 1º If φ is weakly T-closed, 
then φ is T-closed; 2º if φ is weakly T-reflective, then φ is T-reflective; 3º if φ 
is T-closed, then φ is T-reflective. 

Proof. Assume Q ∈ T . 
(a) Suppose 〈φ(a1),…, φ(an)〉 ∈ Dom(QB). Since φ is surjective, 

QB(φ(a1),…, φ(an)) ∈ Ranφ. 
Then there are c1,…, cn  ∈ A such that φ(ci) = φ(ai) for 1 ≤ i ≤ n and 

QA(c1,…, cn) ∈ Domφ, 
since φ is weakly T-reflective. If φ is T-reflective, we may take ci  = ai . 
(b) The first two statements are trivial. 3º Suppose 

φ(a0) = QB(φ(a1),…, φ(an)). 
Since φ is T-closed, we must have QA(a1,…, an) ∈ Domφ. Then 

φ(QA(a1,…, an)) = QB(φ(a1),…, φ(an)) = φ(a0). 
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Since φ is injective, this implies a0 = QA(a1,…, an).  

§c Quomorphisms and subalgebras 
Let A = 〈A, I〉 and B = 〈B, J〉 be algebras, and φ: A ––› B a quomorphism. 

Then we define φ[A], the partial image of A through φ, to be 〈φ[A], K〉, where 
Dom(K) = Dom(J), and for Q ∈ Dom(J), 

K(Q) = {〈φ(a0), 〈φ(a1),…, φ(anQ
)〉〉|〈a0, 〈a1,…, anQ

〉〉 ∈ I(Q)}. 

Example i. Take A = , with void interpretation, and B = 〈, +〉. Then 1[A] 
= 〈, 0⁄ 〉, with + interpreted as the void binary operation. 

The definition of φ[A] implies 
(1) φ(QA(a1,…, an))  Qφ [A](φ(a1),…, φ(an)). 

c1 Theorem. Let A and B be algebras, and φ: A ––› B a quomorphism. Then 
(a) φ[A] is a weak subalgebra of B; and if Domφ = A,  φ[A] is an image of A; 
(b) φ  is weakly reflective if and only if φ[A] ⊆ B; 
(c) φ  is weakly closed if and only if φ[A] ≤ B. 

Proof. Let A = 〈A, I〉, B = 〈B, J〉, and φ[A] = 〈φ[A], K〉. 
(a) By definition, Dom(K) = Dom(J). Suppose Q ∈ Dom(K). If 

〈b0, 〈b1,…, bn〉〉 ∈ K(Q), 
then by definition there must be ai ∈ A, 0 ≤ i ≤ n, such that bi = φ(ai), and 

a0 = QA(a1,…, an). 
Since φ is a quomorphism, this implies b0 = QB(b1,…, bn), i.e. 

〈b0, 〈b1,…, bn〉〉 ∈ J(Q). 
So K(Q) ⊆ J(Q). So φ[A] is a weak subalgebra of B. 

Now assume Domφ = A.  
If a0 = QA(a1,…, an), then φ(a0) = QB(φ(a1),…, φ(an)), since φ: A ––› B is 

a homomorphism. Then in particular Q ∈ Dom(J). So by definition 
〈φ(a0), 〈φ(a1),…, φ(an)〉〉 ∈ K(Q), 

that is, φ(a0) = Qφ [A](φ(a1),…, φ(an)). So φ: A ––› φ[A]. 
If φ(a0) = Qφ [A](φ(a1),…, φ(an)), then by the definition of K(Q) there must 

be c0,…, cn ∈ A such that φ(a0) = φ(c0),…, φ(an) = φ(cn), and c0 = 
QA(c1,…, cn). So φ: A ––› φ[A] is weakly reflective. Since it also is surjective, 
φ[A] is an image of A. 
(b) (⇒) Suppose φ: A ––› B is weakly reflective. To prove that φ[A] is a rela-
tive subalgebra of B, we must prove, for every operation symbol Q, that 

φ(a0) = QB(φ(a1),…, φ(anQ
)) implies φ(a0) = Qφ [A](φ(a1),…, φ(anQ

)). 
Let n = nQ. Now if φ(a0) = QB(φ(a1),…, φ(an)), since φ is weakly reflective, 
there are a1ʹ′,…, anʹ′ ∈ A such that φ(a1) = φ(a1ʹ′),…, φ(an) = φ(anʹ′), and 
QA(a1ʹ′,…, anʹ′) ∈ Domφ. Then φ(a0) = QB(φ(a1ʹ′),…, φ(anʹ′)), hence by (1): 
φ(a0) = φ(QA(a1ʹ′,…, anʹ′)) = Qφ [A](φ(a1ʹ′),…, φ(anʹ′)) = Qφ [A](φ(a1),…, φ(an)). 

(⇐) Suppose φ[A] is a relative subalgebra of B. Then 
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φ(a0) = QB(φ(a1),…, φ(an)) 
implies 

φ(a0) = Qφ [A](φ(a1),…, φ(an)), 
which by definition implies there are c0,…, cn ∈ A such that φ(a0) = φ(c0), …, 
φ(an) = φ(cn), and c0 = QA(c1,…, cn). 
(c) (⇒) Suppose φ  is weakly closed. Then by (b) φ[A] is a relative subalgebra 
of B, so to prove that φ[A] is a subalgebra of B, by 5a2(ii) it will suffice to 
show that φ[A] is closed under the basic operations of B. So suppose 

〈φ(a1),…, φ(an)〉 ∈ Dom(QB). 
Since φ  is weakly closed, this implies there are a1ʹ′,…, anʹ′ ∈ A such that φ(a1ʹ′) = 
φ(a1),…, φ(anʹ′) = φ(an), and QA(a1ʹ′,…, anʹ′) ∈ Domφ. Hence 

φ(QA(a1ʹ′,…, anʹ′)) = QB(φ(a1ʹ′),…, φ(anʹ′)) = QB(φ(a1),…, φ(an)),  
which shows QB(φ(a1),…, φ(an)) ∈ φ[A].  
(⇐) Suppose φ[A] ≤ B. Then QB(φ(a1),…, φ(an))  Qφ [A](φ(a1),…, φ(an)); so 
if QB(φ(a1),…, φ(an))↓, by the definition of K there are a1ʹ′,…, anʹ′ ∈ A such that 
φ(a1ʹ′) = φ(a1),…, φ(anʹ′) = φ(an), and QA(a1ʹ′,…, anʹ′) ∈ Domφ.  

Corollary 1. Let A and B be algebras, and φ: A ––› B injective. Then 
(a) if Domφ = A,  φ is an isomorphism of A onto φ[A]; 
(b) φ: A ––› B is reflective if and only if φ[A] ⊆ B; 
(c) φ: A ––› B is closed if and only if φ[A] ≤ B. 

Proof. For (b) and (c), apply Proposition b4.  

Corollary 2. Every quomorphism is the composite of an embedding and a 
weakly reflective and surjective quomorphism, and every homomorphism is 
the composite of an embedding and a weakly reflective and surjective homo-
morphism. 

Proof. Roughly speaking, φ: A ––› B factorizes as A –φ—›› f [A] ⊆w B.  

We finish with two triangle completion lemmas. 

c2 Lemma (triangle completion lemma for quomorphisms). Let A, B and C be 
algebras, ψ: A ––› C a quomorphism, and φ: A ––› B a weakly reflective 
quomorphism. 
(i) There exists a quomorphism χ: B ––› C such that χ  φ = ψ if and only if 
ΔDomψ ⊆ kerφ ⊆ kerψ ∪ ∇A–Domψ. 
(ii) If such quomorphisms exist, there is a least one. 
(iii) This least quomorphism is total if and only if φ[Domψ] = B, 
 injective if and only if kerφ = kerψ, and 
 surjective if and only if ψ is surjective. 

The situation is sketched in the diagram below. 
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    A –––––-φ––––––––› B 
 
  ψ  χ 
 
    C 

Proof. 
(i) (⇒) If χ  φ = ψ, then Domψ ⊆ Domφ, hence ΔDomψ ⊆ kerφ; and if a ∈ 
Domψ, and φ(a) = φ(x), then ψ(a) = χ(φ(a)) = χ(φ(x)) = ψ(x). 
(⇐) Assume 

ΔDomψ ⊆ kerφ ⊆ kerψ ∪ ∇A–Domψ . 
Then by the triangle completion lemma of §1h1, there is a unique mapping χ: 
φ[Domψ] ––› C satisfying χ  φ = ψ. We shall prove that this χ is a homomor-
phism from (φ[Domψ])B into C. Assume a0,…, an  ∈ Domψ and φ(a0) = 
QB(φ(a1),…, φ(an)). Then since φ is weakly reflective, there are a0ʹ′ ,…, anʹ′ ∈ A 
such that a0ʹ′  = QA(a1ʹ′,…, anʹ′) and φ(aiʹ′) = φ(ai) for all i ≤ n. Then since χ  φ = 
ψ, and ψ is a quomorphism, 

χ(φ(a0)) = ψ(a0ʹ′) = QC(ψ(a1ʹ′),…, ψ(anʹ′)) = QC(χ(φ(a1)),…, χ(φ(an))). 
(ii) Any quomorphism χ ʹ′: B ––› C such that χ ʹ′  φ = ψ must contain the χ de-
fined in (i).  
(iii) Observe that χ  φ = (χ |̀ φ[Domψ])  φ.  

c3 Corollary (triangle completion lemma for homomorphisms). Let A, B and 
C be algebras, f: A –—›› B weakly reflective, and g: A ––› C. 
(i) There exists a homomorphism h: B ––› C such that h  f = g if and only if 
ker( f ) ⊆ ker(g). 
(ii) If it exists, this homomorphism h is uniquely determined by the condition 
h  f = g. 
(iii) Moreover, h is injective if and only if ker( f ) = ker(g), and 
(iv) surjective if and only if g is surjective. 

Proof. This is just the triangle completion lemma for mappings (§1h1), except 
for the claim that h is a homomorphism.  

§d Some categories of algebras 
Let us take stock of the observations on composition in the preceding sec-

tions. 

d1 Theorem. (a) The triples 〈B, φ, A〉, where A and B are algebras and φ is a 
quomorphism from A to B, form a large category, with composition defined 
by 
〈D, ψ, C〉  〈B, φ, A〉 exists if and only if C = B, and then it is 〈D, ψ  φ, A〉, 

and identities all triples of the form 〈X, 1X , X〉. 
(b) Statement (a) continues to hold if we replace the word ‘quomorphism’ by 
‘closed quomorphism’, or ‘reflective quomorphism’. 
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(c) Statement (a) continues to hold if we replace the word ‘quomorphism’ by 
‘g-morphism’, or ‘homomorphism’; and for these modifications of (a), the 
analogs of (b) hold. 

Proof. (a) By the proposition in the introduction. 
(b) See propositions a3 and b3.  
(c) Cf. the introduction to this chapter and §4c.  

We agreed to refer to the category described in (a) as Quom. The catego-
ries in (b) will be called Clq and Reflq, respectively. These are subcategories 
of Quom. The corresponding categories of g-morphisms are Gmor (< Quom), 
Clg and Reflg; of homomorphisms, Alg (< Quom), Clh and Reflh. The cate-
gory TAlgT  of homomorphisms of total algebras of type T  is a full subcate-
gory of the categories ClhT  and ReflhT  of, respectively, closed homomor-
phisms and reflective homomorphisms between algebras of type T. 

d2 Theorem. A quomorphism is an isomorphism (in Quom) if and only if it is 
total, bijective and closed. 

Proof. Let φ: A ––› B be a quomorphism. 
(⇒) If φ is an isomorphism, then there must be ψ: B ––› A such that ψφ = 1 
and φψ = 1. So φ must be a bijective mapping from A to B (cf. §2d, Example 
v). Suppose 〈φ(a0),…, φ(an–1)〉 ∈ Dom(QB). Since ψ is a quomorphism, this 
implies 

〈a0,…, an–1〉 = 〈ψφ(a0),…, ψφ(an–1)〉 ∈ Dom(QA). 
(⇐) Assume φ is total, bijective and closed. We show that φ –1 is a homomor-
phism, by calculating 
φ –1(QB(b0,…, bn–1)) = φ –1(QB(φ φ –1(b0),…, φ φ –1(bn–1))) 

  = φ –1φ (QA(φ –1(b0),…, φ –1(bn–1))) 

  = QA(φ –1(b0),…, φ –1(bn–1)).  

d3 Corollary. A homomorphism is an isomorphism (in Alg) if and only if it is 
bijective and closed. 

d4 Corollary. A closed or reflective homomorphism is an isomorphism if and 
only if it is bijective. 

Proof. In the reflective case, use Proposition b4(a).  

The category of small categories. The class of small categories determines a 
full subcategory of Alg; we denote it by Cat. 

Exercises 

1. Let N = 〈, S〉 be the algebra of natural numbers with the successor operation. 
Show that a quomorphism φ : N ––› N can be extended to an endomorphism of N if 
and only if (i) if n0 is the least element of Domφ, then n0 ≤ φ(n0); 
 (ii) if n, n + k ∈ Domφ, then φ(n + k) = φ(n) + k. 

Conclude that even quasi-endomorphisms of 〈, CloN〉 may not be contained in an 
endomorphism. 
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§A 
1. 
2. Are there algebras A such that Sub(A) is not distributive? 
3. Verify that a set lattice is indeed a lattice, and that a field of sets is a Boolean 
algebra. 
4. Show that a subalgebra of a category C = 〈C, , d, b〉 is a category. 
5. Prove Proposition 2. Prove that the relative subalgebra relation and the weak 
subalgebra relation are orderings of the class of all algebras as well. 
6. Prove (i) and (ii) of Proposition 4. 
7. Let N be the algebra with universe  and for each m ∈  a single m-ary basic 
operation Qm, defined by: Qm(n0,…, nm–1) = m if n0,…, nm–1 are all distinct, 
 0 otherwise. 
Prove that N is a minimal algebra.  
§B 
1. Show by example that closed homomorphisms need not be reflective, and that re-
flective homomorphisms need not be closed. Conclude that weakly reflective homo-
morphisms need neither be closed nor reflective. 
2.   
3.   
4.  
5M. 
6. 
7. Show by example that a composite of weakly reflective/closed homomorphisms 
need not be weakly reflective/closed. 
9. Let A and B be algebras; suppose f : A --› B is injective. Prove that f is weakly 
reflective if and only if f –1 is a weakly reflective homomorphism from B to A. 

10. Let f : A —» B be weakly reflective. Is there necessarily a homomorphism g : B —› 
A such that f  g = 1B? 
11. Let  be homomorphisms, and T  a nominator. Prove: 
(a) If g  f is T- closed, then f is T- closed, and if g  f is T- reflective, then f is T- 
reflective. 
(b) If f is surjective, then if g  f is T- closed, g is T- closed, and if g  f is T- 
reflective, g is T- reflective. 
(c) If g  f is weakly T-reflective and injective, then f is weakly T-reflective and 
injective. 
(d) If g  f is weakly T-reflective and injective, and f is surjective, then g is weakly T-
reflective and injective. 

§25 
1. Prove the Theorem.   
2. Prove the Proposition.   
3. Construct an example to show that forgetful functors are not necessarily full.   
§ 
1. Let A and B be algebras. Prove: 
(a) Alg(AB) ⊆ Sub(A × B) ∩ AB; 

(b) Alg(AB) ⊇ Sub(A × B) ∩ AB if for every operation symbol Q, QB ≠ 0⁄  implies 
QA is total. 

 Afval 
Only in this case, the strongest notion of subalgebra sets the standard; 

whereas 
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(§D, kategorieën) More in general, let T  be a nominator and K a subcategory 
of Alg. We denote the full subcategory of K determined by the algebras with 
nominator included in T  by T ❏ K. In this notation, Set = 0⁄  ❏ Alg. 
Dit is helemaal fout. Voor een klasse K van algebra’s is 

T  ❏ K = {A|̀ T |A ∈ K}. 
Daar kun je een kategorie van maken, maar het ligt niet per se voor de hand 
dat dat een volle subkategorie is van een gegeven kategorie K waarvan K de 
objectklasse is. 

 

Varianten 
 


