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II 

ALGEBRAS 

Relations and operations 
Thus far, we have assumed symbols for relations as well as operations. 

However, in the context of partial operations, there is a relatively natural way 
of reducing relations to operations. Instead of saying ‘x is blue’ we can say ‘x 
is the blue x’, at least in theory; ‘the blue x’ being defined exactly when x is 
blue, so that ‘x is the blue x’ is true exactly if x is blue. Likewise we might in-
terpret ‘x is less than y’ as ‘x is the lesser of x and y’, and forgo the less-than-
relation as a primitive of our structures. 

A relation does not require anything to exist beyond the objects that it is 
predicated of. Hence if we operationalize a relation R, we should choose one 
of these objects as the value. For the sake of uniformity, and to enforce that re-
lations do not contain unusual information, we stipulate that an n-ary operation 
R is a predicate, in a certain domain D, if in D the statement 

if Rx1…xn  exists, then x1 = Rx1…xn   (*) 

universally holds. So on second thoughts ‘the lesser of x and y’ is not a predi-
cate, since it might be x just as well as y; but ‘the lower bound x of {y}’ is a 
predicate. 

Example 1. An order 〈X, ≤〉 may be construed as an algebra 〈X, R〉, where R = 
{〈x, 〈x, y〉〉|x ≤ y}. 

This approach does not work for nullary relations. We might represent them 
by constants, but this would violate our principle that we do not give extra in-
formation. Moreover, in a void universe all nullary relations would of neces-
sity not hold. But, since we are not interested in nullary relations, this problem 
will not stop us. It does not counterbalance the considerable gain we expect to 
make in uniformity. 

So from this point onwards we forego relation symbols, at least in theory. 
Every nominator will be operational. When we need relations in a structure, 
we transform them into operations satisfying the condition (*); which turns the 
structure into an algebra. 
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Example 2 (Burmeister). A Mealy machine is usually given by a sixtuple 
〈S, s0, Σ, Λ, t, λ〉, 

where S is a finite set, the set of states; s0 is a designated element of S, the ini-
tial state; Σ and Λ are finite sets, the input alphabet and output alphabet re-
spectively; t: S × Σ ––› S is the transition function, specifying the next state 
from a given state and an input symbol; and λ: S × Σ ––› Λ is the output func-
tion. The corresponding algebra would be 

S = 〈S ∪ Σ ∪ Λ, S, Σ, Λ, s0, T, λ〉, 
where S, Σ and Λ are unary predicates, with Sx↓ if and only if x ∈ S, and in 
that case Sx = x, and so on. The binary operations T and λ satisfy the condi-
tions 
(t) if Sx↓ and Σy↓, then S(T(x, y))↓, 
(λ) if Sx↓ and Σy↓, then Λ(λ(x, y))↓. 

The algebra S is sorted: its universe consists of three sorts of elements, S, 
Σ, and Λ, the domains of the operations are cartesian products of sorts, and the 
range of each operation is contained in a single sort. The sequence of argu-
ment and range sorts of an operation we call its type. 

Sorted algebras are common in computer science. They embody a pleasant 
kind of partiality, in which the sort structure completely controls where an op-
eration is defined. Not all partiality is of this type though, not even in com-
puter science, as the next example shows. 

Example 3 (Burmeister). Stacks are a simple kind of data structures, in which 
the following components play a part: 
— There are items to be stacked, the elements of some set D. 
— The stacks, forming a set S. 
— An empty stack e ∈ S. 
— An item d may be pushed onto a stack s; the result is a higher stack P(d, s). 
— From a stack s you may pop the top item. This item is T(s), the remaining 
stack is p(s). 
Together these ingredients make up an algebra 

S = 〈S ∪ D, S, D, e, P, T, p〉. 
The intended typing is P: D × S ––› S, T: S ––› D, and p: S ––› S. More explic-
itly, 
(P) if Sx↓ and Dy↓, then S(P(x, y))↓, 
and so on. 

Unfortunately, the description of the situation does not entirely warrant this 
typing. We have a clear conception of the stack that we get by pushing item d 
onto stack s; and we know what is the top of P(d, s), and which stack will re-
sult if we pop it. But how about p(e) and T(e)? Experience shows a common 
preference for p(e) = e; the item T(e), on the other hand, would be special only 
by being T(e) — as far as we know. And then, in practice, popping the empty 
stack may result in an error condition, or a very full stack. So that if S is to em-
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body something like the minimal requirements for stacks, p(e) and T(e) have 
to remain undefined. 

Example 4 (Burmeister). Let k be a negative integer, and l a positive. On the 
interval [k, l], the unary successor operation S is defined everywhere except in 
l, and symmetrically the predecessor operation P is defined everywhere except 
in k. On the structure 〈[k, l], S, P, 0〉 we can further specify addition and sub-
traction by 

x + 0 = x, x + Sy  S(x + y), x + Py  P(x + y); 
x – 0 = x, x – Sy  P(x – y), x – Py  S(x – y). 

We shall denote the expanded structure 〈[k, l], S, P, 0, +, –〉 by Zk-l. 
Further adding multiplication, specified by 

x · 0 = 0, x · Sy  (x · y) + x, x · Py  (x · y) – x 

we obtain Zk*-l. 

Example 5. Let Q = 〈, <〉 be the strict order of rational numbers, and define 
I to be the set of intervals [q1, q2] with q1 < q2. On I we specify the opera-
tions of 
addition: [x1, x2] + [y1, y2] = [x1 + y1,  x2 + y2]; 
subtraction: [x1, x2] – [y1, y2] = [x1 – y2,  x2 – y1]; 
multiplication: [x1, x2] · [y1, y2] = [a, b], where a is the infimum of 

{x1y1, x1y2, x2y1, x2y2}, and b the supremum; 
division: [x1, x2] ÷ [y1, y2] = [a, b], where a is the infimum of 
 {x1/y1, x1/y2, x2/y1, x2/y2}, and b the supremum, provided 0 ∉ [y1, y2]; 

if 0 ∈ [y1, y2], the quotient is not defined. 
We shall denote the structure 〈I, +, –, ·, ÷〉 by I. 

Example 6 (Burmeister). Let R = 〈R, +, 0, –, ·〉 be a ring, and k a natural num-
ber greater than 1. Let k × k be the set of pairs 〈i, j〉 of natural numbers less 
than k. Define 

A := R ∪ Rk ∪ Rk×k; 

assume the three components R, Rk and Rk×k are disjoint. (They will be if the 
elements of R are primitive.) We call the elements of the first component sca-
lars, those of the second component vectors, and the rest matrices. We denote 
scalars by italic letters x, y, z; vectors by bold letters r, s, t, usually writing ri 
instead of r(i); and matrices by italic capitals M, N, usually writing mi, j or mij 
instead of M(i, j). The following extensions of the addition and multiplication 
of R to A may be considered reasonable: 
addition: r + s = 〈r0 + s0,…, rk–1 + sk–1〉; M + N = L, where lij = mij + nij, or in a 

more direct notation: 〈mij〉ij + 〈nij〉ij = 〈mij + nij〉ij; 
multiplication: x · r = 〈x · r0,…, x · rk–1〉, 
  r · x = 〈r0 · x,…, rk–1 · x〉, 
  r · s = r0 · s0 +…+ rk–1 · sk–1, 
  x · M = 〈x · mij〉ij, 
  M · x = 〈mij · x〉ij, 
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  r · M = s, where si = r0 · m0, i +…+ rk–1 · mk–1, i, 
  M · r = t, where ti = mi,0 · r0 +…+ mi,k–1 · rk–1, and 
  M · N = 〈mi,0 · n0, j +…+ mi,k–1 · nk–1, i〉ij. 
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CHAPTER 4 

FIRST CONCEPTS 

§a Default interpretation 
We chose, in 2§a, to consider statements like 

The king of France is bald    (1) 
false, at a time when France is a republic. This is of course a simplification for 
the sake of theory, comparable to, but less stringent than, assuming that every 
operation is defined for every possible argument in the universe. The normal 
attitude would be that the king of France fails to refer to anything, and hence 
statement (1) is nonsense.1 

There is a slight difference between (1) and 
Charlemagne has a big nose    (2) 

— if we step over the fact that in reality we would assume that the speaker 
used the wrong tense. The symbols ‘the king of’, ‘France’ and ‘is bald’ in (1) 
undeniably have meaning. There is a king of Sweden, for example. But 
‘Charlemagne’ does not apply to anyone. In our theory, there are two ways in 
which this can come about: ‘Charlemagne’ may be in our nominator, and have 
the void interpretation; or it might not even belong to the nominator. (We are 
assuming that we have some sort of present-day frame of reference that has 
the characteristics of a structure.) Which of the two is actually the case is 
rather a vacuous issue. We shall not bother to settle it, and consider (2) false, 
just like (1), whether there is an empty interpretation or none at all. 

We extend this treatment to all symbols that are not in the nominator of the 
structure at hand. They get the default interpretation, which is void. Formally, 
this involves defining an extension of the interpretation. 

Definition. Let A = 〈A, I 〉 be an algebra. Then IA is the extension of I to the 
class of all possible symbols, defined, for S ∉ Dom(I), by IA(S) = 0⁄ . 

Instead of IA(S) we write A(S) or SA. If every SA is void, A is called discrete. 
In particular, a set, considered as an algebra, is discrete. 

Observe that IA is not a function; but there is a function, the interpretation 
I, which tells us all there is to know about it. 

§b Subalgebras 
Let A be an algebra. A subuniverse of A is a subset of the universe A that 

is closed under the basic operations of A. We denote the collection of all sub-
universes of A by SubA. This collection is a closed set system, by Example 
2f(xviii). The associated closure operator will be written SgA. 

                                                 
1 P.F. Strawson, On Referring, Mind 59 (1950): 320-344.  



II ALGEBRAS 

 60 

Of course A ∈ SubA. A subuniverse B ≠A  is called a proper subuniverse 
of A. An algebra is minimal if it has no proper subuniverses. 

A set X ⊆ A is dense in A, or generates A, if SgA(X) = A. In particular, A is 
minimal if and only if 0⁄  is dense in A. 
Examples 
i. Let t and f be two objects that are not natural numbers, and A =  ∪ {t, f}. 
Define an interpretation I in A of three nullary operation symbols t, f and 0, 
three unary operation symbols N, B and S, and one binary operation symbol 
Eq, by 

I(N) = Δ, I(B) = Δ{t, f}; 
I(t) = t, I(f) = f, I(0) = 0; 
I(S) = {〈n +1, n〉|n ∈ }; 
I(Eq) = ({t} × Δ) ∪ ({f} × (2 – Δ). 

The subuniverse A is generated by the void set, in symbols: SgA(0⁄ ) = A . In-
deed, A is the only subuniverse of A. For suppose X is a subuniverse of A. 
Then t and f must belong to X. Likewise 0 ∈ X. Moreover, if n ∈ X ∩ , n + 1 
= SA(n) ∈ X as well. By mathematical (incomplete) induction,  ⊆ X. Thus A 
has no proper subuniverses: it is a minimal algebra. 
ii. Recall our convention that a predicate is an operation that evaluates, if at 
all, to its first argument. It follows that every subset of the universe is closed 
under predicates, and hence that in algebras obtained from relational structures 
every subset is a subuniverse. 

b1 Structural induction. One can prove that all the elements of a given sub-
universe have a property P by showing 
1º that all the elements of some generating set have P, and 
2º if x1,…, xn have P, and Q is any operation of the algebra, then Q(x1…xn) 
has P. 

b2 Subuniverse Generation Theorem. Let A be an algebra, and X ⊆ A. Put 
X0 = X, and for k ∈ , 
 Xk+1 = Xk  ∪ 

Q∈

NomA

QA[Xk
<ω]. 

Then 

 SgAX = 
k

=

∞

0
Xk . 

Proof. For each Q ∈ NomA, UQ := {U ⊆ A|QA[U<ω] ⊆ U} is an algebraic 
closure system, and SubA = QUQ. Let CQ be the closure operator deter-
mined by UQ, and define FQ: PA ––› PA by FQ(U) = U ∪ QA[U<ω]. Then 

 CQ(U) = 
k

=

∞

0
FQ

k(U), 

and Xk+1 = QFQ(Xk). Hence by Corollary 2f3.7, SgAX = kXk .  

Define the complexity of an element a of SgAX to be the least k such that 
a ∈ Xk . Then this theorem warrants another form of induction for SgAX, in-
duction on the complexity of a. If one can prove that a has property P from the 
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assumption that elements of lower complexity have P, then every element of 
SgAX has property P. 

b3 Corollary. The closure operator SgA  is algebraic. 

Proof. Immediate by Corollary 2f3.7.  

So the subuniverses of an algebra from an algebraic closure system, and a 
fortiori an algebraic lattice. The converse holds as well. 

b4 Theorem (Birkhoff & Frink). Every algebraic lattice is isomorphic to the 
subuniverse lattice of some algebra. 

Proof. Let L be an algebraic lattice. Then by Theorem 2f.3.9, there exists an 
algebraic closure operator C such that L ≅ 〈Ran C, ⊆〉. Let A = Ran C. Take 
T = A × . For t = 〈a, n〉 ∈ T, let I(t) be the n-ary operation on A defined by 
 I(t)(a1,…, an) = a if a ∈ C{a1,…, an}; 

  ↑ otherwise. 
Let A = 〈A, I〉; then SgA = C. For, suppose X ⊆ A. 
• SgAX ⊆ C(X): by the Subuniverse Generation Theorem, SgAX = kXk , 
where X0 = X, and 
 Xk+1 = Xk  ∪ 

t

∈T

I(t)[Xk
<ω]. 

Now X0 ⊆ C(X); and if Xk ⊆ C(X), and I(t)(a1,…, an)↓ for certain a1,…, an ∈ 
Xk , then I(t)(a1,…, an) ∈ C{a1,…, an} ⊆ C(Xk) ⊆ CC(X) = C(X): so Xk+1 ⊆ 
C(X).  
• C(X) ⊆ SgAX: if a ∈ C(X), then there is a finite set {x1,…, xn} ⊆ X such that 
a ∈ C{x1,…, xn}. Take t = 〈a, n〉; then a = I(t)(x1,…, xn) ∈ SgAX.  

Now let A = 〈A, I 〉 and B = 〈B, J 〉 be similar algebras. We say that B is a 
subalgebra of A, or that A is an extension of B, and write B ≤ A, if B ∈ SubA, 
and for every symbol S ∈ NomA, J(S) = I(S)B . If B ≤ A and B ≠ A, then B is 
a proper subalgebra of A, and A a proper extension of B; notation B < A. If A 
and B are structures of some particular type, say orders, categories, or groups, 
we speak of sub-whatever: suborders, subcategories, subgroups, and so on. 
Examples. 
iii. Under the assumption that  ⊆ , 〈, <, 0, 1, +, ·〉 ≤ 〈, <, 0, 1, +, ·〉. Ob-
serve that every subset of  is closed under the operation representing <, as a 
general consequence of our construction of such operations. 
iv. A subalgebra of a group 〈G, ·, e〉 is a monoid, but not necessarily a group. 
However, if we include inversion in the nominator, subalgebras of groups will 
always be groups. 
v. A set lattice is a subalgebra of a lattice 〈PX, ∪, ∩〉. 
vi. A field of sets is a subalgebra of a powerset algebra PX . 
vii. By §2f4, we have complete lattices TrA, of all the transitive relations con-
tained in A2, and Qo A, of quasi-orderings of A. Any nonempty set of quasi-
orderings of A has the same infimum and supremum in TrA as in Qo A. So in 
particular, TrA is a sublattice of Qo A. Yet \/QoA0⁄  = ΔA , whereas \/TrA0⁄  = 0⁄ : 
TrA is not a complete sublattice of Qo A, nor a bounded sublattice. 
viii. For any categories A and B, A ≤ B implies A∂ ≤ B∂. 
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ix. Let C be a category. Define, for any x, z ∈ C, 
{xz}C, 

the homclass of x from z, as the class of all y ∈ C such that x  y  z exists. We 
write simply xz if the category C is understood. If C has a clear notion of 
object, x and z may be objects instead of arrows; then 

{xz}C = {1x1z}C. 
The category C is said to be locally small if for all x, z ∈ C, xz is a set. (We 
may then speak of the homset of x from z.) All the large categories that we 
have come across — Rel, Set, Alg — are locally small. Observe that 

{xz}C∂ = {zx}C. 
Now let A ≤ B be categories. Then clearly for all a, b ∈ A, 

{ab}A ⊆ {ab}B. 
We say that A is a full subcategory of B if the reverse inclusion holds as well. 

Observe that Set (or, to be precise, the variant of Set that has arrows 
〈Y, f, Dom f 〉 

instead of 〈Y, f 〉) is not a full subcategory of Rel. If A is a full subcategory of 
B, then A∂ is a full subcategory of B∂. 
x. A module consists of a ring R and an abelian group A, with disjoint uni-
verses R and A (hence two distinct zero elements, say 0 and 0) and an ex-
tended product operation. If the domain of · in the module M includes both 
R × A and A × R, we call M a bimodule; if it includes only R × A, M is a left 
module; and if it includes only A × R, M is a right module. In practice, the ring 
component of a module is relatively fixed, and we call a module with ring 
component R an R-module. Thus we have R-bimodules and left and right R-
modules. A left R-module satisfies, for all r, s ∈ R and all a, b ∈ A, the 
equations 
(lm1) r · (a + b) = r · a + r · b, 
(lm2) (r + s) · a = r · a + s · a, 
(lm3) (r · s) · a = r · (s · a). 
Symmetrically, a right R-module satisfies finitely 
(rm1) (a + b) · r = a · r + b · r, 
(rm2) a · (r + s) = a · r + a · s, 
(rm3) a · (r · s) = (a · r) · s. 
An R-bimodule satisfies all six equation schemes. 

A sub-R-module of an R-module M is a subalgebra of M that includes the 
entire ring component R. 

Let A be an algebra, and X ⊆ A. The subalgebra of A with universe SgAX is 
called the subalgebra of A generated by X, and denoted by SgAX. If A = SgAX, 
we say X is a generating set of A, and A is X-generated. An algebra A is fi-
nitely generated if it has a finite generating set. 

b5 Proposition. The subalgebra relation is an ordering of the class of all alge-
bras. 
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§c Homomorphisms 
Homomorphisms may be said to constitute the most important kind of 

alikeness between algebras. 

c1 Definition. Let A and B be algebras. A mapping f: A ––› B is a homomor-
phism from A to B if for each operation symbol Q, whenever 〈a0,…, an–1〉 ∈ 
DomQA, 

f(QA(a0,…, an–1)) = QB( f(a0),…, f(an–1)). 

(Recall our convention that ‘… = N’ can only hold if the expression ‘N’ makes 
sense. So this definition implies in particular 

if 〈a0,…, an–1〉 ∈ DomQA, then 〈 f(a0),…, f(an–1)〉 ∈ DomQB.) 
We write f: A ––› B to express that f is a homomorphism from A to B. If A 

= B, f is called an endomorphism of A. An injective homomorphism is also 
called an embedding. For embeddings we use the notation f: A ⊂––› B. Like-
wise we use –—›› and ⊂–—›› to express, respectively, surjectivity and bijectivity. 
Examples. 
i. A homomorphism from a category to a category is commonly called a func-
tor. A functor F: C ––› D is faithful if for all x, z ∈ IdC, the restriction of F to 
(zx)C is an injection. Thus a faithful functor is a kind of local embedding. 
We also have a local notion of surjection: a functor is full if for all x, z ∈ IdC, 
the restriction of F to (zx)C is a surjection onto (FzFx)D. 
ii. Suppose A = 〈A, ≤〉 and B = 〈B, 〉 are quasi-orders, construed as algebras, 
and f: A ––› B. Then if x ≤ y exists, f(x ≤ y) = f(x)  f(y). In relational terms: 

if x ≤ y, then f(x)  f(y). 
A function with this property is called isotone. A function g: A ––› A such that 
x ≤ g(x) for all x ∈ A is called increasing. 

c2 Proposition. Let A, B and C be algebras. 
(i) 1A is an endomorphism of A. 
(ii) If f: A ––› B and g: B ––› C, then g  f is a homomorphism from A to C. 

Proof. (i) Trivial. 
(ii) Clearly, g  f is a mapping of A into C. 

If 〈a0,…, an–1〉 ∈ DomQA, then 
f(QA(a0,…, an–1)) = QB( f(a0),…, f(an–1)) 

since f is a homomorphism; and 
g(QB( f(a0),…, f(an–1))) = QC(g( f(a0),…, g( f(an–1))) 

since g is a homomorphism.  

This proposition implies that we have a category Alg of homomorphisms. 
To be precise, the arrows of Alg are the triples 〈B, f, A〉 where f: B ‹–– A is a 
homomorphism. Arrows are composable if adjacent elements match, that is, 

〈D, g, C〉  〈B, f, A〉 exists ⇔ C = D, 
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and then the composite is 〈D, g  f, A〉. Identity arrows are triples of the form 
〈A, 1A, A〉. — In practice, of course, we prefer to keep the outer elements of 
these triples implicit. 

In general, a concrete category is a category C with a faithful functor 
U: C ––› Set. 

A typical concrete category has objects consisting in a set with additional 
structure; since U obliterates this structure, it is called the forgetful functor of 
the concrete category. For example, the category Alg has forgetful functor 

〈B, f, A〉 ı––› 〈B, f 〉. 
In general, if U: C ––› D is a forgetful functor, properties of D-arrows may 

be attributed to elements of C, since these are, in a clear sense specified by U, 
also elements of D. This is how we can call a homomorphism ‘injective’ or 
‘surjective’. 

The construction of Alg as a class of triples represents a general pattern. 
Suppose we have objects for which some underlying set is specified, say A un-
derlies the object A, B underlies B, and so on; and for every pair 〈B, A〉 a set 
(BA) of functions from A to B has been defined. If 
for every A, 1A ∈ (AA), and 
for all A, B, C,  f ∈ (CB) & g ∈ (BA) ⇒ f  g ∈ (CA), 
then the triples 〈B, f, A〉, with f ∈ (BA) — or the sets (BA) — will be 
said to form a concrete category, with composition and identity defined in ana-
logy to Alg. 

c3 Proposition. Let A and B be algebras. If f and g are homomorphisms from 
A into B, then {a ∈ A| f(a) = g(a)} is a subuniverse of A. 

Proof. Put 
X := {a ∈ A| f(a) = g(a)}, 

and suppose 〈a0, …, an–1〉 ∈ Dom(QA)X . Then 
f(QA(a0, …, an–1)) = QB( f(a0), …, f(an–1)) = QB(g(a0), …, g(an–1)) 
 = g(QA(a0, …, an–1)), 

so X is closed under QA, and since Q was arbitrary, X is a subuniverse of A.  

Corollary. If f and g are homomorphisms of A that coincide on a dense set of 
A, then f = g. 

c4 Proposition. Let A and B be algebras and f a homomorphism from A into 
B. Then for any Y ∈ SubB, f –1[Y] ∈ SubA. 

Proof. Put X = f –1[Y], and suppose 〈a0, …, an–1〉 ∈ Dom(QA)X .  Then 
f(QA(a0, …, an–1)) = QB( f(a0), …, f(an–1)) ∈ Y 

since Y is a subuniverse, so X is closed under QA, and since Q was arbitrary, X 
is a subuniverse of A.  

c5 Theorem. A homomorphism is a monomorphism (in Alg) if and only if it 
is injective. 
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Proof. (⇒) Suppose f: A ––› B is not injective; let a0, a1 be distinct elements 
of A such that f(a0) = f(a1). Let g = {a0‹—| 0}, h = {a1‹—| 0}. Then 

g, h: {0} ––› A, 
and f  g = f  h although g and h are distinct. 
(⇐) Injectivity is a property of homomorphisms in their capacity of mappings 
between sets. So if f: A ––› B is injective, and f  g = f  h, for homomorphisms 
g, h: X ––› A, then f  g = f  h in Set, and since injective mappings are mono-
morphisms in Set (example 2d.vi), g = h.  

c6 Theorem. A homomorphism f: A ––› B is an epimorphism in Alg if and 
only if f [A] is dense in B. 

Proof. Let f: A ––› B be a homomorphism; put D := SgB f [A]. 
(⇒) Suppose D ≠ B. Let C be a set disjoint with B, and in one-one correspon-
dence with B – D; let φ: B – D ––› C be a bijection. Put ψ = 1D ∪ φ. Take M = 
B ∪ C; define an extension M ≥ B by putting, for each Q ∈ NomB, and x0,…, 
xn–1 ∈ D ∪ C, 

QM(x0,…, xn–1)  ψ(QB(ψ–1(x0),…, ψ–1(xn–1)). 
Then 1B and ψ are distinct homomorphisms from B to M, but 1B  f = ψ  f; so 
f is not an epimorphism. 
(⇐) Suppose f [A] is dense. Let g, h: B ––› C, be homomorphisms; assume that 
g  f = h  f. Put X := {b ∈ B|h(b) = g(b)}. Then X ⊇ f [A]; since by Proposi-
tion 3, X ∈ Sub B, X must be B, and g = h.  

§d Natural transformations 
Let S, T : B ‹–– C be functors. A natural transformation from S to T is a 

mapping τ: B ‹–– C such that for all x, y ∈ C, 
(1) xy↓ ⇒ τx   Sy = τxy = Tx  τy . 
We write τ: T ‹–·– S or τ: S –·–› T. 

Proposition. Let S, T : B ‹–– C be functors. Every mapping σ : B ‹–– IdC that 
satisfies for all c ∈ C 
(2) σb(c)   Sc = Tc  σd(c) 
can be extended in exactly one way to a natural transformation from S to T. 
Conversely, if τ: S –·–› T is a natural transformation, then σ = τ |̀ IdC satisfies 
(2). 

Proof. Define τc to be σb(c)   Sc, or equivalently, Tc  σd(c). This definition is 
forced upon us, for c = b(c)   c, hence by (1) τb(c)   Sc = τc, and c = c   d(c), 
so again by (1) τc = Tc  τd(c). And it works: if xy↓, then 

τx   Sy = τb(x)   Sx   Sy =  τb(x)   S(xy) = τxy, 
and analogously τxy = Tx  τy .  

By extension, we also call mappings as in (2) ‘natural transformations’; and 
moreover, since a natural transformation can be given as a mapping of identity 
arrows, it can also be given as a mapping of objects. 
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Suppose a, b and c are objects of C, and f: a ––› b and g: b ––› c arrows. 
Then the preceding is represented by the following diagram of arrows: 

τa  a  Sa  Ta 

  f  Sf τgf  τf   Tf 

(3) b  Sb  Tb 
          τb 

 g  Sg τg   Tg 

 c  Sc  Tc 
τc 

The formulas (1) and (2) express that this diagram commutes, that is, any two 
ways of getting from one object in the diagram to another by following arrows 
are equivalent. 

Examples. Functors S, T : B ‹–– C may be viewed as constructions of objects 
in B from objects in the base category; being functors, these constructions 
have the property that they lift relations (arrows) between objects in C to rela-
tions between the corresponding constructs in B. A transformation of con-
structs Sc into constructs Tc, is called ‘natural’ if the arrows embodying the 
transformation commute with relations given in C and their derivatives in B. 
i. Let N  be a nominator consisting entirely of unary operation symbols, and φ: 
A ––› B a quomorphism of N-algebras: that is, φ is a partial function from A to 
B, and whenever a ∈ DomQA ∩ Domφ, 

φ(QA(a)) = QB(φ(a)). 
Let N be the monoid of finite sequences of elements of N, and Pfn the cate-
gory of partial functions, with arrows 〈Y, ψ, X〉, where X and Y are sets, and ψ 
⊆ Y × X is a function (cf. §2b:1). Define functors S, T : N ––› Pfn: 

S(Q0…Qn–1) = Q0
A  …  Qn

A
–1, 

T(Q0…Qn–1) = Q0
B  …  Qn

B
–1 

— in particular, S(ε) = 1A and T(ε) = 1B. Define τ : N ––› Pfn by 
τ(Q0…Qn–1) = φ  Q0

A  …  Qn
A
–1. 

Then τ is a natural transformation from S to T. Observe that by the Proposition 
above we fix τ by stipulating τε = φ. 
ii. For any set X, let SX be X2, and for a function f: X ––› Y, Sf = f 2, mapping 
〈x0, x1〉 ∈ X2 to 〈 f(x0), f(x1)〉 ∈ Y2; and 

TX = X (2) = {{x0, x1}|x0, x1 ∈ X}, 
with Tf mapping {x0, x1} to { f(x0), f(x1)}. For any set Z, define τZ: Z2 ––› Z (2) 
by 

τZ(z0, z1) = {z0, z1}. 
Then t is a natural transformation from S to Z. 
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iii. Let Inj ≤ Set be the category of injective mappings. Let S be as in the pre-
vious example; and let τX be some bijection of X2 onto |X2|, the least ordinal 
equipollent with X2. We turn the assignment X ı––› |X2| into a functor from Inj 
to Inj by stipulating that Tf is the canonical embedding of |X2| into |Y2|. Under 
these conditions, τ cannot be natural. For, consider the square 
 {a}2 1 

 
 

 {a, b}2 4 . 
Let f: {a} ––› {a, b} be a mapping; suppose f(a) = a. Then since Tf(τ{a}(a, a)) 
= 0, if τ is natural, τ{a,b}(a, a) = 0. But the same argument for g: {a} ––› {a, b} 
with g(a) = b would show that  τ{a,b}(b, b) = 0. Therefore the proposed trans-
formation is not natural. 

Natural transformations may be regarded as arrows in two kinds of catego-
ries. 
a) Let F, G and H be functors from some category C to a category D; 
α: F —·-› G and β: G —·-› H  natural transformations. We define, for any com-
posite xy ∈ C, 
(4) (β • α)xy = βx  αy. 
This is unambiguous, since if uv = xy, then by (1) 

βu  αv = βu  Gv  αd(x) = βuv  αd(x) = βxy  αd(y) = βx  αy, 
and it covers all of C since x = x  d(x). The operation • is seen to be associa-
tive from the Kleene-equalities 

(γ • (β • α))xyz  γx  βy  αz  ((γ • β) • α)xyz. 
It is easily checked that β • α is a natural transformation from F to H — and it 
shows clearly in the diagram below. 

 αa βa  a  Fa  Ga   Ha 

  f    Ff  α f  Gf    Hf 

(5) b  Fb  Gb  Hb 
          

 g   Fg   Gg βg   Hg 

 c  Fc Gc   Hc 
 αc βc 

It is clear from (1) that a functor F from C to D is a natural transformation 
from F to F; and by comparing (1) with (4), we find for α: F —·-› G that 

α • F = α = G • α. 
So the natural transformations between functors from C to D form a category, 
with composition •, and for α: F —·-› G, 

b(α) = G and d(α) = F. 
We denote this category by DC. 



II ALGEBRAS 

 68 

b) Let F and G be functors from C to D, α: F—·-›G; and K and L functors from 
D to E, with a natural transformation γ : K—·-›L. Then for any c ∈ ObC, γGc  
K(αc) = L(αc)  γFc , as appears from the diagram below. 

γFc   KFc  LGc 

(4)  Kαc  Lαc 

  KGc  LGc 
γGc 

The assignment c l––› γGc  K(αc) is a natural transformation from KF to LG: in 
the diagram below, the lefthand square commutes because α is natural, and the 
righthand square because γ is natural. 

 Kαa  γGa  KFa KGa LGa 

(5) KFf KGf  LGf 

 KFb KGb  LGb 
 Kαb γGb 

We view this assignment as the composite γ  α of arrows γ : D ––› E and α: C 
––› D. This composition is transitive: if α and γ are as above, and δ : E ––› B is 
a natural transformation from M to N, then for any c ∈ ObC, 
(δ  (γ  α))(c) = δLGc  M((γ  α)(c)) since γ  α: KF —·-› LG and δ : M —·-› N 
 = δLGc  M(γGc  K(αc)) = δLGc  MγGc  MK(αc) 
 = (δ  γ)(Gc)  MK(αc) since δ : M —·-› N and γ : K —·-› L 
 = ((δ  γ)  α)(c) since α: F —·-› G; and δ  γ : MK —·-› NL. 
The identity arrows for this composition are the identical transformations of 
the identity functors; thus idC assigns 1c to every object c of C, and this as-
signment is a natural transformation 1C —·-› 1C. 

After the layout of the diagram 

 F K 
 A B C 
 
 δ  β 
 G L 

(6) A B C 
 γ  α 

 H M 
 A B C 

the operation • is called vertical composition and  horizontal composition. 
The two are related by the exchange law: 
(7) (α • β)  (γ • δ )  (α  γ) • (β  δ ). 
The truth of (7), assuming diagram (6) and a ∈ ObA, may be demonstrated by 
calculation as follows: 
((α • β)  (γ • δ ))(a) = (α • β)(Ha)  K((γ • δ)(a)) since γ • δ : F —·-› H and  
  α • β: K —·-› M 
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 = αHa  βHa  K(γa)  K(δa) 
 = αHa  L(γa)  βGa  K(δa) since β: K —·-› L and γa: Ga ––› Ha 
 = (α  γ)(a)  (β  δ )(a) since α: L —·-› M and γ : G —·-› H, and 
  β: K —·-› L and δ : F —·-› G 
 = ((α  γ) • (β  δ ))(a). 

The exchange law implies among other things that 
(α • β)  F  (α • β)  (F • F)  (α  F) • (β  F). 

We sometimes omit the composition symbol , thus writing αF  • βF; • is 
never omitted. The category of natural transformations with vertical composi-
tion will be will be indicated by Nat. 

(homomorphisms as nat transfos) (homomorphisms and term operations: 
hoofstuk 7. Clones as categories.) 

§E Direct Products 
Roughly speaking, the direct product of a family of structures is a structure 

that combines the information residing in the elements of the family, provided 
every element contains information. 

1 Definition. Let A = 〈Ai|i ∈ I〉 be a family of algebras; say Ai = 〈Ai , Ji〉. The 
direct product of A is the algebra B = 〈B , K〉 defined by 
 B =  

i
∏
∈ I

Ai ; 

 Dom(K) = 
i

∈ I

Dom(Ji); 

and for every n ∈ , for every n-ary operation symbol Q ∈ Dom(K), 
K(Q) = {〈b0, 〈b1,…, bn〉〉|for all i ∈ I, b0(i) = Ji(Q)(b1(i),…, bn(i))}. 

The notation for the direct product of 〈Ai|i ∈ I〉 is 

i
∏
∈ I

Ai. 

Single-line notations are ∏iAi, ∏(Ai|i ∈ I), and ∏A. 

If for every index i ∈ I, Ai is the same algebra A, we also write AI instead 
of ∏iAi; we say that AI is a direct power of A. If |I | = 2, say I = {0, 1}, we 
write A0 × A1, or, if A0 = C and A1 = D, C × D; more in general, a product of 
n algebras A0, …, An–1 is denoted by A0 ×…× An–1. 

The algebras Ai are called direct factors of ∏iAi. 

2 Proposition. The projections ej: 〈ai|i ∈ I〉 |—› aj , for j ∈ I, are homomor-
phisms from ∏(Ai|i ∈ I) to Aj. 

Proof. Let B = ∏iAi. 
If Q is an n-ary operation symbol, and b0 = QB(b1,…, bn), then b0( j) = 

QAj(b1( j),…, bn( j)), written differently: ej(b0) = QAj(ej(b1),…, ej(bn)).   

The conditions under which projections are surjective were stated in §1H3. 
It is easily seen that if Q is an operation symbol and B = ∏(Ai|i ∈ I), QB is 
total if and only if either some Ai is void, or every QAi is total. 



II ALGEBRAS 

 70 

Examples 
i. Let N = 〈, <, 0, S, +〉. Then 0N×N = 〈0, 0〉, 〈2, 1〉 <N×N 〈6, 2〉, 
〈2, 1〉 +N×N 〈3, 2〉 = 〈5, 3〉, etc. 
ii. Let R = 〈, 0, +〉. Then R × R is the real plane with vector addition. 
iii. Let N0 = 〈, 0, +, –〉, with subtraction defined by 

x – y = z if and only if x = z + y, 
and B the expansion of N0 × N0 by a product operation · defined by 

〈x, y〉 · 〈u, v〉 = 〈xu + yv, xv + yu〉. 
(On the righthand side we use the ordinary multiplication of natural numbers.) 
Define f: B ––›  by f(x, y) = x – y. Then f is a homomorphism from B onto the 
ring Z = 〈, 0, +, –, ·〉 of integers. 

E3 Lemma. Let A and B be algebras, C ⊆ B, f: B ––› A, g = f |̀ C, and C = CB. 
Then 
(i) g: C ––› A; 
(ii) g ∈ Sub(A × B) ⇔ C ∈ SubB. 

Proof of (ii): 
(⇒) Suppose 〈c0,…, cn–1〉 ∈ Cn ∩ Dom(QB). Then 

〈g(c0),…, g(cn–1)〉 = 〈 f(c0),…, f(cn–1)〉 ∈ Dom(QA), 

so 〈〈g(c0), c0〉…, 〈g(cn–1), cn–1〉〉 ∈ Dom(QA×B). Since 

〈g(c0), c0〉…, 〈g(cn–1), cn–1〉 ∈ g ∈ Sub(A × B), 

it follows that g contains QA×B(〈g(c0), c0〉…, 〈g(cn–1), cn–1〉). But this is 

〈QA(g(c0),…, g(cn–1)), QB(c0,…, cn–1)〉, 

so we find QB(c0,…, cn–1) ∈ C. Since Q and c0,…, cn–1 were arbitrary, we 
may conclude that C ∈ SubB. 
(⇐) Suppose c0,…, cn–1 ∈ C, and 

〈〈g(c0), c0〉…, 〈g(cn–1), cn–1〉〉 ∈ Dom(QA×B). 

Then certainly 〈c0,…, cn–1〉 ∈ Dom(QB), so QB(c0,…, cn–1) ∈ C, hence 
 QA×B(〈g(c0), c0〉…, 〈g(cn–1), cn–1〉) = 
  〈QA(g(c0),…, g(cn–1)), QB(c0,…, cn–1)〉 ∈ g.  

4 Corollary. If f: B ––› A, then f ∈ Sub(A × B). 

5 Theorem. Let fi : B ––› Ai be homomorphisms, for all i  in a set I . Then there 
exists precisely one homomorphism f: B ––› ∏iAi that has the property that 
ei  f = fi for all i ∈ I. If fi is injective for at least one i ∈ I, then f is injective. 

   B  
 fi 
  f  

   ∏iAi Ai  ei 

Proof. Put A := ∏iAi. Define f(b), for b ∈ B, as 〈 fi(b)|i ∈ I〉; it is evident be-
forehand that this is the only way we can bring about that ei  f = fi for all i ∈ I. 
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So we need only show that this f is a homomorphism. Let Q be an n-ary opera-
tion symbol such that b0 = QB(b1,…, bn). Then 

 f(b0) = 〈 fi(b0)|i ∈ I〉 by definition 

  = 〈QAi( fi(b1),…, fi(bn))|i ∈ I〉 since the fi are homomorphisms 

  = QA(〈 fi(b1)|i ∈ I〉,…, 〈 fi(bn)|i ∈ I〉) by definition 

  = QA( f(b1),…, f(bn)). 

Suppose fj is injective, and f(b0) = f(b1). Then 
fj(b0) = ej( f(b0)) = ej( f(b1)) = fj(b1), 

so b0 = b1.  

The homomorphism f defined in the proof above may be denoted by 
( fi|i ∈ I), 

or ( fi)i∈ I . For finite I we have more suggestive notations: ( f0,…, fn–1) if I = n; 
(g, h) if I = 2 and f0 = g and f1 = h, and so on. 

Corollary. Let A = 〈Ai|i ∈ I〉 and B = 〈Bi|i ∈ I〉 be families of algebras with 
the same index set I. Let for every i ∈ I a homomorphism gi : Bi ––› Ai be 
given; let πi be the projection from ∏A to Ai , and ρi the projection from ∏B 
to Bi . Then there exists precisely one homomorphism g: ∏B ––› ∏A that has 
the property that πi  g = gi  ρi for all i ∈ I. If gi is injective for all i ∈ I, then 
g is injective. 

Proof. Apply the theorem with B = ∏B and fi = gi  ρi . 
Suppose all the gi are injective. If g(x) = g( y), then for every i, 

gi(ρi(x)) = πi(g(x)) = πi(g( y)) = gi(ρi( y)), 
hence ρi(x) = ρi( y). So x = 〈ρi(x)|i ∈ I〉 = 〈ρi( y)|i ∈ I〉 = y.  

We use product notation for the g defined in the proof of the Corollary: g = 
∏(gi|i  ∈ I), g = h × k and so on. In principle this is ambiguous; but we are 
seldom interested in products of functions qua sets. 
ii. Let A be a small category. Define for f, g, x ∈ A: 

( fg)A(x)  f  x  g    (1). 
This formula defines a functor ()A: A × A∂ ––› Set. 
1º For identity elements a, b of A, define 

{ab}A = {x|(a  g  b)↓}   (2). 
Then (ab)A is the identical function on {ab}A, and clearly ( fg)A maps 
{dfbg}A to {bfdg}A. 
2º Let 〈 f1, g1〉 and 〈 f2, g2〉 be composable arrows of A × A∂. The composite is 

〈 f1  f2, g2  g1〉, 
and indeed for x ∈ A, 

( f1  f2g2  g1)A(x)  f1  f2  x  g2  g1  ( f1g1)A(( f2g2)A(x)). 
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Now let a be an identity element (or, equivalently, an object) in A. The co-
variant homfunctor (a)A maps every object b of A to the set {ba}A, and 
every f : c‹––b to the map 

( fa)A: g |––› f  g 
from {ba}A to {ca}A. The contravariant homfunctor (a)A maps every 
object b of A to the set {ab}A, and every f: b‹––c to the map 

(af )A: g |––› g  f. 

§f Infinitary operations 
A finitary operation Q on a set A maps families 〈ai|i < nQ〉 into A. There are 

advantages, of practicality and cardinal simplicity, to natural numbers as index 
sets; but there is no reason in principle why we should not be more liberal. 
With maximal generality, for the moment, an I-ary operation on A, where I is 
any set, is a mapping of I-indexed families 〈ai|i ∈ I〉, of elements of A, into A. 

Example 1 
Let 〈A, O〉 be a 1º countable Hausdorff space, and + a binary operation on 

A. Suppose 〈ai|i < ω〉 is a sequence of elements of A such that the secondary 
sequence 
 s0 = a0, 

 sn+1 = sn + an+1 
converges. Then we define 

i

∞∑
=0

ai := nl–i–m›∞sn. 

This infinitary summation is an ω-ary operation. In particular, the infinite 
series of analysis are of this type. 

Example 2 (Lehmann-Pásztor) 
An ω-complete order is an ordered set 〈X, ≤〉 in which every chain 

 x0 ≤ x1 ≤ x2 ≤ … 
has a least upper bound. In this case, least upper bound is an ω-ary operation. 

Example 3 
Let C be a category, and a = 〈ai|i ∈ I〉 a family of objects of C. A product 

of a is an object a of C with a family of arrows πi: a ––› ai that every family 
〈 fi: b ––› ai|i ∈ I〉 of arrows uniquely factors through: there is a unique f: b ––› 
a such that for all i ∈ I, πi  f = fi. 

   b  
 fi 

  f  

   a ai 
 πi 

In various categories (in Set, for example, and in Alg — see §D) there exists a 
uniform construction of products, that can be thought of as a class of infinitary 
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operations on objects. And even if there is no question of a uniform construc-
tion, we may still assume there is an operation that chooses a product for each 
family that has products. The product of a  is denoted by 

∏a, ∏(ai|i ∈ I) or 
i
∏
∈ I

ai, 

or abbreviations such as ∏iai or ∏ai. For the unique arrow f we use the nota-
tion ( fi|i ∈ I). The projection may also be viewed as the result of an I-ary op-
eration: πi

a: ∏a ––› ai. 
The product notation may be generalized to arbitrary arrows: if 

f = 〈 fi: ai ––› bi|i ∈ I〉 
is a family of arrows, then ∏f = ( fi  πi

a|i ∈ I). 

§ Historical notes 
The trick of passing relations for partial operations has occurred to several 

people at different times, probably independently. The earliest inventors that 
we are aware of are Lehmann and Pasztor [1982]. 

Exercises 

§b 
1. Draw Hasse-diagrams for the Boolean algebras P(0), P(1), P(2) and P(3). (Taking 0 = 0⁄ , 1 
= {0}, 2 = {0,1}, 3 = 2 ∪ {2}.) Sketch the subuniverse lattices, assuming the nominator is 
{0, 1, ¬, ∧, ∨}. 
2. Let A be an algebra. By Corollary 3 and Theorem 14.3.8,  Sub(A) := 〈Sub(A), ⊆〉 is an al-
gebraic lattice. Are there algebras A such that Sub(A) is not distributive? 
3. Verify that a set lattice is indeed a lattice, and that a field of sets is a Boolean algebra. 
4. Show that a subalgebra of a category C = 〈C, , d, b〉 is a category. 
5. Prove Proposition 4. 
6. Let N be the algebra with universe  and for each m ∈  a single m-ary basic operation Qm, 
defined by: Qm(n0,…, nm–1) = m if n0,…, nm–1 are all distinct, 
 0 otherwise. 
Prove that N is a minimal algebra.  
7. A category C = 〈C, , d, b〉 is a quasi-order if ∀c, d ∈ ObC |C(c, d )| ≤ 1. A quasi-order is 
an order if it satisfies Iso = Id. Show: 
(a) A subcategory of a quasi-order is a quasi-order. 
(b) A subcategory of an order is an order. 
(c) Every small quasi-order has a subcategory with the same objects (identity arrows) that is 
an order. 
8. Show that left modules satisfy 0 · a = 0. 
9. Let L = 〈L, ∨, ∧〉 be a lattice. Show that D ⊆ L is an ideal if and only if it is a downwards 
closed subuniverse. 

§c 
1. Prove: if 〈 fi|i ∈ I 〉 is a family of homomorphisms from A into B, then 

{a ∈ A|for all i, j ∈ I, fi (a) = fj (a)} 
is a subuniverse of A. 
2. A homomorphism f : A —› B is constant if for all x, y ∈ A, f (x) = f (y). Show that the value 
of a constant functor is an identity element. 
3. Let A and B be lattice orders. Show by example that a homomorphism from A to B (that is, 
an isotone mapping) is not necessarily a homomorphism from A@ to B@. 
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§d 
1. Let A, B be algebras, f : B ––› A a mapping. Suppose f ∈ Sub(A × B). 
(a) Show that it is not necessarily true that f : B ––› A. 
(b) Show that f : B ––› A if A is total. 

2 (Mac Lane). Laat B, C en D kategorieën zijn. Laat voor alle b ∈ IdB en c ∈ 
IdC functoren 

Lc: B ––› D, Mb: C ––› D 

gegeven zijn zo dat 
∀b, c: Lc(b) = Mb(c). 

Dan bestaat er een functor S: B × C ––› D zo dat 
 ∀b ∈ IdB ∀g ∈ C  S(b, g) = Mb(g) en 
 ∀c ∈ IdC ∀f ∈ B  S( f, c) = Lc( f ) 
dan en slechts dan als voor iedere f ∈ B en g ∈ C 

Mb f (g)  Ldg( f ) = Lbg( f )  Md f (g). 

Merk op dat uit het bewijs blijkt dat S uniek bepaald is. 
§e 

(Mac Lane). Laat S, Sʹ′: B × C ––› D functoren zijn. Zij α: IdB × IdC ––› D een 
functie zo dat voor alle b, c 

α(b, c) ∈ (Sʹ′(b, c)S(b, c))D. 
Dan is α een natuurlijke transformatie van S in Sʹ′ dan en slechts dan als voor 
alle b, c 
(1) ∀f ∈ B  Sʹ′( f, c)  α(d f, c) = α(b f, c)  Sʹ′( f, c) en 
(2) ∀g ∈ C  Sʹ′(b, g)  α(b, dg) = α(b , bg)  Sʹ′(b, g). 

Conditie (1) wordt informeel onder woorden gebracht als α is natuurlijk in 
b, conditie (2) als α is natuurlijk in c. 
§E 
1. Let I be a set, and C a category in which all I-indexed families have a product. Let ∏ be the 
I-ary product operation in C. Show that ∏ is a functor from CI to C. 

 


