II

ALGEBRAS

Relations and operations

Thus far, we have assumed symbols for relations as well as operations. However, in the context of partial operations, there is a relatively natural way of reducing relations to operations. Instead of saying ' x is blue' we can say ' x is the blue x ', at least in theory; 'the blue x ' being defined exactly when x is blue, so that ' x is the blue x ' is true exactly if x is blue. Likewise we might interpret ' x is less than y ' as ' x is the lesser of x and y ', and forgo the less-thanrelation as a primitive of our structures.

A relation does not require anything to exist beyond the objects that it is predicated of. Hence if we operationalize a relation R, we should choose one of these objects as the value. For the sake of uniformity, and to enforce that relations do not contain unusual information, we stipulate that an n-ary operation R is a predicate, in a certain domain D, if in D the statement

$$
\begin{equation*}
\text { if } R x_{1} \ldots x_{n} \text { exists, then } x_{1}=R x_{1} \ldots x_{n} \tag{*}
\end{equation*}
$$

universally holds. So on second thoughts 'the lesser of x and y ' is not a predicate, since it might be x just as well as y; but 'the lower bound x of $\{y\}$ ' is a predicate.

Example 1. An order $\langle X, \leq\rangle$ may be construed as an algebra $\langle X, R\rangle$, where $R=$ $\{\langle x,\langle x, y\rangle\rangle \mid x \leq y\}$.

This approach does not work for nullary relations. We might represent them by constants, but this would violate our principle that we do not give extra information. Moreover, in a void universe all nullary relations would of necessity not hold. But, since we are not interested in nullary relations, this problem will not stop us. It does not counterbalance the considerable gain we expect to make in uniformity.

So from this point onwards we forego relation symbols, at least in theory. Every nominator will be operational. When we need relations in a structure, we transform them into operations satisfying the condition (*); which turns the structure into an algebra.

II Algebras

Example 2 (Burmeister). A Mealy machine is usually given by a sixtuple

$$
\left\langle S, s_{0}, \Sigma, \Lambda, t, \lambda\right\rangle,
$$

where S is a finite set, the set of states; s_{0} is a designated element of S, the initial state; Σ and Λ are finite sets, the input alphabet and output alphabet respectively; $t: S \times \Sigma \rightarrow S$ is the transition function, specifying the next state from a given state and an input symbol; and $\lambda: S \times \Sigma \longrightarrow \Lambda$ is the output function. The corresponding algebra would be

$$
\mathbf{S}=\left\langle S \cup \Sigma \cup \Lambda, S, \Sigma, \Lambda, s_{0}, T, \lambda\right\rangle,
$$

where S, Σ and Λ are unary predicates, with $S x \downarrow$ if and only if $x \in S$, and in that case $S x=x$, and so on. The binary operations T and λ satisfy the conditions
(t) if $S x \downarrow$ and $\Sigma y \downarrow$, then $S(T(x, y)) \downarrow$,
(λ) if $S x \downarrow$ and $\Sigma y \downarrow$, then $\Lambda(\lambda(x, y)) \downarrow$.
The algebra \mathbf{S} is sorted: its universe consists of three sorts of elements, S, Σ, and Λ, the domains of the operations are cartesian products of sorts, and the range of each operation is contained in a single sort. The sequence of argument and range sorts of an operation we call its type.

Sorted algebras are common in computer science. They embody a pleasant kind of partiality, in which the sort structure completely controls where an operation is defined. Not all partiality is of this type though, not even in computer science, as the next example shows.

Example 3 (Burmeister). Stacks are a simple kind of data structures, in which the following components play a part:

- There are items to be stacked, the elements of some set D.
- The stacks, forming a set S.
- An empty stack $e \in S$.
- An item d may be pushed onto a stack s; the result is a higher stack $P(d, s)$.
- From a stack s you may pop the top item. This item is $T(s)$, the remaining stack is $p(s)$.
Together these ingredients make up an algebra

$$
\mathbf{S}=\langle S \cup D, S, D, e, P, T, p\rangle
$$

The intended typing is $P: D \times S \rightarrow S, T: S \rightarrow D$, and $p: S \rightarrow S$. More explicitly,
(P) if $S x \downarrow$ and $D y \downarrow$, then $S(P(x, y)) \downarrow$,
and so on.
Unfortunately, the description of the situation does not entirely warrant this typing. We have a clear conception of the stack that we get by pushing item d onto stack s; and we know what is the top of $P(d, s)$, and which stack will result if we pop it. But how about $p(e)$ and $T(e)$? Experience shows a common preference for $p(e)=e$; the item $T(e)$, on the other hand, would be special only by being $T(e)$ - as far as we know. And then, in practice, popping the empty stack may result in an error condition, or a very full stack. So that if \mathbf{S} is to em-
body something like the minimal requirements for stacks, $p(e)$ and $T(e)$ have to remain undefined.

Example 4 (Burmeister). Let k be a negative integer, and l a positive. On the interval $[k, l]$, the unary successor operation S is defined everywhere except in l, and symmetrically the predecessor operation P is defined everywhere except in k. On the structure $\langle[k, l], S, P, 0\rangle$ we can further specify addition and subtraction by

$$
\begin{array}{rll}
x+0=x, & x+S y \simeq S(x+y), & x+P y \simeq P(x+y) ; \\
x-0=x, & x-S y \simeq P(x-y), & x-P y \simeq S(x-y) .
\end{array}
$$

We shall denote the expanded structure $\langle[k, l], S, P, 0,+,-\rangle$ by \mathbf{Z}_{k-l}.
Further adding multiplication, specified by

$$
x \cdot 0=0, \quad x \cdot S y \simeq(x \cdot y)+x, \quad x \cdot P y \simeq(x \cdot y)-x
$$

we obtain \mathbf{Z}_{k-l}^{*}.
Example 5. Let $\mathbf{Q}=\langle\mathbb{Q},<\rangle$ be the strict order of rational numbers, and define $I_{\mathbb{Q}}$ to be the set of intervals $\left[q_{1}, q_{2}\right]$ with $q_{1}<q_{2}$. On $I_{\mathbb{Q}}$ we specify the operations of
addition: $\left[x_{1}, x_{2}\right]+\left[y_{1}, y_{2}\right]=\left[x_{1}+y_{1}, x_{2}+y_{2}\right]$;
subtraction: $\left[x_{1}, x_{2}\right]-\left[y_{1}, y_{2}\right]=\left[x_{1}-y_{2}, x_{2}-y_{1}\right]$;
multiplication: $\left[x_{1}, x_{2}\right] \cdot\left[y_{1}, y_{2}\right]=[a, b]$, where a is the infimum of $\left\{x_{1} y_{1}, x_{1} y_{2}, x_{2} y_{1}, x_{2} y_{2}\right\}$, and b the supremum;
division: $\left[x_{1}, x_{2}\right] \div\left[y_{1}, y_{2}\right]=[a, b]$, where a is the infimum of
$\left\{x_{1} / y_{1}, x_{1} / y_{2}, x_{2} / y_{1}, x_{2} / y_{2}\right\}$, and b the supremum, provided $0 \notin\left[y_{1}, y_{2}\right]$; if $0 \in\left[y_{1}, y_{2}\right]$, the quotient is not defined.
We shall denote the structure $\left\langle I_{\mathbb{Q}},+,-, \cdot, \div\right\rangle$ by $\mathbf{I}_{\mathbb{Q}}$.
Example 6 (Burmeister). Let $\mathbf{R}=\langle R,+, 0,-, \cdot\rangle$ be a ring, and k a natural number greater than 1 . Let $k \times k$ be the set of pairs $\langle i, j\rangle$ of natural numbers less than k. Define

$$
A:=R \cup R^{k} \cup R^{k \times k} ;
$$

assume the three components R, R^{k} and $R^{k \times k}$ are disjoint. (They will be if the elements of R are primitive.) We call the elements of the first component scalars, those of the second component vectors, and the rest matrices. We denote scalars by italic letters x, y, z; vectors by bold letters $\mathbf{r}, \mathbf{s}, \mathbf{t}$, usually writing r_{i} instead of $\mathbf{r}(i)$; and matrices by italic capitals M, N, usually writing $m_{i, j}$ or $m_{i j}$ instead of $M(i, j)$. The following extensions of the addition and multiplication of \mathbf{R} to A may be considered reasonable:
addition: $\mathbf{r}+\mathbf{s}=\left\langle r_{0}+s_{0}, \ldots, r_{k-1}+s_{k-1}\right\rangle ; M+N=L$, where $l_{i j}=m_{i j}+n_{i j}$, or in a more direct notation: $\left\langle m_{i j}\right\rangle_{i j}+\left\langle n_{i j}\right\rangle_{i j}=\left\langle m_{i j}+n_{i j}\right\rangle_{i j}$;
multiplication: $x \cdot \mathbf{r}=\left\langle x \cdot r_{0}, \ldots, x \cdot r_{k-1}\right\rangle$,
$\mathbf{r} \cdot x=\left\langle r_{0} \cdot x, \ldots, r_{k-1} \cdot x\right\rangle$,
$\mathbf{r} \cdot \mathbf{s}=r_{0} \cdot s_{0}+\ldots+r_{k-1} \cdot s_{k-1}$,
$x \cdot M=\left\langle x \cdot m_{i j}\right\rangle_{i j}$,
$M \cdot x=\left\langle m_{i j} \cdot x\right\rangle_{i j}$,

II Algebras

$$
\begin{aligned}
& \mathbf{r} \cdot M=\mathbf{s}, \text { where } s_{i}=r_{0} \cdot m_{0, i}+\ldots+r_{k-1} \cdot m_{k-1, i}, \\
& M \cdot \mathbf{r}=\mathbf{t}, \text { where } t_{i}=m_{i, 0} \cdot r_{0}+\ldots+m_{i, k-1} \cdot r_{k-1}, \text { and } \\
& M \cdot N=\left\langle m_{i, 0} \cdot n_{0, j}+\ldots+m_{i, k-1} \cdot n_{k-1, i,}\right\rangle_{i j} .
\end{aligned}
$$

CHAPTER 4

FIRST CONCEPTS

§a Default interpretation

We chose, in $2 \S$ a, to consider statements like
The king of France is bald
false, at a time when France is a republic. This is of course a simplification for the sake of theory, comparable to, but less stringent than, assuming that every operation is defined for every possible argument in the universe. The normal attitude would be that the king of France fails to refer to anything, and hence statement (1) is nonsense. ${ }^{1}$

There is a slight difference between (1) and

> Charlemagne has a big nose

- if we step over the fact that in reality we would assume that the speaker used the wrong tense. The symbols 'the king of', 'France' and 'is bald' in (1) undeniably have meaning. There is a king of Sweden, for example. But 'Charlemagne' does not apply to anyone. In our theory, there are two ways in which this can come about: 'Charlemagne' may be in our nominator, and have the void interpretation; or it might not even belong to the nominator. (We are assuming that we have some sort of present-day frame of reference that has the characteristics of a structure.) Which of the two is actually the case is rather a vacuous issue. We shall not bother to settle it, and consider (2) false, just like (1), whether there is an empty interpretation or none at all.

We extend this treatment to all symbols that are not in the nominator of the structure at hand. They get the default interpretation, which is void. Formally, this involves defining an extension of the interpretation.

Definition. Let $\mathbf{A}=\langle A, I\rangle$ be an algebra. Then $\mathfrak{J}_{\mathbf{A}}$ is the extension of I to the class of all possible symbols, defined, for $S \notin \operatorname{Dom}(I)$, by $\mathfrak{J}_{\mathbf{A}}(S)=\emptyset$.

Instead of $\mathfrak{J}_{\mathbf{A}}(S)$ we write $\mathbf{A}(S)$ or $S^{\mathbf{A}}$. If every $S^{\mathbf{A}}$ is void, \mathbf{A} is called discrete. In particular, a set, considered as an algebra, is discrete.

Observe that $\mathfrak{J}_{\mathrm{A}}$ is not a function; but there is a function, the interpretation I, which tells us all there is to know about it.

§b Subalgebras

Let \mathbf{A} be an algebra. A subuniverse of \mathbf{A} is a subset of the universe A that is closed under the basic operations of \mathbf{A}. We denote the collection of all subuniverses of \mathbf{A} by $\operatorname{Sub} \mathbf{A}$. This collection is a closed set system, by Example $2 f(x v i i i)$. The associated closure operator will be written $\mathrm{Sg}^{\mathbf{A}}$.

[^0]
II Algebras

Of course $A \in \operatorname{Sub} \mathbf{A}$. A subuniverse $B \neq A$ is called a proper subuniverse of \mathbf{A}. An algebra is minimal if it has no proper subuniverses.

A set $X \subseteq A$ is dense in \mathbf{A}, or generates \mathbf{A}, if $\operatorname{Sg}^{\mathbf{A}}(X)=A$. In particular, \mathbf{A} is minimal if and only if \emptyset is dense in \mathbf{A}.

Examples

i. Let t and f be two objects that are not natural numbers, and $A=\mathbb{N} \cup\{\mathrm{t}, \mathrm{f}\}$. Define an interpretation I in A of three nullary operation symbols \mathbf{t}, \mathbf{f} and 0 , three unary operation symbols N, B and S, and one binary operation symbol $E q$, by

$$
\begin{aligned}
& I(N)=\Delta_{\mathbb{N}}, I(B)=\Delta_{\{\mathrm{t}, \mathrm{f}\}} ; \\
& I(\mathbf{t})=\mathrm{t}, I(\mathbf{f})=\mathrm{f}, I(0)=0 ; \\
& I(S)=\{\langle n+1, n\rangle \mid n \in \mathbb{N}\} ; \\
& I(E q)=\left(\{\mathrm{t}\} \times \Delta_{\mathbb{N}}\right) \cup\left(\{\mathrm{f}\} \times\left(\mathbb{N}^{2}-\Delta_{\mathbb{N}}\right) .\right.
\end{aligned}
$$

The subuniverse A is generated by the void set, in symbols: $\operatorname{Sg}^{\mathbf{A}}(\emptyset)=A$. Indeed, A is the only subuniverse of \mathbf{A}. For suppose X is a subuniverse of \mathbf{A}. Then t and f must belong to X. Likewise $0 \in X$. Moreover, if $n \in X \cap \mathbb{N}, n+1$ $=S^{\mathbf{A}}(n) \in X$ as well. By mathematical (incomplete) induction, $\mathbb{N} \subseteq X$. Thus \mathbf{A} has no proper subuniverses: it is a minimal algebra.
ii. Recall our convention that a predicate is an operation that evaluates, if at all, to its first argument. It follows that every subset of the universe is closed under predicates, and hence that in algebras obtained from relational structures every subset is a subuniverse.
b1 Structural induction. One can prove that all the elements of a given subuniverse have a property P by showing
1° that all the elements of some generating set have P, and
2° if x_{1}, \ldots, x_{n} have P, and Q is any operation of the algebra, then $Q\left(x_{1} \ldots x_{n}\right)$ has P.
b2 Subuniverse Generation Theorem. Let \mathbf{A} be an algebra, and $X \subseteq A$. Put $X_{0}=X$, and for $k \in \mathbb{N}$,

$$
X_{k+1}=X_{k} \cup \bigcup_{Q \in \operatorname{Nom} \mathbf{A}} Q^{\mathbf{A}}\left[X_{k}^{<\omega}\right] .
$$

Then

$$
\operatorname{Sg}^{\mathbf{A}} X=\bigcup_{k=0}^{\infty} X_{k} .
$$

Proof. For each $Q \in \operatorname{Nom} \mathbf{A}, \mathcal{U}_{Q}:=\left\{U \subseteq A \mid Q^{\mathbf{A}}\left[U^{<\omega}\right] \subseteq U\right\}$ is an algebraic closure system, and $\operatorname{Sub} \mathbf{A}=\bigcap_{Q} \mathcal{U}_{Q}$. Let \mathbf{C}_{Q} be the closure operator determined by \mathcal{U}_{Q}, and define $F_{Q}: \mathcal{P A} \rightarrow \mathcal{P A}$ by $F_{Q}(U)=U \cup Q^{A}\left[U^{<\omega}\right]$. Then

$$
\begin{equation*}
\mathbf{C}_{Q}(U)=\bigcup_{k=0}^{\infty} F_{Q}^{k}(U), \tag{区}
\end{equation*}
$$

and $X_{k+1}=\bigcup_{Q} F_{Q}\left(X_{k}\right)$. Hence by Corollary $2 \mathrm{f3} 3.7, \mathrm{Sg}^{\mathbf{A}} X=\bigcup_{k} X_{k}$.
Define the complexity of an element a of $\mathrm{Sg}^{\mathbf{A}} X$ to be the least k such that $a \in X_{k}$. Then this theorem warrants another form of induction for $\operatorname{Sg}^{\mathbf{A}} X$, induction on the complexity of a. If one can prove that a has property P from the
assumption that elements of lower complexity have P, then every element of $\mathrm{Sg}^{\mathbf{A}} X$ has property P.
b3 Corollary. The closure operator $\mathrm{Sg}^{\mathbf{A}}$ is algebraic.
Proof. Immediate by Corollary 2f3.7.
So the subuniverses of an algebra from an algebraic closure system, and a fortiori an algebraic lattice. The converse holds as well.
b4 Theorem (Birkhoff \& Frink). Every algebraic lattice is isomorphic to the subuniverse lattice of some algebra.

Proof. Let \mathbf{L} be an algebraic lattice. Then by Theorem 2f.3.9, there exists an algebraic closure operator \mathbf{C} such that $\mathbf{L} \cong\langle\operatorname{Ran} \mathbf{C}, \subseteq\rangle$. Let $A=\bigcup \operatorname{Ran} \mathbf{C}$. Take $\mathcal{T}=A \times \mathbb{N}$. For $t=\langle a, n\rangle \in \mathcal{T}$, let $I(t)$ be the n-ary operation on A defined by

$$
I(t)\left(a_{1}, \ldots, a_{n}\right)=a \text { if } a \in \mathbf{C}\left\{a_{1}, \ldots, a_{n}\right\}
$$

\uparrow otherwise.
Let $\mathbf{A}=\langle A, I\rangle$; then $\mathrm{Sg}^{\mathbf{A}}=\mathbf{C}$. For, suppose $X \subseteq A$.

- $\mathrm{Sg}^{\mathbf{A}} X \subseteq \mathbf{C}(X)$: by the Subuniverse Generation Theorem, $\mathrm{Sg}^{\mathbf{A}} X=\bigcup_{k} X_{k}$, where $X_{0}=X$, and

$$
X_{k+1}=X_{k} \cup \bigcup_{t \in \mathcal{T}} I(t)\left[X_{k}^{<\omega}\right] .
$$

Now $X_{0} \subseteq \mathbf{C}(X)$; and if $X_{k} \subseteq \mathbf{C}(X)$, and $I(t)\left(a_{1}, \ldots, a_{n}\right) \downarrow$ for certain $a_{1}, \ldots, a_{n} \in$ X_{k}, then $I(t)\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{C}\left\{a_{1}, \ldots, a_{n}\right\} \subseteq \mathbf{C}\left(X_{k}\right) \subseteq \mathbf{C C}(X)=\mathbf{C}(X)$: so $X_{k+1} \subseteq$ $\mathrm{C}(X)$.

- $\mathbf{C}(X) \subseteq \operatorname{Sg}^{\mathbf{A}} X$: if $a \in \mathbf{C}(X)$, then there is a finite set $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq X$ such that $a \in \mathbf{C}\left\{x_{1}, \ldots, x_{n}\right\}$. Take $t=\langle a, n\rangle$; then $a=I(t)\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{Sg}^{\mathbf{A}} X$.

Now let $\mathbf{A}=\langle A, I\rangle$ and $\mathbf{B}=\langle B, J\rangle$ be similar algebras. We say that \mathbf{B} is a subalgebra of \mathbf{A}, or that \mathbf{A} is an extension of \mathbf{B}, and write $\mathbf{B} \leq \mathbf{A}$, if $B \in \operatorname{Sub} \mathbf{A}$, and for every symbol $S \in \operatorname{Nom} \mathbf{A}, J(S)=I(S)_{B}$. If $\mathbf{B} \leq \mathbf{A}$ and $\mathbf{B} \neq \mathbf{A}$, then \mathbf{B} is a proper subalgebra of \mathbf{A}, and \mathbf{A} a proper extension of \mathbf{B}; notation $\mathbf{B}<\mathbf{A}$. If \mathbf{A} and \mathbf{B} are structures of some particular type, say orders, categories, or groups, we speak of sub-whatever: suborders, subcategories, subgroups, and so on.

Examples.

iii. Under the assumption that $\mathbb{N} \subseteq \mathbb{Q},\langle\mathbb{N},<, 0,1,+, \cdot\rangle \leq\langle\mathbb{Q},<, 0,1,+, \cdot\rangle$. Observe that every subset of \mathbb{Q} is closed under the operation representing <, as a general consequence of our construction of such operations.
iv. A subalgebra of a group $\langle G, \cdot, e\rangle$ is a monoid, but not necessarily a group. However, if we include inversion in the nominator, subalgebras of groups will always be groups.
\mathbf{v}. A set lattice is a subalgebra of a lattice $\langle\mathcal{P X}, \cup \cap\rangle$.
vi. A field of sets is a subalgebra of a powerset algebra $\mathcal{P X}$.
vii. By $\S 2 f 4$, we have complete lattices $\operatorname{Tr} A$, of all the transitive relations contained in A^{2}, and $\mathbf{Q o} A$, of quasi-orderings of A. Any nonempty set of quasiorderings of A has the same infimum and supremum in $\operatorname{Tr} A$ as in $\mathbf{Q o} A$. So in particular, $\operatorname{Tr} A$ is a sublattice of $\mathbf{Q o} A$. Yet $\bigvee^{\mathbf{Q o A} A} \emptyset=\Delta_{A}$, whereas $\bigvee^{\operatorname{Tr} A} \emptyset=\emptyset$: $\operatorname{Tr} A$ is not a complete sublattice of $\mathbf{Q o} A$, nor a bounded sublattice.
viii. For any categories \mathbf{A} and $\mathbf{B}, \mathbf{A} \leq \mathbf{B}$ implies $\mathbf{A}^{\partial} \leq \mathbf{B}^{\partial}$.

II Algebras

ix. Let \mathbf{C} be a category. Define, for any $x, z \in C$,

$$
\{x \leftarrow z\}^{\mathbf{C}},
$$

the homclass of x from z, as the class of all $y \in C$ such that $x \circ y \circ z$ exists. We write simply $x \leftarrow z$ if the category \mathbf{C} is understood. If \mathbf{C} has a clear notion of object, x and z may be objects instead of arrows; then

$$
\{x \leftarrow z\}^{\mathbf{C}}=\left\{1_{x} \leftarrow 1_{z}\right\}^{\mathbf{C}} .
$$

The category \mathbf{C} is said to be locally small if for all $x, z \in C, x \leftarrow z$ is a set. (We may then speak of the homset of x from z.) All the large categories that we have come across - Rel, Set, Alg - are locally small. Observe that

$$
\{x \leftarrow z\}^{\mathbf{C}^{\partial}}=\{z \leftarrow x\}^{\mathbf{C}} .
$$

Now let $\mathbf{A} \leq \mathbf{B}$ be categories. Then clearly for all $a, b \in A$,

$$
\{a \leftarrow b\}^{\mathbf{A}} \subseteq\{a \leftarrow b\}^{\mathbf{B}}
$$

We say that \mathbf{A} is a full subcategory of \mathbf{B} if the reverse inclusion holds as well.
Observe that Set (or, to be precise, the variant of Set that has arrows

$$
\langle Y, f, \operatorname{Dom} f\rangle
$$

instead of $\langle Y, f\rangle$) is not a full subcategory of Rel. If \mathbf{A} is a full subcategory of \mathbf{B}, then \mathbf{A}^{∂} is a full subcategory of \mathbf{B}^{∂}.
\mathbf{x}. A module consists of a ring \mathbf{R} and an abelian group \mathbf{A}, with disjoint universes R and A (hence two distinct zero elements, say 0 and $\mathbf{0}$) and an extended product operation. If the domain of \cdot in the module \mathbf{M} includes both $R \times A$ and $A \times R$, we call \mathbf{M} a bimodule; if it includes only $R \times A, \mathbf{M}$ is a left module; and if it includes only $A \times R, \mathbf{M}$ is a right module. In practice, the ring component of a module is relatively fixed, and we call a module with ring component \mathbf{R} an \mathbf{R}-module. Thus we have \mathbf{R}-bimodules and left and right \mathbf{R} modules. A left \mathbf{R}-module satisfies, for all $r, s \in R$ and all $a, b \in A$, the equations
$(\operatorname{lm} 1) \quad r \cdot(a+b)=r \cdot a+r \cdot b$,
$(\operatorname{lm} 2)(r+s) \cdot a=r \cdot a+s \cdot a$,
(lm3) $(r \cdot s) \cdot a=r \cdot(s \cdot a)$.
Symmetrically, a right \mathbf{R}-module satisfies finitely
(rm1) $(a+b) \cdot r=a \cdot r+b \cdot r$,
$(\mathrm{rm} 2) a \cdot(r+s)=a \cdot r+a \cdot s$,
(rm3) $a \cdot(r \cdot s)=(a \cdot r) \cdot s$.
An \mathbf{R}-bimodule satisfies all six equation schemes.
A sub-R-module of an \mathbf{R}-module \mathbf{M} is a subalgebra of \mathbf{M} that includes the entire ring component R.

Let \mathbf{A} be an algebra, and $X \subseteq A$. The subalgebra of \mathbf{A} with universe $\operatorname{Sg}^{\mathbf{A}} X$ is called the subalgebra of \mathbf{A} generated by X, and denoted by $\mathbf{S g}^{\mathbf{A}} X$. If $\mathbf{A}=\mathbf{S g}^{\mathbf{A}} X$, we say X is a generating set of \mathbf{A}, and \mathbf{A} is X-generated. An algebra \mathbf{A} is f nitely generated if it has a finite generating set.
b5 Proposition. The subalgebra relation is an ordering of the class of all algebras.

§c Homomorphisms

Homomorphisms may be said to constitute the most important kind of alikeness between algebras.
c1 Definition. Let \mathbf{A} and \mathbf{B} be algebras. A mapping $f: A \rightarrow B$ is a homomorphism from \mathbf{A} to \mathbf{B} if for each operation symbol Q, whenever $\left\langle a_{0}, \ldots, a_{n-1}\right\rangle \in$ $\operatorname{Dom} Q^{\mathbf{A}}$,

$$
f\left(Q^{\mathbf{A}}\left(a_{0}, \ldots, a_{n-1}\right)\right)=Q^{\mathbf{B}}\left(f\left(a_{0}\right), \ldots, f\left(a_{n-1}\right)\right) .
$$

(Recall our convention that ' $\ldots=N$ ' can only hold if the expression ' N ' makes sense. So this definition implies in particular

$$
\text { if } \left.\left\langle a_{0}, \ldots, a_{n-1}\right\rangle \in \operatorname{Dom} Q^{\mathbf{A}} \text {, then }\left\langle f\left(a_{0}\right), \ldots, f\left(a_{n-1}\right)\right\rangle \in \operatorname{Dom} Q^{\mathbf{B}} .\right)
$$

We write $f: \mathbf{A} \longrightarrow \mathbf{B}$ to express that f is a homomorphism from \mathbf{A} to \mathbf{B}. If \mathbf{A} $=\mathbf{B}, f$ is called an endomorphism of \mathbf{A}. An injective homomorphism is also called an embedding. For embeddings we use the notation $f: \mathbf{A} \hookrightarrow$ B. Likewise we use \rightarrow and \hookrightarrow to express, respectively, surjectivity and bijectivity.

Examples.

i. A homomorphism from a category to a category is commonly called a functor. A functor $F: \mathbf{C} \longrightarrow \mathbf{D}$ is faithful if for all $x, z \in I d^{\mathbf{C}}$, the restriction of F to $(z \leftarrow x)^{\mathbf{C}}$ is an injection. Thus a faithful functor is a kind of local embedding. We also have a local notion of surjection: a functor is full if for all $x, z \in I d^{\mathbf{C}}$, the restriction of F to $(z \leftarrow x)^{\mathbf{C}}$ is a surjection onto $(F z \leftarrow F x)^{\mathbf{D}}$.
ii. Suppose $\mathbf{A}=\langle A, \leq\rangle$ and $\mathbf{B}=\langle B, \prec\rangle$ are quasi-orders, construed as algebras, and $f: \mathbf{A} \rightarrow \mathbf{B}$. Then if $x \leq y$ exists, $f(x \leq y)=f(x) \prec f(y)$. In relational terms:

$$
\text { if } x \leq y \text {, then } f(x) \prec f(y)
$$

A function with this property is called isotone. A function $g: A \rightarrow A$ such that $x \leq g(x)$ for all $x \in A$ is called increasing.
c2 Proposition. Let \mathbf{A}, \mathbf{B} and \mathbf{C} be algebras.
(i) 1_{A} is an endomorphism of \mathbf{A}.
(ii) If $f: \mathbf{A} \longrightarrow \mathbf{B}$ and $g: \mathbf{B} \rightarrow \mathbf{C}$, then $g \circ f$ is a homomorphism from \mathbf{A} to \mathbf{C}.

Proof. (i) Trivial.
(ii) Clearly, $g \circ f$ is a mapping of A into C.

If $\left\langle a_{0}, \ldots, a_{n-1}\right\rangle \in \operatorname{Dom} Q^{\mathbf{A}}$, then

$$
f\left(Q^{\mathbf{A}}\left(a_{0}, \ldots, a_{n-1}\right)\right)=Q^{\mathbf{B}}\left(f\left(a_{0}\right), \ldots, f\left(a_{n-1}\right)\right)
$$

since f is a homomorphism; and

$$
g\left(Q^{\mathbf{B}}\left(f\left(a_{0}\right), \ldots, f\left(a_{n-1}\right)\right)\right)=Q^{\mathbf{C}}\left(g\left(f\left(a_{0}\right), \ldots, g\left(f\left(a_{n-1}\right)\right)\right)\right.
$$

since g is a homomorphism.
This proposition implies that we have a category Alg of homomorphisms. To be precise, the arrows of Alg are the triples $\langle\mathbf{B}, f, \mathbf{A}\rangle$ where $f: \mathbf{B} \longleftarrow \mathbf{A}$ is a homomorphism. Arrows are composable if adjacent elements match, that is,

$$
\langle\mathbf{D}, g, \mathbf{C}\rangle \circ\langle\mathbf{B}, f, \mathbf{A}\rangle \text { exists } \Leftrightarrow \mathbf{C}=\mathbf{D},
$$

II Algebras

and then the composite is $\langle\mathbf{D}, g \circ f, \mathbf{A}\rangle$. Identity arrows are triples of the form $\left\langle\mathbf{A}, 1_{A}, \mathbf{A}\right\rangle$. - In practice, of course, we prefer to keep the outer elements of these triples implicit.

In general, a concrete category is a category \mathbf{C} with a faithful functor

$$
U: \mathbf{C} \longrightarrow \text { Set } .
$$

A typical concrete category has objects consisting in a set with additional structure; since U obliterates this structure, it is called the forgetful functor of the concrete category. For example, the category Alg has forgetful functor

$$
\langle\mathbf{B}, f, \mathbf{A}\rangle \mapsto\langle B, f\rangle .
$$

In general, if $U: \mathbf{C} \longrightarrow \mathbf{D}$ is a forgetful functor, properties of \mathbf{D}-arrows may be attributed to elements of C, since these are, in a clear sense specified by U, also elements of D. This is how we can call a homomorphism 'injective' or 'surjective'.

The construction of Alg as a class of triples represents a general pattern. Suppose we have objects for which some underlying set is specified, say A underlies the object \mathfrak{A}, B underlies \mathfrak{B}, and so on; and for every pair $\langle\mathfrak{B}, \mathfrak{l}\rangle$ a set $(\mathfrak{B} \leftarrow \mathfrak{2 l})$ of functions from A to B has been defined. If
for every $\mathfrak{\imath l}$,

$$
1_{A} \in(\mathfrak{Z l} \leftarrow \mathfrak{2} \mathfrak{l})
$$

and
for all $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \quad f \in(\mathfrak{C} \leftarrow \mathfrak{B}) \& g \in(\mathfrak{B} \leftarrow \mathfrak{l}) \Rightarrow f \circ g \in(\mathbb{C} \leftarrow \mathfrak{A})$,
then the triples $\langle\mathfrak{\mathcal { B }}, f, \mathfrak{l}\rangle$, with $f \in(\mathfrak{B} \leftarrow \mathfrak{l})-$ or the sets $(\mathfrak{B} \leftarrow \mathfrak{l})-$ will be said to form a concrete category, with composition and identity defined in analogy to Alg.
c3 Proposition. Let \mathbf{A} and \mathbf{B} be algebras. If f and g are homomorphisms from \mathbf{A} into \mathbf{B}, then $\{a \in A \mid f(a)=g(a)\}$ is a subuniverse of \mathbf{A}.

Proof. Put

$$
X:=\{a \in A \mid f(a)=g(a)\},
$$

and suppose $\left\langle a_{0}, \ldots, a_{n-1}\right\rangle \in \operatorname{Dom}\left(Q^{\mathbf{A}}\right)_{X}$. Then

$$
\begin{aligned}
f\left(Q^{\mathbf{A}}\left(a_{0}, \ldots, a_{n-1}\right)\right) & =Q^{\mathbf{B}}\left(f\left(a_{0}\right), \ldots, f\left(a_{n-1}\right)\right)=Q^{\mathbf{B}}\left(g\left(a_{0}\right), \ldots, g\left(a_{n-1}\right)\right) \\
& =g\left(Q^{\mathbf{A}}\left(a_{0}, \ldots, a_{n-1}\right)\right),
\end{aligned}
$$

so X is closed under $Q^{\mathbf{A}}$, and since Q was arbitrary, X is a subuniverse of \mathbf{A}. \boxtimes
Corollary. If f and g are homomorphisms of A that coincide on a dense set of A, then $f=g$.
c4 Proposition. Let \mathbf{A} and \mathbf{B} be algebras and f a homomorphism from \mathbf{A} into B. Then for any $Y \in \operatorname{Sub} \mathbf{B}, f^{-1}[Y] \in \operatorname{Sub} \mathbf{A}$.

Proof. Put $X=f^{-1}[Y]$, and suppose $\left\langle a_{0}, \ldots, a_{n-1}\right\rangle \in \operatorname{Dom}\left(Q^{\mathbf{A}}\right)_{X}$. Then

$$
f\left(Q^{\mathbf{A}}\left(a_{0}, \ldots, a_{n-1}\right)\right)=Q^{\mathbf{B}}\left(f\left(a_{0}\right), \ldots, f\left(a_{n-1}\right)\right) \in Y
$$

since Y is a subuniverse, so X is closed under $Q^{\mathbf{A}}$, and since Q was arbitrary, X is a subuniverse of \mathbf{A}.
c5 Theorem. A homomorphism is a monomorphism (in Alg) if and only if it is injective.

Proof. (\Rightarrow) Suppose $f: \mathbf{A} \longrightarrow \mathbf{B}$ is not injective; let a_{0}, a_{1} be distinct elements of A such that $f\left(a_{0}\right)=f\left(a_{1}\right)$. Let $g=\left\{a_{0} \longleftarrow 0\right\}, h=\left\{a_{1} \hookleftarrow 0\right\}$. Then

$$
g, h:\{0\} \longrightarrow \mathbf{A},
$$

and $f \circ g=f \circ h$ although g and h are distinct.
(\Leftarrow) Injectivity is a property of homomorphisms in their capacity of mappings between sets. So if $f: \mathbf{A} \longrightarrow \mathbf{B}$ is injective, and $f \circ g=f \circ h$, for homomorphisms $g, h: \mathbf{X} \rightarrow \mathbf{A}$, then $f \circ g=f \circ h$ in Set, and since injective mappings are monomorphisms in Set (example 2d.vi), $g=h$.
c6 Theorem. A homomorphism $f: \mathbf{A} \rightarrow \mathbf{B}$ is an epimorphism in $\mathbf{A l g}$ if and only if $f[A]$ is dense in \mathbf{B}.

Proof. Let $f: \mathbf{A} \longrightarrow \mathbf{B}$ be a homomorphism; put $D:=\operatorname{Sg}^{\mathbf{B}} f[A]$.
(\Rightarrow) Suppose $D \neq B$. Let C be a set disjoint with B, and in one-one correspondence with $B-D$; let $\phi: B-D \rightarrow C$ be a bijection. Put $\psi=1_{D} \cup \phi$. Take $M=$ $B \cup C$; define an extension $\mathbf{M} \geq \mathbf{B}$ by putting, for each $Q \in \operatorname{NomB}$, and x_{0}, \ldots, $x_{n-1} \in D \cup C$,

$$
Q^{\mathbf{M}}\left(x_{0}, \ldots, x_{n-1}\right) \simeq \psi\left(Q^{\mathbf{B}}\left(\psi^{-1}\left(x_{0}\right), \ldots, \psi^{-1}\left(x_{n-1}\right)\right) .\right.
$$

Then 1_{B} and ψ are distinct homomorphisms from \mathbf{B} to \mathbf{M}, but $1_{B} \circ f=\psi \circ f$; so f is not an epimorphism.
(\Leftarrow) Suppose $f[A]$ is dense. Let $g, h: \mathbf{B} \rightarrow \mathbf{C}$, be homomorphisms; assume that $g \circ f=h \circ f$. Put $X:=\{b \in B \mid h(b)=g(b)\}$. Then $X \supseteq f[A]$; since by Proposition $3, X \in \operatorname{Sub} \mathbf{B}, X$ must be B, and $g=h$.

§d Natural transformations

Let $S, T: \mathbf{B} \longleftarrow \mathbf{C}$ be functors. A natural transformation from S to T is a mapping $\tau: B \longleftarrow C$ such that for all $x, y \in C$,

$$
\begin{equation*}
x y \downarrow \Rightarrow \tau_{x} \circ S y=\tau_{x y}=T x \circ \tau_{y} . \tag{1}
\end{equation*}
$$

We write $\tau: T \leftarrow S$ or $\tau: S \rightarrow T$.
Proposition. Let $S, T: \mathbf{B} \longleftarrow \mathbf{C}$ be functors. Every mapping $\sigma: B \longleftarrow I d^{\mathbf{C}}$ that satisfies for all $c \in C$

$$
\begin{equation*}
\sigma_{\mathrm{b}(c)} \circ S c=T c \circ \sigma_{\mathrm{d}(c)} \tag{2}
\end{equation*}
$$

can be extended in exactly one way to a natural transformation from S to T. Conversely, if $\tau: S \rightarrow T$ is a natural transformation, then $\sigma=\tau\left\lceil I d{ }^{\mathbf{C}}\right.$ satisfies (2).

Proof. Define τ_{c} to be $\sigma_{\mathrm{b}(c)} \circ S c$, or equivalently, $T c \circ \sigma_{\mathrm{d}(c)}$. This definition is forced upon us, for $c=\mathrm{b}(c) \circ c$, hence by (1) $\tau_{\mathrm{b}(c)} \circ S c=\tau_{c}$, and $c=c \circ \mathrm{~d}(c)$, so again by (1) $\tau_{c}=T c \circ \tau_{\mathrm{d}(c)}$. And it works: if $x y \downarrow$, then

$$
\tau_{x} \circ S y=\tau_{\mathrm{b}(x)} \circ S x \circ S y=\tau_{\mathrm{b}(x)} \circ S(x y)=\tau_{x y},
$$

and analogously $\tau_{x y}=T x \circ \tau_{y}$.
By extension, we also call mappings as in (2) 'natural transformations'; and moreover, since a natural transformation can be given as a mapping of identity arrows, it can also be given as a mapping of objects.

II Algebras

Suppose a, b and c are objects of \mathbf{C}, and $f: a \longrightarrow b$ and $g: b \longrightarrow c$ arrows. Then the preceding is represented by the following diagram of arrows:
(3)

The formulas (1) and (2) express that this diagram commutes, that is, any two ways of getting from one object in the diagram to another by following arrows are equivalent.

Examples. Functors $S, T: \mathbf{B} \longleftarrow \mathbf{C}$ may be viewed as constructions of objects in \mathbf{B} from objects in the base category; being functors, these constructions have the property that they lift relations (arrows) between objects in \mathbf{C} to relations between the corresponding constructs in B. A transformation of constructs $S c$ into constructs $T c$, is called 'natural' if the arrows embodying the transformation commute with relations given in \mathbf{C} and their derivatives in \mathbf{B}.
i. Let \mathcal{N} be a nominator consisting entirely of unary operation symbols, and ϕ : $\mathbf{A} \longrightarrow \mathbf{B}$ a quomorphism of \mathcal{N}-algebras: that is, ϕ is a partial function from A to B, and whenever $a \in \operatorname{Dom} Q^{\mathbf{A}} \cap \operatorname{Dom} \phi$,

$$
\phi\left(Q^{\mathbf{A}}(a)\right)=Q^{\mathbf{B}}(\phi(a))
$$

Let \mathbf{N} be the monoid of finite sequences of elements of \mathcal{N}, and Pfn the category of partial functions, with arrows $\langle Y, \psi, X\rangle$, where X and Y are sets, and ψ $\subseteq Y \times X$ is a function (cf. §2b:1). Define functors $S, T: \mathbf{N} \longrightarrow \mathbf{P f n}:$

$$
\begin{aligned}
& S\left(Q_{0} \ldots Q_{n-1}\right)=Q_{0}^{\mathbf{A}} \circ \ldots \circ Q_{n-1}^{\mathbf{A}} \\
& T\left(Q_{0} \ldots Q_{n-1}\right)=Q_{0}^{\mathbf{B}} \circ \ldots \circ Q_{n-1}^{\mathbf{B}}
\end{aligned}
$$

- in particular, $S(\varepsilon)=1_{A}$ and $T(\varepsilon)=1_{B}$. Define $\tau: N \longrightarrow P f n$ by

$$
\tau\left(Q_{0} \ldots Q_{n-1}\right)=\phi \circ Q_{0}^{\mathbf{A}} \circ \ldots \circ Q_{n-1}^{\mathbf{A}}
$$

Then τ is a natural transformation from S to T. Observe that by the Proposition above we fix τ by stipulating $\tau_{\varepsilon}=\phi$.
ii. For any set X, let $S X$ be X^{2}, and for a function $f: X \rightarrow Y, S f=f^{2}$, mapping $\left\langle x_{0}, x_{1}\right\rangle \in X^{2}$ to $\left\langle f\left(x_{0}\right), f\left(x_{1}\right)\right\rangle \in Y^{2}$; and

$$
T X=X^{(2)}=\left\{\left\{x_{0}, x_{1}\right\} \mid x_{0}, x_{1} \in X\right\}
$$

with $T f$ mapping $\left\{x_{0}, x_{1}\right\}$ to $\left\{f\left(x_{0}\right), f\left(x_{1}\right)\right\}$. For any set Z, define $\tau_{Z}: Z^{2} \longrightarrow Z^{(2)}$ by

$$
\tau_{Z}\left(z_{0}, z_{1}\right)=\left\{z_{0}, z_{1}\right\}
$$

Then t is a natural transformation from S to Z.
iii. Let $\mathbf{I n j} \leq$ Set be the category of injective mappings. Let S be as in the previous example; and let τ_{X} be some bijection of X^{2} onto $\left|X^{2}\right|$, the least ordinal equipollent with X^{2}. We turn the assignment $X \mapsto\left|X^{2}\right|$ into a functor from Inj to Inj by stipulating that $T f$ is the canonical embedding of $\left|X^{2}\right|$ into $\left|Y^{2}\right|$. Under these conditions, τ cannot be natural. For, consider the square

Let $f:\{a\} \longrightarrow\{a, b\}$ be a mapping; suppose $f(a)=a$. Then since $T f\left(\tau_{\{a\}}(a, a)\right)$ $=0$, if τ is natural, $\tau_{\{a, b\}}(a, a)=0$. But the same argument for $g:\{a\} \longrightarrow\{a, b\}$ with $g(a)=b$ would show that $\tau_{\{a, b\}}(b, b)=0$. Therefore the proposed transformation is not natural.

Natural transformations may be regarded as arrows in two kinds of categories.
a) Let F, G and H be functors from some category \mathbf{C} to a category \mathbf{D};
$\alpha: F \rightarrow G$ and $\beta: G \rightarrow H$ natural transformations. We define, for any composite $x y \in C$,

$$
\begin{equation*}
(\beta \bullet \alpha)_{x y}=\beta_{x} \circ \alpha_{y} . \tag{4}
\end{equation*}
$$

This is unambiguous, since if $u v=x y$, then by (1)

$$
\beta_{u} \circ \alpha_{v}=\beta_{u} \circ G v \circ \alpha_{\mathrm{d}(x)}=\beta_{u v} \circ \alpha_{\mathrm{d}(x)}=\beta_{x y} \circ \alpha_{\mathrm{d}(y)}=\beta_{x} \circ \alpha_{y}
$$

and it covers all of C since $x=x \circ \mathrm{~d}(x)$. The operation \bullet is seen to be associative from the Kleene-equalities

$$
(\gamma \bullet(\beta \bullet \alpha))_{x y z} \simeq \gamma_{x} \circ \beta_{y} \circ \alpha_{z} \simeq((\gamma \bullet \beta) \bullet \alpha)_{x y z} .
$$

It is easily checked that $\beta \bullet \alpha$ is a natural transformation from F to $H-$ and it shows clearly in the diagram below.

It is clear from (1) that a functor F from \mathbf{C} to \mathbf{D} is a natural transformation from F to F; and by comparing (1) with (4), we find for $\alpha: F \rightarrow G$ that

$$
\alpha \bullet F=\alpha=G \bullet \alpha .
$$

So the natural transformations between functors from \mathbf{C} to \mathbf{D} form a category, with composition \bullet, and for $\alpha: F \rightarrow G$,

$$
\mathrm{b}(\alpha)=G \text { and } \mathrm{d}(\alpha)=F \text {. }
$$

We denote this category by $\mathbf{D}^{\mathbf{C}}$.

II Algebras

b) Let F and G be functors from \mathbf{C} to $\mathbf{D}, \alpha: F \rightarrow G$; and K and L functors from D to \mathbf{E}, with a natural transformation $\gamma: K \rightarrow L$. Then for any $c \in \mathrm{Ob} \mathbf{C}, \gamma_{G c}{ }^{\circ}$ $K\left(\alpha_{c}\right)=L\left(\alpha_{c}\right) \circ \gamma_{F c}$, as appears from the diagram below.

The assignment $c \longmapsto \gamma_{G c} \circ K\left(\alpha_{c}\right)$ is a natural transformation from $K F$ to $L G$: in the diagram below, the lefthand square commutes because α is natural, and the righthand square because γ is natural.

We view this assignment as the composite $\gamma \circ \alpha$ of arrows $\gamma: \mathbf{D} \longrightarrow \mathbf{E}$ and $\alpha: \mathbf{C}$ $\rightarrow \mathbf{D}$. This composition is transitive: if α and γ are as above, and $\delta: \mathbf{E} \longrightarrow \mathbf{B}$ is a natural transformation from M to N, then for any $c \in \mathrm{ObC}$,

$$
\begin{aligned}
(\delta \circ(\gamma \circ \alpha))(c) & =\delta_{L G c} \circ M((\gamma \circ \alpha)(c)) \text { since } \gamma \circ \alpha: K F \rightarrow L G \text { and } \delta: M \rightarrow N \\
& =\delta_{L G c} \circ M\left(\gamma_{G c} \circ K\left(\alpha_{c}\right)\right)=\delta_{L G c} \circ M \gamma_{G c} \circ M K\left(\alpha_{c}\right) \\
& =(\delta \circ \gamma)(G c) \circ M K\left(\alpha_{c}\right) \text { since } \delta: M \rightarrow N \text { and } \gamma: K \rightarrow L \\
& =((\delta \circ \gamma) \circ \alpha)(c) \text { since } \alpha: F \rightarrow G ; \text { and } \delta \circ \gamma: M K \rightarrow N L .
\end{aligned}
$$

The identity arrows for this composition are the identical transformations of the identity functors; thus $\mathrm{id}_{\mathbf{C}}$ assigns 1_{c} to every object c of \mathbf{C}, and this assignment is a natural transformation $1_{\mathbf{C}} \stackrel{\rightarrow}{ } 1_{\mathbf{C}}$.

After the layout of the diagram
(6)

the operation • is called vertical composition and \circ horizontal composition. The two are related by the exchange law:

$$
\begin{equation*}
(\alpha \bullet \beta) \circ(\gamma \bullet \delta) \simeq(\alpha \circ \gamma) \bullet(\beta \circ \delta) \tag{7}
\end{equation*}
$$

The truth of (7), assuming diagram (6) and $a \in \mathrm{ObA}$, may be demonstrated by calculation as follows:

$$
\begin{array}{r}
((\alpha \bullet \beta) \circ(\gamma \bullet \delta))(a)=(\alpha \bullet \beta)(H a) \circ K((\gamma \bullet \delta)(a)) \text { since } \gamma \bullet \delta: F \dot{\rightarrow} H \text { and } \\
\alpha \bullet \beta: K \xrightarrow[\rightarrow]{ }
\end{array}
$$

$$
\begin{aligned}
& =\alpha_{H a} \circ \beta_{H a} \circ K\left(\gamma_{a}\right) \circ K\left(\delta_{a}\right) \\
& =\alpha_{H a} \circ L\left(\gamma_{a}\right) \circ \beta_{G a} \circ K\left(\delta_{a}\right) \text { since } \beta: K \rightarrow L \text { and } \gamma_{a}: G a \rightarrow H a \\
& =(\alpha \circ \gamma)(a) \circ(\beta \circ \delta)(a) \text { since } \alpha: L \rightarrow M \text { and } \gamma: G \dot{\rightarrow} H, \text { and } \\
& =((\alpha \circ \gamma) \bullet(\beta \circ \delta))(a) . \\
& \beta: K \rightarrow L \text { and } \delta: F \rightarrow G
\end{aligned}
$$

The exchange law implies among other things that

$$
(\alpha \bullet \beta) \circ F \simeq(\alpha \bullet \beta) \circ(F \bullet F) \simeq(\alpha \circ F) \bullet(\beta \circ F) .
$$

We sometimes omit the composition symbol \circ, thus writing $\alpha F \bullet \beta F$; is never omitted. The category of natural transformations with vertical composition will be will be indicated by Nat.
(homomorphisms as nat transfos) (homomorphisms and term operations: hoofstuk 7. Clones as categories.)

§E Direct Products

Roughly speaking, the direct product of a family of structures is a structure that combines the information residing in the elements of the family, provided every element contains information.

1 Definition. Let $\boldsymbol{A}=\left\langle\mathbf{A}_{i} \mid i \in I\right\rangle$ be a family of algebras; say $\mathbf{A}_{i}=\left\langle A_{i}, J_{i}\right\rangle$. The direct product of \boldsymbol{A} is the algebra $\mathbf{B}=\langle B, K\rangle$ defined by

$$
\begin{aligned}
& B=\prod_{i \in I} A_{i} \\
& \operatorname{Dom}(K)=\bigcap_{i \in I} \operatorname{Dom}\left(J_{i}\right)
\end{aligned}
$$

and for every $n \in \mathbb{N}$, for every n-ary operation symbol $Q \in \operatorname{Dom}(K)$,

$$
K(Q)=\left\{\left\langle b_{0},\left\langle b_{1}, \ldots, b_{n}\right\rangle\right\rangle \mid \text { for all } i \in I, b_{0}(i)=J_{i}(Q)\left(b_{1}(i), \ldots, b_{n}(i)\right)\right\} .
$$

The notation for the direct product of $\left\langle\mathbf{A}_{i} \mid i \in I\right\rangle$ is

$$
\prod_{i \in I} \mathbf{A}_{i} .
$$

Single-line notations are $\prod_{i} \mathbf{A}_{i}, \Pi\left(\mathbf{A}_{i} \mid i \in I\right)$, and $\Pi \boldsymbol{A}$.
If for every index $i \in I, \mathbf{A}_{i}$ is the same algebra \mathbf{A}, we also write \mathbf{A}^{I} instead of $\prod_{i} \mathbf{A}_{i}$; we say that \mathbf{A}^{I} is a direct power of \mathbf{A}. If $|I|=2$, say $I=\{0,1\}$, we write $\mathbf{A}_{0} \times \mathbf{A}_{1}$, or, if $\mathbf{A}_{0}=\mathbf{C}$ and $\mathbf{A}_{1}=\mathbf{D}, \mathbf{C} \times \mathbf{D}$; more in general, a product of n algebras $\mathbf{A}_{0}, \ldots, \mathbf{A}_{n-1}$ is denoted by $\mathbf{A}_{0} \times \ldots \times \mathbf{A}_{n-1}$.

The algebras \mathbf{A}_{i} are called direct factors of $\Pi_{i} \mathbf{A}_{i}$.
2 Proposition. The projections $e_{j}:\left\langle a_{i} \mid i \in I\right\rangle \mapsto a_{j}$, for $j \in I$, are homomorphisms from $\Pi\left(\mathbf{A}_{i} \mid i \in I\right)$ to \mathbf{A}_{j}.
Proof. Let $\mathbf{B}=\prod_{i} \mathbf{A}_{i}$.
If Q is an n-ary operation symbol, and $b_{0}=Q^{\mathbf{B}}\left(b_{1}, \ldots, b_{n}\right)$, then $b_{0}(j)=$

The conditions under which projections are surjective were stated in $\S 1 \mathrm{H} 3$. It is easily seen that if Q is an operation symbol and $\mathbf{B}=\Pi\left(\mathbf{A}_{i} \mid i \in I\right), Q^{\mathbf{B}}$ is total if and only if either some A_{i} is void, or every $Q^{\mathbf{A}_{i}}$ is total.

II Algebras

Examples

i. Let $\mathbf{N}=\langle\mathbb{N},<, 0, S,+\rangle$. Then $0^{\mathbf{N} \times \mathbf{N}}=\langle 0,0\rangle,\langle 2,1\rangle\left\langle^{\mathbf{N} \times \mathbf{N}}\langle 6,2\rangle\right.$,
$\langle 2,1\rangle+\mathbf{N} \times \mathbf{N}\langle 3,2\rangle=\langle 5,3\rangle$, etc.
ii. Let $\mathbf{R}=\langle\mathbb{R}, 0,+\rangle$. Then $\mathbf{R} \times \mathbf{R}$ is the real plane with vector addition.
iii. Let $\mathbf{N}_{0}=\langle\mathbb{N}, 0,+,-\rangle$, with subtraction defined by

$$
x-y=z \text { if and only if } x=z+y
$$

and \mathbf{B} the expansion of $\mathbf{N}_{0} \times \mathbf{N}_{0}$ by a product operation \cdot defined by

$$
\langle x, y\rangle \cdot\langle u, v\rangle=\langle x u+y v, x v+y u\rangle .
$$

(On the righthand side we use the ordinary multiplication of natural numbers.) Define $f: B \rightarrow \mathbb{Z}$ by $f(x, y)=x-y$. Then f is a homomorphism from \mathbf{B} onto the $\operatorname{ring} \mathbf{Z}=\langle\mathbb{Z}, 0,+,-, \cdot\rangle$ of integers.

E3 Lemma. Let \mathbf{A} and \mathbf{B} be algebras, $C \subseteq B, f: \mathbf{B} \longrightarrow \mathbf{A}, g=f \uparrow C$, and $\mathbf{C}=C_{\mathbf{B}}$.
Then
(i) $g: \mathbf{C} \rightarrow \mathbf{A}$;
(ii) $g \in \operatorname{Sub}(\mathbf{A} \times \mathbf{B}) \Leftrightarrow C \in \operatorname{Sub} \mathbf{B}$.

Proof of (ii):
(\Rightarrow) Suppose $\left\langle c_{0}, \ldots, c_{n-1}\right\rangle \in C^{n} \cap \operatorname{Dom}\left(Q^{\mathbf{B}}\right)$. Then

$$
\left\langle g\left(c_{0}\right), \ldots, g\left(c_{n-1}\right)\right\rangle=\left\langle f\left(c_{0}\right), \ldots, f\left(c_{n-1}\right)\right\rangle \in \operatorname{Dom}\left(Q^{\mathbf{A}}\right)
$$

so $\left\langle\left\langle g\left(c_{0}\right), c_{0}\right\rangle \ldots,\left\langle g\left(c_{n-1}\right), c_{n-1}\right\rangle\right\rangle \in \operatorname{Dom}\left(Q^{\mathbf{A} \times \mathbf{B}}\right)$. Since

$$
\left\langle g\left(c_{0}\right), c_{0}\right\rangle \ldots,\left\langle g\left(c_{n-1}\right), c_{n-1}\right\rangle \in g \in \operatorname{Sub}(\mathbf{A} \times \mathbf{B}),
$$

it follows that g contains $Q^{\mathbf{A} \times \mathbf{B}}\left(\left\langle g\left(c_{0}\right), c_{0}\right\rangle \ldots,\left\langle g\left(c_{n-1}\right), c_{n-1}\right\rangle\right)$. But this is

$$
\left\langle Q^{\mathbf{A}}\left(g\left(c_{0}\right), \ldots, g\left(c_{n-1}\right)\right), Q^{\mathbf{B}}\left(c_{0}, \ldots, c_{n-1}\right)\right\rangle,
$$

so we find $Q^{\mathbf{B}}\left(c_{0}, \ldots, c_{n-1}\right) \in C$. Since Q and c_{0}, \ldots, c_{n-1} were arbitrary, we may conclude that $C \in \operatorname{Sub} \mathbf{B}$.
(\Leftarrow) Suppose $c_{0}, \ldots, c_{n-1} \in C$, and

$$
\left\langle\left\langle g\left(c_{0}\right), c_{0}\right\rangle \ldots,\left\langle g\left(c_{n-1}\right), c_{n-1}\right\rangle\right\rangle \in \operatorname{Dom}\left(Q^{\mathbf{A} \times \mathbf{B}}\right) .
$$

Then certainly $\left\langle c_{0}, \ldots, c_{n-1}\right\rangle \in \operatorname{Dom}\left(Q^{\mathbf{B}}\right)$, so $Q^{\mathbf{B}}\left(c_{0}, \ldots, c_{n-1}\right) \in C$, hence

$$
\begin{aligned}
& Q^{\mathbf{A} \times \mathbf{B}}\left(\left\langle g\left(c_{0}\right), c_{0}\right\rangle \ldots,\right.\left.\left\langle g\left(c_{n-1}\right), c_{n-1}\right\rangle\right)= \\
&\left\langle Q^{\mathbf{A}}\left(g\left(c_{0}\right), \ldots, g\left(c_{n-1}\right)\right), Q^{\mathbf{B}}\left(c_{0}, \ldots, c_{n-1}\right)\right\rangle \in g . 区
\end{aligned}
$$

4 Corollary. If $f: \mathbf{B} \rightarrow \mathbf{A}$, then $f \in \operatorname{Sub}(\mathbf{A} \times \mathbf{B})$.
5 Theorem. Let $f_{i}: \mathbf{B} \rightarrow \mathbf{A}_{i}$ be homomorphisms, for all i in a set I. Then there exists precisely one homomorphism $f: \mathbf{B} \longrightarrow \prod_{i} \mathbf{A}_{i}$ that has the property that $e_{i} \circ f=f_{i}$ for all $i \in I$. If f_{i} is injective for at least one $i \in I$, then f is injective.

Proof. Put $\mathbf{A}:=\prod_{i} \mathbf{A}_{i}$. Define $f(b)$, for $b \in B$, as $\left\langle f_{i}(b) \mid i \in I\right\rangle$; it is evident beforehand that this is the only way we can bring about that $e_{i} \circ f=f_{i}$ for all $i \in I$.

So we need only show that this f is a homomorphism. Let Q be an n-ary operation symbol such that $b_{0}=Q^{\mathbf{B}}\left(b_{1}, \ldots, b_{n}\right)$. Then

$$
\begin{aligned}
f\left(b_{0}\right) & =\left\langle f_{i}\left(b_{0}\right) \mid i \in I\right\rangle \quad \text { by definition } \\
& =\left\langle Q^{\mathbf{A}_{i}\left(f_{i}\left(b_{1}\right), \ldots, f_{i}\left(b_{n}\right)\right)|i \in I\rangle \quad \text { since the } f_{i} \text { are homomorphisms }}\right. \\
& =Q^{\mathbf{A}}\left(\left\langle f_{i}\left(b_{1}\right) \mid i \in I\right\rangle, \ldots,\left\langle f_{i}\left(b_{n}\right) \mid i \in I\right\rangle\right) \quad \text { by definition } \\
& =Q^{\mathbf{A}}\left(f\left(b_{1}\right), \ldots, f\left(b_{n}\right)\right) .
\end{aligned}
$$

Suppose f_{j} is injective, and $f\left(b_{0}\right)=f\left(b_{1}\right)$. Then

$$
f_{j}\left(b_{0}\right)=e_{j}\left(f\left(b_{0}\right)\right)=e_{j}\left(f\left(b_{1}\right)\right)=f_{j}\left(b_{1}\right),
$$

so $b_{0}=b_{1}$.
The homomorphism f defined in the proof above may be denoted by

$$
\left(f_{i} \mid i \in I\right),
$$

or $\left(f_{i}\right)_{i \in I}$. For finite I we have more suggestive notations: $\left(f_{0}, \ldots, f_{n-1}\right)$ if $I=n$; (g, h) if $I=2$ and $f_{0}=g$ and $f_{1}=h$, and so on.

Corollary. Let $\boldsymbol{A}=\left\langle\mathbf{A}_{i} \mid i \in I\right\rangle$ and $\boldsymbol{B}=\left\langle\mathbf{B}_{i} \mid i \in I\right\rangle$ be families of algebras with the same index set I. Let for every $i \in I$ a homomorphism $g_{i}: \mathbf{B}_{i} \rightarrow \mathbf{A}_{i}$ be given; let π_{i} be the projection from $\Pi \boldsymbol{A}$ to \mathbf{A}_{i}, and ρ_{i} the projection from $\Pi \boldsymbol{B}$ to \mathbf{B}_{i}. Then there exists precisely one homomorphism $g: \Pi \boldsymbol{B} \longrightarrow \Pi \boldsymbol{A}$ that has the property that $\pi_{i} \circ g=g_{i} \circ \rho_{i}$ for all $i \in I$. If g_{i} is injective for all $i \in I$, then g is injective.
Proof. Apply the theorem with $\mathbf{B}=\Pi \boldsymbol{B}$ and $f_{i}=g_{i} \circ \rho_{i}$.
Suppose all the g_{i} are injective. If $g(x)=g(y)$, then for every i,

$$
\begin{equation*}
g_{i}\left(\rho_{i}(x)\right)=\pi_{i}(g(x))=\pi_{i}(g(y))=g_{i}\left(\rho_{i}(y)\right) \tag{区}
\end{equation*}
$$

hence $\rho_{i}(x)=\rho_{i}(y)$. So $x=\left\langle\rho_{i}(x) \mid i \in I\right\rangle=\left\langle\rho_{i}(y) \mid i \in I\right\rangle=y$.
We use product notation for the g defined in the proof of the Corollary: $g=$ $\Pi\left(g_{i} \mid i \in I\right), g=h \times k$ and so on. In principle this is ambiguous; but we are seldom interested in products of functions qua sets.
ii. Let \mathbf{A} be a small category. Define for $f, g, x \in A$:

$$
\begin{equation*}
(f \leftarrow g)^{\mathbf{A}}(x) \simeq f \circ x \circ g \tag{1}
\end{equation*}
$$

This formula defines a functor $(\leftarrow)^{\mathbf{A}}: \mathbf{A} \times \mathbf{A}^{\boldsymbol{d}} \longrightarrow$ Set.
1° For identity elements a, b of \mathbf{A}, define

$$
\begin{equation*}
\{a \leftarrow b\}^{\mathbf{A}}=\{x \mid(a \circ g \circ b) \downarrow\} \tag{2}
\end{equation*}
$$

Then $(a \leftarrow b)^{\mathbf{A}}$ is the identical function on $\{a \leftarrow b\}^{\mathbf{A}}$, and clearly $(f \leftarrow g)^{\mathbf{A}}$ maps $\{\mathrm{d} f \curvearrowleft \mathrm{~b} g\}^{\mathbf{A}}$ to $\{\mathrm{b} f \leftarrow \mathrm{~d} g\}^{\mathbf{A}}$. 2° Let $\left\langle f_{1}, g_{1}\right\rangle$ and $\left\langle f_{2}, g_{2}\right\rangle$ be composable arrows of $\mathbf{A} \times \mathbf{A}^{\partial}$. The composite is

$$
\left\langle f_{1} \circ f_{2}, g_{2} \circ g_{1}\right\rangle,
$$

and indeed for $x \in A$,

$$
\left(f_{1} \circ f_{2} \leftarrow g_{2} \circ g_{1}\right)^{\mathbf{A}}(x) \simeq f_{1} \circ f_{2} \circ x \circ g_{2} \circ g_{1} \simeq\left(f_{1} \leftarrow g_{1}\right)^{\mathbf{A}}\left(\left(f_{2} \leftarrow g_{2}\right)^{\mathbf{A}}(x)\right) .
$$

II Algebras

Now let a be an identity element (or, equivalently, an object) in \mathbf{A}. The covariant homfunctor $(\leftarrow a)^{\mathbf{A}}$ maps every object b of \mathbf{A} to the set $\{b \leftarrow a\}^{\mathbf{A}}$, and every $f: c \longleftarrow b$ to the map

$$
(f \leftharpoondown a)^{\mathbf{A}}: g \mapsto f \circ g
$$

from $\{b \leftarrow a\}^{\mathbf{A}}$ to $\{c \leftarrow a\}^{\mathbf{A}}$. The contravariant homfunctor $(a \leftarrow)^{\mathbf{A}}$ maps every object b of \mathbf{A} to the set $\{a \leftarrow b\}^{\mathbf{A}}$, and every $f: b \longleftarrow c$ to the map

$$
(a \leftarrow f)^{\mathbf{A}}: g \mapsto g \circ f
$$

§f Infinitary operations

A finitary operation Q on a set A maps families $\left\langle a_{i} \mid i<n_{Q}\right\rangle$ into A. There are advantages, of practicality and cardinal simplicity, to natural numbers as index sets; but there is no reason in principle why we should not be more liberal. With maximal generality, for the moment, an I-ary operation on A, where I is any set, is a mapping of I-indexed families $\left\langle a_{i} \mid i \in I\right\rangle$, of elements of A, into A.

Example 1

Let $\langle A, O\rangle$ be a 1° countable Hausdorff space, and + a binary operation on A. Suppose $\left\langle a_{i} \mid i<\omega\right\rangle$ is a sequence of elements of A such that the secondary sequence

$$
\begin{gathered}
s_{0}=a_{0}, \\
s_{n+1}=s_{n}+a_{n+1}
\end{gathered}
$$

converges. Then we define

$$
\sum_{i=0}^{\infty} a_{i}:=\lim _{n \rightarrow \infty} s_{n} .
$$

This infinitary summation is an ω-ary operation. In particular, the infinite series of analysis are of this type.

Example 2 (Lehmann-Pásztor)
An ω-complete order is an ordered set $\langle X, \leq\rangle$ in which every chain

$$
x_{0} \leq x_{1} \leq x_{2} \leq \ldots
$$

has a least upper bound. In this case, least upper bound is an ω-ary operation.

Example 3

Let \mathbf{C} be a category, and $\boldsymbol{a}=\left\langle a_{i} \mid i \in I\right\rangle$ a family of objects of \mathbf{C}. A product of \boldsymbol{a} is an object a of \mathbf{C} with a family of arrows $\pi_{i}: a \longrightarrow a_{i}$ that every family $\left\langle f_{i}: b \rightarrow a_{i} \mid i \in I\right\rangle$ of arrows uniquely factors through: there is a unique $f: b \rightarrow$ a such that for all $i \in I, \pi_{i} \circ f=f_{i}$.

In various categories (in Set, for example, and in Alg - see §D) there exists a uniform construction of products, that can be thought of as a class of infinitary
operations on objects. And even if there is no question of a uniform construction, we may still assume there is an operation that chooses a product for each family that has products. The product of \boldsymbol{a} is denoted by

$$
\Pi \boldsymbol{a}, \Pi\left(a_{i} \mid i \in I\right) \text { or } \prod_{i \in I} a_{i}
$$

or abbreviations such as $\prod_{i} a_{i}$ or Πa_{i}. For the unique arrow f we use the notation $\left(f_{i} \mid i \in I\right)$. The projection may also be viewed as the result of an I-ary operation: $\pi_{i}^{\boldsymbol{a}}: \Pi \boldsymbol{a} \longrightarrow a_{i}$.

The product notation may be generalized to arbitrary arrows: if

$$
\boldsymbol{f}=\left\langle f_{i}: a_{i} \rightarrow b_{i} \mid i \in I\right\rangle
$$

is a family of arrows, then $\Pi \boldsymbol{f}=\left(f_{i} \circ \pi_{i}^{a} \mid i \in I\right)$.

§ Historical notes

The trick of passing relations for partial operations has occurred to several people at different times, probably independently. The earliest inventors that we are aware of are Lehmann and Pasztor [1982].

Exercises

§b

1. Draw Hasse-diagrams for the Boolean algebras $\mathcal{P}(0), \mathcal{P}(1), \mathcal{P}(2)$ and $\mathcal{P}(3)$. (Taking $0=\emptyset, 1$ $=\{0\}, 2=\{0,1\}, 3=2 \cup\{2\}$.) Sketch the subuniverse lattices, assuming the nominator is $\{0,1, \neg, \wedge, v\}$.
2. Let \mathbf{A} be an algebra. By Corollary 3 and Theorem 14.3.8, $\operatorname{Sub}(\mathbf{A}):=\langle\operatorname{Sub}(\mathbf{A}), \subseteq\rangle$ is an algebraic lattice. Are there algebras \mathbf{A} such that $\operatorname{Sub}(\mathbf{A})$ is not distributive?
3. Verify that a set lattice is indeed a lattice, and that a field of sets is a Boolean algebra.
4. Show that a subalgebra of a category $\mathbf{C}=\langle C, \circ, \mathrm{~d}, \mathrm{~b}\rangle$ is a category.
5. Prove Proposition 4.
6. Let \mathbf{N} be the algebra with universe \mathbb{N} and for each $m \in \mathbb{N}$ a single m-ary basic operation Q_{m}, defined by: $Q_{m}\left(n_{0}, \ldots, n_{m-1}\right)=m$ if n_{0}, \ldots, n_{m-1} are all distinct, 0 otherwise.
Prove that \mathbf{N} is a minimal algebra.
7. A category $\mathbf{C}=\langle C, \circ, \mathrm{~d}, \mathrm{~b}\rangle$ is a quasi-order if $\forall c, d \in \mathrm{Ob} \mathbf{C}|\mathbf{C}(c, d)| \leq 1$. A quasi-order is an order if it satisfies Iso $=I d$. Show:
(a) A subcategory of a quasi-order is a quasi-order.
(b) A subcategory of an order is an order.
(c) Every small quasi-order has a subcategory with the same objects (identity arrows) that is an order.
8. Show that left modules satisfy $0 \cdot a=\mathbf{0}$.
9. Let $\mathbf{L}=\langle L, \vee, \wedge\rangle$ be a lattice. Show that $D \subseteq L$ is an ideal if and only if it is a downwards closed subuniverse.
§c
10. Prove: if $\left\langle f_{i} \mid i \in I\right\rangle$ is a family of homomorphisms from \mathbf{A} into \mathbf{B}, then

$$
\left\{a \in A \mid \text { for all } i, j \in I, f_{i}(a)=f_{j}(a)\right\}
$$

is a subuniverse of \mathbf{A}.
2. A homomorphism $f: \mathbf{A} \rightarrow \mathbf{B}$ is constant if for all $x, y \in A, f(x)=f(y)$. Show that the value of a constant functor is an identity element.
3. Let \mathbf{A} and \mathbf{B} be lattice orders. Show by example that a homomorphism from \mathbf{A} to \mathbf{B} (that is, an isotone mapping) is not necessarily a homomorphism from $\mathbf{A}^{@}$ to $\mathbf{B}^{@}$.

II Algebras

§§

1. Let \mathbf{A}, \mathbf{B} be algebras, $f: B \rightarrow A$ a mapping. Suppose $f \in \operatorname{Sub}(\mathbf{A} \times \mathbf{B})$.
(a) Show that it is not necessarily true that $f: \mathbf{B} \longrightarrow \mathbf{A}$.
(b) Show that $f: \mathbf{B} \rightarrow \mathbf{A}$ if \mathbf{A} is total.

2 (Mac Lane). Laat \mathbf{B}, \mathbf{C} en \mathbf{D} kategorieën zijn. Laat voor alle $b \in I d^{\mathbf{B}}$ en $c \in$ $I d^{\mathbf{C}}$ functoren

$$
L_{c}: \mathbf{B} \rightarrow \mathbf{D}, \quad M_{b}: \mathbf{C} \longrightarrow \mathbf{D}
$$

gegeven zijn zo dat

$$
\forall b, c: L_{c}(b)=M_{b}(c) .
$$

Dan bestaat er een functor $S: \mathbf{B} \times \mathbf{C} \longrightarrow \mathbf{D}$ zo dat

$$
\begin{aligned}
& \forall b \in I d^{\mathbf{B}} \forall g \in C \quad S(b, g)=M_{b}(g) \text { en } \\
& \forall c \in I d \mathbf{C} \forall f \in B \quad S(f, c)=L_{c}(f)
\end{aligned}
$$

dan en slechts dan als voor iedere $f \in B$ en $g \in C$

$$
M_{\mathrm{b} f}(g) \circ L_{\mathrm{d} g}(f)=L_{\mathrm{b} g}(f) \circ M_{\mathrm{d} f}(g)
$$

Merk op dat uit het bewijs blijkt dat S uniek bepaald is.
§e
(Mac Lane). Laat $S, S^{\prime}: \mathbf{B} \times \mathbf{C} \longrightarrow \mathbf{D}$ functoren zijn. $\mathrm{Zij} \alpha: I d^{\mathbf{B}} \times I d^{\mathbf{C}} \rightarrow D$ een functie zo dat voor alle b, c

$$
\alpha(b, c) \in\left(S^{\prime}(b, c) \leftarrow S(b, c)\right)^{\mathbf{D}}
$$

Dan is α een natuurlijke transformatie van S in S^{\prime} dan en slechts dan als voor alle b, c

$$
\begin{align*}
& \forall f \in B \quad S^{\prime}(f, c) \circ \alpha(\mathrm{d} f, c)=\alpha(\mathrm{b} f, c) \circ S^{\prime}(f, c) \text { en } \tag{1}\\
& \forall g \in C \quad S^{\prime}(b, g) \circ \alpha(b, \mathrm{~d} g)=\alpha(b, \mathrm{~b} g) \circ S^{\prime}(b, g) . \tag{2}
\end{align*}
$$

Conditie (1) wordt informeel onder woorden gebracht als α is natuurlijk in b, conditie (2) als α is natuurlijk in c.
§

1. Let I be a set, and \mathbf{C} a category in which all I-indexed families have a product. Let Π be the I-ary product operation in \mathbf{C}. Show that Π is a functor from \mathbf{C}^{I} to \mathbf{C}.

[^0]: ${ }^{1}$ P.F. Strawson, On Referring, Mind 59 (1950): 320-344.

