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CHAPTER 3 

NUMERATION 

We prove an induction principle for arbitrary well-founded relations, and 
use it to prove a general recursion theorem. We define the ordinals as transi-
tive sets of transitive sets, and prove they represent the well-orders. Cardinal 
numbers are defined as initial ordinals. Inaccessible cardinals are introduced, 
and presented as a justification for treating classes as sets at a higher level in 
the hierarchy of sets. 

§a Induction 
The principle of mathematical induction generalizes to arbitrary well-

founded relations: 

a1 Theorem (R-induction). Let R be a well-founded relation on a class A. If 
B ⊆ A has the property 

 for all a ∈ A , if a/R ⊆ B then a ∈ B (*) 

then B = A. 

Proof. Assume R, A and B as stated. If A – B ≠ 0⁄ , it has an element x such that 
(A – B) ∩ x/R = 0⁄ . Then x/R ⊆ B, so x ∈ B by (*), which is a contradiction.  

To every induction principle corresponds a form of recursive definition. In 
the case at hand: 

a2 Theorem (R-recursion). Let R be a well-founded relation on a class A, 
such that for every a ∈ A , a/R is a set. Let Q be a binary operation. Then there 
exists a unique operation F such that Dom(F) ⊆ A and for all a ∈ A , 

F(a)  Q(a, F |̀ (a/R)). (†) 

Proof (cf. Exercises 1-4). 
(Unicity:) That there is at most one such F is proved by R-induction.  
(Existence:) To show that there also is at least one, we first assume that R is 
transitive. We abbreviate 

f is a function and Dom f  ⊆ a/R and for all x ∈ a/R, f(x)  Q(x, f |̀ (x/R)) 

to S(a, f ). By R-induction we have: 

 ∀b, c ∈ A [S(b, f ) & S(c, g) & x ∈ b/R ∩ c/R ⇒ f(x)  g(x)]. (1) 
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Again by R-induction we prove 

for all a ∈ A, there exists f such that S(a, f ): (2) 

assume that for every x ∈ a/R we have f such that S(x, f ). By Unicity, this f is 
unique; by the Replacement Axiom we get a function φ , defined on a/R, such 
that for all x ∈ a/R, S(x, φx). Define a function g with domain contained in a/R 
by 

g(x)  Q(x, φx). (3) 

Now if yRx, by (3) and the transitivity of R, 

 g(y)  Q(y, φy)  Q(y, φx |̀ (y/R)) (by (1)) 
  φx(y) (since S(x, φx)), 

so φx = g|̀(x/R). 
Substituting in (3), we get: g(x)  Q(x, g|̀ (x/R)), i.e. S(a, g); so by R-induc-

tion, we have (2). 
By (2) and Unicity, we have a mapping G from A such that S(a, G(a)) for 

all a ∈ A. Now put F(a)  Q(a, G(a)). This definition works just like (3), and 
by a similar calculation we prove that F satifies the recursion equation (†). 

If R is not transitive, we apply what we proved so far to the transitive clo-
sure R+ and the operation Q ʹ′ defined by 

Q ʹ′(a, f )  Q(a, f |̀ (a/R)). 

It gives us a unique operation F such that 

 F(a)  Q ʹ′(a, F |̀ (a/R+))  Q(a, F |̀ (a/R+)|̀ (a/R))  Q(a, F |̀ (a/R)).  

Examples. (a) The successor relation -‹ = {〈n, n +1〉|n ∈ } and the strict or-
dering < are well-founded on . The -‹-induction principle, also known as in-
complete induction,  is 

If B is a subset of  such that 0 ∈ B and for every b ∈ B, b + 1 ∈ B as well, 
then B = . 

The special treatment of 0 reflects the circumstance that 0/-‹ = 0⁄ . By the corre-
sponding recursion principle, we define a function F on  by specifying (i) 
F(0), and (ii) F(n +1) in terms of F(n). The <-induction principle, also known 
as complete induction, is 

If B is a subset of  such that n ∈ B whenever  Iv(n) ⊆ B, then B = . 

By the corresponding recursion principle, we define a function F on  by 
specifying F(n) in terms of F(0),…, F(n –1). 
(b) As observed in §2E (Example V), elementhood is a well-founded relation. 
The ∈-induction principle reads 
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If B is a subclass of a class A such that for all a ∈ A , a ⊆ B implies a ∈ B, 
then B = A. 

By ∈-recursion, if A is a class and Q a binary operation, there exists a unique 
operation F such that Dom(F) ⊆ A and for all a ∈ A , 

F(a)  Q(a, F |̀ a). 

§b Ordinals 

A set X is transitive if every element of X is also a subset of X. An ordinal 
number (ordinal for short) is a transitive set of transitive sets. 

b1 Lemma. Elements of ordinals are ordinals. 

Proof. Let α be an ordinal, and β ∈ α. Then β is transitive; and since α is 
transitive, every element of β is an element of α, and therefore a transitive set.  

The void set 0⁄  is an ordinal. If α is an ordinal, then so is α ∪ {α}, its suc-
cessor. The class Ord of all ordinals is — as any collection of sets — ordered 
by ⊆. In this subset order, successor ordinals clearly have a greatest element. 
Ordinals other than 0⁄  that do not have a greatest element are called limit ordi-
nals. Such ordinals exist. For example, recursively define a function f:  ––› 
Ord as follows: 

f(0) = 0⁄ ; 
f(n +1) = f(n) ∪ { f(n)}. 

By the replacement axiom, Ran( f ) is a set. It is an ordinal, and it does not 
have a greatest element. This ordinal is usually denoted by ω.1 Set theorists 
use ω as a substitute for . In accordance with this practice, from now on we 
shall often identify the number n and the set f(n) we just defined. In particular, 
the void set qua ordinal may be indicated by 0. 

b2 Theorem. Let α and β be ordinals. Then α ∈ β or α = β or β ∈ α. 

Proof. By ∈-induction (§A, Example (b)). Let α be any ordinal, and suppose 
that all γ ∈ α satisfy 

for all ξ ∈ Ord, ξ ∈ γ or ξ = γ or γ ∈ ξ.  (1) 

Again, let β be any ordinal, and assume 

for all ξ ∈ β, ξ ∈ α or ξ = α or α ∈ ξ.  (2) 

                                                 
1 By our assumption of sets of primitive elements, we get infinite sets such as 
ω more or less for free. Without suitable sets of primitives, we would have 
had to postulate the existence of infinite sets. Cf. §1H, Exercise 19. 
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If there exists ξ ∈ β such that ξ = α or α ∈ ξ, then α ∈ β. Otherwise β ⊆ α. 
Now for γ ∈ α, by (1), β ∈ γ or β = γ or γ ∈ β. If there exists γ ∈ α such that 
β ∈ γ or β = γ, then β ∈ α. Otherwise α ⊆ β, hence α = β. So by ∈-induction, 

for all β ∈ Ord, β ∈ α or β = α or α ∈ β  (3), 

and again by ∈-induction, 

 for all α ∈ Ord, for all β ∈ Ord, β ∈ α or β = α or α ∈ β.  

For ordinals α and β, we often write α < β instead of α ∈ β, and α ≤ β in-
stead of α ⊆ β. 

Induction on ordinals may be formulated as an extension of incomplete in-
duction. 

b3 Proposition (Ordinal Induction). Let A ⊆ Ord be a class. If 
(i) 0 ∈ A, 
(ii) for any ordinal α, if α ∈ A, then α ∪ {α} ∈ A, and 
(iii) for any limit ordinal λ, if A contains every ordinal less then λ, then λ ∈ A, 
then A = Ord. 

The operations of elementary arithmetic can be generalized to arbitrary or-
dinals. In the definition we use recursion on ordinals in accordance with the 
Ordinal Induction Principle. 

b4 Definition (Ordinal Arithmetic). Let α and β be any ordinals. 
(add) (i) α + 0 = α, 

 (ii) α + (β ∪ {β}) = (α + β) ∪ {α + β}, 
 (iii) for any limit ordinal λ, α + λ =  (α + ξ). 
  ξ<λ 

(mult) (i) α · 0 = 0, 
 (ii) α · (β ∪ {β}) = (α · β) + α, 
 (iii) for any limit ordinal λ, α · λ =  (α · ξ). 
   ξ<λ 

(exp) (i) α0 = 1, 
 (ii) αβ∪{β} = αβ · α, 
 (iii) for any limit ordinal λ, αλ =  αξ. 
   ξ<λ 

§c Cumulative hierarchies 

The ordinals serve as a scale in an orderly construction of all the sets. Let U 
be any given set of primitive elements — urelements, in dog German; they 
may be anything except classes. 

Now we put: 
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V0(U) = U; 
for all α ∈ Ord, Vα+1(U) = Vα(U) ∪ PVα(U); 
and for each limit ordinal λ, Vλ(U) =  

ξ

<λ
Vξ(U). 

Finally, the universe over U is 
V(U) =

α∈

Ord
Vξ(U). 

  

It can be proved that every set required by the axioms of set theory, as long 
as all the primitive elements it involves come from U, belongs to V(U). All 
the possible urelements together may be considered as forming a class U. The 
global universe then, of all sets over U, is the union of all universes V(U) for 
subsets U of U. 

As an application of this construction, we prove a generalization of the 
Axiom of Choice. 

Theorem (Axiom of Choice for Classes). Let I be a set, and for every i ∈ I, Ai 
a nonvoid class. Assume that the class of urelements is the union of an ordi-
nal-indexed chain U0 ⊂ U1 ⊂ … Then there exists a function f on I such that 
for every i ∈ I, f(i) ∈ Ai . 

Proof. Take any i ∈ I. An element of Ai must be primitive, or a set in some 
universe V(Uξ). In any case, there must be a least ordinal αi such that 

Ai ∩ V(Uα i
) ≠ 0⁄ , 

and then there must be a least ordinal βi such that 

Ai := Ai ∩ Vβi
(Uα i

) ≠ 0⁄ . 

By the axiom of choice, there exists a function f on I such that for every i ∈ I, 
f(i) ∈ Ai; and since Ai ⊆ Ai , we have made our point.  

§d. Well-Order 

A well-order is a well-founded strict linear order. Every nonvoid set in a 
well-order has a least element. 

d1 Theorem. ∈ is a well-ordering of the ordinals. 

Proof. Since ordinals are transitive, ∈Ord is a transitive relation. By Regularity 
it is well-founded, and by b2 linear.  

A fortiori, every ordinal (or to be precise, every structure α  = 〈α, ∈α〉 with 
α ∈ Ord) is a well-order. 
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We say a relational structure A = 〈A , R〉 is uniquely isomorphic to an ele-
ment of a class C if there is just one C ∈ C such that A ≅ C, and moreover just 
one isomorphism from A to C. 

d2 Theorem. Every well-order is uniquely isomorphic to an ordinal. 

Proof. Let 〈X, <〉 be a well-order, and define a function f on X recursively by 
f(x) = { f(y)|y < x}. (1) 

Then f [X] is an ordinal, and f(y) ∈ f(x) if and only if f(y) < f(x). A fortiori f is 
injective. Finally, observe that the definition (1) is forced upon us if we want 
to have an isomorphism from 〈X, <〉 to an ordinal structure α  = 〈α, ∈α〉.  

Let A = 〈A, ≤〉 be a quasi-order. An initial segment of A is an order 〈B, ≤B〉 
with B ⊆ A downwards closed. Likewise an initial segment of a strict order 〈A, 
<〉 is an order 〈B, <B〉 with B ⊆ A downwards closed. 

Corollary. Let X and Y be well-orders. Then either X is uniquely isomorphic 
to an initial segment of Y, or Y is uniquely isomorphic to an initial segment of 
X. 

Proof. Suppose X ≅ α , and Y ≅ β; then either α ⊆ β or β ⊆ α.  

Observe that 〈α + β, ∈〉 may be constructed by putting the well-order β  on 
top of the well-order α . Indeed, for any two disjoint quasi-orders A = 〈A, R〉 
and B = 〈B, S〉 (disjoint meaning that the universes are disjoint) we can define 

A ⊕ B = 〈A ∪ B, R ∪ S ∪ (A × B)〉. (2) 

In general we define A ⊕ B as any order obtained by applying the construction 
(2) to disjoint isomorphic copies of A and B. If A and B are strict, we con-
struct the sum A ⊕ B by first switching to the associated lax orders A~ = 〈A, R 
∪ ΔA〉 and B~ = 〈B, S ∪ ΔB〉, then forming A~ ⊕ B~, and finally switching back to 
the associated strict order. Then 

〈α + β, ∈〉 ≅ α  ⊕ β . 

Similarly, multiplication may be defined for arbitrary relations:  

A  B := 
〈A × B, {〈〈a1, b1〉, 〈a2, b2〉〉|〈b1, b2〉 ∈ S or [b1 = b2 & 〈a1, a2〉 ∈ R}]〉. 

Intuitively, every element of B is replaced by a copy of A. 
For infinite α and n ∈ ω , n ⊕ α  ≅ α . For a limit λ, n  λ  ≅ λ . 
Finite strict linear orders are well-orders. The set of natural numbers is 

naturally well-ordered by <. The standard strict ordering of  is not a well-or-
dering, but it can be used to well-order : for example, we could place the 



4/14/14 

 51 

negative numbers, ordered by >, after the natural numbers with their familiar 
ordering. By an extension of this method a well-ordering of  may be 
devised. But could we well-order ? The answer is positive; in fact, any set 
can be made the universe of a well-order, though we may not be able to say 
how. 

d3 Well-Ordering Theorem. Every set can be well-ordered. 

Proof. Let X be an arbitrary set. It suffices to construct a bijection from an or-
dinal onto X: then we can use the ordering of the ordinal to order X. 

By the axiom of choice, there exists a choice function 

f: PX – {0⁄ } ––› X. 

Define an operation φ from the ordinals into X recursively, by 

φ(β)  f(X – {φ(ξ)|ξ ∈ β}). 

Let α be the least ordinal for which φ is not defined. Then φ is a bijection from 
α onto X.  

§e Cardinals 

Any finite set is equipollent with a finite ordinal; this finite ordinal is the 
number of its elements, its cardinality. We want to generalize this to infinite 
sets. By the Well-Ordering Theorem, for any set X we can find an ordinal that 
is equipollent with X. But for infinite X this ordinal is not unique. If we use the 
proof of the Well-Ordering Theorem to well-order , for example, and we 
happen on a choice function f that maps every segment [n, ∞) to its least ele-
ment, we find α = ω; but if 

f({0} ∪ [n + 1, ∞)) = n + 1 

for all n, we get α = ω + 1. However, luckily, every nonvoid class of ordinals 
contains a least element; and we define the cardinality |X| as the least ordinal 
equipollent with X. The ordinals that are least elements in their equipollence 
classes we call cardinals. 

When we employ infinite ordinals for counting, as opposed to enumerating, 
we use different notation. We denote ω by ℵ0, and write Fraktur letters such 
as m, n, k, for arbitrary cardinals. 

The arithmetical operations of the ordinals are bound up with the ordering, 
and for this reason not immediately suitable for cardinals. We define the sum 
of cardinals |X| and |Y| as |X ∪ Y|, provided that X and Y are disjoint. In gen-
eral, 

|X| + |Y| = |({0} × X) ∪ ({1} × Y)|. 
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The product is defined by |X| · |Y| = |X × Y|. 
In fact, thus far the definitions still tally, in the sense that, with cardinal op-

erations on the left and ordinal operations on the right, we have |α| + |β| = |α + 
β |, and |α| · |β | = |α · β|. Exponentiation is really different, however. Ordinal 
exponentiation is repeated multiplication, and hence, for example, |2ω | = |ωω| 
= ℵ0. In contrast, |X||Y | is defined as |XY |. 

Proposition (Cardinal arithmetic). Let k, m, n and n be cardinals, with n ∈ ω 
— {0}. 
(a) If k ≥ m ≥ 1, and k is infinite, then k + m = k · m = k. Hence kn = k. 
(b) (km)n = kmn. 
(c) Let k be infinite, and 2 ≤ m ≤ 2k. Then mk = 2k. 

Proof. Exercise.  

Fix a set X, and let U be a subset of X. Then χX , the characteristic function 
of U, is the mapping from X into 2 = {0, 1} defined by 

χX(x) = 1 if x ∈ U, 
    0 otherwise. 

Theorem (Cantor). If m > 1, then 2m > m. 

Proof. Let X be a set such that m = |X|. Observe that 2X is pecisely the set of 
characteristic functions of subsets of X; so 2m = |2X | = |PX|. Hence if 2m ≤ m, 
there exists a surjection f: X —–» PX. Define U as 

{x ∈ X|x ∉ f(x)}. 

Since f is surjective, there exists u ∈ X such that U = f(u). Now if u ∈ U, by 
the definition of U, u ∉ U. So u ∉ U. But then, again by the definition of U, 
u ∈ U. So 2m ≤/ m, and 2m > m by Theorem b2.  

Arbitrary sums and products are defined as follows. Let 〈mi|i ∈ I〉 be a 
family of cardinals. If 〈Xi|i ∈ I〉 is a family of sets such that |Xi | = mi , then 

i
∑
∈ I

mi = |
i

∈ I

({i} × Xi)|   and  
i
∏
∈ I

mi = |
i
∏
∈ I

Xi |. 

A cardinal n is regular if for every family 〈mi|i ∈ I〉 of cardinals such that 
mi  < n for all i ∈ I and moreover |I| < n, 

i
∑
∈ I

mi  < n. 

A cardinal n is a strong limit cardinal if 2m < n for all m < n. A cardinal 
greater than ℵ0 that is both regular and a strong limit cardinal, is called inac-
cessible. 
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Inaccessible cardinals form a justification, in a sense, for dealing with 
classes as if they were sets. For suppose v is an inaccessible cardinal, and that 
any given sets of primitive elements have cardinality less than v. Then the 
stage Vv in the cumulative hierarchy satifies the axioms of set theory. If more-
over we have not more than v primitive elements, then every subclass of Vv 
becomes a set in a higher stage of the hierarchy. So we could choose to do our 
serious mathematics within Vv, and if we want to do something with proper 
classes, take a little excursion to higher stages. 

Do inaccessible cardinals exist? Russell’s Paradox proves that it is foolish 
to maintain that all classes are sets. In a precise sense, it is more foolish to 
believe that inaccessible cardinals exist than to believe that the axioms of set 
theory are true. But inaccessible cardinals have been around almost as long as 
Zermelo’s axioms. So if there is anything wrong with them, it must be quite 
profound. 

Exercises 

§a 
1. (a) Prove, for any set a, that a /∈+ is a set as well. 
(b) Prove that, if R is well-founded, then R+ is also well-founded. 

2. Let R, A and Q be as in the statement of the R-Recursion Theorem. Let F and G be 
operations such that Dom(F) ∪ Dom(G) ⊆ A and for all a ∈ A , F(a)  Q(a, F |̀ (a/R)) 
and G(a)  Q(a, G |̀ (a/R)). Prove that F = G. 
3. Prove claim (1) in the proof of the R-Recursion Theorem. 
4. Let X be a set, and S a relation such that for every x ∈ X, there is exactly one y such 
that Sxy. Construct a function f with domain X such that for every x ∈ X, S(x, f(x)). 
5. Prove that incomplete induction (called mathematical induction in §1B) is 
equivalent to complete induction. 
§b 
1. Let f :  ––›  Ord be as in the text. 
(a) Prove, for all m, n ∈ : f(m) + f(n) = f(m + n). 
(b) Analogously for multiplication and exponentiation. 
2. Prove Proposition 3. 
3. Prove: 
(a) 1 + ω = ω ; 
(b) 2·ω = ω. 
4. Prove that ordinal addition and multiplication are associative. 
5. Prove, for all ordinals α, β, γ : 
(a) αβ+ γ = αβ ·αγ; 
(b) αβ · γ = (αβ)γ. 

§c 
Assume that the natural numbers are the only primitive elements, and that  is the 
only set of primitive elements that is given. 
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(a) Assume that the integers are constructed as equivalence classes of pairs of natural 
numbers, as in the Example in §7. At which level Vα of the hierarchy of §18 do we 
first meet the set  of the integers? 
(b) Define the ordering of the integers in (a) in terms of the ordering of . 
(c) Next construct the rationals as equivalence classes of pairs consisting of an integer 
and a positive integer. At which level Vα do we first meet ? 
(d) Define the ordering of these rationals in terms of the ordering of . 
(e) Let the reals be defined as the upper classes of Dedekind cuts of the first kind, that 
is, as upwards closed sets of rationals without a least element. Then, at which level Vα 
do we first meet ? How would you define the ordering of these reals? 

§d 
1. A maximal element in an order 〈X, ≤〉 is an x ∈ X with the property that if y ∈ X 
and x ≤ y, then y ≤ x. Prove Zorn’s Lemma : if in an order X every chain has an upper 
bound, then X has a maximal element. (Use some form of the Axiom of Choice — 
e.g. the Well-ordering Theorem — to define recursively a mapping F  from a set of 
ordinals into X so that if α < β and F(β)↓, then F(α) < F(β).) 
2. Let X = 〈X, R〉 be a structure with one binary relation. Prove: if every nonvoid 
subset of X has an R-least element, then X is a well-order. 
3. Construct a well-ordering of . 

§e 
1. Prove that every finite ordinal is a cardinal. 
2. Prove that on the finite ordinals, ordinal exponentiation and cardinal exponentia-
tion coincide. 
3 Prove the Proposition. 
4. Prove: if there exists a function f : X —–» Y, then |X | ≥ |Y |. 

Let X be a set, and k a cardinal. Then P< k(X) := {Y ⊆ P(X)||Y | < k}. — In particular, 
P<ℵ0(X) = p(X). 
5. Assume that k > 0, and for all m < k, 2m ≤ n. Prove that 

m
∑
< k

nm = n. Conclude that 

if |X | = n, |P< k(X)| = |X |. 
Let Q = 〈Q, ≤〉 be a quasi-order. The cofinality of Q is the least cardinality of a co-

final set in Q: 
cf Q = {|X ||X is cofinal in Q}. 

For α ∈ Ord, we simplify cf 〈α, ⊆〉 to cfα. cardinal. For example, cfω = cf(ω + ω) = 
ω. 
6. (a) Assume α is infinite. Prove that cfα = α if and only if α is a regular cardinal. 
(b) Which finite cardinals are regular, and which satisfy cf n = n? 
 
   
 
 


