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CHAPTER 2 
STRUCTURES 

A structure is, roughly speaking, a set with some relations and operations 
over it. If there aren’t any operations, we are dealing with a relational system; 
if there are no relations, with an algebra. We shall argue in chapter 4 that the 
mixed sort can be reduced, at least in theory, to algebras. For that reason, the 
general theory in later chapters will be restricted to algebras. 

In this chapter we introduce a few kinds of structures by way of example. 
Several of these, in particular categories, lattices, and orders, will play an im-
portant part in the general theory of algebras that we shall develop later on. 

§a Symbols and their interpretation 
Assume given an inexhaustible class of symbols. What these symbols really 

are, matters very little. We assume only that every symbol is either a relation 
symbol or an operation symbol, and that it is associated with a unique natural 
number, its arity. A symbol of arity n is an n-ary symbol; nullary if n = 0, and 
so on. If S is any symbol, we denote its arity by nS. 

A structure is a pair A = 〈A, I 〉 of a set A (the universe) and a function I of 
symbols (the interpretation) that assigns to every relation symbol R in Dom I 
an nR-ary relation over A, and to every operation symbol Q in Dom I an nQ-ary 
operation over A. In particular I assigns to any nullary relation symbol p in its 
domain a subset of A0; so because |A0| = 1, I( p) ∈ {0⁄ , A0}. 

Actually, we shall also allow large structures, where the universe and the 
interpretation are proper classes. Even then the domain of the interpretation 
will always be a set. In Chapter 3 we shall briefly discuss how classes may be 
viewed as sets, from a higher standpoint so to say.1 

We shall refer to structures by means of characters in bold type, and to their 
universes by the same characters in regular or italic type. If A is a structure, 
then IA is its interpretation component. The type or nominator of A, abbrevi-
ated Nom A, is Dom IA. We shall write Nomn A to denote the subset of n-ary 
operation and relation symbols in Nom A. In general, by ‘nominator’ we refer 
to any set of symbols. If T  is a nominator, then a T-structure or structure of 
type T  is a structure A such that Nom A = T. Structures A and B are similar if 
they are of the same type, that is, if Nom A = Nom B; A is a reduct of B, and B 
an expansion of A, if A = B and IA = IB|̀ Nom A. The T-reduct of a structure A 
= 〈A, I〉 is the structure 

A|̀ T := 〈A, I |̀ T 〉. 
The relations and operations in the range of IA are the basic relations and basic 
operations of A. A nominator is operational if it consists entirely of operation 

                                                 
1 That discussion is in no way meant to be the last word. For a summary of the attempts to 
construct a foundation for category theory the reader is referred to [Feferman 2013]. 
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symbols, and relational if it consists entirely of relation symbols. If T  is op-
erational, T-structures will also be called T-algebras. 

A set (class) may be viewed as a structure, with void interpretation.  
Operations have a great notational advantage over relations. For example, 

suppose x, y, z , u are rational numbers: to express that u = x·y + z in terms of 
ternary relations ‘a is the sum of b and c’ (abbreviated Sabc) and ‘a is the pro-
duct of b and c’ (Pabc) we would have to say something like 

there exists v such that Pvxy, and Suvz . (0) 
However, when we are dealing with operations that are not defined for some 
of the objects that we want to consider, we have to exercise some care. Where-
as 

 u + y = x·y + z + y (1) 
is an unqualified consequence of our earlier equation, 

u–y  = x + z–y (2) 

is not. For we do not know what (2) means when y happens to be zero. 
We could solve the perplexity by stipulating outcomes for division by zero. 

It turns out that 
x–0  = 0 (3) 

works fine [Bergstra & Tucker 2007]. There would, however, be an important 
difference between the justification of an ordinary division, such as 60⁄30 = 2 — 
if I distribute 60 apples fairly among 30 people, everyone gets 2 (and likewise 
for portions of apples) — and that of (3), which is rather that it fills a theoreti-
cal gap and does not imply anything that is manifestly false. 

Alternatively, we could say that division by zero does not make sense, and 
therefore (2) does not make sense. This would be all right. It is common prac-
tice, in combination with avoiding situations in which a division by 0 would 
have to be evaluated. But it will not work for the degree of generality that we 
aim at. We would have to develop a complicated logic in which statements, 
apart from being true or false, could also not make sense. Instead we will in-
terpret (2) in accordance with the translation of u = x·y + z in (0). We interpret 
it as saying, among other things, that there exists a rational number which is 
the result of division of u by y. If y = 0, this is false, and hence (2) is false. A 
fortiori (2) does not follow from u = x·y + z. This is a pity, but we shall have to 
live with it. 

In sum: if Q is an n-ary operation, and x0, …, xn–1 are elements of the uni-
verse, then we can write 

Q(x0,…, xn–1) 
to denote the value of Q for 〈x0,…, xn–1〉 in case it exists. If it does not exist 
then every statement that Q(x0, …, xn–1) is equal to something, or stands in a 
logically simple relation to certain things, existent or not, is false. Moreover 
any larger expression M consisting of operation symbols and names of ele-
ments of the universe and containing the expression Q(x0, …, xn–1) is unde-
fined as well and likewise leads to false statements. In particular, for such an 
expression M, ‘M = M’ is a formal way of saying that M exists. 
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The qualification ‘logically simple’ in the previous paragraph is essential. 
For instance, France is a country and the king of is an operation such that the 
king of France is undefined; for France is a republic. Then assuming that bald-
ness is a logically simple property (unary relation), 

The king of France is bald 
is false. Hence, by the truth table for implication, 

If the king of France is bald, the king of France is bald 
is true. 

We end with two relations that are not logically simple and that we shall 
often use. The first of these is existence-implied equality ~ . By M ~  N we ex-
press that M is defined only if N is defined, and that M = N if M is defined. The 
definition of existence-implied equality in terms of identity is 

M ~  N if and only if: M = M ⇒ M = N. 
The conjunction M ~  N & N ~  M was called complete equality by Kleene, 
and is symbolized by ; M  N means that M is defined if and only if N is defi-
ned, and that M = N if M and N are defined. The definition in terms of identity 
is 

M  N if and only if: M = M ∨ N = N ⇒ M = N. 

§b Categories 
To illustrate the preceding section, we introduce a notion that is of funda-

mental importance in the sequel. 
A category is a class with a binary operation  (composition) and a unary 

relation Id (the class of identity elements) satisfying the following axioms: 
1. For all elements x, y and z , (x  y)  z  x  (y  z). (Associative law) 
2. For all elements x, y and z , if x  y and y  z exist, then (x  y)  z exists. 
3. For all elements y and all x ∈ Id, y  x ~  y and x  y ~  y.  
4. For each element y, there are x, z ∈ Id such that x  y and y  z exist. 

Outer universal quantifiers, such as ‘for all elements x, y and z’ in axioms 1 
and 2, are usually suppressed. They will be in the sequel, most of the time. 

We call a category small if its universe is a set. If a category is not small, it 
is large. 

Formally, we have structures 〈A, I 〉 in which I assigns to a fixed binary op-
eration symbol  a binary operation over A, and to a unary relation symbol Id a 
subclass of A. If necessary, we could refer to these as I() and I(Id). A more 
pleasing notation, with almost the same meaning, will be introduced in §4a. 
All the same, in concrete cases we shall not hesitate to use identical characters 
to refer to a symbol and its interpretation. 

Proposition. For every element x in a category, there is exactly one identity 
element u such that x  u exists, and exactly one identity element v such that 
v  x exists. 

Proof. Let u be an identity element such that x  u exists. By axiom 4, there 
must be such u. Now let u ʹ′ be an arbitrary identity element for which x  u ʹ′ is 
defined. Then by axioms 3 and 1, 
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x  u ʹ′ = (x  u)  u ʹ′ = x  (u  u ʹ′), 
so u  u ʹ′ exists. Since u and u ʹ′ are identity elements, we have 

u = u  u ʹ′ = u ʹ′. 
Similarly we prove that the identity element v for which v  x is defined is 
unique.  

Examples 
i. The class Rel of all triples 〈Y, R, X〉 consisting of sets Y and X and a relation 
R ⊆ Y × X is the universe of a large category Rel with composition defined by 

〈Z, S, Y〉  〈Y, R, X〉 = 〈Z, S  R, X〉 
and identity elements 〈X,ΔX, X〉. The composite of 〈Y, S, Z〉 and 〈U, R, V〉 is de-
fined only if Z = U. 
ii. The pairs 〈Y, f 〉 of a set Y and a function f with range contained in Y form a 
large category Set, with composition defined by 

〈Z, g〉  〈Y, f 〉 = 〈Z, g  f 〉 
provided that Dom(g) = Y, and identity elements 〈X, 1X〉. 

Notation. It often happens that we already know, or that it is not important, 
how the symbols that a structure interprets are denoted. For example, if we 
present a structure as a category, we know that the interpretation of the com-
position symbol is a binary operation over the universe, and the interpretation 
of the symbol for the identity class a subclass of the universe. Hence we could 
present a category as a class C (the universe) with a binary operation  and a 
subclass Id; or as a triple 〈C, , Id〉. For this kind of sequence notation it is not 
necessary that the elements are of different type (relation or operation) or ar-
ity; it suffices that they are enumerated in a conventional order, or are denoted 
by conventional symbols. 

Duality. The opposite or dual of a category C = 〈C, , Id〉 is the structure C∂ = 
〈C, •, Id〉, where • is the binary operation defined by c • d = d  c. It is again a 
category. A consequence of this fact is the duality principle for categories: if 
we have a statement S that is valid for all categories, and we invert all the 
compositions in S, the resulting statement is still valid. 

Categories are not the only kind of structures that have duals, though argua-
bly they are the most general kind. If P and Q are notions definable in struc-
tures of some kind that have duals, then Q is the dual of P if for any structure 
A of the kind under consideration, the denotation of Q in A is exactly the de-
notation of P in A∂. A notion that is its own dual is called self-dual. For exam-
ple, in categories Id is self-dual. 

Objects. Categories as in Example (a) above, consisting of triples that are 
composable if their outer elements match, or as in Example (b), where such 
triples can be easily constructed, are quite common. The outer elements are 
then called objects. Often such categories are named after their objects. (This 
can be confusing: Rel might have been called after sets just as well as Set, for 
example.) Objects stand in one-to-one correspondence with identity elements. 
Thus we may speak of objects in any category, and simply mean identity ele-
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ments if we cannot think of anything better. We shall denote the class of ob-
jects of a category C by ObC. The identity element belonging to an object x is 
denoted by 1x. (This notation was introduced for the special case of the iden-
tity mapping on a set in §1h1 above.) 

When we speak of objects, the elements proper of the category are called 
arrows or morphisms. An arrow goes from an object, its domain, to an object, 
its codomain. For example, for an arrow f = 〈Y, f 〉 ∈ Set, Y would be its codo-
main, and Dom f its domain; and if Dom f = X, we write 

f: Y ‹–— X 
or f: X ––› Y. Indeed, it is quite common to neglect the distinction between the 
pair and its second element, and write 

f: Y ‹–— X 
and f: X ––› Y — notation we have seen before. We write X = dom( f ), or 
dom( f ), and Y = cod( f ), or cod( f ). 

In any case objects may be used as a manner of speaking, to describe re-
markable patterns in categories. In particular, an initial object in a category is 
an object u such that for any object a in the category there exists exactly one 
arrow f: u ––› a. In other words, we have u ∈ Id such that for every a ∈ Id 
there is precisely one x for which a  x  u exists. With regard to the dual pat-
tern we speak of terminal objects. An object that is at once initial and terminal 
is called a zero object. 

The void set 0⁄  is a zero object of Rel. The same set is initial in Set. The 
singletons are the terminal objects of Set. 

§c Algebras 
A structure is an algebra if its nominator is operational. A total algebra is 

an algebra with nonvoid universe in which every basic operation is total. 

Terminology. Usage has been to reserve the word ‘algebra’ for what above has 
been termed total algebras, and to speak of ‘partial algebra’ in the general 
case. Burmeister and Reichel [1984/1986] followed this tradition. We choose 
to deviate. 

Examples 
i. We will show that categories may be considered as algebras 

〈C, , d, b〉, 
where instead of a class of identity elements two unary operations d (domain 
identity) and b (codomain identity) are specified. We replace the axioms 2-4 
by 
2ʹ′. x  y exists if and only if d(x) = b(y). 
3ʹ′. y  d(y) = y = b(y)  y. 
4ʹ′. If x  y exists, then d(x  y) = d(y) and b(x  y) = b(x). 

c1 Lemma. In an algebra that satisfies the axioms 2ʹ′-4 ʹ′, 
(i) the operations d and b are total; 
and for all x,  (ii) d(d(x)) = b(d(x)) = d(x), and 
 (iii) b(b(x)) = d(b(x)) = b(x). 
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Proof. (i) Take any element y. By axiom 3ʹ′, y  d(y) exists, and this can only 
be if d is defined for y. Likewise for b. 
(ii) By axiom 3ʹ′, x  d(x) exists, hence by axiom 2ʹ′, d(x) = b(d(x)). By axiom 
3ʹ′, b(d(x))  d(x) exists, hence d(x)  d(x) exists. So by axiom 2ʹ′, d(d(x)) = 
b(d(x)). 
(iii) Similar to (ii).  

c2 Theorem. The two definitions of categories are equivalent. To be precise, 
1º in a category defined as in §b, operations d and b can be defined in such a 
way that the axioms 2ʹ′-4 ʹ′ are satisfied; 
2º in a category defined as above, as an algebra, identity elements can be de-
fined in such a way that the axioms 2-4 are satisfied. 

Proof. 1º Suppose the axioms 1-4 hold for a structure C. By the Proposition in 
§b, for every c ∈ C there exists a unique identity element d such that c  d ex-
ists. Define d(c) to be this identity element. Similarly define b(c) to be the 
identity element b such that b  c exists. Then axiom 3ʹ′ follows immediately 
from axiom 3. 

If x  y exists, then so does (x  d(x))  (b(y)  y). So by axiom 1, 
(x  (d(x)  b(y)))  y exists, 

which implies that d(x)  b(y) exists. Since d(x) and b(y) are identity elements, 
d(x) = d(x)  b(y) = b(y). This settles one direction of 2ʹ′. For the other direc-
tion, suppose d(x) = b(y) = u. Then by axiom 2, since x  u and u  y exist, 
(x  u)  y exists, and since u is an identity element, (x  u)  y = x  y. 

Axiom 4ʹ′ follows from the identities 
(x  y)  d(y) = x  y and b(x)  (x  y) = x  y, 

since by definition d(x  y) is the unique identity element u such that (x  y)  u 
= x  y, and b(x  y) the unique identity element v such that v  (x  y) = x  y. 
2º Conversely, suppose the axioms 1, 2ʹ′, 3ʹ′ and 4ʹ′ hold for an algebra D. If 
x  y and y  z exist, then by 4ʹ′ en 2ʹ′, d(x  y) = d(y) = b(z), so by 2ʹ′, (x  y)  z 
exists. This proves axiom 2. 

Define Id as the range of d. Suppose u ∈ Id, say u = d(x). If y  u exists, 
then d(y) = b(u) = b(d(x)) = d(x) = u by the Lemma above. So y  u = y by 
axiom 3ʹ′. Similarly u  z = z if u  z exists. This proves axiom 3. 

To see that axiom 4 holds, observe that by the Lemma, for any x, both d(x) 
and b(x) are in Ran(d).  

The dual of a category C = 〈C, , d, b〉 is C∂ = 〈C, •, b, d〉, where • is de-
fined as before (at the end of §b). Note that d and b have been interchanged. 
Accordingly, to dualize a statement about categories-as-algebras, we also have 
to replace all occurrences of d by b and vice versa. 
ii. Directed graphs. A (directed) graph is an algebra X = 〈X, d, b〉 where d and 
b are unary operations satisfying 

 d(x)↓ if and only if b(x)↓; 
 dd(x)↑ and bb(x)↑.  



4/14/14 

 21 

The elements of Dom(d) are the edges; the rest are the nodes of the graph. The 
paths, sequences of consecutive nodes and edges, form a category. (See Exer-
cise 1.) 

iii. A groupoid is a set S with a total binary operation · (product). A groupoid 
is a semigroup if its product is associative, that is, for all x, y, z ∈ S, (x · y) · z = 
x · (y · z). For example, the set S = X+ of nonempty sequences of elements of a 
set X with concatenation for a product-operation is a semigroup. With compo-
sition, the relations (the ones that are sets) and the functions form large semi-
groups. A semigroup 〈S, ·〉 is commutative if for all x, y ∈ S, x · y = y · x. 

The product symbol · is often omitted: we write xy instead of x · y. 

iv. A monoid is a semigroup 〈M, ·〉 with an identity element, i.e. an element e 
such that for all x ∈ M, xe = ex = x. The semigroup of sequences with concate-
nation becomes a monoid when we include the empty sequence ε . With com-
position, the binary relations on a set X form a monoid. Likewise for the map-
pings of X to itself. 

v. A product-operation over a set X is idempotent if xx = x, for all x ∈ X. A 
semilattice is a commutative semigroup in which the product is idempotent. 
The operation of a semilattice is often denoted by ∨ or ∧ instead of the multi-
plication sign ·. 
vi. A group is a monoid 〈G, ·, e〉 in which every element has an inverse, i.e. for 
every element x there exists an element x–1 such that x·x–1 = x–1·x = e. The per-
mutations of a set X, i.e. the bijections of X onto itself, form a group with 
composition for multiplication, the symmetric group SX. A commutative group 
is also called abelian. The operations of an abelian group are often written ad-
ditively: as +, 0 and – instead of ·, e (or 1) and –1. 
vii. A ring is an algebra R = 〈R, +, 0, –, ·〉 in which 〈R, +, 0, –〉 is an abelian 
group and 〈R, ·〉 a semigroup, and the following distributive laws hold: 

for all x, y, z ∈ R, x·(y + z) = xy + xz and (x + y)·z = xz + yz. 
The ring R is said to have an identity element if 〈R, ·〉 has one, and is called 
commutative if · is commutative. 
viii. A ring R with identity element 1 is a division ring if 〈R – {0}, ·, 1〉 is a 
group. Observe that, if inversion is among the basic operations, a division ring 
is not a total algebra. A field is a commutative division ring.  
ix. A lattice is an algebra 〈L, ∨, ∧〉 such that 〈L, ∨〉 and 〈L, ∧〉 are semilattices, 
and the two operations — the first is called join and the second meet — are 
connected by the absorption laws: 

x ∧ (x ∨ y) = x ; x ∨ (x ∧ y) = x . 
x. A lattice 〈L, ∨, ∧〉 is distributive if for all x, y, z ∈ L, 
 x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (1), 
or equivalently, for all x, y, z ∈ L, 
 x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) (2). 
The subsets of a set K form a distributive lattice, with set union and intersec-
tion for operations. 
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xi. Let 〈L, ∨, ∧〉 be a bounded distributive lattice, i.e. a distributive lattice with 
identity elements 1 for ∧ (i.e. x ∧ 1 = x for all x ∈ L) and 0 for ∨ (with x ∨ 0 = 
x for all x ∈ L). A complement of x ∈ L is an element y of L such that x ∨ y = 1 
and x ∧ y = 0. Observe that the definition implies that x is the complement of 
its complement (if x has a complement). 

c3 Proposition. An element of a bounded distributive lattice has at most one 
complement. 

Proof. Let y and z be complements of x in a bounded distributive lattice L = 
〈L, ∨, ∧, 0, 1〉. Then 

y = y ∧ 1 = y ∧ (x ∨ z) = (y ∧ x) ∨ (y ∧ z) = 0 ∨ (y ∧ z) = y ∧ z ,  
and similarly z = z ∧ y.  

xii. A boolean algebra is a bounded distributive lattice in which every element 
x has a (unique) complement ¬x. 

Let X  be any set. Then PX  := 〈PX, ∪, ∩, 0⁄ , X, –〉 is a boolean algebra, with 
A– defined as X – A . The truth values 0 ( false) and 1 (true), with the operations 
∨, ∧ and ¬ defined by the Cayley tables 

∨ 1 0    ∧ 1 0    x ¬x 
1 1 1    1 1 0    1  0 
0 1 0    0 0 0    0  1 

form the standard Boolean algebra 2. 

§d Categories: Properties of arrows 
Sections and retractions 

Monoids are categories with a single object. Let us put this more precisely. 

d1 Proposition. (a) Let M = 〈M, ·, e〉 be a monoid. Then 〈M, ·, {e}〉 is a cate-
gory. 
(b) Let K = 〈K, , Id〉 be a nonvoid category. Then 
1º the operation  is total if and only if |Id | = 1; 
2º if Id = {u}, then 〈K, , u〉 is a monoid. 

As soon as we know that categories are generalized monoids, we have a 
project: to generalize the concepts that help us understand monoids. In this 
section, we consider the notion of inverse. A left inverse of an element x of a 
monoid is an element y such that yx = e. 
Notation. Two notational simplifications will increase the similarity to monoid 
theory. Instead of ‘f ∈ Id’ we shall often write ‘f = 1’. The reader must keep in 
mind that in the context of categories different occurrences of 1 need not refer 
to the same thing. Moreover, in analogy with multiplication, we shall often 
omit the composition sign . 

d2 Definition. Let C be a category. An element s ∈ C is a section if there ex-
ists r ∈ C such that rs = 1. 
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Examples 
i. An element 〈Y, f 〉 of Set is a section if and only if f is injective and either Y 
is void or f is nonvoid. 
ii. Let f: Y ‹–— X be a morphism in Set. Then the embedding x l––› 〈 f(x), x〉 of 
X into Y × X is a section. 
iii. If in a monoid M every element is a section, then M is a group. For sup-
pose rs = e and qr = e. Then q = qrs = s, so s has an inverse. 

d3 Proposition. If f and g are sections, and gf exists, then gf is a section. 

Proof. If qf, rg = 1, then b(r) = d(g) = b( f ) = d(q), and qr  gf = 1.  

d4 Proposition. If gf is a section, then so is f. 

Proof. If r  gf = 1, then rg  f = 1 as well.  

d5 Definition. Let C be a category. An element r ∈ C is a retraction if there 
exists s ∈ C such that rs = 1. 

Example iv. An element 〈Y, f 〉 of Set is a retraction if and only if f is surjec-
tive. (This is really just another formulation of the Axiom of Choice.) 

d6 Proposition. Section and retraction are dual notions. 

d7 Definition. Let C be a category. An element of C is an isomorphism if it is 
at once a section and a retraction. 

d8 Corollary. Isomorphism is a self-dual notion. 

d9 Proposition. Composites of isomorphisms are isomorphisms. 

If f  g = 1, we say that f is a left inverse of g, and g a right inverse of f. We 
have defined sections as arrows with a left inverse, and retractions dually, as 
arrows with a right inverse. 

d10 Proposition. Let C be a category, and f ∈ C. Then f is an isomorphism if 
and only if f has a unique right inverse h and a unique left inverse k, and h = k. 

Proof. (⇒) Since f is a retraction, it has a right inverse h, and since f is a sec-
tion, it has a left inverse k. If f hʹ′ = 1, then hʹ′ = kf hʹ′ = k = kf h = h, so h is 
unique and k = h; hence, k is unique as well. 
(⇐) Trivial.  

We denote the (unique, two-sided) inverse of an isomorphism f by f –1. We 
use the abbreviation Sec to denote the class of sections, Ret will denote the 
class of retractions, and Iso the class of isomorphisms. Observe that identity 
elements are isomorphisms: thus we have Id ⊆ Iso = Sec ∩ Ret. 
 
Example v. By Proposition 2 in 1§h1, the isomorphisms in Set are the bijec-
tions. 

d11 Corollary. If f is an isomorphism, so is f –1, and ( f –1)–1 = f. Moreover 
d( f ) = b( f –1), and a fortiori d( f –1) = b( f ).  
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Isomorphism 
In another sense, isomorphism is a relation between arrows, and a fortiori 

between objects. 

D12 Definition. Let C be a category. Arrows f, g ∈ C are isomorphic, notation 
f ≅ g, if there are isomorphisms h and k such that hf = gk. 

In particular, identity arrows u and v are isomorphic if (and only if) ufv 
exists for some isomorphism f; and objects are said to be isomorphic when 
their identity arrows are. 

D13 Proposition. An arrow f is an isomorphism if and only if f is isomorphic 
to an identity element. 

Proof. (⇒) If f is an isomorphism, then f –1  f = 1 = 1  1. 
(⇐) If there are h, k ∈ Iso such that hf = 1  k, then f = h–1  k ∈ Iso.  

Monomorphisms and Epimorphisms 
Exercise 1 of 1§h states two cancellation properties of arrows, one belong-

ing to surjections and one belonging to injections, that are (as we shall see) 
more general than the invertibility properties of retractions and sections.  

d15 Definition. Let C be a category. An arrow m ∈ C is left cancellable, or a 
monomorphism, if 

for all h, k ∈ C, mh = mk implies h = k. 

We use Mon to denote the class of monomorphisms. 
Example vi. In Set, Mon consists of the injective functions — or to be precise, 
of the pairs 〈Y,  f 〉 ∈ Set in which f is injective. In particular, every pair 〈Y, 0⁄ 〉 
is a monomorphism; so not all monomorphisms are sections. 

d16 Proposition. (i) If m, n ∈ Mon, then m  n ∈ Mon. 
(ii) If f  g ∈ Mon, then g ∈ Mon. 
(iii) Sec ⊆ Mon. 

Proof. (i) Let m and n be monomorphisms; suppose mnh = mnk. Then since m 
is a monomorphism, nh = nk; whence, since n ∈ Mon, h = k. Hence mn ∈ 
Mon. 
(ii) Suppose fg is a monomorphism, and gh = gk. Then fgh = fgk, so since fg ∈ 
Mon, h = k. This shows that g ∈ Mon. 
(iii) Suppose m ∈ Sec. Then there exists r such that rm = 1. Now suppose mh 
= mk. Then rmh = rmk, hence h = k, which proves that m ∈ Mon.  

d17 Proposition. Iso = Mon ∩ Ret. 

Proof. Suppose f ∈ Mon ∩ Ret; say fs = 1. Then fsf = f = f  1, therefore since 
f ∈ Mon, sf = 1.  

d18 Definition. Let C be a category. An arrow e ∈ C is right cancellable, or 
an epimorphism, if 

for all h, k ∈ C, he = ke implies h = k. 
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We use Epi to denote the class of epimorphisms. 
Example vii. An element 〈Y, f 〉 of Set is a epimorphism if and only if f is sur-
jective. To prove this, suppose f is not surjective, say y0 ∈ Y – Ran f. Let A = 
{a, b} be a set with two elements, and define h, k: A ‹–— Y by: h(y) = a for all y 
∈ Y, and k(y) = a if y ≠ y0, k(y0) = b. Then hf = kf, but h ≠ k, so f is not an epi-
morphism. The converse is 1§h, Exercise 1(i). So in Set, all epimorphisms are 
retractions. 

d19 Proposition. Monomorphism and epimorphism are dual concepts. 

Corollary. (a) If d, e ∈ Epi, then de ∈ Epi. 
(b) If fg ∈ Epi, then f ∈ Epi. 
(c) Ret ⊆ Epi. 
(d) Iso = Epi ∩ Sec. 

In the bargain we get a specimen of a category with epimorphisms that are 
not retractions: take Set∂, and recycle the example of monomorphisms that are 
not sections. 

§e Relational systems 
A structure is a relational system if its nominator is relational. 

Some classes of relational systems 
I. A sorted set is a structure A = 〈A, I 〉 such that Dom I consists entirely of 
unary relation symbols and 
(i) for all P ∈ Dom I, I(P) ≠ 0⁄ , 
(ii) for all distinct P, Q ∈ Dom I, I(P) and I(Q) are disjoint, and 
(iii) {I(P)|P ∈ Dom I} = A. 
A sorted set may be presented as 〈A, P 〉, where P is a partition of A, if the ex-
act nature of the symbols is not important; or as 

〈A, 〈Xi|i ∈ I 〉〉, 
or 

〈A, {Xi|i ∈ I }〉, 
where 〈Xi|i ∈ I 〉 is a family of pairwise disjoint nonvoid subsets of A whose 
union is A. 

For the rest of this section we concentrate on the the particularly interesting 
case of binary relation symbols, considered one at the time. 
II. A quasi-order, or quasi-ordered set (qoset for short), is a set X with a bi-
nary relation on X that is reflexive and transitive — a quasi-ordering of X. 

A binary relation R is antisymmetric if 
xRy and yRx implies x = y. 

An order, or (partially) ordered set, poset for short, is a quasi-order 〈X, R〉 
with R antisymmetric; the relation in this case is called an ordering. 

Quasi-orderings will often be denoted by the symbol ≤. The inverse of a 
given quasi-ordering ≤ is denoted by ≥; ≥ is a quasi-ordering as well. In con-
nection with a relation denoted by ≤, ‘x < y’ means ‘x ≤ y and x ≥/  y’. The in-
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verse of < is denoted by >. Observe that in an order, x > y if and only if x ≥ y 
and x ≠ y. 

Since the inverse of a (quasi-)ordering is again a (quasi-)ordering, any uni-
versally valid statement about (quasi-)orderings ≤ remains valid when every 
‘≤’ in it is reversed. This is the duality principle for quasi-orderings. It may be 
construed as a special case of the duality principle for categories, cf. Exercise 
2. It does not amount to much in the general case, but it can become useful for 
orderings with special properties, as we shall see in the next section. We de-
note the dual 〈Q, ≥〉 of a quasi-order Q = 〈Q, ≤〉 by Q∂, using the same notation 
as with categories. 

Let X be a subset of the universe of a quasi-order Q = 〈Q, ≤〉. An element x 
of X is a least element of X if for all y ∈ X, x ≤ y; it is a minimal element if for 
all y ∈ X, if y ≤ x, then x ≤ y. If Q happens to be an order, a least element of X 
is unique. Dually we have greatest and maximal elements. 

Intervals. An interval in a quasi-order is the set of all elements between two 
given elements, or beyond one given element. There are various possibilities. 
Let Q = 〈Q, ≤〉 be a quasi-order, and x, y ∈ Q. Then 
IvQ[x , y] = {q ∈ Q|x ≤ q ≤ y}; 
IvQ(x , y) = {q ∈ Q|x < q < y}; 
IvQ(x , y] = {q ∈ Q|x < q ≤ y}; 
IvQ[x , y) = {q ∈ Q|x ≤ q < y}; 
IvQ(y] = IvQ(y] = {q ∈ Q|q ≤ y}; 
IvQ(y) = {q ∈ Q|q < y}; 
IvQ[x) = IvQ[x) = {q ∈ Q|x ≤ q}; 
IvQ(x) = {q ∈ Q|x < q}. 
We sometimes omit the subscript, or even the label “Iv”, in contexts where it 
is redundant. 

Cofinal sets. Let Q = 〈Q, ≤〉 be a quasi-order, and X ⊆ Q. Then X is cofinal in 
Q if for each q ∈ Q, IvQ[q) ∩ X ≠ 0⁄ . For example, by Euclid’s Theorem the 
prime numbers are cofinal in 〈, ≤〉. 

For any set X, 〈PX, ⊆〉 is an order. Two elements x and y of a quasi-order 
〈X, ≤〉 are comparable if x ≤ y or y ≤ x. 
III. A binary relation R is irreflexive if there is no x such that xRx. A strict or-
der is a set X with a relation on X that is irreflexive and transitive (a strict 
ordering). 

For any set X, 〈PX, ⊂〉 is a strict order.  
Strict orderings are often denoted by the symbol <. In connection with a re-

lation denoted by <, ‘x ≤ y’ means ‘x < y or x = y’. 

e1 Proposition. Let R be a binary relation on a set X. Then 
(i) if R is an quasi-ordering of X, R – R–1 is a strict ordering; 
(ii) if R is a strict ordering, R ∪ ΔX  is an ordering of X. 

We call R ∪ ΔX  the lax ordering associated with 〈X, R〉. Intervals in a strict 
order are defined by way of the associated lax ordering. 
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IV. A chain (also called total or linear order) is an order 〈X, ≤〉 in which any 
two elements are comparable. A chain in an order 〈X, ≤〉 is a subset C of X 
such that 〈C, ≤C〉 is a chain. We use the same terminology with regard to strict 
orders: a strict order 〈X, <〉 is a chain if the corresponding order 〈X, ≤〉 is one, 
and so on. 
V. Let R be a binary relation on a class A. We say that R is well-founded if 
every nonvoid subclass X of A contains an element x such that 

X ∩ x/R = 0⁄ . 
If R is a strict ordering, we call such an element x an R-minimal element of X. 

For example, let A be a class, the elements of which may be sets, and may 
have elements in common with A. Then the relation ∈A is well-founded. For 
suppose X is a nonvoid subset of A. By the Regularity Axiom, X has an ele-
ment x from which it is disjoint. That is to say: X ∩ x/∈ = 0⁄ ; from which 
X ∩ x/∈A = 0⁄  immediately follows. 

Let A = 〈A , R〉 and B = 〈B, S〉 be structures with one binary relation. Then 
A is a weak substructure of B if A ⊆ B and R ⊆ S; a closed substructure, or 
simply substructure, if moreover R = SA . 
Example i. 〈, <〉 and 〈+, | 〉 (where x | y means x is a divisor of y, that is, there 
exists z such that x ·z = y) are weak, but not closed, substructures of 〈, ≤〉. If 
A is a substructure of B = 〈B, S〉, we sometimes present A as 〈A, S〉 instead of 
〈A, SA〉; for example, we say that 〈, ≤〉 is a substructure of 〈, ≤〉. 

Again, let A = 〈A , R〉 and B = 〈B, S〉 be structures with one binary relation. 
A homomorphism from A to B is a function f: A ––› B such that 

  for all x, y ∈ A, Rxy implies S( f (x), f (y)).  (*) 
A homomorphism that is injective is called an embedding. If in (*) instead of 
an implication we have an equivalence, we say f is closed. 
Examples 
ii. If A = 〈A , R〉 is a weak substructure of B = 〈B, S〉, 1A

B is an embedding of A 
into B. If A is a closed substructure, the embedding is closed. 
iii. Let A = 〈A , R〉 be a quasi-order, and α the equivalence relation R ∩ R–1. 
Put B = A/α, S = (∋  R  ∈)B , and B = 〈B, S〉. Then a ı––› a/α is a homomor-
phism from A to B; observe that B is an order. 

The homomorphisms that we defined above form a — large — category. Its 
objects are (or better perhaps, ‘may be taken to be’) the structures with a single 
binary relation. Composition is function composition, the composite of 
f: A ––› B and g: B  ––› C being 

g  f: A ––› C. 
The identity arrow belonging to an object 〈A , R〉 is 1A . 

e2 Proposition. Let A = 〈A , R〉 and B = 〈B, S〉 be structures with one binary 
relation. A homomorphism f: A ––› B is an isomorphism if and only if it is 
closed and f is a bijection from A onto B. 
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Proof. (⇒) Suppose g is the inverse of f. Then 〈A, g〉 is the inverse of 〈B, f 〉 in 
Set, so by Proposition 2 in 1§h1, f is a bijection. And, if S( f(x), f(y)), then 
since g is a homomorphism, R(gf(x), gf(y)), whence, since gf = 1, Rxy. 
(⇐) Let f: A ––› B be a closed bijective homomorphism. We need only show 
that f –1 is a homomorphism. Suppose Suv. Since f is surjective, there are x, y 
∈ A such that f(x) = u and f(y) = v. Since f is closed, Rxy. But 

x = f –1(u) and y = f –1(v): 
so f –1 preserves the relation.  

These ideas can be generalized to structures with an arbitrary number of re-
lations of various arities, associated with fixed relation symbols; how to do 
this, will appear from Chapter 4. 

§f Lattices and closed set systems 
This section is about lattice orders, and their connection with lattices as 

introduced in §c. The discussion leads naturally to complete lattices. 

f1 Lattice orders 
Let P = 〈P, ≤〉 be a quasi-order, and X ⊆ P. An upper bound of X is an ele-

ment p of P such that x ≤ p for all x ∈ X. A set is upward bounded if it has an 
upper bound. A least upper bound or supremum of X is an upper bound u such 
that for every upper bound p of X, u ≤ p. In an order the supremum, if it exists, 
is unique. In this case we denote the supremum of X by \/X, or, if X is a pair 
{x, y}, x ∨ y. 
Examples 
i. Consider the order N = 〈, ≤〉 of the natural numbers. Since N is linear, 
every finite subset of its universe has a least upper bound. The entire universe 
 has no upper bounds, and hence no least upper bound. 
ii. Let Q = 〈, ≤〉 be the order of the rationals, and X = {x ∈ |x2 < 2}. Then 
X has upper bounds, but there is no least one among them. 
iii. The same set X does have a least upper bound in the order R = 〈, ≤〉 of the 
real numbers: it is √2. Indeed, every upward bounded set in R has a supre-
mum. 
iv. Let D = 〈, |〉 be the order of the natural numbers under divisibility: x |y if 
and only if for some z ∈ , y = x · z.2 Every set X in this order has a least up-
per bound. In particular, if X is infinite, then \/X = 0. 

Dually, we have lower bounds and greatest lower bounds or infima. The in-
fimum of X is denoted by /\X, or by x ∧ y if X = {x, y}. 
Example v. Every set in the order N of Example i has a greatest lower bound. 

A quasi-order P = 〈P, ≤〉 is directed if every finite set of elements of P has 
an upper bound in P. We call a set X ⊆ P directed if the sub-quasi-order 〈X, ≤〉 
is directed. In particular, the void set has an upper bound, so directed sets are 
nonvoid. An order P is an upper semilattice order if for all p, q ∈ P, p ∨ q ex-
                                                 
2 We deviate here from our bold/nonbold convention for structures and their universes. We 
will do so again in similar circumstances. 



4/14/14 

 29 

ists, and a lower semilattice order if for all p, q ∈ P, p ∧ q exist. A lattice or-
der is an order that is both an upper and a lower semilattice order. Observe 
that the dual P∂ = 〈P, ≥〉 of a lattice order P = 〈P, ≤〉 is again a lattice order. 

We met with lattices before, in §c, as algebras. The relation with lattice or-
ders is as follows. 

f1.0 Theorem. (a) Let L = 〈L, ≤〉 be an upper semilattice order. Define an op-
eration ∨ on L by: x ∨ y = \/{x, y}. Then La := 〈L, ∨〉 is a semilattice. 
(b) Let L = 〈L, ∨〉 be a semilattice. Define a relation ≤ on L by: x ≤ y if and 
only if x ∨ y = y. Then Lr := 〈L, ≤〉 is an upper semilattice order. 
(c) Let L be an upper semilattice order. Then Lar = L. 
(d) Let L be a semilattice. Then Lra = L. 

Proof. Exercise.  

f1.0.1 Corollary. (a) Let L = 〈L, ≤〉 be a lower semilattice order. Define an op-
eration ∧ on L by: x ∧ y = /\{x, y}. Then Laʹ′ := 〈L, ∧〉 is a semilattice. 
(b) Let L = 〈L, ∧〉 be a semilattice. Define a relation ≤ on L by: x ≤ y if and 
only if x ∧ y = x. Then Lrʹ′ := 〈L, ≤〉 is a lower semilattice order. 
(c) Let L be a lower semilattice order. Then Laʹ′rʹ′ = L. 
(d) Let L be a semilattice. Then Lrʹ′aʹ′ = L. 

Proof. Use the theorem: if 〈L, ≤〉 is a lower semilattice order, then 〈L, ≥〉 is an 
upper semilattice order.  

f1.1 Theorem. (a) Let L = 〈L, ≤〉 be a lattice order. Define operations ∨ and ∧ 
on L by: x ∨ y = \/{x, y}; x ∧ y = /\{x, y}. Then L@ := 〈L, ∨, ∧〉 is a lattice. 
(b) Let L = 〈L, ∨, ∧〉 be a lattice. Define a relation ≤ on L by: x ≤ y if and only 
if x ∨ y = y. Then L® := 〈L, ≤〉 is a lattice order. 
(c) Let L be a lattice order. Then L@® = L. 
(d) Let L be a lattice. Then L®@ = L. 

Proof. Exercise.  

Now that we know the one-to-one correlation between (semi-)lattice orders 
and (semi-)lattice algebras, we can make light of the difference. A semilattice 
may be called an upper semilattice, or ∨-semilattice, if its operation is denoted 
by ∨, and a lower semilattice (∧-semilattice) if it is ∧. Observe that we have 
established a duality principle for lattices: interchanging ∨ and ∧ in a univer-
sally valid statement gives a dual universally valid statement. 

A lattice L is complete if every subset of L has a supremum. 

f1.2 Proposition. (a) In a complete lattice, every subset of the universe has an 
infimum. 
(b) Every complete lattice is bounded. 

Proof. Let L be a complete lattice. 
(a) Let X be a subset of L. Define Y to be the set of all lower bounds of X. Then 
\/Y is a lower bound of X: for every element of X is an upper bound of Y, and 
\/Y is the least of the upper bounds. But \/Y is an upper bound of Y, so it must 
be the greatest lower bound of X. 
(b) We have 1 = \/L and 0 = /\L.  
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By duality, (a) implies that a lattice in which every set has an infimum is 
complete. 

f1.3 Definition. Let Q = 〈Q, ≤〉 be a quasi-order. A set D ⊆ Q is downwards 
closed if q ≤ d ∈ D implies q ∈ D. A downwards closed set D is an ideal if 
〈D, ≤D〉 is directed. In particular, an interval of the form IvQ(y] is a principal 
ideal. The collection of all ideals of Q will be denoted by Idl Q. 

f1.4 Theorem. Let Q = 〈Q, ≤〉 be a quasi-order in which every pair of ele-
ments has a least upper bound. Then Idl Q = 〈Idl Q, ⊆〉 is a complete lattice. 

Proof. Observe that the intersection of any collection I of ideals is again an 
ideal: in particular, if p, q ∈ I, then every I ∈ I contains an upper bound of p 
and q, and  if r is an upper bound of p and q in I, and r0 is a least upper bound 
of p and q, then since I is downwards closed, and r0 ≤ r, also r0 ∈ I, hence r0 ∈ 
I. So every collection in Idl Q has an infimum, and by the dual of Proposi-
tion 2 this is sufficient.  

The dual ideals, or filters, of a quasi-order Q are the ideals of Q∂. 
A complete lattice with complementation is a complete boolean algebra. 

Examples 
vi. Finite lattices and finite boolean algebras are complete. 
vii. Let R and Q be the ordered sets of, respectively, the reals and the ration-
als. The interval 〈IvR[0, 1], ≤〉 is complete, whereas 〈IvQ[0, 1], ≤〉 is not com-
plete. 
viii. The divisibility order D = 〈, |〉 is a complete lattice. 
ix. For any set X, 〈PX, ⊆〉 is a complete boolean algebra. 

f1.5 Definition. An ideal I of a lattice L is a complete ideal if, for any X ⊆ I 
that has a supremum in L, \/X ∈ I. Dually, a filter F is a complete filter if for 
any X ⊆ F that has an infimum  in L, /\X ∈ F. 

In a complete lattice L, an ideal or filter is complete if and only if it is prin-
cipal, that is, has the form (x]L or [x)L, respectively, for some x ∈ L. 
Example x. The complete ideals of a powerset lattice 〈P(X), ⊆〉 are the power-
sets P(Y) with Y ⊆ X; the complete filters, the sets {Z ⊆ X|Y ⊆ Z} for Y ⊆ X. 

f2 Closure 
f2.1 Definition. Let A be any set. A closed set system (or closure system) on A 
is a collection C ⊆ PA that is closed under arbitrary intersections: if B ⊆ C , 
then B ∈ C . 

In particular, A = 0⁄  ∈ C . If C is a closed set system, then by f1.2 and dual-
ity, 〈C , ⊆〉 is a complete lattice. 
Examples 
xi. The ideals in an ∨-semilattice form a closed set system. 
xii. The collection of all transitive relations on a set X is seen to be a closed set 
system as follows. Let C consist of all the subsets of X × X that are transitive 
relations. Suppose 〈Ri|i ∈ I〉 is a family of elements of C. Then  iRi is a trans-
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itive relation. For suppose 〈x, y〉 and 〈y, z〉 belong to  iRi . Then for every i ∈ 
I, 〈x, y〉 and 〈y, z〉 belong to Ri , hence by transitivity of Ri , 〈x, z〉 ∈ Ri . So 〈x, z〉 
∈  iRi . Note that in particular 0⁄  = X × X is a transitive relation. 

Since a quasi-ordering of X is a transitive relation that includes ΔX, it imme-
diately follows that the quasi-orderings of X form a closed set system. 
xiii. The closed sets of a topological space form a closed set system. 
xiv. The convex sets in a real vector space form a closed set system. 
xv. The collection of all reflexive relations on subsets of a given set X is a 
closed set system. 
xvi. Likewise for the symmetric relations on a given set. 

f2.1.1 Lemma. Let 〈Ci|i ∈ I〉 be a family of closed set systems on the same set 
A. Then 

i

∈ I
Ci  is a closed set system. 

Proof. If B ⊆  iCi, then B ⊆ Ci for every i ∈ I, so B ∈ Ci. Hence B ∈ 
 iCi.  

Examples 
xvii. By xii, xvi and the lemma, the equivalence relations on a set A form a 
closed set system. Adding xv, we see that the same goes for the full equi-
valence relations. 
xviii. Let A be a set, and f an n-ary operation over A. A subset B of A is closed 
under f if f [Bn] ⊆ B. (Observe that if n = 0, this simply means that the object 
denoted by f, if f is defined, belongs to B.) The subsets of A closed under f 
form a closed set system on A. By the lemma we may also consider, instead of 
just one operation, any set F of operations over A. A set is closed under F if it 
is closed under every element of F. 

f2.2 Definition. Let A be a set. 
(a) An operator on A is a total operation on PA. 
(b) Let F be an operator on A. 
1. F is nondecreasing, or an extension operator, if for all X ⊆ A, X ⊆ F(X). 
2. F is idempotent if for all X ⊆ A, F(F(X)) = F(X). 
3. F is isotone if for all X, Y ⊆ A, if X ⊆ Y, then F(X) ⊆ F(Y). 
(c) An extension operator is a closure operator if it is idempotent and isotone. 

Examples 
xix. The closure operator of a topological space: C(X) is the least closed set 
that contains X. 
xx. The convex hull operator of a real vector space: C(X) is 

{x + r(y – x)|x, y ∈ X and 0 ≤ r ≤ 1}. 

f2.3 Lemma. Let C and D be closure operators on a set A. If 
DCD(X) ⊆ CD(X) 

for all X ⊆ A, then the composite C  D is a closure operator on A as well. 

Proof. Exercise.  
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Like lattices and lattice orders, closed set systems and closure operators are 
different ways of looking at the same thing. 

f2.4 Definition. Let S be a closed set system on a set A. Define an operator CS 
on A by: CS(X) = {G ∈ S|X ⊆ G}. 

f2.5 Theorem. Let A be a set. 
(a) Let S be a closed set system on A. Then CS is a closure operator on A. 
(b) Let C be a closure operator on A. Then Ran(C) is a closed set system on A. 
(c) Let S be a closed set system. Then Ran(CS) = S . 
(d) Let C be a closure operator. Then CRan(C) = C. 

Proof. Exercise.  

With reference to a closure operator C, a set Y is closed if it can be repre-
sented as C(X) for some set X; in this case we say Y is generated by X, and X is 
a generating set of Y. If X is sufficiently fixed, its elements may be called gen-
erating elements or generators of Y. The set Y is finitely generated if X may be 
taken finite. Note that if Y is closed, C(Y) = Y. 
Examples 
xxi. Let R be a binary relation on a set X. The transitive closure of R, which 
we denote by R+, is defined by 

R+ = {S ⊆ X × X|R ⊆ S and S is transitive}. 
A certain parallel is to be observed — or at least, confusion is to be avoided — 
with the X+-notation for finite sequences. Pursuing this further, we define the 
n-th power of R, for n ≥ 1, by 

R1 = R,  Rn+1 = Rn  R. 
Then clearly, for all m, n ≥ 1, Rm  Rn = Rm+n, and 

R+ = 
n

≥1

Rn. (1) 

xxii. Similarly the transitive-reflexive closure of R, notation R*, is defined by  
R* = {S ⊆ X × X | R ⊆ S and S is a quasi-ordering}. 

Putting R0 = ΔX , we have 
R* = 

n

≥0

Rn. (2) 

xxiii. Let R be a binary relation on a set A. For X ⊆ A, R*[X] is the closure of X 
under R. In fact, the collection CR := 

{Y ⊆ A|R[Y] ⊆ Y} 
is a closed set system on A, and R*[X] = {Y ∈ CR|X ⊆ Y}. — Cf. Example 
xviii: the closure of a set X under a unary operation f may be denoted by f *[X]. 
xxiv. The closure of a set B in a topological space is the intersection of all the 
closed sets that contain B. 
xxv. The convex hull of a set B in a real vector space is the intersection of all 
the convex sets that contain B. 
xxvi. The reflexive closure of a relation R on a set X is R ∪ ΔX; the symmetric 
closure is R ∪ R–1. 
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xxvii. Let S be the successor relation on : xSy if and only if x = y + 1. Then 
S+ is the strict ordering >, and S* the lax ordering ≥ . 
xxviii. We have only considered, thus far, closures of sets, and of relations that 
are sets. Indeed, allowing closed class systems in general is somewhat tricky. 
Still there are cases in which the closure of a proper class is not a problem. In 
particular, the characterization (1) in example xxi may be applied to relations 
that are proper classes, hence any such relation has a transitive closure. For ex-
ample, the transitive closure of the membership relation ∈ is defined by 
x ∈+ y if and only if there is a sequence 〈z0,…, zn〉 such that for all i < n, zi ∈ 

zi+1, and x = z0, and y = zn . 
A similar case that we shall come across is that of the closure R*[C] of a class 
C under a relation R. 
xxix. The closure of a set X ⊆ A under a collection F of operations on A is the 
intersection of the subsets of A that include X and are closed under F. 

f2.6 Proposition. Let C be a closure operator on a set A. In the complete lat-
tice 〈Ran C, ⊆〉 we have, for all B ⊆ Ran C, 

/\B = B, 

\/B = C(B). 

Proof. Suppose B ⊆ Ran C. 
If X ∈ Ran C and X ⊆ B for all B ∈ B, then X ⊆ B. Since by Theorem 

5(b), B ∈ Ran C, /\B = B. 
If X ∈ Ran C and X ⊇ B for all B ∈ B, then X ⊇ B, hence 

X = C(X) ⊇ C(B). 
 Moreover C(B) ⊇ B, hence \/B = C(B).  

As remarked under f2.1, closed set systems are complete lattices. The con-
verse is also true, up to isomorphism. Let us call lattices 〈C, ⊆〉 where C is a 
closed set system, closed set lattices. 

f2.7 Theorem. Every complete lattice is isomorphic to a closed set lattice. 

Proof. Let L = 〈L, ≤〉 be a complete lattice. Let P ⊆ Idl L be the collection of 
all principal ideals. Then obviously L ≅ 〈P, ⊆〉, and P is a closed set system 
since 

i

∈ I

(yi] = (
i
/
∈
\
I
yi].  

f3 Algebraic closure operators and algebraic lattices 
Some of the examples in the previous subsection — in particular, xviii, xxi-

xxiii — suggest a general construction of closure operators. Let F: PA ––› PA 
be an operator on a set A. Define for X ⊆ A: 
  F0(X) = X, 
  Fn+1(X) = F(Fn(X)). 
Then for a relation R as in example xxiii, we can take F(X) := R[X]; and the 
closure of X under R will be 



2. STRUCTURES 

 34 

R*[X] = 
n

≥0

Fn(X). 

However, infinitely repeated application of an operator does not necessarily 
lead to a closure operator. 

Example xxx. Consider the divisibility lattice D of example iv. For a set X ⊆ 
, define F(X) = {\/{x + 1|x ∈ X}}, and 

C(X) = 
n

≥0

Fn(X). 

Then C is not a closure operator: Fn{2} = {2 + n}, so C{2} = [2) in the stan-
dard order of the natural numbers; but F[2) = {0}, so CC{2} ≠ C{2}. 

f3.1 Definition. An operator F on a set A is algebraic if for all X ⊆ A, 
F(X) = 

U∈

p (X)

F(U). 

f3.2 Lemma. Algebraic operators are isotone. 

Proof. Suppose X ⊆ Y, and z ∈ F(X). Then for some finite U ⊆ X, z ∈ F(U). 
But U ⊆ Y as well, so z ∈ F(Y).  

f3.3 Lemma. Let A be a set. If F and G are algebraic operators on A, then so is 
G  F. 

Proof. If y ∈ G(F(X)), then z ∈ G(U) for some finite U ⊆ F(X). Likewise for 
every u ∈ U, there is a finite set Vu ⊆ X such that u ∈ F(Vu). Now take V = 
uVu: V is finite, and y ∈ G(F(V)).  

f3.4 Proposition. Let A be a set. If F is an algebraic operator on A, then so is 
the operation X ı––› X ∪ F(X). 

f3.5 Theorem. Let A be a set, and F an algebraic extension operator on A. De-
fine C: PA ––› PA by 

C(X) = 
n

∞

=0
Fn(X). 

Then C is an algebraic closure operator on A. 

Proof. (i) X = F0(X) ⊆ C(X). 
(ii) By (i), C(X) ⊆ C(C(X)). For the converse, it will suffice to show that 
F(C(X)) ⊆ C(X). Suppose y ∈ F(C(X)). Then there is some finite U ⊆ C(X) 
with y ∈ F(U). Since U is finite, there must be some n such that U ⊆ Fn(X). 
Then y ∈ Fn+1(X) ⊆ C(X). 
(iii) Suppose X ⊆ Y ⊆ A. By a simple induction on n one shows, using the iso-
tonicity of F, that Fn(X) ⊆ Fn(Y). Then a fortiori C(X) ⊆ C(Y). 
(iv) It remains to be shown that C is algebraic. Take any X ⊆ A. By (iii), if U 
⊆ X is finite, C(U) ⊆ C(X). Conversely, if y ∈ C(X), there must be some n 
such that y ∈ Fn(X); by Lemma 3 and an easy induction, Fn is algebraic.  

Not all closure operators are algebraic. For example, if X is a set of points 
of the real line, and y ∈  an arbitrary point, no finite number of elements of X 
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will be sufficient evidence to establish that y belongs to the closure of X, un-
less y ∈ X. 

f3.6 Theorem. A closure operator is algebraic if and only if for every collec-
tion C of closed sets, if 〈C, ⊆〉 is directed, then C is closed. 

Proof. Let C be a closure operator. 
(⇒) Suppose 〈C, ⊆〉 is a directed collection of closed sets, and x ∈ C(C). 
Since C is algebraic, there is a finite set U ⊆ C such that x ∈ C(U). For each 
u ∈ U, let Cu be an element of C that u belongs to. Since 〈C, ⊆〉 is directed, 
there exists D ∈ C that includes all sets Cu. Since D is closed, x ∈ D, and 
hence x ∈ C. 
(⇐) Let X be a set in the domain of C. Define 

C := {C(U)|U ∈ p(X)}. 
Then 〈C, ⊆〉 is a directed system of closed sets, so C is closed. Suppose y ∈ 
C(X). Since X ⊆ C, C(X) ⊆ C(C) = C; so for some U ∈ p(X), y ∈ C(U).
  

We call a closure system S algebraic if for any directed C ⊆ S, C ∈ S. 

f3.7 Corollary. Let A be a set, Ui, for i ∈ I, I nonvoid, algebraic closure sys-
tems on A, and 

V = 
i

∈ I
Ui. 

(a) If the systems Ui are algebraic, then so is V. 
(b) Let Fi, for i ∈ I, be algebraic extension operators such that for all X ⊆ A, 

CUi
(X) = 

n

∞

=0
Fi

n(X). 

Define G(X) := iFi(X). Then G is an algebraic extension operator, and 

CV(X) = 
n

∞

=0
Gn(X). 

Proof. (a) If C ⊆ V is directed, then, since V ⊆ Ui, C ∈ Ui. 
(b) If a ∈ G(X), there must be some i with a ∈ Fi(X). Then if U is a finite sub-
set of X such that a ∈ Fi(U), a ∈ G(U). Since X ⊆ Fi(X) ⊆ G(X), G is an exten-
sion operator. 

Put W := nGn(X). We must show that {V ∈ V|X ⊆ V} = W. 
(⊇) If Y ⊆ V ∈ V, then Fi(Y) ⊆ V. Hence G(X) ⊆ V, and by induction Gn(X) ⊆ 
V. 
(⊆) If a ∈ Fi(W), there is a finite U ⊆ W such that a ∈ Fi(U). For some n, U ⊆ 
Gn(X); so a ∈ Fi(Gn(X)) ⊆ W. Hence W ∈ Ui, and since i was arbitrary, W ∈ 
V.  

f3.8 Definition. Let L = 〈L, ≤〉 be a complete lattice. An element a of L is 
compact if for all X ⊆ L such that a ≤ \/X, there exists U ∈ pX with a ≤ \/U. A 
complete lattice L is algebraic if for every element x of L there exists a set Y 
of compact elements such that x = \/Y. 
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In particular, the least element of L is compact, since the flnite set U can be 
void. If a and b are compact, so is a ∨ b; thus the compact elements form a 
sub-sup-semilattice of L. 

f3.9 Theorem. If C is an algebraic closure operator, then 〈Ran C, ⊆〉 is an al-
gebraic lattice, and its compact elements are the finitely generated closed sets. 
Conversely, for every algebraic lattice L there exists an algebraic closure op-
erator C such that L ≅ 〈Ran C, ⊆〉. 

Proof. (I) Let C be a closure operator. 
Suppose X is a compact element of the closed set lattice 〈Ran C, ⊆〉. Since 

X ⊆ \/(C{x}|x ∈ X), there exists U ∈ pX such that 
X ⊆ \/(C{x}|x ∈ U). 

Now U ⊆ \/(C{x}|x ∈ U), and C{x} ⊆ C(U) for all x ∈ U, so 

\/(C{x}|x ∈ U) = C(U); 
and C(U) ⊆ C(X) = X, since X is closed, so X = C(U). 

Conversely, suppose U is finite, C is algebraic, and C(U) ⊆ \/C for some 
collection C of closed sets. Since C is algebraic,  

\/C = C(C ) = (C(V)|V ∈ p(C )). 
It follows that for every u ∈ U, there is some Vu ∈ p(C ) such that u ∈ C(Vu). 
Again, for every Vu there exists Du ∈ pC with Vu ⊆ Du; hence u ∈ C(Du) 
= \/Du . So for the finite collection C0 = (Du|u ∈ U), U ⊆ C(C0), therefore 
C(U) ⊆ C(C0) = \/C0. 

Finally, if C is algebraic, by definition, for any X ∈ Dom C, 
C(X) = C(C(X)) = C(

U∈
 
pX

C(U)) =
U∈
\/
pX

C(U). 

(II) Let L be an algebraic lattice, and let A be the set of compact elements of 
L. Define a function D with domain L by  

D(x) := {a ∈ A|a ≤ x}. 
Then Ran D is a closed set system (cf. the proof of Theorem 2.7), and D is an 
isomorphism from L to the lattice 〈Ran D, ⊆〉. To show that the associated clo-
sure operator on L is algebraic, we use Theorem 6: 
Suppose {D(x)|x ∈ X} is directed by inclusion. Then for a ∈ A, 

a ≤ \/X if and only if there exists U ∈ pX such that a ≤ \/U 
 if and only if there exists x ∈ X such that a ≤ x, 
    since there must be some D(x) ⊇

u

∈U

D(u) 

 if and only if a ∈
x

∈X

D(x). 

That is, {D(x)|x ∈ X} is D(\/X), a closed set.  

Corollary. If S is an algebraic closure system, then 〈S, ⊆〉 is an algebraic lat-
tice; conversely, for every algebraic lattice L there exists an algebraic closure 
system S such that L ≅ 〈S, ⊆〉. 
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Examples 
xxxi. Let S = 〈S, ∨〉 be a semilattice. For any X ⊆ S let ΔS(X) be the ideal 
generated by X. Then ΔS is an algebraic closure operator on S. In fact, define 

V(X) = {(x ∨ y]|x, y ∈ X}; 
then V is an algebraic extension operator, and ΔS(X) = nV

n(X). 
xxxii. The operation (.)+ that takes a binary relation R to its transitive closure 
R+ is an algebraic closure operator. That is to say, for any set X, the restriction 
of (.)+ to subsets of X × X is an algebraic closure operator on X × X. Likewise 
for the transitive-reflexive closure R*. (See examples xxi and xxii.) 
xxxiii. We already mentioned that topological closure operators need not be 
algebraic. For example, consider the real line, with the Euclidean topology. 
The system 

{{1,…, 1⁄n}|n ∈ } 
of closed sets is directed by inclusion, but its union is not closed. 
xxxiv. The convex hull operator of a real vector space is algebraic. 
xxxv. The symmetric closure operator, for relations on a given set X, is alge-
braic. 
xxxvi. Let Eq be the operation that takes any binary relation R to the least 
equivalence that includes R. For any set A, the limitation of Eq to P(A × A) is 
an algebraic closure operator on A × A (cf. xxxii). In fact, if R1 and R2 are 
symmetric relations, then R1  R2 is symmetric as well; hence EqA R, the equi-
valence on A generated by R, is (R ∪ R–1)+. 
xxxvii. For a given set A, let EgA be the operation that takes any R ⊆ A × A to 
the equivalence of A generated by R. Then EgA is an algebraic closure operator 
on A × A, and EgA R = (ΔA∪ R ∪ R–1)+. For a given set A, let EgA be the op-
eration that takes any R ⊆ A × A to the equivalence of A generated by R. Then 
EgA is an algebraic closure operator on A × A, and EgA R = (ΔA∪ R ∪ R–1)+. 
xxxviii. Let A be a set, and f an n-ary operation over A. The closure system of 
subsets of A closed under f is algebraic. Likewise, by Corollary 7 above, for 
the sets closed under a set F of operations over A. 

f4 Lattices of transitive relations 
By Example xxxii above, transitive closure is an algebraic closure operator. 

Since it will be of particular importance to us, we pause to take a closer look. 

Notation. We denote the set of transitive relations on a given set A by Tr A. 

By Subsection 2, Tr A := 〈Tr A, ⊆〉 is a complete lattice. 

Proposition. Suppose R ⊆ Tr A. Then 

(*) \/R = {R0  …  Rn|n ∈ , R0,…, Rn  ∈ R}. 

Proof. By Proposition 2.6, \/R = (R)+; and by example xxi, 
(R)+ = ((R)i|i ∈ +). 

Now (*) follows by the observation that 〈a, b〉 ∈ R  if and only if 〈a, b〉 ∈ R 
for some R ∈ R .  
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We may assume, for i ≤ n in (*), that Ri and Ri+1 are incomparable under 
inclusion, since otherwise Ri  Ri+1 ∈ {Ri, Ri+1}. Hence 

Corollary I. Suppose R, S ∈ Tr A. Then 
R ∨ S = {S  (R  S)i, R  (S  R)i, S  (R  S)i  R, R  (S  R)i  R|i ∈ }. 

In some cases this description of R ∨ S may be simplified. 

Corollary II. If R and S are reflexive, R ∨ S = {(R  S)i | i ∈ }. 

Two relations R and S are said to permute if R  S = S  R. 

Corollary III. (i) If R and S permute, R ∨ S = R ∪ S ∪ (R  S); 
(ii) if they also are reflexive, R ∨ S = R  S. 

Proof. For example, R  S  R = R  R  S ⊆ R  S.  

Definition. Let A = 〈A, ≤1〉 and B = 〈B, ≤2〉 be lattices, with A ⊆ B. Then 
(i) A is a sublattice of B if for all x, y ∈ A, the supremum and infimum of 
{x, y} are the same in A and B; 
(ii) A is a bounded sublattice of B if A is a sublattice of B, both A and B are 
bounded, and the identity elements of B belong to A; 
(iii) A is a complete sublattice of B if whenever a subset of A has a supremum 
or infimum in B, this supremum or infimum also belongs to A. 

We denote the set of quasi-orderings of a set A, that is, the set of R ∈ Tr A 
that are reflexive, by Qo A; the set of equivalences of A by Eq A; the set of full 
equivalences of A by Eqv A; and 

Qo A = 〈Qo A, ⊆〉, Eq A = 〈Eq A, ⊆〉, Eqv A = 〈Eqv A, ⊆〉. 
One easily checks that Qo A and Eqv A are complete filters of Tr A and Eq A 
respectively, both generated by ΔA. It follows that Qo A and Eqv A are almost 
complete sublattices: they have the same infima, and except for \/0⁄  the same 
suprema, as, respectively, Tr A and Eq A. Such sublattices are called complete 
filter sublattices. The dual notion is that of a complete ideal sublattice. 

Corollary IV.  Suppose R ⊆ Eqv A is nonvoid. Then 

(*) \/R = {R0  …  Rn|n ∈ , R0,…, Rn  ∈ R}. 

Further observe that Eq A is a complete sublattice of Tr A, and hence Eqv A 
a complete sublattice of Qo A. 

f5 Polarities 
Fix a binary relation R. We define two operations on classes, the polarities 

of R: 
X = {y|xRy for all x ∈ X}; 
Y = {x|xRy for all y ∈ Y}. 

We speak of X right-polar and Y left-polar, respectively. 

Theorem. Let A and B be classes, and R ⊆ A × B; let  and  be the polari-
ties of R. Then 
(1) For all X ⊆ A and Y ⊆ B, X ⊆ X and Y ⊆ Y. 
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(2a) If W ⊆ X ⊆ A, then X ⊆ W. 
(2b) If Y ⊆ Z ⊆ B, then Z ⊆ Y. 
(3) For all X ⊆ A and Y ⊆ B, X = X and Y = Y. 
(4a) The operation  is a closure operator on A. Its closed classes are pre-
cisely the polars of subclasses of B. 
(4b) The operation  is a closure operator on B. Its closed classes are pre-
cisely the polars of subclasses of A. 
(5) Let L(A) be the lattice of closed subclasses of A, and L(B) the lattice of 
closed subclasses of B. Then the polarities of R are isomorphisms between 
L(A) and L(B)∂. 

The relationship that holds between L(A) and L(B)∂ by the last part of the 
theorem is what is called a Galois connection. The most famous connection of 
this kind is that between certain subfields of a field F and certain groups of 
automorphisms of F, discovered by Évariste Galois. 

§15 Abstract Reduction Systems 
Of particular interest are binary relations that represent some kind of sim-

plification. For example, transitions like 
(16 × 15) /12 ––› 240 /12 ––› 20 

are typically considered to be reductions of complex expressions to simpler 
forms. 

Typical questions arising in this context concern the existence of objects 
that cannot be simplified, and whether two different simplifications of the 
same thing must have some further simplification in common. 

Let R be a binary relation on a set X.  We use arrow-notation, as follows: 
x ––›R y for Rxy; x ––»R y for 〈x, y〉 ∈ R*. If R is sufficiently clear from the con-
text, we omit the index. In particular, x ––›R+ y then becomes x ––›+ y. We write 
x ~R y to express that 〈x, y〉 ∈ EqXR. An R-normal form is an n ∈ X for which 
no x ∈ X exists with Rnx, and such an n is a normal form of y if n ~R y. 

15.1 Definition. (i) A binary relation R has the diamond property if 
Rxy & Rxz implies there exists u such that Ryu & Rzu. 

(ii) A binary relation R is confluent if R* has the diamond property. 

 
x 

  

y       z 

 
u 

The diamond property. 
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15.2 Theorem. If R is confluent, then x ~R y implies that there exists z such 
that x ––»R z and y ––»R z. 

Such an element z is called a common reduct of x and y. 

Proof. Show that {〈x, y〉|x and y have a common reduct} contains R, and is an 
equivalence relation.  

15.3 Corollary. Suppose R is confluent. Then 
(i) if n is an R-normal form of y, then y ––»R n; 
(ii) any element has at most one R-normal form. 

Exercises 

§b 
0. Let 〈X, ·〉 be a groupoid, and ≡ a full equivalence relation of X that satisfies the con-
dition 
 if x ≡ y and u ≡ z, then x · u ≡ y · z. (*) 
(We shall call such a relation a full congruence.) Define products of sequences of ele-
ments of X inductively as follows: 
x is the product of the one-element sequence 〈x〉; 
assume 1 ≤ n ≤ m: if s is a product of 〈x1,…, xn〉, and t a product of 〈xn+1,…, xm〉, then 
s · t is a product of 〈x1,…, xm〉. 
Given that x · (y · z) ≡ (x · y) · z for all x, y, z ∈ X, prove that s ≡ t whenever s and t are 
products of the same sequence. 
1. Let X and Y be sets. A partial function from X to Y is a function included in Y × X . 
Verify that the partial functions, with sets as objects and composition based on 
function composition, form a category. What is its relation to Rel and Set? 

Analogous tot the notation f : A ––› B for mappings, the notation f : X ––› Y is used 
for “f is a partial function from X to Y”. 
2. (a) Prove that the surjections, with sets as objects and composition based on 
function composition, form a category. 
(b) Likewise for the injections. 
3. Prove that an arrow u in a category is an identity element if and only if whenever u 
 f exists, it equals f. 

§c 
1. Let X = 〈X, d, b〉 be a graph. Define an algebra C(X) = 〈C(X), , d, b〉 as follows. 
The universe C(X) consists of the paths of X, i.e. the sequences 〈x0,…, x2k〉 such that 
x2i (i ≤ k) is a node, 
x2i+1 (i < k) is an edge, 
and for all i < k, b(x2i+1) = x2i and d(x2i+1) = x2i+2. 
Let us write sequences as words, i.e. without brackets, commas or blanks. For a path 
x0…x2k, b(x0…x2k) = x0 and d(x0…x2k) = x2k; 
for paths x0…x2k and y0…y2m, x0…x2k  y0…y2m exists if and only if x2k = y0, and 
then it is y0…y2m in case k = 0, and x0…x2k–1y0…y2m otherwise. 
Prove that C(X) is a category. 
2. Show that in any ring, 0·x = x ·0 = 0. 
3. Let X be a nonvoid set; define S as X+, and let S = 〈S, *〉, where * is the operation of 
concatenation (cf.§1H2). By Exercise 11 of §1H, S is a semigroup. Can there be a 
ring of which S is the multiplicative semigroup? 
4. Let X be a nonvoid set; define M as P(X × X), and let M = 〈M, 〉, where  is the 
operation of composition. Show that M is a monoid. 
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5. Let 〈L, ∨, ∧〉 be a lattice in which for all x, y, z : x ∧ (y∨z) = (x∧y) ∨ (x∧z). Prove 
that x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) as well. Conclude by duality that the two forms of 
the distributive law are equivalent. 
6. Formulate duality principles for distributive lattices, bounded lattices, and boolean 
algebras. 
7. Prove that for every element x of a bounded lattice, x ∨ 1 = 1 and x ∧ 0 = 0. 
8. In a bounded distributive lattice, let xʹ′ be the complement of x, and yʹ′ the comple-
ment of y. Show that xʹ′ ∧ yʹ′ is the complement of x ∨ y. Conclude that xʹ′ ∨ yʹ′ is the 
complement of x ∧ y. 
9. A boolean ring is a ring R = 〈R, +, 0, –, ·〉 with idempotent multiplication. 
(a) Show that in boolean rings the law x + x = 0 holds (so that x = –x), and 
multiplication is commutative. 
(b) Let 〈B ,∨ ,∧ ,0 ,1,¬〉 be a boolean algebra. Define: b + c := (b ∧ ¬c) ∨ (¬b ∧ c); b · 
c := b ∧ c; and –b := b. Verify that 〈B, +, 0, 1, –, ·〉 is a Boolean ring with 
multiplicative identity element 1. 
(c) Let 〈R, +, 0, 1, –, ·〉 be a Boolean ring with multiplicative identity element. Define 
operations ∨, ∧ and ¬ in such a way that 〈R, ∨, ∧, 0, 1, ¬〉 is a boolean algebra. 
10. (Generalisation of the distributive laws). How may (X ∪ Y) ∩ (Z ∪ W) be written 
as a union of intersections of X, Y, Z and W? How must we go about the general case, 
where we have an intersection 

   Xij ? 
  i∈ I  j∈Ji 

(By duality, a similar law holds for the distribution of union over intersection.) 

§D 
1. Prove Proposition 1. 
2. A left identity element in a semigroup 〈X , ·〉 is an element e such that for all x ∈ X, 
ex = x . A left inverse of x in a semigroup 〈X , ·〉 with respect to an element e is an ele-
ment x –1 such x –1x = e . Prove: a semigroup with a left identity element with respect 
to which every element of the semigroup has a left inverse is a group. 
3. Verify Example i. 
4. Verify Example iv. 
5. Verify Example v. 
6. Let f and g be isomorphic arrows with the same domain. It it generally true that 
there exists an isomorphism h such that hf = g? 

§e 
1. Prove that ΔX is the only relation on X that is a full equivalence of X as well as an 
ordering. 
2. Let 〈X, R〉 be a quasi-order. Define a composition  on R by 
 〈x, y〉  〈u, v〉 = 〈x, v〉 if y = u, 
  and is undefined otherwise. 
Show that 〈R, , ΔX〉 is a category. 
3. Let C = 〈C, , Id〉 be a category. Show that 

〈Id, {〈u, v〉 ∈ Id2|for some c ∈ C, u  c  v exists}〉 
is a quasi-order. 
4M. For a category  C, let CR be the relational system defined in the previous 
exercise; and for a quasi-order X, XK the category defined in Exercise 2. Let X be any 
quasi-order. 
(a) Show that (XK)R ≅ X. 
(b) Verify that (X∂)K ≅ (XK)∂, and that, for any category C, (C∂)R = (CR)∂. 
5. For any structure Q = 〈Q, R〉 with one binary relation, define 
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L(Q) = 〈Q, R ∪ ΔQ〉, 
S(Q) = 〈Q, R – R–1〉. 

Prove that a quasi-order Q is an order if and only if LS(Q) = Q. 
6. A proper divisor of an integer x is an integer y ≠ x that is a divisor of x. Consider 
the relation {〈m, n〉 ∈ |m is a proper divisor of n}. Is it well-founded? 

§f 
Let 〈X, ≤〉 be an order, and x ∈ X ; a cover of x is an element y of X such that x < y 

and there is no z ∈ X such that x < z and z < y. Notation: x -‹ y . 
Finite orders are represented graphically by Hasse-diagrams, consisting of nodes 

corresponding to the elements of the order, and edges connecting the nodes 
representing covering pairs x -‹ y , in such a way that the cover y is always higher on 
the page than the element x that it covers. 
1. Consider the diagrams below. Which ones represent lattices? Which of the lattices 
are distributive? 

  
 

2. Prove by induction on n > 0 that any set of n elements of a lattice order has an 
upper bound. 
3a.  Prove Theorem 1.0. 
b. Prove Theorem 1.1. 
4. Let 〈L, ∨, ∧〉 be a bounded distributive lattice, and x ∈ L with complement xʹ′. Show 
that xʹ′ = \/{y ∈ L|x ∧ y = 0}. Conclude that xʹ′ = /\{y ∈ L|x ∨ y = 1}. 
5. Let R be any binary relation. Show that the transitive closure of R ∪ R–1 is a 
classification. 
6a. Prove Lemma 2.3. 
b. Prove Theorem 2.5. 
7. Prove Proposition 14.3.4. 
8. Let R be a set of binary relations. Prove that the least transitive relation including 
all the relations in R is 

{R0  …  Rn|n ∈ , R0,…, Rn  ∈ R}. 
9. Let A be a set, Qo(A) the set of quasi-orderings of subsets of A, and Qo(A) = 
〈Qo(A), ⊆〉. Show that Qo(A) is a complete lattice. 
10. Let A be a set, Ord(A) the set of orderings of subsets of A, and Ord(A) = 〈Ord(A), 
⊆〉. Prove, for any R ⊆ Ord(A): 
(a) R has an upper bound if and only if for all R, S ∈ R and a, b ∈ A, 

〈a, b〉 ∈ R and 〈b, a〉 ∈ S only if a = b. 
(b) The infimum of R exists if and only if either R is nonvoid or |A| ≤ 1, and if it 
exists, it is the infimum of R in Qo(A). 
(c) If R has an upper bound, or R is directed, it has a supremum, which is the 
supremum of R in Qo(A). 
11. Let Ord(A) be as in the previous exercise. Prove that the maximal elements of 
Ord(A) are the total orderings of A. 
12. Prove: 
(i) if A is a sublattice of B, and B is a sublattice of C, then A is a sublattice of C. 
(ii) Likewise for complete sublattices and complete filter sublattices. 
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13. Let L = 〈L, ≤〉 and Lʹ′ = 〈Lʹ′, ≤ʹ′〉 be complete lattices. Mappings f : L ––› Lʹ′ and g: Lʹ′ 
––› L  form a Galois connection if 
(*)  for all x ∈ L and y ∈ Lʹ′, f(x) ≤ʹ′ y if and only if x ≤ g(y). 
(a) Show that for any g: Lʹ′ ––› L there exists at most one f : L ––› Lʹ′ that forms a Galois 
connection with g. 

If f and g are as in (*), then g is the upper adjoint of f, g = f #; and f the lower adjoint 
of g, f = g♭.  
(b) Let f and g be as in (*). Show that for all x ∈ L, x ≤ g( f(x)), and for all y ∈ Lʹ′, 
f(g(y)) ≤ʹ′ y. 
(c) Show that (*) implies that f and g are isotone, i.e. x ≤ y implies f(x) ≤ʹ′ f(y) and u 
≤ʹ′ v implies g(u) ≤ g(v). 
(d) Show that a function g: Lʹ′ ––› L is an upper adjoint if and only if g preserves 
infima, that is, for all X ⊆ Lʹ′, g(/\Lʹ′X) = /\Lg[X]. (Dually, lower adjoints preserve 
suprema.) 
14. Let f : L ––› Lʹ′ and g: Lʹ′ ––› L form a Galois connection between complete lattices 
L = 〈L, ≤〉 and Lʹ′ = 〈Lʹ′, ≤ʹ′〉. Let M := g[Lʹ′] and M ʹ′ := f[M]. 
(a) Show that M = 〈M, ≤M〉 and Mʹ′ = 〈M ʹ′, ≤ʹ′M ʹ′〉 are complete lattices. (They need not 
be complete sublattices of L and Lʹ′: see Exercise 18 below.) 
(b) Show that M ≅ Mʹ′. 
15. Prove the Theorem in 14.5. 
16 (A. Tarski). Let L be a complete lattice, and f :  L  ––› L an isotone operation, i.e. 
such that x ≤ y implies f(x) ≤ f(y). Show that for some a ∈ L, f(a) = a. (Such an 
element a is called a fixed point of f.) (Hint: consider /\(x| fx ≤ x).) 
17 Let C be an algebraic closure operator on a set A. A subset X of A is C-independ-
ent if 

∀x ∈ X. x ∉ C(X – {x}). 
(a) Prove that the following statements are equivalent: 
(i) for all X ⊆ A and u, v ∈ A, if u ∈ C(X ∪ {v}) and u ∉ C(X), then v ∈ C(X ∪ {u}); 
(ii) for all X ⊆ A and u ∈ A, if X is C-independent and u ∉ C(X), then X ∪ {u} is C-
independent; 
(iii) for all X ⊆ A, if Y is a maximal C-independent subset of X, then C(Y) = C(X); 
(iv) if Y ⊆ X ⊆ A, and Y is C-independent, then there is a C-independent set Z such 
that Y ⊆ Z ⊆ X and C(Z) = C(X). 
(b) Suppose that (i)-(iv) hold. Prove: if X and Y are C-independent, and C(X) = C(Y), 
then |X| = |Y|. (That is, X and Y have the same cardinality; a concept explained in the 
next chapter.) 
18. Let A = B = ; let R ⊆ A × B be the divisibility relation (cf. Example 1(d)). Show 
that for X ⊆ , X= {nd|n ∈ }, where d is the greatest common divisor of all 
elements of X. Conclude that the union of two closed classes need not be closed. 
19. Prove that a quasi-order Q contains a cofinal chain if and only if Q is directed. 

Ex. substructures 

Ex. homomorphisms 
Check every single example. 

 


