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Critical Petermann K Factor for Intensity Noise Squeezing
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We investigate the impact of the Petermann-excess-noise factor K $ 1 on the possibility of intensity
noise squeezing of laser light below the standard quantum limit. Using an N-mode model, we show that
squeezing is limited to a floor level of 2�K 2 1� times the shot noise limit. Thus, even a modest Peter-
mann factor significantly impedes squeezing, which becomes impossible when K $ 1.5. This appears
as a serious limitation for obtaining sub-shot-noise light from practical semiconductor lasers. We present
experimental evidence for our theory.

PACS numbers: 42.50.Lc, 42.50.Dv, 42.60.Da
Semiconductor lasers can generate sub-shot-noise light
when they are operated far above threshold and driven by a
quiet pump, i.e., a constant current source. This squeezing
of the intensity noise was first demonstrated by Yamamoto
and co-workers [1]. However, subsequent experiments on
different types of semiconductor lasers revealed that rela-
tively few quietly pumped semiconductor lasers exhibit in-
tensity squeezing, and if they do, they often stay above the
theoretically expected squeezed noise level [2]. For a long
time, the chief suspect for the discrepancy has been the
influence of intensity multimode effects (mode partition
noise) [3,4]. However, the modal intensity partition noise
can in principle be eliminated by using very strong side-
mode rejection, so that the intensity noise is negligible in
all modes except one [3]. But even in that case, the mea-
sured noise is often higher than would be expected from
the laser quantum efficiency [2,5,6]. The observed limita-
tions to noise reduction in semiconductor lasers have thus
remained largely unexplained, frustrating further progress.

In this Letter, we show that a slight nonorthogonality
of the cavity eigenmodes might be an explanation for the
bottleneck of the observed squeezing. In practical “single
mode” lasers, other modes with negligible intensity and
intensity noise still contain some spontaneous emission
noise. Because of the nonorthogonality of the eigenmodes,
this noise from other modes is homodyned into the las-
ing mode, leading to excess noise into the laser light. In
this excess noise mechanism homodyning is the key effect,
which makes that in contrast to mode partition noise, the
field fluctuations of the side modes are important, not their
intensity fluctuations. Thus, even when laser side mode
intensities are negligibly small, this field multimode effect
can still impede intensity squeezing.

Mode nonorthogonality leads generally to an increase
of the quantum noise by the so-called Petermann excess
noise factor K [7,8]. The consequence of this increase
in quantum noise on laser intensity noise has not been
investigated for a laser high above threshold. We will show
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theoretically that above a critical value of K (Kcrit � 1.5),
the laser intensity noise can no longer be brought below the
standard quantum limit (SQL). This result is confirmed by
experimental data, and K values in this range may easily
occur in practical semiconductor lasers.

The semiclassical theory of the Petermann excess-noise
factor is based upon nonorthogonal cavity eigenmodes, and
it has the advantage of giving a very simple “geometri-
cal” expression for the amount of excess quantum noise:
K � �yijyi� �eijei��j�yijei�j2, where jei� is the eigenmode
and jyi� is its associated adjoint mode [9]. However,
the complex amplitudes of a set of classical nonorthogo-
nal modes cannot be turned into a set of operators obey-
ing standard canonical commutation relations [10], and
cannot yield the simple quantum picture which is required
for our purpose. In several recent papers [10,11], two of
us showed that this difficulty can be solved by introducing
appropriate “vacuum modes” that allow one to recover the
unitarity of the input-output scattering matrix. Moreover,
we showed that instead of working in the nonorthogonal
eigenbasis, it is more convenient to use an orthogonal ba-
sis, that consists of the lasing mode and modes orthogonal
to it, constructed in a Gramm-Schmidt fashion from the
nonorthogonal eigenbasis [11]. The time-evolution equa-
tion for a roundtrip through the cavity then takes the spe-
cific form
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where â0 is the photon annihilation operator for the lasing
mode (the eigenmode with the lowest loss), â1 . . . ân are
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the corresponding operators for the orthogonal subthresh-
old modes, and F̂0 . . . F̂n are noise operators required for
quantum consistency [11]. The matrix elements li are the
eigenvalues of the corresponding eigenmodes from which
mode i is constructed, and ki,j describes the scattering
of the j mode into the i mode. The upper off-diagonal
coupling terms cannot be eliminated through a redefinition
of the orthogonal basis, because they are caused by loss
modes which are not part of the set of laser modes. This
effect was termed “loss-induced coupling” [12].

The Petermann-excess-noise contribution originates
from homodyning. Because of the upper triangular struc-
ture of Eq. (1), noise in the orthogonal modes leaks into the
lasing mode, where it beats with the strong lasing field
to produce an intensity fluctuation that is first order in
the fluctuating field. The extra noise introduced by this
homodyning depends both on the amount of mode mixing,
related to the k0,j coefficients, and on the strength of the
nonlasing modes which in turn is related to lj . These noise
sources will have a colored spectrum, which is a general
feature of the Petermann excess noise [13], stemming
from the dynamics of the different subthreshold modes.
As far as the laser linewidth is concerned, it was shown
in [11] that this approach recovers the semiclassical result
for K , under the same hypotheses.

Now we can formulate general equations for the inten-
sity noise of a laser with N modes, as schematically de-
picted in Fig. 1. We will assume that the amplitude of the
subthreshold modes is so small that their intensity can be
neglected. The relevant equations for the intensity noise
are then the following equations for the amplitude quadra-
ture and inversion:

d
dt
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1
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d
dt

N̂ � L̂ 2 g0N̂ 2 AN̂n̂0 1 f̂P 1 f̂sp 1 f̂st ,

where P̂0 is the amplitude quadrature operator, P̂0 � â0 1

â
y
0 , Gi is the internal loss of the lasing mode, Gm is

the mirror outcoupling loss, A is the normal spontaneous
emission rate into the lasing mode, and N̂ is the inver-
sion operator. The second equation describes the evolu-
tion of the inversion for an ideal four-level laser, with L

the pump rate, g0 the decay rate of the inversion, and n̂0
the photon number operator. The standard noise sources
are represented by d correlated Langevin noise operators
f̂. In the amplitude equation the noise operator f̂i corre-
sponds to internal losses, f̂m to outcoupling loss, and f̂g

to noise due to the stimulated emission gain. Their dif-
fusion constants are, respectively, Di,i � Gi , Dm,m � Gm,
and Dg,g � A�N̂�. In the inversion equation the Langevin
noise operator f̂P corresponds to the noise due to the
pumping process, f̂sp to spontaneous emission noise, and
f̂st to stimulated emission noise. Their respective diffusion
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FIG. 1. Sketch of laser resonator. In a cavity roundtrip the
laser mode encounters: isotropic gain, isotropic loss, a mode
mixing element S, and the output coupling mirror. The isotropic
gain, isotropic loss and output coupling introduce vacuum noise
into each lasing mode. The mode mixing element S couples the
orthogonal modes via the “loss modes” Q, thus leading to the
Petermann-excess-noise contribution in the lasing mode (Lnl).

constants are DP,P � e�L�, where e � 0 for a noiseless
pump and e � 1 for a Poissonian pump, Dsp,sp � g0�N̂�,
and Dst,st � A�N̂� �n̂0�. Finally, due to their same physi-
cal origin the noise terms associated with the stimulated
emission and the inversion are perfectly anticorrelated, and
their cross correlation is Dg,st � 2A�N̂�

p
�n0�.

These equations are similar to the standard one for the
intensity noise of a single mode laser [14], apart from
the effective extra noise source L̂ �

PN
i.0 k0,i âi , that

represents the Petermann-excess-noise contribution. The
physically interesting part of the new excess noise term
corresponds with the normally ordered correlation func-
tion
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where Gc is the total cavity loss rate of the lasing
mode. The normalized correlation function g�t�, withR`

2` g�t� dt � 1, generally has a very complicated form,
but its short-time and long-time limits are easily found
[11,13]. For the low-frequency fluctuations, which will be
considered here (corresponding to long time scales), the
spectral variance of the Petermann-excess-noise source
simply reduces to �K 2 1�Gc as expected.

After linearization around the mean field and mean
inversion, the intensity noise at low frequency measured
outside the laser can be obtained using the input-output for-
malism, which writes here P̂0,out � G1�2

m P̂0 2 G21�2
m f̂m.

The result can be written in a convenient form by in-
troducing S � �dP2

0,out�v � 0��, x � g0��A�n̂0��, and
h � Gm�Gc, leading to

S � 1 1 h�1 1 x� �e 2 1�
1 2h�1 1 x� �K�1 1 x� 2 1� , (4)

normalized with respect to the SQL. Equation (4) re-
duces to the standard single-mode result of the ampli-
tude noise in the lasing mode when K � 1 [14]. It also
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gives the expected limit close to threshold (x ¿ 1): the
noise will be much larger than shot noise and the quan-
tum noise observed in the lasing mode is enhanced with
the Petermann-excess-noise factor K . In the general case,
Eq. (4) shows that the excess quantum noise caused by
the nonorthogonality of the cavity eigenmodes can can-
cel squeezing. Assuming ideal noiseless pumping (e �
0�, squeezing becomes impossible as soon as K . 3�
�2�1 1 x��. This condition has two consequences: first,
squeezing never occurs at any current when K . 1.5. Sec-
ond, if 1 , K , 1.5, squeezing requires a smaller x, and
therefore a higher pump current, with respect to what
would be expected from the single-mode theory.

In the limit of high pump current, where x ! 0, Eq. (4)
simplifies into

S � 1 1 h��e 2 1� 1 2�K 2 1�� . (5)

For quiet pumping (e � 0), one obtains S � 1 1

h�2K 2 3�, showing again that squeezing vanishes for
K . 1.5. The appearance of a critical Petermann factor
of 1.5 is clearly due to the excess noise contribution
2�K 2 1�, which originates from the L and L y terms
in Eq. (3). The factor of 2 is related to the (linear) phase
insensitive amplification of the nonlasing modes, giving
the usual 3 dB enhanced noise above the shot-noise limit.
Another interesting limit is obtained for a laser with a Pois-
sonian pump (e � 1) far above threshold, where S � 1 1

2h�K 2 1�: The intensity noise depends not only on
the Petermann excess-noise factor, but also on the out-
coupling efficiency. This prediction is different from the
semiclassical result of Ref. [9], and only when h � 1�2
is the intensity noise K times larger than shot noise.

The above analysis is highly relevant for practical semi-
conductor lasers. Petermann introduced the K factor to
calculate the enhanced spontaneous emission rate in the
lasing mode of semiconductor lasers with quadratic gain
and index guiding [7]. For a purely gain-guided laser
in 1D (edge emitters), this yields K �

p
2, and for 2D

(vertical-cavity surface emitting lasers, VCSELs) it yields
K � 2, seriously impeding squeezing. In real experimen-
tal situations the gain and index guiding are not given by a
simple quadratic profile, generally leading to much larger
K factors. For lasers which are mainly gain guided, K
factors of 15–25 have been reported [15]. In contrast,
lasers which are almost purely index guided are expected
to have a K factor which is very close to 1. However, a
certain amount of gain guiding is unavoidable in any ef-
ficient semiconductor laser since the gain must be local-
ized, i.e., must not extend too much beyond the volume
occupied by the lasing mode. The exact guiding proper-
ties and transverse mode structure of a real device rep-
resent a very complicated problem, and they are usually
designed as a “best compromise.” Since slight deviations
of K from 1 can pose a stringent limit to the maximally
possible squeezing, this aspect of the laser design should be
considered to explain the difference in observed squeezing
for different types of semiconductor lasers. To strengthen
this claim we mention that among VCSELs squeezing
has been observed only in oxide-confined devices, which
have very strong index guiding [16]. Also the TJS lasers
that have recently been studied and yielded a large repro-
ducible amount of squeezing are lasers with a strong index
guide [17].

We have made various experimental observations that
confirm the above analysis. Using a semiconductor laser,
we have measured both the intensity noise of the lasing
mode, and the spontaneous emission noise in the next non-
lasing spatial mode (in a two-mode approximation), as ex-
plained in detail in Ref. [18]. It can then be shown that
these two noises are correlated, which is a generic fea-
ture of the Petermann excess noise [19,20]. In Fig. 2 we
have plotted the measured intensity noise of the laser as a
function of the inferred value of the K factor; the different
points are obtained for different values of the driving cur-
rent (see [18]). Though the value of K is inferred from our
model and not directly measured, this curve clearly illus-
trates the relationship between the intensity noise and the
Petermann K factor.

Another experimental approach uses a HeXe laser,
which has the advantage of adjustable nonorthogonality
between the polarization modes [13]. The disadvantage
is that sub-shot-noise operation cannot be achieved, due
to the Poisson pump statistics and incomplete inversion
[21]. However, one may still test the prediction of
Eq. (4) by measuring the experimental enhancement
K 0 � S�K��S�K�1� of the intensity noise at low fre-
quencies, as a function of the applied nonorthogonality K .
Close to threshold we expect K 0 � K , whereas far above
threshold K 0 ! S and Eq. (5) predicts a dependence on
the outcoupling efficiency h. A typical measurement of
K 0 as a function of K , done far above threshold, is plotted
in the inset of Fig. 3. A linear fit to the data yields the
value of �K 0 2 1���K 2 1�. Such measurements were
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FIG. 2. Intensity noise relative to shot noise as a function of
the inferred K factor for the experiment of Ref. [18]. The ex-
perimental points are obtained for different values of the driving
current. The full line is the theoretical fit for the actual current,
while the dashed line is the lowest possible noise level obtained
very far above threshold (x � 0).
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FIG. 3. Experimental data, which show the ratio of observed
excess noise K 0 2 1 and Petermann excess noise K 2 1 as a
function of Pint (as determined from Pout and mirror reflectivity)
for three different h (as determined from the experimentally
known internal and mirror loss rates). The solid lines are guides
to the eye. It is clearly seen that �K 0 2 1���K 2 1� starts at 1
close to threshold while it changes far above threshold to a limit
that depends on h. The inset shows a measurement of K 0 vs
K , for high Pint and h � 0.55. The dashed curve is the line
K 0 � K and the solid curve is the fit to the data to determine
the ratio �K 0 2 1���K 2 1�.

performed for a range of internal cavity powers Pint, and
outcoupling efficiencies h. The data are summarized on
the main graph of Fig. 3. We indeed find a clear qualita-
tive agreement with the above predictions. For small Pint,
the experimental data show that K 0 	 K . For large Pint,
i.e., far above threshold, the value of �K 0 2 1���K 2 1�
goes to a limit that depends on h. For small h this limit
is smaller than 1, while for large h it actually becomes
larger than 1 (K 0 . K). This again dramatically illustrates
the importance of mode nonorthogonality for the intensity
noise when it approaches the shot-noise limit. Quantita-
tively the observed limiting values of �K 0 2 1���K 2 1�
are about a factor of 2 higher than expected for an ideal
four-level laser with the same h. This deviation can
be explained as a consequence of incompleteness of the
inversion of the He-Xe laser (Nsp 	 3).

In conclusion, we have shown that the multitransverse
mode structure of a laser cavity plays a crucial role in both
the intensity and phase fluctuations of the single lasing
mode. Intensity squeezing can be obtained only if the
excess noise factor K is smaller than 1.5, which eliminates
de facto many possible cavity structures, concerning in
particular fully or partly gain-guided semiconductor lasers.
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