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The ideal Bose gas in a highly anisotropic harmonic potential is studied. It is found that B
Einstein condensation occurs in two distinct steps as the temperature is lowered. In the first s
specific heat shows a sharp feature, but the system still occupies many one-dimensional quantum
In the second step, at a significantly lower temperature, the ground state becomes macrosco
occupied. It should be possible to verify these predictions using present-day atom traps. Th
step behavior can occur in a rather general class of anisotropic traps, including the box pot
[S0031-9007(97)03666-1]
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The realization of Bose-Einstein condensation (BE
in magnetically trapped, weakly interacting atomic ga
[1] has revived interest in the theoretical study of the id
Bose gas. Most textbooks, e.g., [2], calculate the beha
of the ideal Bose gas in a three-dimensional (3D) box,
then go to the thermodynamic limit. BEC is then chara
terized by a cusp in the specific heat at a finite tempe
ture Tc, accompanied by a sudden onset of macrosco
ground-state population belowTc. The experiments dea
with a limited number of atomssN & 107d, and use traps
that are approximately harmonic potentials. Hence rec
theoretical efforts have concentrated on the influence o
nite N for different trapping potentials and also on lowe
dimensional systems [3–9], extending the earlier w
of Refs. [10–12] (and references therein) which used
thermodynamic limitsN ! `d.

Those papers showed that the ideal Bose gas in
anisotropic 3D trap behaves very similarly to the isotro
case, the only difference being that the isotropic tr
frequency is replaced by appropriate averages of
different trapping frequencies. The case of BEC in low
dimensions was understood as the limiting case of a
situation; when the temperatures of interests3kByh̄d are
much smaller than the trapping frequencies in one or
dimensions, the dynamics in those dimensions are “fro
out” and the system behaves lower dimensionally. In
present paper, we show that BEC in anisotropic potent
is much richer.

The main new result is that for a highly anisotrop
trap BEC happens in two steps as the temperature is
ered. In the first step, the particles condense into
ground state of the tightly confining dimension(s), wh
still occupying many quantum states in the weakly co
fining dimension(s). In the second step, at a significan
lower temperature, the overall ground state of the s
tem suddenly develops a macroscopic occupation. T
behavior shows general features of Bose-Einstein cond
0031-9007y97y79(4)y549(4)$10.00
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sation which have not been emphasized before: When
temperature is lowered, the dimensionality of the syste
can be reduced not only by “freezing out” of degrees
freedom at temperatures comparable to the energy of
first excited state, but also by “Bose condensing to low
dimensions” at much higher temperatures. As a con
quence, for a quite general class of potentials, BEC do
not lead to a macroscopic population of the overall grou
state (“single-mode condensate”), but results in the pop
lation of many states with respect to the weakly confinin
dimension (“multimode condensate”).

We explicitly demonstrate this behavior for the 3D ha
monic trap. This case is the most relevant for expe
ments and is also mathematically convenient. Figure
summarizes our results. It shows how the two previous
discussed regimes (normal 3D BEC and freezing out
motion) are separated by a regime where two-step BE
occurs. Two specific cases have been discussed be

FIG. 1. Overview of the three different regimes of BEC in a
anisotropic harmonic oscillator potential withv1 ø v2 ­ v3,
as a function of particle numberN , and trap anisotropyv2yv1.
The regimes are separated by lines given byh̄v2 ­ kBT3D
[upper line, see Eq. (8)], andT3D ­ T1D [lower line, see
Eq. (7)], whereT3D and T1D are the 3D and 1D condensation
temperatures, respectively; see text.
© 1997 The American Physical Society 549
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where BEC into multiple states happens, the 2D rotat
disk [11] and the gravito-optical trap [6]. Both pape
dealt with limiting cases in which the second conden
tion step was absent. In contrast, we show here that
two-step behavior is a property of a rather general clas
highly anisotropic traps, that it can persist in the therm
dynamic limit, and that it should be experimentally real
able using current atom traps.

The ideal Bose gas is most conveniently describ
in the grand-canonical ensemble [2,13], in which t
populationNi of a state with energyEi is given by

Ni ­
ze2EiykBT

1 2 ze2EiykBT
, (1)

where T is the temperature. Degeneracy factors
avoided by accounting for degenerate states individua
The fugacityz is determined by the constraint that th
total number of particles be given byN ­

P
`
i­0 Ni. This

can be rewritten as

Nsz, T d ­
X̀
j­1

zj
X̀
i­0

` e2jEiykBT . (2)

Oncez has been determined, all thermodynamically re
vant quantities can be calculated from partial deriv
tives of the grand potentialq, the logarithm of the grand
canonical partition function [2,7]. The specific heatC is
obtained fromC ­ s≠Uy≠T dN where U is the internal
energy,U ­

P
i NiEi ­ kBT2s≠qy≠Tdz . The grand po-

tentialq can be expressed as a sum similar to Eq. (2),

qsz, T d ­
X̀
j­1

zj

j

X̀
i­0

e2jEiykBT . (3)

For the 3D harmonic trap the states can be labeled
three (non-negative integer) quantum numbersn1,2,3 cor-
responding to energiesEn1n2n3 ­ h̄

P3
d­1 ndvd , where

the energy of the ground state has been taken as z
As a result, the sum over states in Eqs. (2) and (3) can
written as [4,7]X̀

i­0

e2jEiykBT ­
3Y

d­1

X̀
nd ­0

e2jnded

­
3Y

d­1

1
1 2 e2jed

,
(4)

where we have defineded ­ h̄vdykBT . For reasonable
N (say N , 106) it is now feasible to evaluate Eqs. (2
and (3) numerically, after the ground-state contribut
N0 ­ g0szd ­ zys1 2 zd andq0 ­ g1szd ­ 2 lns1 2 zd
has been split off. Here the Bose functionsgnszd are
defined as usual bygpszd ­

P`
j­1 zjyjp [2].

The solid lines in Fig. 2(a) show the exact results
an ideal Bose gas of106 particles in a highly anisotropic
3D harmonic trap with tight radial and weak axi
confinement. For comparison, Figs. 2(b) and 2(c) sh
respectively, the well-known behavior in a 3D isotrop
trap [3,4,10,12], and in a 1D harmonic trap [4,5,8,9] f
the same number of particles.
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FIG. 2. The behavior of an ideal Bose gas in a harmonic tr
with N ­ 106 particles (solid lines). (a) 3D highly anisotropic
trap, v2 ­ v3 ­ 5.6 3 104v1, corresponding toT

s0d
3D ­ 2T

s0d
1D .

(b) 3D isotropic trapv1 ­ v2 ­ v3. (c) 1D trap h̄v1 ø
kBT ø h̄v2,3. The ground-state fractionN0yN and specific
heat per particleCyNkB are plotted. In (a), the fraction of
the population that is excited in thev1 direction only,N1DyN ,
is also plotted. The dashed lines in (a) were calculated us
Eq. (6); in (b) and (c) this approximation is indistinguishab
from the exact result. The dotted line in (b) shows how th
3D condensation smooths and shifts for low particle numb
sN ­ 102d.

Clearly, the behavior in the highly anisotropic trap
qualitatively different from that in an isotropic trap or in
1D. In fact, Fig. 2(a) combines the features of Figs. 2(
and 2(c) in an interesting way. As the temperature
lowered, condensation occurs in two steps. First, t
specific heat per particle increases from the temperatu
independent classical-gas value, shows a maximum
then a rapid decrease, as in the 3D isotropic case (and
like the 1D case). Unlike the 3D isotropic case, howeve
this is not accompanied by a sudden increase of the grou
state fraction. Instead, the population that is excited
the direction ofv1 only, N1D ­

P`
n1­0 Nn100, increases

rapidly, as shown in Fig. 2(a) [the nonzero value ofN1D at
higher temperatures is a finite-N effect, see Figs. 2(b) and
3]. The ground-state fraction becomes significant only
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FIG. 3. Behavior of the ideal Bose gas in a harmonic tr
with v1 ø v2 ­ v3 for a different particle number,N ­ 104

(dotted), 106 (short dashed),108 (long dashed), and1010

(solid lines). The condensation temperatures were kept fix
T

s0d
3D ­ 3T

s0d
1D , see text. Shown are the ground-state fractio

N0yN , the fraction of the population excited in thev1 direction
only, N1DyN , and specific heat per particle,CyNkB.

the second step at lower temperatures, and increases
proximately linearly with decreasing temperature, witho
a feature in the specific heat, as in the 1D case.

The behavior shown in Fig. 2 can be quantitative
understood using a simple, yet powerful approximati
scheme. First, we note that the series appearing in Eq
can be written asX̀

n­0

e2nx ­ 1 1
e2xasxd

x
. (5)

This corresponds to splitting off the ground-state contrib
tion for each excitation direction. The functionasxd de-
fined implicitly in Eq. (5) depends only weakly onx sx .

0d, 1y2 , a , 1. For smallx, one hasa ­ 1y2 1 xy24;
since the second term on the right-hand side of Eq. (5
only significant for smallx, settinga ­ 1y2 is a very good
approximation [4], with a maximum relative error of 2.5%
[15]. Inserting this into Eqs. (2) and (3) yields

Nsz, Td ­ g0szd 1

∑
1

e1e2
g2sze2se11e2dy2d 1 c.p.

∏
1

1
e1e2e3

g3sze2se11e21e3dy2d

1

∑
1
e1

g1sze2e1y2d 1 c.p.

∏
, (6)

and the same expression forqsz, T d, but replacing every
gp by gp11. Here c.p. denotes terms that are obtained
cyclic permutation ofe1, e2, ande3 (e.g.,fe1e2 1 c.p.g ;
e1e2 1 e2e3 1 e3e1). Similar approximate expression
have been derived using the Euler-Maclaurin summat
[8] and the Barnes zeta function [7]. The above derivat
is appealing because of its simplicity and because it yie
direct physical insight into the meaning of each ter
p

d,
,

ap-
t

y
n
(4)

-

is

y

n
n

ds

in Eq. (6): Eachgp corresponds to the population o
states that are excited inp directions. Theed ’s that
appear in the exponents and as prefactors indicate
excitation directions involved. Results obtained with th
approximation are shown as dashed lines in Fig. 2, and
almost indistinguishable from the exact results.

To explain the behavior in Fig. 2(a) it is use
ful to first explain Figs. 2(b) and 2(c) starting from
Eq. (6). For the 3D isotropic harmonic trap [Fig. 2(b)
kBT ¿ h̄v1,2,3, so that all ed ø 1. Thus, the g3
term in Eq. (6) dominates over theg1 and g2 terms.
Physically, this means that the excited-state populat
is dominated by states that are excited in all thr
directions. Since the argument of theg3 function is
smaller than 1, the excited-state population cannot
ceed g3s1d skBTyh̄d3ysv1v2v3d f g3s1d ø 1.202g. This
is the basis of Bose-Einstein condensation: When
temperature is lowered, the excited-state population w
“saturate” at the above value, and the excess parti
present will “condense” into the ground state. T
“condensation temperature”T3D is approximately given
by T

s0d
3D ; sh̄ykBd fNv1v2v3yg3s1dg1y3, and corresponds

to a situation where approximately one state per part
is thermally accessible.

For the 1D case shown in Fig. 2(c),e1 ø 1 ø e2,3,
and the excited-state population is dominated [in Eq. (
by the g1 term involving e1. As in the 3D case, this
population has an upper bound, and thus one can
fine a 1D condensation temperatureT1D by N ­ skBT1Dy
h̄v1d lns2kBT1Dyh̄v1d [4,9]. Although the specific hea
does not show a feature atT1D, the condensate frac
tion does show a sudden onset for largeN at T1D [4],
which isølns2Nd times lower than the temperature whe
approximately one state per particle is thermally acc
sible. As a consequence, in the usual thermodynamic li
in d dimensions (N ! `, with N

Qd
i­1 vi kept constant)

[10,12], the 1D condensation temperature vanishes, in c
trast to the 3D condensation temperature.

These observations are useful for explaining the
havior in highly anisotropic traps. The behavior show
in Fig. 2(a) results whenT3D . T1D: At T3D the 3D-
excited-state population saturates, leading to the pea
the specific heat. Unlike the usual case, however, u
lowering the temperature, the excess particles donot
necessarily condense into the ground state, since the
population is not saturated yet. Thus the excess pa
cles first condense into the states which are excited in
direction only. Upon further lowering the temperatur
T1D is reached, and the excess particles condense into
ground state, similar to a 1D Bose gas. Thus one sim
equation [Eq. (6)] explains the two-step behavior as w
as finite-N effects in arbitrary dimensions.

We now discuss quantitatively the conditions for tw
step BEC. In order to keep the following equatio
as simple as possible, we approximateT3D by T

s0d
3D and

T1D by T
s0d
1D ; Nh̄v1ykB lns2Nd; both approximations are
551
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accurate to within 20% for the cases we consider he
For a trap withv1 ø v2 ­ v3, the conditionT

s0d
1D ,

T
s0d
3D can be rewritten as

Nf g3s1dg1y2flns2Ndg23y2 , v2yv1 . (7)

This shows explicitly that highly anisotropic traps ar
needed. In addition, 3D Bose condensation requi
h̄v2 , kBT3D, or

v2yv1 , Ng3s1d , (8)

otherwise the first step is freezing out of the motion
the direction ofv2 and v3. This is fulfilled whenN is
sufficiently large. The softening of the transition due
finite-N effects is enhanced by the anisotropy because
ratio h̄v2ykBT3D is increased [see also Fig. 2(b)].

Figure 3 shows the behavior of the ideal Bose gas
severalN, keepingT

s0d
1D andT

s0d
3D fixed (with T

s0d
3D ­ 3T

s0d
1D).

As N is increased both features become increasin
sharp. Note that keepingT

s0d
3D fixed as N ! ` corre-

sponds to the usual thermodynamic limit in 3D. Th
condition thatT

s0d
1D be kept fixed imposes an additiona

constraint; it defines the anisotropy of the trap, which
left unspecified in the usual thermodynamic limit.

As is evident from the discussion above, the tw
step behavior can occur because, unlikeT3D , T1D is
much lower than predicted by the “one particle p
thermally accessible quantum state” criterion [due to t
lns2Nd term in T

s0d
1D]. This is what allows the condition

T1D , T3D to be fulfilled while maintaining the high-
temperature condition. Two-step Bose condensation w
therefore not occur forv1 ­ v2 ø v3. Using the
results from Ref. [12], it can be stated more genera
that two-step condensation is possible when the fu
dimensional system shows BEC within the continuou
spectrum approximation, while the lower-dimension
system does not. Many of the power-law traps conside
in Ref. [12] have this property.

An important example is the 3D box. The excited-sta
population in ad-dimensional box is described bygdy2.
For a box with sizeL1 3 L2 3 L3 the 3D condensa-
tion temperature is given byN ­ sL1L2L3yL3

t dg3y2s1d
[2], while for the 2D box with sizeL 3 L it follows
from N ­ 2sLyLtd2 lnsLyLtd [4], with Lt the ther-
mal de Broglie wavelength. As a consequence, for
box with L1 ø L2 ­ L3, Tbox

3D . Tbox
2D if L2yL1 .

g3y2s1dN1y2flnsNdg23y2, a condition which can be
satisfied while maintaining the high-temperature cond
tion Lt , L1,2,3 if N is sufficiently large. A 3D box
satisfying these conditions will show similar two-ste
condensation as in Fig. 3, with the peak in specific he
occurring atTbox

3D , and the onset of macroscopic ground
state population occurring atT box

2D . For L1 ø L2 ø L3
we expect even three-step behavior because the con
sation temperature for the 1D box with sizeL is given by
N ­ spy3d sLyLtd2.
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The two-step BEC discussed here should be experime
tally observable using currently available atom traps. A
anisotropy ofv2 ­ v3 ­ 1000v1 should be achievable
in magnetic traps of the Ioffe-Pritchard type and in optica
dipole traps [4]. WithN ­ 104 atoms, one could real-
ize T

s0d
3D ­ 2T

s0d
1D. The experimental signature would be a

sudden decrease of the spatial and velocity distributio
first radially atT3D and then axially atT1D.
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Note added.—After submission of this work, we
learned that the results for the 3D anisotropic bo
potential were found before by Sonin [16]. We than
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