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Two-Step Condensation of the Ideal Bose Gas in Highly Anisotropic Traps

N.J. van Druten
Huygens Laboratory, Leiden University, P.O. Box 9504, Leiden, The Netherlands

Wolfgang Ketterle

Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139
(Received 10 March 1997

The ideal Bose gas in a highly anisotropic harmonic potential is studied. It is found that Bose-
Einstein condensation occurs in two distinct steps as the temperature is lowered. In the first step the
specific heat shows a sharp feature, but the system still occupies many one-dimensional quantum states.
In the second step, at a significantly lower temperature, the ground state becomes macroscopically
occupied. It should be possible to verify these predictions using present-day atom traps. The two-
step behavior can occur in a rather general class of anisotropic traps, including the box potential.
[S0031-9007(97)03666-1]
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The realization of Bose-Einstein condensation (BEC)sation which have not been emphasized before: When the
in magnetically trapped, weakly interacting atomic gasesemperature is lowered, the dimensionality of the system
[1] has revived interest in the theoretical study of the ideatan be reduced not only by “freezing out” of degrees of
Bose gas. Most textbooks, e.g., [2], calculate the behavidreedom at temperatures comparable to the energy of the
of the ideal Bose gas in a three-dimensional (3D) box, andirst excited state, but also by “Bose condensing to lower
then go to the thermodynamic limit. BEC is then charac-dimensions” at much higher temperatures. As a conse-
terized by a cusp in the specific heat at a finite temperaguence, for a quite general class of potentials, BEC does
ture T., accompanied by a sudden onset of macroscopinot lead to a macroscopic population of the overall ground
ground-state population belo#.. The experiments deal state (“single-mode condensate”), but results in the popu-
with a limited number of atom&V < 107), and use traps lation of many states with respect to the weakly confining
that are approximately harmonic potentials. Hence recertimension (“multimode condensate”).
theoretical efforts have concentrated on the influence of fi- We explicitly demonstrate this behavior for the 3D har-
nite N for different trapping potentials and also on lower- monic trap. This case is the most relevant for experi-
dimensional systems [3-9], extending the earlier workments and is also mathematically convenient. Figure 1
of Refs. [10—12] (and references therein) which used theummarizes our results. It shows how the two previously
thermodynamic limif{N — ). discussed regimes (normal 3D BEC and freezing out of

Those papers showed that the ideal Bose gas in amotion) are separated by a regime where two-step BEC
anisotropic 3D trap behaves very similarly to the isotropicoccurs. Two specific cases have been discussed before
case, the only difference being that the isotropic trap
frequency is replaced by appropriate averages of the
different trapping frequencies. The case of BEC in lower L
dimensions was understood as the limiting case of a 3D T .
situation; when the temperatures of interésty//) are 106-freez'?§d°fk JT“ 1)D BEC
much smaller than the trapping frequencies in one or two w2 PTER q,‘&
dimensions, the dynamics in those dimensions are “frozen w1 s |
out” and the system behaves lower dimensionally. In the Ny

10

present paper, we show that BEC in anisotropic potentials noErTnsaD|<3:r?D)BEC

is much richer. 10? 1
The main new result is that for a highly anisotropic L

trap BEC happens in two steps as the temperature is low- 10 N106 10

ered. In the first step, the particles condense into the
ground state of the tightly confining dimension(s), whileFIG. 1. Overview of the three different regimes of BEC in an
still occupying many quantum states in the weakly con-anisotropic harmonic oscillator potential withy < w, = w3,
fining dimension(s). In the second step, at a significanti> & function of particle numbe¥, and trap anisotropy./w;.
lower temperature, the overall ground state of the sys he regimes are separated by lines given /by, = kyTp

P ' g _ ) YS[upper line, see Eq. (8)], andsp = Tip [lower line, see
tem sgddenly develops a macroscopic occupation. Thigq. (7)], whereTsp and Ty, are the 3D and 1D condensation
behavior shows general features of Bose-Einstein condetemperatures, respectively; see text.
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where BEC into multiple states happens, the 2D rotating T T T T T
disk [11] and the gravito-optical trap [6]. Both papers Nip/N
dealt with limiting cases in which the second condensa-
tion step was absent. In contrast, we show here that the
two-step behavior is a property of a rather general class of
highly anisotropic traps, that it can persist in the thermo-
dynamic limit, and that it should be experimentally realiz-
able using current atom traps.

The ideal Bose gas is most conveniently described
in the grand-canonical ensemble [2,13], in which the (b)
populationN; of a state with energ¥; is given by 1 TR

e*E,‘/kBT

4

Ni = 1 — ze Ei/ksT’ (@)

C/10Nkg

where T is the temperature. Degeneracy factors are
avoided by accounting for degenerate states individually.
The fugacityz is determined by the constraint that the 0 e TN
total number of particles be given By = >~ , N;. This 0 0.5
can be rewritten as T/T59

oo joe}

NG T) = & Y “e b/l ) RO 1
/ i= No/N

j=1

Oncez has been determined, all thermodynamically rele-
vant quantities can be calculated from partial deriva-
tives of the grand potential, the logarithm of the grand
canonical partition function [2,7]. The specific heatis
obtained fromC = (0U/dT)y where U is the internal
energy,U = > ; N;E; = kzT*(dq/dT).. The grand po- 0 L L
tential ¢ can be expressed as a sum similar to Eq. (2), 0 1 2

C/Nkg

: /T

7/ =
= l JEi/ksT
q(zT) Z j Z ¢ o (3) FIG. 2. The behavior of an ideal Bose gas in a harmonic trap
’_’1 i=0 with N = 10° particles (solid lines). (a) 3D highly anisotropic
For the 3D harmonic trap the states can be labeled byap, @, = w3 = 5.6 X 10*w,, corresponding td) = 279,
three (non-negative integer) quantum numberss cor-  (b) 3D isotropic trapw; = w, = ;. (c) 1D trap fiw; <
responding to energieg,, ., = £ 231:1 ngwy, Where kT < hwy3. The ground-state fraction,/N and specific

the energy of the ground state has been taken as Zerltéﬁat per particleC/Nkg are plotted. In (a), the fraction of

e population that is excited in the, direction only,Np/N,

As a result, the sum over states in Egs. (2) and (3) can Q@ also plotted. The dashed lines in (a) were calculated using

written as [4,7] Eqg. (6); in (b) and (c) this approximation is indistinguishable
> ) 302 ) from the exact result. The dotted line in (b) shows how the
Z e BT — l_[ e M 3D condensation smooths and shifts for low particle number
i=0 d=1 n,=0 (N = 10%).
3 | (4)
= }_[1 1= e e’ Clearly, the behavior in the highly anisotropic trap is

qualitatively different from that in an isotropic trap or in
where we have defined; = hw,/kgT. For reasonable 1D. In fact, Fig. 2(a) combines the features of Figs. 2(b)
N (say N < 10°) it is now feasible to evaluate Egs. (2) and 2(c) in an interesting way. As the temperature is
and (3) numerically, after the ground-state contributionlowered, condensation occurs in two steps. First, the

No = go(z) = z/(1 — z) andgy = g1(z) = —In(1 — z)  specific heat per particle increases from the temperature-
has been split off. Here the Bose functiops(z) are independent classical-gas value, shows a maximum and
defined as usual by, (z) = Z;Ll 2 /j? [2]. then a rapid decrease, as in the 3D isotropic case (and un-

The solid lines in Fig. 2(a) show the exact results forlike the 1D case). Unlike the 3D isotropic case, however,
an ideal Bose gas dfo® particles in a highly anisotropic this is not accompanied by a sudden increase of the ground-
3D harmonic trap with tight radial and weak axial state fraction. Instead, the population that is excited in
confinement. For comparison, Figs. 2(b) and 2(c) showthe direction ofw; only, Nip = ZZ:O Np,00, iNCreases
respectively, the well-known behavior in a 3D isotropic rapidly, as shown in Fig. 2(a) [the nonzero valué\af, at
trap [3,4,10,12], and in a 1D harmonic trap [4,5,8,9] forhigher temperatures is a finifé-effect, see Figs. 2(b) and
the same number of particles. 3]. The ground-state fraction becomes significant only in
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T T T T T in Eq. (6): Eachg, corresponds to the population of
states that are excited ip directions. Thee,’s that
appear in the exponents and as prefactors indicate the
excitation directions involved. Results obtained with this
approximation are shown as dashed lines in Fig. 2, and are
almost indistinguishable from the exact results.

To explain the behavior in Fig. 2(a) it is use-
ful to first explain Figs. 2(b) and 2(c) starting from
Eq. (6). For the 3D isotropic harmonic trap [Fig. 2(b)],
kgT > hwip3, SO that all e, < 1. Thus, the g3
term in Eg. (6) dominates over thg, and g, terms.
Physically, this means that the excited-state population
is dominated by states that are excited in all three
directions. Since the argument of thg function is
smaller than 1, the excited-state population cannot ex-
FIG. 3. Behavior of the ideal Bose gas in a harmonic trapc€ed g3(1) (kpT /i)’ /(w1 wyw3) [g3(1) = 1.202]. This
with w; < w, = ws for a different particle numbery = 10* is the basis of Bose-Einstein condensation: When the
(dotted), 10° (short dashed),10° (long dashed), and0'®  temperature is lowered, the excited-state population will
(s((o))hd_llne(%)). The condensation temperatures were kept f'_xed“saturate” gt the above V?.|LI€, and the excess particles
Typ = 3Tip, see text. Shown are the ground-state fractionpresent will “condense” into the ground state. The
Ny/N, the fraction of the population excited in tlhg direction “condensation temperature’s;, is approximately given

only, Nip/N, and specific heat per particl€,/Nkg.
by T3(%) = (li/kg) [Nw,w>rw3/g3(1)]'/3, and corresponds

/753

—xa(x)

1
N(z,T) = golz) + [—gz(ze(f‘“z)/z) + c.p.i|
€1€

+ *(6]4‘62“!’63)/2)

g3(ze

the second step at lower temperatures, and increases ég_a situation where_ approximately one state per particle
proximately linearly with decreasing temperature, without'> thermally accessible.
a feature in the specific heat, as in the 1D case. For the 1.D case shown In F|g. 2@1. <1 < €23,
The behavior shown in Fig. 2 can be quantitativelyand the excned-'state _populat|on 1S dominated [in Eq._(6)]
understood using a simple, yet powerful approximatiorpy the 81 term involving €. As in the 3D case, this
scheme. First, we note that the series appearing in Eq. (4 pulation has an Upper bound, and thus one can de-
can be written as ne a 1D condensation temperatdig, by N = (kzTip/
B hwi)InkpTip/hw,) [4,9]. Although the specific heat
Z et = 1 4 e ‘ 5) does not show a feature &tp, the condensate frac-
= X tion does show a sudden onset for lajeat T p [4],
This corresponds to splitting off the ground-state contribu\Vhich is ~In(2N) times lower than the temperature where
tion for each excitation direction. The functiern(x) de- approximately one state per particle is thermally acces-
fined implicitly in Eq. (5) depends only weakly an(x > §|ble. _As aconsequence, in the uiual thermodynamic limit
0),1/2 < a < 1. Forsmall,one hagr = 1/2 + x/24: N4 dimensions § — <, with N [[;_, «; kept constant)
since the second term on the right-hand side of Eq. (5) i%10,12], the 1D condensat_lon temperature vanishes, in con-
only significant for smalk, settinga = 1/2is avery good ras:]to theb?,D con.densatmn ter?riefrature. laini he b
approximation [4], with a maximum relative error of 2.5% ha-\tioersi?l ﬁigsr?hr/vztrl](i)snostrgpr)?c L:f‘:pg %:th)e?]lg\',?gr tsr?owﬁ_
[15]. Inserting this into Egs. (2) and (3) yields in Fig. 2(a) results whemsp, > Tip: At Tsp the 3D-
excited-state population saturates, leading to the peak in
the specific heat. Unlike the usual case, however, upon
lowering the temperature, the excess particles ndd
cleres necessarily condense into the ground state, since the 1D
population is not saturated yet. Thus the excess parti-
+ [l g1(ze™ /%) + C_p_} (6)  cles first condense into the states which are excited in one
€ direction only. Upon further lowering the temperature,
and the same expression fgfz, T), but replacing every Tip is reached,' and the excess particles condense into the
¢, by g,+1. Here c.p. denotes terms that are obtained b}grounq state, similar to a 1D Bose gas. Thus one simple
cyclic permutation oy, €,, ande; (e.g.,[e1e; + c.p.] = equation [Ea. (6)]_exp|a_|ns the_ two-step behavior as well
€16, + €263 + e3€1). Similar approximate expressions &5 finite; eff_ects o arb|tr<_';1ry_d|men5|ons. "
have been derived using the Euler-Maclaurin summation W€ now discuss quantitatively the conditions for two-
[8] and the Barnes zeta function [7]. The above derivatiorrt€P BEC. In order to keep the following (%)quatlons
is appealing because of its simplicity and because it yield@s simple as possible, we approximdtg by 73p and
direct physical insight into the meaning of each termT,p by Tf% = Nhw;/kgIn(2N); both approximations are
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accurate to within 20% for the cases we consi(%l)er here. The two-step BEC discussed here should be experimen-
For a trap withw; < wy = w3, the conditionT;p, <  tally observable using currently available atom traps. An

7% can be rewritten as anisotropy ofw, = w3 = 1000w; should be achievable
in magnetic traps of the loffe-Pritchard type and in optical
N[ g3(D]/[INCN)] 2 < ws/w; . (7)  dipole traps [4]. WithN = 10* atoms, one could real-

ize T3(%) = 2T1(%). The experimental signature would be a
sudden decrease of the spatial and velocity distributions
first radially at7T;p and then axially af’p.
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