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Collective Excitations of a Bose-Einstein Condensate in a Magnetic Trap
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Collective excitations of a dilute Bose condensate have been observed. These excitations are
analogous to phonons in superfluid helium. Bose condensates were created by evaporatively coolin
magnetically trapped sodium atoms. Excitations were induced by a modulation of the trapping potential,
and detected as shape oscillations in the freely expanding condensates. The frequencies of the lowe
modes agreed well with theoretical predictions based on mean-field theory. Before the onset of Bose
Einstein condensation, we observed sound waves in a dense ultracold gas. [S0031-9007(96)00900-3

PACS numbers: 03.75.Fi, 05.30.Jp, 32.80.Pj, 64.60.– i
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In 1941 Landau introduced the concept of element
excitations to explain the properties of superfluid heliu
[1]. This phenomenological approach, based on qu
tum hydrodynamics, gave a quantitative description of
thermodynamic properties and transport processes in
uid helium. Landau rejected any relation to Bose-Einst
condensation (BEC). A microscopic derivation of the e
mentary excitation spectrum for a weakly interacting Bo
gas was given by Bogoliubov in 1947 [2] and for HeII by
Feynman in 1955 [3], emphasizing the role of Bose sta
tics [3] and reconciling Landau’s approach with London
explanation of superfluidity as being due to BEC [2,4].

The elementary excitations determine the spectrum
density fluctuations in a Bose liquid, and have be
directly observed in HeII by neutron scattering [5]. The
low-frequency excitations are phonons, long-wavelen
collective modes of the superfluid. So far, a satisfacto
microscopic theory for an interacting bosonic syste
exists only for the dilute quantum gas. The rece
realization of BEC in dilute atomic vapors [6–8] ha
opened the door to test this theory experimentally. In t
paper we report on the observation of shape oscillation
a trapped Bose condensate, modes analogous to pho
in homogeneous systems [9].

The experimental setup for creating Bose condensa
was the same as in our previous work [10]. Briefl
sodium atoms were optically cooled and trapped, a
transferred into a magnetic trap where they were f
ther cooled by rf-induced evaporation [11,12]. Eve
30 s, condensates containing5 3 106 sodium atoms in
theF ­ 1, mF ­ 21 ground state were produced. Eva
orative cooling was extended well below the transiti
temperature to obtain a condensate without a discern
normal component. The condensate was confined i
cloverleaf magnetic trap which had cylindrical symmet
with trapping frequencies of 19 Hz axially and 250 H
radially (see below). The trapping potential is dete
mined by the axial curvature of the magnetic fieldB00 ­
125 G cm22, the radial gradientB0 ­ 150 G cm21, and
the bias fieldB0 ­ 1.2 G.
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The condensate was excited by a time-depend
modulation of the trapping potential. First, we use
a sudden step in the gradientB0 to identify several
collective modes of the condensate and to find th
approximate frequencies.B0 was decreased by 15% fo
a duration of 5 ms with a transition time of about 1 m
and then returned to its original value. A variable tim
delay was introduced between the excitation and
observation of the cloud. In this way, we strobed the fr
time evolution of the system after the excitation. Th
cloud was observed by absorption imaging after a sud
switch off of the magnetic trap and 40 ms of ballist
expansion. No trap loss was observed during the inter
over which the delay was varied. The images we
similar to the series shown in Fig. 1. Four modes we
identified from the measured center-of-mass positio
and the widths of the condensate. The radial and ax
center-of-mass oscillations (dipole modes) were exci
because a change inB0 displaced the center of the tra
slightly due to asymmetries in the field-producing coil
A fast shape oscillation predominantly showed up as
sinusoidal modulation of the radial width while a slo
sinusoidal shape oscillation was observed in the ax
width. When a strong parametric drive (see belo
was used to excite the slow shape oscillation, a we
oscillation of the radial width was also detected. No
that the widths were observed after ballistic expans
and reflect a convolution of the initial spatial and veloci

FIG. 1. Shape oscillation of a Bose-Einstein condensa
After excitation the condensate was allowed to freely oscilla
in the trap for a variable time, ranging from 16 ms (left) t
48 ms (right). The absorption images were taken after a sud
switch-off of the trapping potential and 40 ms of ballisti
expansion. The horizontal width of each cloud is 1.2 mm.
© 1996 The American Physical Society
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distributions, further complicated by the acceleration d
to the repulsive mean field.

From these “kicked” excitation experiments, we d
termined nr ­ 250s5d Hz [13] for the radial trapping
frequency andn ­ 510s15d Hz for the faster shape oscil
lation. The slower shape oscillation was studied furth
in the following manner. A better “mode selectivity” in
the excitation was obtained by modulatingB00 at 30 Hz
sinusoidally for five full cycles. The amplitude of th
parametric drive was varied between 0.5% and 6% of
dc field strength. Axial and radial widths of the clou
were then determined as a function of delay time. T
axial widths were fitted with an exponentially decayin
sine function. For the smallest drive an improved fit w
obtained by fitting the aspect ratio of the cloud instead
the width itself (Fig. 2); this procedure eliminated the e
fect of fluctuations of the numberN0 of condensed atoms
which were about 20%. Note that in the hydrodynam
limit the frequencies of the normal modes are independ
of N0 (see below). The amplitudes of the axial wid
modulationDwz, after a timeDt of ballistic expansion,
varied from 77.8 for the smallest drive to527 mm for
the largest drive. FromDwzys2Dtd we obtained an uppe
bound for the kinetic energy of the collective mode, whi
ranged from 1.3 to 60 nK. The highest value is comp
rable to the typical mean-field energy per atom in o
experiment [10]. It is, therefore, remarkable that t
frequency of the collective excitation was found not
depend on the strength of the drive (Fig. 3). For t
smallest amplitudes, the frequency was determined to
30.0(2) Hz which will be compared below to a theore
cal prediction for small oscillations. An accurate valu
of 19.28(11) Hz for the axial trapping frequency was o
tained by using a five-cycle sinusoidal modulation ofB0

at 18 Hz. In this way, the simultaneous excitation of t
radial dipole mode at 250 Hz was suppressed.

FIG. 2. Analysis of the “quadrupole” oscillation at 30 Hz
The aspect ratio of the expanding cloud is plotted against
free oscillation time between excitation and switch off of th
trap. Damping of the harmonic oscillations was observed w
a decay time of 250 ms. Note that the analagous mode in
non-interacting ideal gas occurs at2nz ­ 38.6 Hz.
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We first discuss the nature of the shape oscillatio
for a noninteracting gas and a weakly interacting co
densate in the simplest case of an isotropic harmo
potential. For a noninteracting ideal gas (both in t
normal and in the Bose-condensed states), all mo
have frequencies which are integer multiples of the h
monic trapping frequencyn0. In particular, the lowest
quadrupole oscillation occurs at a frequency of2n0. In
a homogeneous weakly interacting Bose condensate
densityn0, the lowest frequency excitations are phono
propagating at the speed of soundc ­

p
n0Ũym at T ­ 0

[2,14]. Ũ ­ 4p h̄2aym characterizes the interactions o
bosons with massm and scattering lengtha. In a sample
of size d, the lowest frequencyn of a phonon is ob-
tained from the dispersion relationn ­ cyl with l ­
2d. In the Thomas-Fermi approximation the conde
sate wave function is nonvanishing over a sized ­
s1ypn0d

p
2n0Ũym [14,15] resulting inn ­ spy23y2dn0.

For an inhomogeneous condensate this result is only
estimate, but it correctly shows that the lowest exci
tion frequencies are proportional ton0. These frequencies
should be independent of the number of atomsN0 in the
condensate since the dependences of the sound vel
and of the size of the condensate onN0 exactly cancel.

The normal modes of the inhomogeneous intera
ing condensate are obtained by solving the correspo
ing wave equation which is the nonlinear Schröding
equation, as recently discussed by several groups [5
16–21]. Stringari presented the analytical solution
an isotropic harmonic potential in the Thomas-Fer
regime which gave

p
2 n0 as the frequency of the low

est normal mode, aside from the center-of-mass os
lation [16]. The normal modes of the condensate
classified by quantum numberssn, l, md where n is the
radial quantum number andl, m denote quantum number
for the total angular momentum and its axial projectio

FIG. 3. Frequency of the collective excitation at 30 Hz
a function of driving amplitude. The abscissa shows t
amplitude of the axial width modulation after 40 ms of ballist
expansion, which is used to estimate the excitation energy.
solid line is the theoretical prediction of Stringari [16] whe
combined with the measured axial trapping frequency.
989
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respectively. For cylindrical symmetry (as in our trap),m
is still a good quantum number, butl is not. Thus, the
normal modes are superpositions of wave functions w
the samem. Since our excitation scheme preserves t
axial symmetry of the trapping potential, we expect to o
serve onlym ­ 0 modes. (However, the excitation of the
dipole modes shows that slight asymmetries in the tra
ping coils also excitem ­ 1 modes.) Stringari discussed
an anisotropic harmonic potential with axial symmetry i
the Thomas-Fermi limit [16]. He showed that the lowe
m ­ 0 modes are coupled excitations ofs0, 2, 0d (which
is a quadrupolar surface oscillation) ands1, 0, 0d symme-
tries. For a cigar-shaped condensate with a large asp
ratio, these lowest modes were predicted at frequencp

5y2 nz and 2nr, wherenz andnr are the axial and ra-
dial trapping frequencies, respectively [16,22].

The observed rationynz ­ 1.556s14d is in good
agreement with the predicted ratio of

p
5y2 ­ 1.581.

It is the main result of the present paper and should
regarded as a critical quantitative test of the mean-fie
theory describing excited states of a Bose condensa
The fast collective excitation which was observed
probably the high frequency mode of the mixeds0, 2, 0d
ands1, 0, 0d excitations for which a frequency of2nr was
predicted [16], in good agreement with our measureme
of 2.04s6dnr. Note that a noninteracting condensate al
has a mode at2nr.

The solutions of the linearized Gross-Pitaevskii equ
tion are the normal modes of the condensate, also ca
the elementary excitations or quasiparticles of the mac
scopic quantum system [5,19]. The collective excitatio
which we have observed, such as in Fig. 1, are large-sc
density fluctuations which obey the hydrodynamic equ
tion for superfluid flow at zero temperature [5,16]. The
are a coherent excitation of many quasiparticles at the f
quency of the normal mode. The lifetime of the quas
particles can thus be determined from the damping of t
shape oscillations.

Damping may be caused either by interactions betwe
collective and thermal excitations, or by nonlinear inte
actions which couple the normal modes of the condens
[20]. For a nearly pure condensate (T ø 0), the damping
due to thermal excitations should be negligible. In our e
periment, we observed a damping time of 250(40) ms f
the collective excitation at 30 Hz (Fig. 2). So far ther
is no theoretical prediction for the damping of collectiv
excitations of a trapped condensate.

Similar excitation experiments were performed on
thermal cloud atTyTc ø 2. For an ideal gas at low
density one expects quadrupole oscillations at2n0, the
damping of which is described by aQ factor given by
Q ­ ptn , lyd, whered is the size of the sample,l is
the mean-free path between elastic collisions, andt is the
amplitude damping time. Our experiments were carri
out at a density of1014 cm23 and an axial rms sample
length of 300 mm. Using our recent determination o
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the cross section for elastic collisions of6 3 10212 cm2

[11], we obtain 4 kHz for the elastic collision rate in th
center of the cloud, and12 mm for the mean-free path
much shorter than the size of the cloud. We are theref
well in the hydrodynamic regime, where the norm
modes of the cloud are sound waves. One can estim
the frequencyn of the lowest mode from the speed o
sound which isc ­

p
5kBTy3m for a monatomic ideal

gas, and the rms diameterd of the thermal cloudd ­
s1ypn0d

p
kBTym. These give a lowest mode frequenc

of n ­ cy2d ø 2n0. This estimate agrees coincidental
with the frequency obtained in the collisionless regim
Damping in a classical gas is due to thermal conduct
and shear viscosity, with each mechanism contribut
almost equally for an ideal gas [23]. From the kinet
theory of gases we obtain theQ factor for a sound
wave of wavelengthl asQ ­ ptn ø s1y2pdlyl. The
damping therefore decreases with increasing density in
hydrodynamic regime, in contrast to the behavior at lo
density. For our experimental conditions this estima
gives an amplitude damping time of about 100 m
Our measurements on a thermal cloud are in agreem
with these predictions. We observed oscillations in t
axial width at a frequency of35s4d Hz ­ 1.8s2dnz and
a damping time of about 80 ms, much longer than t
collision time.

Theoretical discussions of collective excitations of
condensate have emphasized that the frequency shif
the normal modes compared to the uncondensed at
is clear evidence for the order parameter associated w
BEC [19]. We point out that the normal modes of den
clouds can show frequency shifts even aboveTC, due to
the hydrodynamic propagation of sound waves. It w
be interesting to study the behavior of such shifts acr
the BEC phase transition. For the accurate compari
to theory we have normalized the frequencies of t
condensate with the center-of-mass oscillation frequenc
which are unshifted and identical to the single-partic
trapping frequencies.

The results reported above were all obtained at sm
and medium drive amplitudes. At larger amplitude, w
observed striations in the time-of-flight pictures of Bos
condensates parallel to the radial direction. We conject
that these interferencelike structures are the self-diffract
of an excited macroscopic matter wave and might refl
the nodal structure of a strongly driven condensate.

This paper is only the first step of a systemat
study of the elementary excitations of a Bose conde
sate. The ultimate goal is a complete survey of t
spectrum of collective excitations, including the lifetime
of the quasiparticles and the behavior at different te
peratures and higher excitation energies. For exc
tion frequencies larger than the mean interaction ene
(typically 2 kHz or 100 nK in our samples) one expec
a transition from collective to single-particle behavio
[5]. One limitation of the current experiment is that th
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time-of-flight probing technique is intrinsically destruc
tive. We have recently demonstrated dispersive ima
ing as a nondestructive technique to spatially reso
Bose condensates [24]. Combining this technique w
a high-speed camera should enable us to observe co
tive modes of a Bose condensatein situ and in real time.
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