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Characterizing the local vectorial electric field near an atom chip using Rydberg-state spectroscopy
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We use the sensitive response to electric fields of Rydberg atoms to characterize all three vector components
of the local electric field close to an atom-chip surface. We measured Stark-Zeeman maps of S and D Rydberg
states using an elongated cloud of ultracold rubidium atoms (temperature T ∼ 2.5 μK) trapped magnetically
100 μm from the chip surface. The spectroscopy of S states yields a calibration for the generated local electric
field at the position of the atoms. The values for different components of the field are extracted from the more
complex response of D states to the combined electric and magnetic fields. From the analysis we find residual
fields in the two uncompensated directions of 0.0 ± 0.2 and 1.98 ± 0.09 V/cm. This method also allows us to
extract a value for the relevant field gradient along the long axis of the cloud. The manipulation of electric fields
and the magnetic trapping are both done using on-chip wires, making this setup a promising candidate to observe
Rydberg-mediated interactions on a chip.
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I. INTRODUCTION

An important challenge in the implementation of quantum
information protocols and in quantum simulation is to cre-
ate strong, long-range, tunable, and switchable interactions.
Rydberg atoms have exaggerated properties, such as very
large electrical polarizabilities and (induced) dipole moments
[1]. These characteristics make them very good candidates
as mediators of the needed interactions and are the rea-
son why they are now being widely pursued as systems
for quantum information science using various approaches,
including cavity quantum electrodynamics [2], trapped ions
[3], and neutral atoms [4–6]. Among these approaches the
combination of atom chips with neutral atoms offers unique
opportunities to study quantum-degenerate gases [7] with
the advantage of having a compact system that allows the
efficient manipulation of quantum gases. Due to their sensitive
response to electric fields, Rydberg atoms are also used as a
tool for electrometry [8]. One of the disadvantages of using
Rydberg atoms in an atom-chip experiment is the presence of
spatially inhomogeneous electric fields [9–11]. These fields
are produced, e.g., by adsorbates (deposited) on the surface of
the chip [10–12] or by a voltage drop across current-carrying
wires on the chip. Due to the large polarizability of Rydberg
atoms and their proximity to a surface, the coherence of the
excitation will be limited by these stray electric fields. This
makes the observation of Rydberg-mediated interactions in
such systems a challenge. A detailed characterization of the
mentioned stray electric fields is therefore crucial.

Here, we employ two-photon Rydberg Stark-Zeeman spec-
troscopy of a cloud of magnetically trapped ultracold 87Rb
atoms (temperature T ∼ 2.5 μK) to characterize the local
electric fields from an atom-chip surface (∼100 μm distance).
An additional auxiliary electric field is generated at the location
of the atoms by applying a voltage to an on-chip wire adjacent
to the magnetic trapping wire. We show that it is possible
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to characterize the two uncompensated vector components of
the local electric field (the third component is compensated
by the auxiliary electric field) by a careful analysis of the
measured Stark-Zeeman spectra of S and D states. The results
are consistent with the calculated structure of Rydberg states
in combined magnetic and electric fields. We also characterize
the electric field gradient along the long axis of the cloud.

This paper is structured as follows. In Sec. II we summarize
our calculations of D-state Stark-Zeeman maps for different
field configurations and show how these are affected by
residual fields in different directions. The experimental setup
and data acquisition procedure are explained in Sec. III,
followed by the main experimental results and a comparison
with the calculations described in the previous section. A
summary of the main results is given in Sec. IV.

II. STARK MAP SIMULATIONS

To compare our experimental results to theory, we need to
calculate the Rydberg energies and eigenstates in combined
electric and magnetic fields, with an a priori unknown angle
between the two. To this end, we first calculate field-free radial
Rydberg wave functions, then include the electric field by
calculating the matrix elements of the electric-field operator
and diagonalizing the result to obtain Stark eigenstates and
eigenenergies, and, finally, take into account the magnetic
field as a small perturbation in the Hamiltonian to obtain
combined Stark-Zeeman maps. We have verified that the
results of our calculations are consistent with results from
open-source Rydberg calculator packages [13,14] that have
recently become available.

In more detail, the calculation of the desired Stark-Zeeman
maps starts from the binding energies Eb = −R/[2(n − δ)2]
of the field-free Rydberg states, given by the experimentally
determined quantum defects δn,l,j of 87Rb for S and D states
[15], P states [16], F states [17], and G states [18] and the
reduced Rydberg constant R for 87Rb. Here, n is the principal
quantum number, l is the orbital angular momentum, and
j is the total angular momentum of the valence electron.
For l > 4 the quantum defect is negligibly small, and we
set it to zero. Under field-free conditions, the Rydberg wave
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functions separate into a product of a radial wave function and
a remaining function describing the electron spin and angular
part of the wave function. The radial wave functions ψn,l,j (r)
are obtained numerically using the Numerov method [19,20],
integrating the radial Schrödinger equation inward starting
from the classically forbidden outer region of the Coulomb
potential with an energy given by the above quantum defects
and with a variable step size adapted to the changing spatial
oscillation frequency of the wave function [21]. The spin
and angular functions are obtained from the standard angular
momentum algebra using the Wigner-Eckart theorem [22]. In
an applied electric field, mj (corresponding to the projection
of the angular momentum onto the electric-field direction)
remains a good quantum number. The energies and eigenstates
depend on mj and can be obtained for each mj separately. To
this end, a set of all states with energies around the energy of
interest is selected (typically ∼1000 states) for each mj , and a
finite-size matrix is set up with the diagonal elements given by
the (field-free) energies and the off-diagonal elements given by
the matrix elements of the electric-field operator. The latter are
obtained using the above radial wave functions for the radial
matrix elements and the Clebsch-Gordan coefficients for the
angular part. The resulting matrix is diagonalized, yielding a
Rydberg Stark map of energies and eigenvectors for each mj

as a function of electric-field strength E.
To account for magnetic fields of a few gauss, we limit

ourselves to a single value for n, l, and j (consistent with
our magnetic trap) and the corresponding set of (2j + 1)
basis states distinguished by their value of mj (with the
quantization axis along the electric-field direction). The
corresponding eigenenergies E(n,l,j,mj ) yield a (diagonal)
Stark Hamiltonian matrix within this manifold. Within this
basis set the Zeeman Hamiltonian (with the magnetic field
at an angle with respect to the electric field) is added as a
perturbation, and the resulting matrix is again diagonalized to
yield a Stark-Zeeman map of eigenvalues and eigenstates. This
method works well as long as the Zeeman splittings are much
below the fine-structure splitting (this is 560 MHz for the 28D

state, so that the magnetic field should be below 100 G). The
results of such a calculation are shown in Fig. 1.

From these calculations it is possible to analyze the
character of each sublevel after a projection of the eigenbasis
on the B field direction. At zero electric field each sublevel
is defined by the Zeeman shift. In Fig. 1(a) this means that
each curve represents mj = 5/2,3/2,1/2,−1/2,−3/2,−5/2
from top to bottom, respectively. In the case in which �E ‖ �B
[black curves in Fig. 1(a)] the analysis is trivial because
the quantization axis is unambiguous; hence, each sublevel
maintains its own original character at any electric-field value.
As a result the Stark shift (which depends only on the absolute
value |mj |) and Zeeman shift are simply additive.

The analysis is more complicated for the case when �E ⊥ �B.
As the electric field is increased, the character of each state
changes; for instance, the highest-energy state, mj = 5/2
(along �B) changes its character to a superposition of mj =
−1/2 and mj = +1/2 (along �E) at higher electric fields. The
behavior at high electric fields can be intuitively understood as
follows (we take the quantization axis along the electric field in
the remainder of this paragraph). In the absence of a magnetic
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FIG. 1. (a) Calculated Stark map of the 28D5/2 state of 87Rb in
a magnetic field of B = 3.4 G. The red and black lines correspond
to the cases when the magnetic field is perpendicular and parallel
to the electric field, respectively. At zero electric field each line
represents the sublevel mj = 5/2,3/2,1/2,−1/2,−3/2,−5/2 from
top to bottom, respectively. In the �E ⊥ �B configuration, for the two
uppermost states the initial downshift is followed by an increase
in energy, thus creating an initial dip in the Stark map. This is an
additional feature compared to the �E ‖ �B case, and it can be used to
extract information on different electric-field components. (b) Detail
of the shift of the two uppermost sublevels for various stray field
configurations in the case where the applied electric field �Eap ⊥ �B.
Here, we use an orthogonal coordinate system (x,u,v) with x along
the direction of the magnetic field and u along the direction of the
applied electric field �Eap; v is perpendicular to both x and u (see Fig. 2
for a graphic description of the experimental field directions). The plot
illustrates the sensitivity of the Stark-Zeeman map to different field
configurations; see text for details.

field the highest-energy level is twofold degenerate, with
quantum numbers mj = ±1/2. The other states, with larger
|mj |, are Stark shifted relatively far away (down) in energy.
A small magnetic field orthogonal to the electric field couples
electric-field eigenstates with �mj = ±1. This coupling is
most effective between the two states with |mj | = 1/2 (since
these have �mj = ±1 and are degenerate in energy in the
absence of a magnetic field). It splits up the upper two
states into the symmetric and antisymmetric combinations of
mj = −1/2 and mj = +1/2. The downshifted states, with
larger |mj |, are only weakly affected by the magnetic field
(since the magnetic field does not couple within the pair with
the same |mj | > 1/2), and as a result for each |mj | > 1/2 the
two states are nearly degenerate in energy. This analysis is
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FIG. 2. (a) Sketch of the experimental geometry: We excite 87Rb atoms to a Rydberg level using a two-photon excitation scheme with two
counterpropagating 780- and 480-nm lasers. The atoms are magnetically trapped in vacuum ∼100 μm below the surface of an atom chip. The
numbering of the on-chip wires is indicated in the inset. The excitation is done along the axial direction of the cloud during magnetic trapping.
The gray arrows indicate a coordinate system composed of different field components; both (x,y,z) and (x,u,v) are orthogonal systems.
Namely, we call the stray electric field along the long direction of the cloud the parallel component Ex (along the direction of the x axis). We
apply a voltage to wire 4 that changes the field (Eap along the direction of the u axis) at the position of the atoms so we can generate Stark
maps. The produced field is perpendicular to the B field and lies in the yz plane. The stray field in the third direction, labeled Ev (along the
direction of the v axis), is in the yz plane and orthogonal to Eu. (b) Laser scheme for the Rydberg excitation. The intermediate state detuning
from the 5P3/2 state is 100 MHz towards the blue.

important when setting the polarization of our lasers for the
Rydberg excitation in order to select which state we excite in
view of the selection rules. For the sake of simplicity we
will use the zero-electric-field labeling (ZEL) to identify the
various sublevels throughout this paper, even when the electric
field has a nonzero value.

From Fig. 1(a), we see that in the case of perpendicular
fields (red lines), �E ⊥ �B, the energy of the two uppermost
magnetic sublevels first decreases, followed by an increase
in energy at higher fields, thus creating a dip in the Stark
map. The size of this initial dip is very sensitive to additional
(stray) electric fields. In Fig. 1(b) we illustrate this by
showing four different configurations in which we varied the
contributions of residual fields between 0 and 2 V/cm. These
contributions were taken parallel to the magnetic field (Ex) and
perpendicular to both the applied electric field and magnetic
field (Ev); a sketch of the field geometry is shown in Fig. 2(a).
A stray field in the x direction of 2 V/cm already shows a total
disappearance of the local minimum for the top state. More
generally, the precise shape of the Stark-Zeeman map of the top
two states is very sensitive to the strength of the electric-field
components Ex and Ev , enabling the characterization of these
fields. The role of the magnetic field is relevant because its
value defines the energy difference between each magnetic
sublevel at zero electric field, which is the Zeeman shift.
Moreover, Fig. 1(b) shows that this energy difference varies
as the electric field is increased, revealing the importance of
the magnetic-field configuration in the analysis of the data.
Consequently, the combination of electric and magnetic fields
is crucial for the full characterization of residual unknown
stray electric fields.

III. EXPERIMENTAL RESULTS

The experimental setup employs an atom chip [7] to trap and
cool a cloud of Rb atoms in vacuum at a distance of ∼100 μm

from a set of microfabricated gold wires [see Fig. 2(a)]. Our
setup and methods have been described in detail elsewhere
[23–25]. In brief, we start from a cloud of 87Rb atoms loaded
in a mirror-magneto-optical trap (MMOT) with the mirror
formed by the atom chip, a patterned 2-μm-thick gold layer
on a 16 × 25 mm2 silicon substrate. These atoms are then
optically pumped to the |F = 2,mF = 2〉 state and transferred
to a magnetic trap where they are cooled down to ∼2.5 μK
using rf-induced evaporative cooling. The magnetic trapping
is done using a 125-μm-wide on-chip Z-shaped wire [wire
labeled 5 in Fig. 2(a)] carrying a current of 1 A. This final trap
is elongated (cigar shaped), with trap frequencies ωx/2π =
46 Hz and ωy,z/2π = 860 Hz. The bottom of the trap is at B =
3.41 G (corresponding to an rf frequency of 2.39 MHz). After
evaporation there are approximately 104 atoms in the trap. At
T = 2.5 μK the calculated cloud size (FWHM) is 6.8 μm in
the radial directions and 127 μm in the longitudinal direction.
The temperature of the cloud is extracted from a time-of-flight
(TOF) measurement in which the expansion of the cloud is
measured as a function of the time after it was released.

This setup has been extended with a two-photon Rydberg
excitation scheme. We excite atoms from the 5S1/2 ground
state to a Rydberg level via the intermediate state 5P3/2 using a
780-nm infrared laser and a 480-nm blue laser in a 7-ms pulse
during magnetic trapping. Both lasers are aligned along the
long (x) axis of the magnetic trap, and the lasers are frequency
narrowed and stabilized by locking them to a home-built
reference cavity that is described in detail elsewhere [26]. With
this scheme we reach a linewidth �10 kHz for both lasers.
For the Rydberg excitation we use blue and infrared powers
of 90 mW and ∼0.5 μW, respectively. In order to increase
the two-photon Rabi frequency the coupling blue beam is
focused down to a waist of 90 μm. This leads to a blue Rabi
frequency at full power of �c ∼ 10 MHz for the 5P3/2-30S1/2

transition. The infrared beam waist at the position of the atoms
is 520 μm. The detuning to the intermediate 5P3/2 state is
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100 MHz towards the blue for the 780-nm laser to reduce
losses due to intermediate-state scattering. Finally, after the
Rydberg excitation pulse, the remaining ground-state atoms
(Rydberg atoms are lost during the excitation pulse by decay
into nontrapped states) are released and detected after a time
of flight of several milliseconds using absorption imaging.

By scanning the blue frequency across resonance and
measuring the number of remaining atoms as a function of
this frequency we obtain Rydberg loss spectra. In order to
change the electric field at the position of the atoms we
pulse a voltage during the Rydberg excitation. This voltage
is applied to one of the on-chip wires [wire 4 in Fig. 2(a)]
during the magnetic-trapping and Rydberg-excitation phase.
The wire we use to generate the electric field at the position
of the atoms (wire 4) is 10 μm wide, and the distance of its
center from the nearby edge of wire 5 is 35 μm. All the other
wires (except wires 4 and 5) and the silicon substrate are kept
floating. It is important to note that all the wires have a finite
resistance (on the order of 10 k�) to each other via the silicon
substrate [24]. Thus, as we apply a voltage to wire 4, most
of the chip surface shifts voltage towards the voltage of wire
4. The exception is wire 5, where the voltage (and current)
is pinned by the current supply attached to it. To characterize
the voltage distribution across the chip surface we use the fact
that the resulting voltages on most of the wires are accessible
outside the vacuum system via a multipin vacuum feedthrough.
We have measured these voltages under operating conditions
(i.e., with current for magnetic trapping applied to wire 5 and
varying the voltage on wire 4) and found that the voltage on
all the wires (with the already noted exception of wire 5) shifts
roughly linearly with the voltage on wire 4. These voltages
were used to calculate the direction of the applied electric
field (the direction of the u axis in Fig. 2). A further detail
that is relevant is that we found a slight asymmetry in the
measured voltages on the other wires as the sign of the voltage
difference between wire 4 and the center of wire 5 changed
(see Sec. III A).

A. Stark map of the S state

In order to calibrate the relation between the applied voltage
and the locally applied electric field at the position of the
atoms we first measured a Stark map of the 30S1/2 state
by taking Rydberg loss spectra for various applied voltages.
We set the polarization of the blue and infrared lasers to
be σ− and σ+, respectively. We fitted a Gaussian to each
Rydberg spectrum in order to obtain the amplitude, position,
and FWHM of the loss feature. The resonance position and
width of the Rydberg feature are plotted as a function of
the applied voltage in Fig. 3. The vertical bars represent the
FWHM of each feature in the spectrum. As expected, in the
presence of electric field gradients (see Sec. III C), the feature
gets broader as we increase the applied field. We found that the
voltages on the on-chip wires are slightly asymmetric around
the applied voltage on wire 4 Vap. A possible explanation for
this behavior is a leakage current between the chip wires that
is slightly asymmetric in the voltage difference between the
wires. This produces an asymmetry of the shift in frequency
around ∼1.4 V. To account for this we fit separate quadratic
functions with a shared apex to the data in order to produce
a voltage-to-field relation. The quadratic functions smoothly
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FIG. 3. Measured Stark shift and broadening for the 30S state.
We use these measurements to calibrate the actual applied electric
field we are generating at the position of the atoms. The plot shows
the resonance shift of the Rydberg signal at different applied voltages.
The vertical bars are the measured FWHM of each feature obtained
from a Gaussian fit. We fit two quadratic functions to the data in order
to obtain the parameters in Eq. (2); see the main text for details.

connect at the top but have different curvatures. The resulting
fits are shown in Fig. 3. Using the known polarizability of the
30S state [27], we can extract a relation between the applied
voltage and the field generated at the position of the atoms
using

� = − 1
2α30SE

2, (1)

where α30S = 1.39 MHz/(V/cm)2 is the polarizability of the
30S state and � is the energy shift of the Rydberg feature
produced by the presence of an electric field E. Using these
two different fits, we obtained a field-voltage relation of the
form

Eap = ci(Vap − V0). (2)

Here, Eap is the applied field at the position of the atoms,
and ci are two different coefficients depending on which
side of the parabola the applied field is: c1 = 12.4 cm−1

and c2 = 16.4 cm−1 for Vap > −1.37 V and Vap < −1.37 V,
respectively. V0 = −1.37 V is the offset voltage we get for
which the Stark shift is minimal. This voltage is consistent
with the inferred voltage at the center of the trapping wire
[wire 5 in Fig. 2(a)] produced by the current we send through
it to generate the magnetic trap. Note that a small stray field
along the direction of �Eap would lead to a small shift of V0

in the Stark map. In contrast, stray fields in the other two
directions (orthogonal to �Eap) lead to a vertical energy offset
− 1

2α30S(E2
x + E2

v ) in the Stark map of the S state that does
not discriminate between Ex and Ev and that would require an
absolute frequency reference to calibrate.

B. Stark map of the D state

The knowledge of the applied electric field at the position
of the atoms allows us to measure a calibrated Stark map
of the 28D5/2 state. To do so we set the polarization of the
blue and infrared beams to be linearly polarized in such a
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FIG. 4. The 28D5/2-state Stark map of two different sublevels:
The top and bottom curves are the mj = 5/2 and mj = 3/2 sublevels
(ZEL), respectively. The color scale indicates the normalized number
of atoms, normalized to the number of atoms measured when the
Rydberg excitation lasers are off resonance. The measurements were
taken outside the dark red area. We deliberately saturated the upper
sublevel in order to be able to see the other one, which has a much
smaller coupling strength. The white lines are the resulting fitted
curves for the resonance position of each sublevel where the parallel
and perpendicular electric fields are used as fitting parameters (from
the fit we get Ex = 0 V/cm and Ev = 1.98 V/cm, respectively; see
main text for details).

way that we are able to see both the mj = 5/2 and mj =
3/2 states (ZEL). The resulting Stark-Zeeman map is shown
in Fig. 4. We used Eq. (2) to transform the x axis from an
applied voltage to an applied electric field at the position of the
atoms. We fitted two Gaussians to each spectrum for a given
applied field and extracted the main properties of the two
features: amplitude, FWHM, and position. The comparison
of the resonance position obtained from the data with the
calculated ones gives us values for the components of the
stray field Ex (parallel to �B) and Ev (perpendicular to �B and
�Eap). The analysis is based on the shape and the size of the
initial dips in the Stark map (for applied fields �10 V/cm)
which strongly depend on the stray field configuration [see
Fig. 1(b)]. Considering the values obtained for the electric-field
components, we can estimate to what extent the FWHM of
each feature is limited by field gradients.

From the Stark-Zeeman map in Fig. 4 we already see the
initial dip in the energy shift of the resonance of both states,
so we can immediately set an upper limit to the field in the
parallel direction of Ex � 2 V/cm. The coupling strength of
the mj = 3/2 state is much weaker than that of the mj = 5/2
(ZEL), so we have to strongly saturate the latter in order to
see both at the same time. The weak feature has a much more
prominent dip as a function of electric field than the strong one.
Therefore, the simultaneous use of the resonance positions of
both states results in a more accurate analysis of the data.
However, since the mJ = 5/2 state is strongly saturated, it
is not possible to extract an accurate value for the resonance
position of the Rydberg feature. In order to get a better data
set for this state we set the blue and infrared beams to be σ+
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FIG. 5. Rydberg loss spectroscopy of the 28D5/2 state for dif-
ferent applied fields. (a) The top state in Fig. 1(a) considering the
voltage-to-field conversion. The color scale indicates the normalized
atom number in each spectrum; measurements are performed outside
the uniform dark red area. The dashed white line shows the resulting
fitted curve, obtained using only the data within the area of the solid
white line (below 15 V/cm). (b) At Eap ∼ 19 V/cm the Rydberg
feature is asymmetric due to the presence of field gradients. Therefore,
a skewed Gaussian (solid curve) is fit to the data. A small asymmetry is
observed around 0 V/cm; it is due to a slow residual drift of the cavity
to which the Rydberg lasers are locked [26]. (c) The measurement
of the FWHM of the loss feature at different temperatures at an
applied electric field of Eap ∼ 12 V/cm where the Rydberg feature
is symmetric.

polarized, so only the transition to the mj = 5/2 state (ZEL)
is allowed by selection rules. Because this state has a strong
coupling, it is possible to investigate its behavior also at higher
electric fields without losing the signal. The resulting Stark-
Zeeman map is shown in Fig. 5(a). These data are combined
with the previously measured mJ = 3/2 state (ZEL) data and
fitted to the calculated Stark-Zeeman map [Fig. 1(b)] with the
residual electric fields Ex and Ev as fitting parameters. For the
fit we use only data for fields Eap < 15 V/cm, from which we
obtain Ex = 0.0 ± 0.2 V/cm and Ev = 1.98 ± 0.09 V/cm.1

The resulting fitted curves are shown on top of the measured
Stark-Zeeman map as white lines in Figs. 4 and 5(a).

Although the resulting fitted curves show excellent agree-
ment with both sublevels at low field values, Eap < 10 V/cm,

1The stated uncertainties in the fields, �Ev and �Ex , are calculated
assuming that the reduced χ 2 value of the model is 1, χ 2

r = 1. Thus,
�Ev and �Ex are obtained by allowing the χ 2 value to increase by
1 from its minimum value. The more usual approach of extracting
the uncertainty from the inverse covariance matrix on the basis of
the curvatures at the minimum of χ 2 is not applicable because the
dependence of χ 2 on Ex was found to be nonquadratic [28].
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there is a discrepancy at high field values, Eap ≈ 20 V/cm
[see Fig. 5(a)]. We have verified that the frequency difference
between the observed bump at Eap = 20 V/cm and the
observed dip at Eap = 5 V/cm is reproducible and not affected
by slow drifts in the experimental frequency calibration. This
was done by measuring the frequencies of the observed bump
at Eap = 20 V/cm and the observed dip at Eap = 5 V/cm
directly after one another and confirming their vertical spacing
in Fig. 5(a). One source for a reduction in the peak frequency
shift at 20 V/cm is the differential ac Stark shift of the Rydberg
level as the character of the state changes with increasing
applied electric field. We calculated this to give a modest
contribution, a downshift in frequency of ∼0.5 MHz at Eap =
20 V/cm. In short, the discrepancy between our calculation and
the experimental results around Eap = 20 V/cm may be due
to a combination of factors and is still under investigation. This
discrepancy does not affect the determination of Ex and Ev

because it is visible only at high field values (Eap > 15 V/cm),
where small residual fields do not play a role.

C. Electric field gradients

We now focus on possible gradients in the electric field as
a source of broadening in the experimental spectra. Already
from the calculations we can conclude that in the areas where
the Stark shift has an extremum as a function of field the
Rydberg loss feature will become asymmetric. This is due to
the quadratic character of the energy shift around the extremum
and the finite size of the cloud, which means that different
parts of the cloud sample different values of the electric
field. Figure 5(b) shows an example of a spectrum taken
at Eap = 19 V/cm, where the effect of gradients in the
Rydberg spectrum is enhanced due to the high curvature of
the frequency-field relation. From this spectrum it is possible
to see the asymmetry of the signal. This observed asymmetry
supports the assumption that the broadening of the Rydberg
feature is caused by the presence of field gradients at the
position of the atoms.

The above argument implies that the Rydberg feature is
symmetric in the field regime where the energy shift is linear.
This linear regime is a characteristic that is unique for D states
and that can actually be used to extract an approximate value
of the electric field gradient in the volume of the atoms. Due
to the elongated character of the cloud (along x) and the fact
that the applied field is along u (see Fig. 2), the measured
spectra are more sensitive to gradients related to the change
in potential V in the x and u directions in Fig. 2. Thus, our
measurements and calculations are dominated by the gradient,
g = ∂2V/∂x∂u, the variation along the long direction of the
cloud of the field component Eu. To extract this value from the
data we assume a Gaussian density distribution along the long
direction of the cloud, n(x,T ) ∝ exp [−x2/2σx(T )2], with a
size set by the temperature: σx(T ) = √

kBT /mω2
x , where kB

is the Boltzmann constant, m is the atomic mass, and ωx is the
trap frequency in the long direction.

The cloud samples different values of the field, which are set
by the gradient g and the size of the cloud via the expression
δE(x,g) = gx. At the same time these fields are related to
the linear shift in energy via �(x,g) = aδE(x,g), where a =
1.44 MHz/(V/cm) is the slope we get when we fit a line

to the part of the Stark shift of the upper state of the 28D5/2

manifold that has a linear behavior. The FWHM of the Rydberg
spectrum depends on the field gradient, temperature (because
it sets the size of the cloud), and the zero-field linewidth. The
latter corresponds to the linewidth of the spectrum set by any
other mechanism of broadening besides electric-field effects.
In order to extract the gradient, we set the applied electric field
to Eap ∼ 12 V/cm (where the shift is linear with the field)
and vary the temperature by changing the final rf frequency
in the evaporative cooling process. Finally, the FWHM of the
Rydberg loss spectrum is plotted as a function of temperature;
the results are shown in Fig. 5(c). We refrained from using a
fitting function that includes a finite value for the FWHM at
T = 0 K, corresponding to the previously mentioned zero-field
linewidth. This is not necessary in our fit due to the lack of
data points for low temperatures (limited by the signal-to-noise
ratio because of the low atom number); further, it does not
affect the estimate of the gradient because it is mainly set by
the slope of the fitted curve. From our data we obtained a field
gradient of g = 179 ± 9 V/cm2 along the long direction of the
cloud. This is the value for a field gradient that explains the
broadening of the Rydberg feature. In particular, it explains
the increase of the FWHM for higher temperatures shown in
Fig. 5(c). Interestingly, it also allows a comparison with the
maximum widths observed in the S-state spectrum of Fig. 3.
When the applied field dominates over the residual fields,
the width of the spectrum is sensitive to the same electric
field gradient we determined above. The expected FWHM
width of the spectrum when the applied field dominates is
then α30SEapgδx, with δx being the FWHM length of the
cloud. This yields a FWHM of 9 MHz for a wire voltage of
−1.75 V in Fig. 3, consistent with the measured width.

Another reason that might explain the difference between
the model and the experimental data at low temperatures is the
omission of density effects. At low temperatures there is an
important increase in density which means Rydberg-mediated
interactions might be playing a role in the observed width.
Our model does not consider this. However, the value of the
gradient is set mainly by the slope of the curve which is set by
higher-temperature data (T > 2 μK). In this area, the dominant
mechanism of broadening is the effect of gradients, particularly
along the long direction of the cloud. The investigation of
Rydberg-mediated interactions and collective effects at lower
temperatures and higher densities is the subject of further work
and is beyond the scope of the present paper.

IV. CONCLUSIONS AND OUTLOOK

We characterized the vector components of the stray
electric field close to the chip surface in our atom-chip
experiment by comparing calculated S and D Stark-Zeeman
maps with experimental data. We applied a voltage to one of
the on-chip wires in order to generate a field at the position of
the atoms. The field is characterized using a measured S-state
Stark-Zeeman map, which is then used as a tool to calibrate
the field axis of the D-state Stark-Zeeman map. The energy
shift of D states when applying an electric field is nontrivial
and has an initial dip in energy. The minimum of this dip, and
therefore the change in curvature, strongly depends on the
values of stray electric fields along different directions. The
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values of these field components are obtained by fitting the
data to the simulated Stark-Zeeman map. We obtained values
for the residual fields that are relatively small, namely, Ex =
0.0 ± 0.2 V/cm and Ev = 1.98 ± 0.09 V/cm. We attribute
this observed residual field mainly to stray fields produced
by rubidium adsorbates on the surface of the chip. In fact, the
total stray field is about a factor of 2 lower than that observed
at the same distance (100 μm) under similar conditions using
electromagnetically induced transparency [10], where the
field was attributed to rubidium adsorbates on the gold surface.
The lower value we observe may be due to the somewhat
elevated temperature of the current-carrying gold wire in our
system, which should lead to reduced Rb coverage. Another
contribution to the electric field comes from the current-
carrying wire. Within the wire the electric field is given by the
current and the resistivity of the gold wire and is ∼1 V/cm
along the wire (in the x direction). At the position of the atoms
we calculate this to lead to a contribution of ∼0.4 V/cm along
the x direction. Since from the 28D-state spectra we find
Ex = 0 V/cm, this field is apparently compensated by other
contributions to the residual field (likely the Rb adsorbates).

We also made use of the linear response of D states to
applied electric fields. In this region the Rydberg signal is
symmetric, and the increase in linewidth as we increase the
size of the cloud is related to the field gradient at the position
of the atoms. The value of the gradient allows us to set a lower
limit for the linewidth of the Rydberg signal, setting the stage

for future research of Rydberg-mediated interactions in our
setup.

On the one hand, the elongated character of our cloud sets
a limit for the linewidth we can observe due to different parts
of the cloud sampling different fields, but on the other hand, it
has been demonstrated that the one-dimensional character has
advantages when observing Rydberg-mediated interactions
[29]. From this research we can conclude that atom-chip
experiments are a promising tool for the study of Rydberg
systems. The level of on-chip control over the electric fields
demonstrated here is promising for the observation of Rydberg
blockade and Rydberg-mediated interactions in ultracold gases
trapped on a chip, which is relevant for quantum information
science and technology in integrated and compact systems.
The next generation of chips is being designed in which the
stray electric fields along Ex and Ev can be compensated
using electrodes placed as an extra layer on top of the chip.
The characterization of the fields in the new setup will be
done using the electrometry process described in this paper.
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[14] N. Šibalić, J. Pritchard, C. Adams, and K. Weatherill,
arXiv:1612.05529.

[15] M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D.
Cano, and J. Fortágh, Phys. Rev. A 83, 052515 (2011).

[16] W. Li, I. Mourachko, M. W. Noel, and T. F. Gallagher, Phys.
Rev. A 67, 052502 (2003).

[17] J. Han, Y. Jamil, D. V. L. Norum, P. J. Tanner, and T. F. Gallagher,
Phys. Rev. A 74, 054502 (2006).

[18] K. Afrousheh, P. Bohlouli-Zanjani, J. A. Petrus, and J. D. D.
Martin, Phys. Rev. A 74, 062712 (2006).

[19] B. Numerov, Mon. Not. R. Astron. Soc. 84, 592 (1924).
[20] B. Numerov, Astron. Nachr. 230, 359 (1927).
[21] M. L. Zimmerman, M. G. Littman, M. M. Kash, and D.

Kleppner, Phys. Rev. A 20, 2251 (1979).
[22] D. Martin, Proc. Edinburgh Math. Soc., Ser. 2 12, 67

(1960).
[23] A. H. van Amerongen, Ph.D. thesis, University of Amsterdam,

2008.
[24] J. Van Es, P. Wicke, A. Van Amerongen, C. Rétif, S. Whitlock,

and N. Van Druten, J. Phys. B 43, 155002 (2010).
[25] A. H. van Amerongen, J. J. P. van Es, P. Wicke, K. V.

Kheruntsyan, and N. J. van Druten, Phys. Rev. Lett. 100, 090402
(2008).

[26] J. de Hond, N. Cisternas, G. Lochead, and N. J. van Druten,
Appl. Opt. 56, 5436 (2017).

[27] M. S. O’Sullivan and B. P. Stoicheff, Phys. Rev. A 33, 1640
(1986).

[28] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling,
and P. B. Kramer, Numerical Recipes: The Art of Scientific
Computing (Cambridge University Press, Cambridge, 1987).

[29] M. Płodzień, G. Lochead, J. de Hond, N. J. van Druten, and S.
Kokkelmans, Phys. Rev. A 95, 043606 (2017).

013425-7

https://doi.org/10.1103/RevModPhys.85.1083
https://doi.org/10.1103/RevModPhys.85.1083
https://doi.org/10.1103/RevModPhys.85.1083
https://doi.org/10.1103/RevModPhys.85.1083
https://doi.org/10.1088/1367-2630/10/9/093009
https://doi.org/10.1088/1367-2630/10/9/093009
https://doi.org/10.1088/1367-2630/10/9/093009
https://doi.org/10.1088/1367-2630/10/9/093009
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/PhysRevLett.113.053601
https://doi.org/10.1103/PhysRevLett.113.053601
https://doi.org/10.1103/PhysRevLett.113.053601
https://doi.org/10.1103/PhysRevLett.113.053601
https://doi.org/10.1103/PhysRevLett.113.053602
https://doi.org/10.1103/PhysRevLett.113.053602
https://doi.org/10.1103/PhysRevLett.113.053602
https://doi.org/10.1103/PhysRevLett.113.053602
https://doi.org/10.1103/PhysRevA.84.023408
https://doi.org/10.1103/PhysRevA.84.023408
https://doi.org/10.1103/PhysRevA.84.023408
https://doi.org/10.1103/PhysRevA.84.023408
https://doi.org/10.1103/PhysRevA.90.040502
https://doi.org/10.1103/PhysRevA.90.040502
https://doi.org/10.1103/PhysRevA.90.040502
https://doi.org/10.1103/PhysRevA.90.040502
https://doi.org/10.1103/PhysRevA.81.063411
https://doi.org/10.1103/PhysRevA.81.063411
https://doi.org/10.1103/PhysRevA.81.063411
https://doi.org/10.1103/PhysRevA.81.063411
https://doi.org/10.1103/PhysRevA.86.022511
https://doi.org/10.1103/PhysRevA.86.022511
https://doi.org/10.1103/PhysRevA.86.022511
https://doi.org/10.1103/PhysRevA.86.022511
https://doi.org/10.1103/PhysRevLett.116.133201
https://doi.org/10.1103/PhysRevLett.116.133201
https://doi.org/10.1103/PhysRevLett.116.133201
https://doi.org/10.1103/PhysRevLett.116.133201
https://doi.org/10.1088/1361-6455/aa743a
https://doi.org/10.1088/1361-6455/aa743a
https://doi.org/10.1088/1361-6455/aa743a
https://doi.org/10.1088/1361-6455/aa743a
http://arxiv.org/abs/arXiv:1612.05529
https://doi.org/10.1103/PhysRevA.83.052515
https://doi.org/10.1103/PhysRevA.83.052515
https://doi.org/10.1103/PhysRevA.83.052515
https://doi.org/10.1103/PhysRevA.83.052515
https://doi.org/10.1103/PhysRevA.67.052502
https://doi.org/10.1103/PhysRevA.67.052502
https://doi.org/10.1103/PhysRevA.67.052502
https://doi.org/10.1103/PhysRevA.67.052502
https://doi.org/10.1103/PhysRevA.74.054502
https://doi.org/10.1103/PhysRevA.74.054502
https://doi.org/10.1103/PhysRevA.74.054502
https://doi.org/10.1103/PhysRevA.74.054502
https://doi.org/10.1103/PhysRevA.74.062712
https://doi.org/10.1103/PhysRevA.74.062712
https://doi.org/10.1103/PhysRevA.74.062712
https://doi.org/10.1103/PhysRevA.74.062712
https://doi.org/10.1093/mnras/84.8.592
https://doi.org/10.1093/mnras/84.8.592
https://doi.org/10.1093/mnras/84.8.592
https://doi.org/10.1093/mnras/84.8.592
https://doi.org/10.1002/asna.19272301903
https://doi.org/10.1002/asna.19272301903
https://doi.org/10.1002/asna.19272301903
https://doi.org/10.1002/asna.19272301903
https://doi.org/10.1103/PhysRevA.20.2251
https://doi.org/10.1103/PhysRevA.20.2251
https://doi.org/10.1103/PhysRevA.20.2251
https://doi.org/10.1103/PhysRevA.20.2251
https://doi.org/10.1017/S0013091500025220
https://doi.org/10.1017/S0013091500025220
https://doi.org/10.1017/S0013091500025220
https://doi.org/10.1017/S0013091500025220
https://doi.org/10.1088/0953-4075/43/15/155002
https://doi.org/10.1088/0953-4075/43/15/155002
https://doi.org/10.1088/0953-4075/43/15/155002
https://doi.org/10.1088/0953-4075/43/15/155002
https://doi.org/10.1103/PhysRevLett.100.090402
https://doi.org/10.1103/PhysRevLett.100.090402
https://doi.org/10.1103/PhysRevLett.100.090402
https://doi.org/10.1103/PhysRevLett.100.090402
https://doi.org/10.1364/AO.56.005436
https://doi.org/10.1364/AO.56.005436
https://doi.org/10.1364/AO.56.005436
https://doi.org/10.1364/AO.56.005436
https://doi.org/10.1103/PhysRevA.33.1640
https://doi.org/10.1103/PhysRevA.33.1640
https://doi.org/10.1103/PhysRevA.33.1640
https://doi.org/10.1103/PhysRevA.33.1640
https://doi.org/10.1103/PhysRevA.95.043606
https://doi.org/10.1103/PhysRevA.95.043606
https://doi.org/10.1103/PhysRevA.95.043606
https://doi.org/10.1103/PhysRevA.95.043606



