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Semiclassical dynamics of excess quantum noise
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A semiclassical theoretical framework is presented to describe the essential features of the excess quantum
noise that occurs in systems with nonorthogonal eigenmodes. Excess noise is shown to be always spectrally
colored, instead of white, so that the Petermann excess noise factor is best written asK(v) instead ofK. The
consequences of this spectral coloring are analyzed for lasers, both below and above the lasing threshold.
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I. INTRODUCTION

The fluctuation-dissipation theorem states that noise
damping go together and that systems that are open to
outside world will inevitably experience noise input fro
this outside world. This also applies to quantum-mechan
systems, where the fluctuation-dissipation theorem is lin
to the discrete nature of the excitation or, equivalently,
commutation behavior of the creation and annihilation ope
tors @1#. A well-studied example of quantum noise is th
spontaneous-emission noise in lasers@2,3#. When the optical
modes in the laser are orthogonal, this noise amounts e
tively to ‘‘one photon per mode.’’ When the modes are no
orthogonal the amount of noise will be enhanced by the
cess noise factorK, which expresses that there are effective
‘‘ K noise photons’’ in the lasing mode@3#. The reason for
this noise enhancement is purely geometrical; the noise
jection into each mode may be enhanced, but the integr
spontaneous-emission rate will not change, as the noise
puts in these nonorthogonal modes are correlated@4#.

Experimentally the existence of excess quantum nois
well established. For lasers with nonorthogonal eigenmo
several studies@5–11# have shown how the fundamental l
ser linewidth, which is due to laser phase diffusion, is e
hanced by an excess noise factorK with respect to the so
called Schawlow-Townes limit. Similar noise enhanceme
have been observed in the laser intensity fluctuations@12#.
Excess noise is quite universal. It has been observed for
orthogonal longitudinal modes in cavities with large outco
pling (K long'7) @5,6#, for transverse modes in unstable ca
ties (K trans'500) @12–15#, or stable cavities with large
diffractional outcoupling (K'13) @7–9#, and for polariza-
tion modes (Kpol'60) @10,11#. In all these cases the mod
nonorthogonality is related to and enforced by ‘‘anisotro
in the net losses,’’ which can exist either in the longitudin
or transverse direction in real space, or in the polarizat
direction.

In this paper we will show that the geometric descripti
of excess noise is too simple and that the excess noise fa
rather acts as a frequency-dependent multiplierK(v), i.e.,
that excess noise is spectrally colored. So far, this spe
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coloring has been only briefly discussed in the literature, a
mainly for the two-mode case@16–19#. Here we will give a
systematic and general description using a semiclass
framework, where the field is treated classically and
quantum noise enters as a Langevin noise source. The re
that the spectral coloring is often overlooked is that one g
erally assumes one mode to dominate over all others,
thus neglects the dynamics of weak nonorthogonal s
modes. It is the correlated dynamics in these side modes
projects into the measurement direction, and can thereby
tially cancel the excess noise. These projections can be
tively strong as they correspond to a type of heterodyn
and are therefore first order in the side-mode amplitu
Spectral coloring shows up in our treatment because we
plictly take into account the time dependence of all s
modes and thereby go beyond the standard geometric pic
of excess noise@3#.

From a physical point of view it is not the noise input th
is enhanced, but rather the sensitivity of the system to s
cific noise inputs. In the geometric picture of excess no
this is not immediately obvious as one considers only
dynamics of the dominant mode and projects the input no
from its creation onto the adjoint of this mode. In this pap
we will keep track of all modal amplitudes and project on
the measurement direction only after the system evolut
The notion that the fluctuations in the system variables a
from the combined action of noise input and system dyna
ics is therefore an implicit part of our description. In Sec.
we will introduce a general mathematical framework f
noise in nonorthogonal systems, which is based on a lin
ized description in anN-dimensional state space. In Sec.
we take several points of view to show that all excess no
is spectrally colored. In Sec. IV we discuss the implicatio
for laser dynamics, while Sec. V contains a concluding d
cussion.

II. GENERAL FORMALISM FOR EXCESS NOISE

A. Introducing the problem

Although excess quantum noise has been studied only
lasers, it should occur in any noise-driven system with n
orthogonal eigenmodes. As a general problem we cons
the noise-driven dynamics of a system with states that ca
characterized by a state vectorux& in an N-dimensional state
space. The noise-free evolution ofux& is taken to be time
-
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independent and linear because the system dynamics is e
linear or has been linearized around the steady state~see also
Sec. IV D!. The noise-driven dynamics of our system
given by

d

dt
ux~ t !&52 iHux~ t !&1u f ~ t !&, ~1!

where2 iH is the~linearized! evolution operator, and wher
u f (t)& is a Langevin type, i.e., spectrally white, noise sour
The time-correlation operator of this noise source is assu
to be given by

u f ~ t1!&^ f ~ t2!u52Dd~ t12t2!, ~2!

whereD is the Hermitian diffusion operator, which corre
sponds to a frequency-correlation operator and power s
tral density operator of

u f ~v1!&^ f ~v2!u54pDd~v12v2!, ~3a!

Su f &^ f u5u f ~v!&^ f ~v!u[
1

2p E
2`

`

dv8u f ~v!^ f ~v8!u52D,

~3b!

where^ f u[u f &† andu f (v)& are the Hermitian conjugate an
Fourier transform ofu f (t)&, respectively, where the singl
overline denotes ensemble~or time! averaging, and where
the overline over frequency-dependent quantities should
interpreted as power spectral densities as in Eq.~3b!. Note
that our notation in terms of ketsux& and u f & and linear
operatorsH andD, is of course equivalent to a descriptio
that uses vectorsxW and fW and matricesH and D; the bra

^xu5ux&† corresponds to the row vectorxW†, which has con-
secutive elements that are the complex conjugates of th
ements of the column vectorxW .

In the following sections we will use Eq.~1! as a genera
and compact description of laser dynamics, in which case
variablesux& and u f & specify the~slowly varying component
of the! intracavity optical field and noise field, respective
in the state space of all optical modes. The intracavity opt
field ux& can be specified to various levels of accuracy. F
lasers with very lossy mirrors or apertures one should spe
its complete spatial profile, thus opening the possibility
incorporate the longitudinal excess noise factor in the
scription. For lasers with high-reflecting mirrors the fie
changes per round trip are limited, so that it is sufficient
specify the transverse and polarization profile of the opt
field in one specific transverse plane.

Equation~1! contains the essential ingredients for the ge
eration and spectral coloring of excess noise. It gives a c
plete description of the field dynamics in a laser that opera
sufficiently below threshold, where the laser acts as a reg
erative amplifier of input noise, operating at fixed populati
inversion. It also gives a proper description for a laser op
ating above threshold, where the nonlinear process of op
saturation becomes important. However, this description
then incomplete, as Eq.~1! has to be supplemented with
description of the specific population dynamics. Still, the g
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neric structure of Eq.~1! remains intact, and contains th
essentials of excess noise, when we let the evolution ma
H depend on the atomic populations~see Secs. IV B–IV D
for details!.

There are two alternative descriptions for the optical fie
dynamics in the laser cavity. Instead of using theevolution
matrix 2 iH, we could have equally well worked with th
round-trip matrixM, which relates the intracavity field afte
consecutive roundtrips and which for high-reflecting mirro
is equal toM5exp(2iHT), T being the round-trip time. As
a third alternative we could have used thescattering matrix
S, which relates the incoming field~read ‘‘vacuum fluctua-
tions’’! to the outgoing field@20#. All three descriptions in-
volve the same aspects of mode nonorthogonality and
ored excess noise. We have chosen to describe our lase
semiclassical way with the help of the evolution matr
2 iH because~i! this matrix is directly linked to the time
evolution,~ii ! this description uses the same intracavity fie
that determines the optical saturation, in contrast to the
ternal fields that appear in the scattering formalism, and~iii !
a full quantum-mechanical description of optical saturation
too complicated anyhow.

The essentials of excess noise are contained in the~eigen-
modes and eigenvalues of the! evolution matrix2 iH. If the
matrix H is Hermitian, its eigenmodes form an orthogon
basis and theN-dimensional Eq.~1! can be solved trivially,
because it separates toN simple one-dimensional problems
as the orthogonal projections of the noise sourcesu f & are
uncorrelated. If the matrix2 iH is non-Hermitian, as is gen
erally the case for open or lossy systems, the eigenmodes
be nonorthogonal@21#, in which case the solution is les
trivial as theN-dimensional problem does not separate, a
excess noise will develop. It is then convenient to sepa
the evolution matrix, via2 iH52 iH02A, in a ‘‘disper-
sive,’’ i.e., energy-conserving partiH0, and an ‘‘absorp-
tive,’’ i.e., energy-nonconserving part2A52L1G, where
the submatricesH0 , A, L, and G are all Hermitian, and
where the latter two characterize the loss and gain, res
tively.

The diffusion matrixD plays no essential role in the gen
eration process of excess noise, as it only specifies
strength and modal distribution of the Langevin-type no
input. The fluctuation-dissipation theorem imposes
~operator-type! relation between the diffusion matrixD and
the energy-nonconserving term2L1G in the evolution ma-
trix iH. Just as for the one-dimensional case@22,23#, the
semiclassicalN-dimension fluctuation-dissipation theore
will depend on the chosen ordering of the quantu
mechanical operators. However, differences between
various semiclassical treatments, as derived from differ
operator orderings, can be neglected for lasers operating
too far above threshold, as they arise from ‘‘reflect
vacuum fluctuations’’@24# and give corrections of the orde
of shot-noise level. For symmetric operator ordering a
complete population inversion theN-dimensional version of
the fluctuation-dissipation theory reduces to the simple
pression 2D5L1G, as can be deduced from calculatio
based on the concepts discussed in Ref.@25#. For normal
operator ordering, where all noise can be attributed to sp
1-2
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SEMICLASSICAL DYNAMICS OF EXCESS QUANTUM NOISE PHYSICAL REVIEW A63 043801
taneous emission, the diffusion operatorD can be calculated
from the modal projections of a position-dependent no
source that is proportional to the local excited-state pop
tion N2(rW).

In many practical lasers the diffusion operatorD is very
simple and approximately isotropic over the relevant par
state space, as both loss matrixL and gain matrixG have this
property. Of course, small deviations from perfect isotro
are still needed to produce the mode coupling required
mode nonorthogonality, but these deviations can be and
in fact typically small. As the mode~non!orthogonality is
determined by the relation betweenH0 and 2L1G, it em-
phasizes small differences betweenL and G, whereas the
input noiseD}L1G is hardly sensitive to these difference

B. Formal solution and eigenmodes

Starting fromux(t52`)&50, the formal solution of Eq.
~1!, in either the time or frequency domain, is

ux~ t !&5E
0

`

dt e2 iHt u f ~ t2t!&, ~4a!

ux~v!&5
1

i ~H2v!
u f ~v!&. ~4b!

The corresponding time-correlation matrix and power sp
tral density matrix are

ux~ t1!&^x~ t2!u5Q~ t12t2!e2 iH(t12t2)C
1Q~ t22t1!CeiH †(t22t1), ~5a!

ux~v!&^x~v!u5~H2v!21 2D ~H †2v!21, ~5b!

whereQ(t) is the Heavyside function, and where the He
mitian operator

C5E
0

`

dt e2 iHt 2D eiH †t ~6!

characterizes the mean fluctuations or the fluctuation p
ability distribution. The general Eqs.~5! can be found in at
least one textbook@26#. It is therefore somewhat surprisin
that their implications to the existence of excess noise an
spectral coloring has been discussed only recently@16,19#.

In the above rather abstract notation one opera
ux(t1)&^x(t2)u, describes all fluctuations and correlations
the system. In this notation the observation on a single v
able, being a linear combination of the system’s degree
freedom, corresponds to a projection in state space onto
‘‘measurement direction’’um&. The time-correlation function
of this measured variable is simply given by

^mux~ t1!&^x~ t2!um&

^mum&
, ~7!

while the corresponding power spectrum is obtained b
similar sandwich construction. Whenux& denotes the optica
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field, these sandwich constructions are the time and
quency representations of the optical spectrum as meas
after projection onto theum& direction in state space, wherea
the inner product̂x(t)ux(t)& denotes the total intensity in a
modes.

The possibly non-Hermitian character of the operatorH
can produce rich system dynamics. This is best appreci
by the introduction of the ‘‘left and right’’ eigenstates as

Huui&5~v i2 ig i !uui&, ~8a!

^v i uH5~v i2 ig i !^v i u, ~8b!

where each eigenvalue has been separated into a frequ
v i and damping rateg i and whereuui& and uv i& are the
corresponding eigenstate and its adjoint. By sandwiching
erator H between adjoint modes and eigenmodes one
immediately show that the sets$uui&% and $uv i&% are bi-
orthogonal when the eigenvalues are nondegenerate. U
the standard assumption that these eigenstates form a
plete set, and normalizing them such that^v i uuj&5d i j , we
can rewrite the unity operator and system operator as

Î 5(
i

uui&^v i u5(
i

uv i&^ui u, ~9a!

H5(
i

~v i2 ig i ! uui&^v i u. ~9b!

For later convenience we will also normalize the eigenv
tors via ^ui uui&51. This fixes the normalization of̂v i zv i&
> z^ui uv i& z2/^ui uui&51.

C. The standard result of nonorthogonality theory

With the eigenmodes introduced above we can give
more physical interpretation to the abstract result of Eqs.~5!.
For this we expand the state vector in the system’s eig
modes as

ux~ t !&5(
i

ai~ t !uui&. ~10!

Substitution into Eq.~1! and projection onto the adjoin
modeŝ v j u yields the evolution of the expansion coefficien
ai(t)5^v i ux(t)&

d

dt
ai~ t !52~g i1 iv i !ai~ t !1^v i u f ~ t !&. ~11!

The various correlation functions can be found after form
solution, or directly by sandwiching Eqs.~5! between two
adjoint modes. In both cases the power spectrum

ai~v!aj* ~v!5^v i ux~v!&^x~v!uv j&

5
^v i u2Duv j&

@g i1 i ~v i2v!#@g j2 i ~v j2v!#
~12!
1-3
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M. P. van EXTERet al. PHYSICAL REVIEW A 63 043801
shows how the eigenmode amplitudes are driven by pro
tions of the diffusion operatorD onto theadjoint modesuv j&
instead of onto the eigenmodesuuj&. For a system with non-
orthogonal modes the fluctuations in the expansion coe
cientsai can therefore be much larger than in an orthogo
system, aŝv i uv i&>^ui uui&51.

Two assumptions are needed to derive the standard r
of excess noise, being a simple enhancement of the proje
noise power by a geometric factorKn . First, one has to
assume that the diffusion operatorD is sufficiently isotropic
in state space, which for a laser means that one assume
the spontaneous-emission noise contributes evenly to
various relevant eigenmodes. In this case, one can seD
5DÎ and rewrite^vnuDuvn&5DKgeo,n @27#, where

Kgeo,n5^vnuvn& ~13!

is the usual geometric excess noise factor of thenth eigen-
mode@3#, which has been given an additional subscriptgeo
to contrast it with the frequency-dependent excess noise
tor Kn(v) introduced in Sec. III. Second, one generally a
sumes that one specific eigenmoden dominates over all oth-
ers, because it experiences considerably less damping
the others, i.e.,g i@gn>0. In this case, it seems reasonab
to neglect the modal amplitudes of the other~weakly excited!
eigenmodes, so thatux(t)&'an(t)uun&. The fluctuations in
the dominant modeuun& are then fully determined byan(t)
and seeded only by the noise projection in the ‘‘adjoin
direction uvn&. Together, these two assumptions yield t
standard excess noise factorKgeo,n @3,28,29#.

In the present paper we will retain the first assumption
almost isotropic diffusion, but relax the second assumpt
of modal dominance. We will show how even weakly e
cited eigenmodes can significantly alter the projected no
characteristics, basically because their amplitude fluctuat
are correlated with the main mode@see Eq.~12!# so that
effects already occur to first-order in side-mode amplitude
second argument to explain the surprisingly strong influe
of even relatively weak side modes is that their relatively f
dynamics (g i@gn>0) enhances their contribution to th
time-correlation function at short times, i.e., large freque
cies. As a result of the side-mode dynamics, the amoun
excess noise can differ from the geometric factorKgeo,n and
its strength will always depend on the observation freque
and bandwidth, i.e. excess noise is spectrally colored.

It is interesting to note that the dynamics of the mod
amplitudean can be observed in a pure form, i.e., witho
admixture of other modal amplitudes, by direct projection
the adjoint directionuvn&. Moreover, such a projection ex
hibits no excess noise, as the projected fluctuations shou
normalized by the same quantitŷvnuvn& that generates
Kgeo,n @see Eq.~7!#. This shows that excess noise is not
result of the ‘‘adjoint projection’’ by itself, which reduce
the noise-driven dynamics of the full system to the sim
one-dimensional problem of Eq.~11!, but rather of the inter-
pretation ofan(t) as the amplitude in the eigenmode dire
tion uun& instead of the adjoint directionuvn&. As excess
noise is only observed for measurements in some direct
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in state space, but not for others it is not unreasonable
state that ‘‘all excess noise is a form of projection noise
Still, some projections appear naturally in the experime
~lasers, for instance, automatically choose the domin
eigenmode for laser action!, whereas other projections nee
more experimental effort, like strong suppression of the l
ing mode to admix sufficient power from weak side mode

III. EXCESS NOISE IS SPECTRALLY COLORED

A. Derivation of colored excess noise

In the rest of the paper we will discuss some gene
aspects of measurements in the direction of eigenmodeuun&;
such projections occur quite naturally as one generally m
sures specifically on the dominant~lasing! mode. As men-
tioned above, a projection onto the eigenmodeuun& will not
only give the amplitudean , but also a projected fraction o
the coefficientsai ( iÞn) of the other nonorthogonal mode
as

^unux&5an1(
iÞn

ai^unuui&. ~14!

By combining Eqs.~12! and~14! the general power spectrum
for a measurement in theuun& direction can be written as

^unux~v!&^x~v!uun&

5(
i , j

^unuui&^uj uun& ai~v!aj* ~v!

5
^vnu2Duvn&

@~vn2v!21gn
2#

1(
iÞn

ReF ^unuui& ^v i u4Duvn&
@g i1 i ~v i2v!#@gn2 i ~vn2v!#G

1(
iÞn

(
j Þn

^unuui& ^v i u2Duv j& ^uj uun&
@g i1 i ~v i2v!#@g j2 i ~v j2v!#

,

~15!

where Re denotes the real part. A direct projection of
general result Eq.~5! onto the eigenmode directionuun&
yields the same result.

When the diffusion operatorD is sufficiently isotropic in
state space, so thatD'DÎ , the first term in the right-mos
part of Eq.~15! reduces to the standard result foruan(v)u2: a
Lorentzian spectrum with a strength that is enhanced b
factor Kgeo,n due to excess noise. The two other terms
corrections to this result due to the projected contributio
from other~nonorthogonal! eigenmodes. For the typical situ
ation, where one modal amplitudean is much larger than all
others, we have separated these corrections into terms
contain only one ‘‘side-mode amplitude’’ai ( iÞn) and oth-
1-4
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SEMICLASSICAL DYNAMICS OF EXCESS QUANTUM NOISE PHYSICAL REVIEW A63 043801
ers that contain two side-mode amplitudes. The first-or
term can be viewed upon as a kind of heterodyning betw
the dominant mode and the side modes. Its relative imp
tance depends crucially on the frequency difference of th
modes as compared to their damping rate difference. T
first-order corrections exist at all already shows that it mi
be difficult to downplay the importance of the side mod
These corrections are the prime cause of the spectral colo
discussed below.

Although Eq. ~15! gives a complete description of th
projected power spectrum, it is often not the most conven
one, as the fluctuating modal amplitudesai can be strongly
correlated. For a measurement in the eigenmode direc
uun& it is often more convenient to remove part of the
correlations, by combining the noise sources into two unc
related parts: one projection in the eigenmode directionuun&
and a complementary projection in the orthogonal subsp
of all adjoint modesuv i& ( iÞn). After substituting the ex-
pansion~10! in the right-hand side of Eq.~1!, one obtains the
following time evolution:

d

dt
^unux~ t !&52~gn1 ivn!^unux~ t !& 1 f n~ t !1gn~ t !,

~16!

where f n(t)[^unu f (t)& is the usual spectrally white-nois
source, which exhibits no excess noise, whereas the se
-
in
n
d
io
th

l

b
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gn~ t ![(
iÞn

@~gn2g i !1 i ~vn2v i !# ^unuui&ai~ t !

5(
iÞn

@~gn2g i !1 i ~vn2v i !# ^unuui&

3E
0

`

dt ^v i u f ~ t2t!&e2(g i1 iv i ) t ~17!

contains all excess noise effects.
Equation ~17! demonstrates that the excess noisegn(t)

may be viewed upon as a delayed response in theuun& direc-
tion from white noise that was originally projected in th
adjoint directionsuv i& ( iÞn). Such a delayed response
known to transform white noise into spectrally colored noi
where the spectral coloring is given by the Fourier transfo
of the memory kernel in Eq.~17!. It generally appears when
a system of many coupled degrees of freedom is reduced
few or rather a single variable, where we note that a giv
spectral coloring can also be removed by the reverse proc
i.e., by the introduction of new variables into a stochas
rate equation containing colored noise@30#. The noise source
gn(t) is uncorrelated withf n(t) as it is built up from projec-
tions of u f (t2t)& onto all other (iÞn) adjoint, i.e., orthogo-
nal, directions. Due to its delayed response the noise so
gn(t) is spectrally colored by the dynamics of all other d
grees of freedom. More specifically, its power spectrum
given by
ugn~v!u25(
iÞn

(
j Þn

@~g i2gn!1 i ~v i2vn!# @~g j2gn!2 i ~v j2vn!# ^unuui&^uj uun&ai~v!aj~v!*

5(
iÞn

(
j Þn

@~g i2gn!1 i ~v i2vn!# @~g j2gn!2 i ~v j2vn!#

@g i1 i ~v i2v!# @g j2 i ~v j2v!#
^unuui&^v i u2Duv j&^uj uun&. ~18!
mp-
y-
both
. A
uc-
the

or-
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a
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Equation~18! is the key equation for the coloring of ex
cess noise. It shows how excess noise is not only determ
by the geometry of the eigenmodes, i.e., by the various in
products, but also by the system’s dynamics, as describe
the prefactor with the various eigenvalues. This equat
only reduces to the standard result when we resort to
standard assumption@3# that one specific eigenmoden domi-
nates over all others because it experiences considerably
damping than the others, i.e., when we takeg i@gn>0. In
this case the prefactor with the various eigenvalues will
approximately unity around the observation frequencyv
'vn . When we further assume the diffusion operatorD to
be isotropic in state space, the double summation in Eq.~18!
simplifies to

ugn~v'vn!u252D~Kgeo,n21!, ~19!

where we have used the completeness relation of Eq.~9a!
and the geometric excess noise factorKgeo,n of Eq. ~13!.
ed
er
by
n
e

ess

e

For the general case, where the above ‘‘standard assu
tion’’ might not be valid, one should include the frequenc
dependent prefactors in the summation. This can change
the magnitude and behavior of the excess noise factor
convenient way to parametrize these changes is by introd
ing a frequency dependence, i.e., spectral coloring, to
excess noise factor via

ugn~v!u2

u f n~v!u2
[Kn~v!21. ~20!

By rewriting the new excess noise factor as 11@Kn(v)
21# we want to stress that the noise separates into a ‘‘n
mal’’ and an ‘‘excess’’ contribution, and that the latter
spectrally colored, as it originates from projections into
subspace orthogonal to the measurement directionuun&,
which take time to evolve into the measurement direct
@see Eqs.~17! and~18!#. The new excess noise factorKn(v)
1-5
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can differ substantially from the geometric valueKgeo,n
when side modes of reasonable power and nonorthogon
are present close to the dominant modeuun&. Sufficient over-
lap between the eigenmodes is clearly a necessity to ob
excess noise@20#. Only when one mode dominates over a
others, and when we choose our observation frequency c
to the resonance of that mode, i.e.,v'0 ~in the rotating
basis wherevn50), do the two excess noise factors coinci
Kn(v'0)5Kgeo,n . For frequencies much larger than th
system’s response, the colored excess noise will always
appear, i.e.,Kn(v→`)51, as ugn(v)u2 decreases rapidly
for (v2vn)@(v i2vn),(g i2gn) @see Eq.~18!#. Equiva-
lently, one can say that the slope of the time-correlat
function for a very short time scale@small ut12t2u in Eq. ~7!#
does not yet notice the presence of excess noise, as it t
time for the excess noise to develop.

B. The Gramm-Schmidt normalized basis

A description in the eigenmode basis has the advan
that the dynamics of the modal amplitudes becomes sim
but the disadvantage that a measurement will gener
sample a linear combination of these amplitudes so that fi
order interference effects often show up. In Sec. III A w
tried to remove some of these effects by separating the n
sources into two partsf n(t) and gn(t), being parallel and
perpendicular to eigenmodeuun&. We will now go one step
further by introducing a convenient orthogonal basis for o
dynamic description. This orthogonal basisuci& can be cre-
ated from the eigenmodesuui& by a Gramm-Schmidt or-
thogonalization procedure, where we takeuc1&5uu1& as the
~dominant! mode under observation,uc2& proportional to that
part of uu2& that is orthogonal touu1&, i.e., uc2&}uu2&
2^u1uu2&uu1&, uc3& proportional to that part ofuu3& that is
orthogonal to bothuc1& and uc2&, and likewise for all other
basis vectorsuci&, and where we normalize tôci ucj&5d i j .
When we decompose the state vector in this convenient
thogonal basis, viaux(t)&5( ici(t)uci&, we find that the evo-
lution of the coefficientsci(t) is described by the following
triangular matrix equation@31#:

d

dt S c1~ t !

c2~ t !

c3~ t !

•••

D
5S 2~g11 iv1! k12 k13 •••

0 2~g21 iv2! k23 •••

0 0 2~g31 iv3! •••

••• ••• ••• •••

D
3S c1~ t !

c2~ t !

c3~ t !

•••

D 1S h1~ t !

h2~ t !

h3~ t !

•••

D , ~21!

where the Langevin noise sourceshi(t)5^ci u f (t)& are spec-
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trally white and uncorrelated, as theuci& basis is orthogonal,
and have equal strength whenD is isotropic. Note how the
elementŝ ci u2 iHucj& of the evolution matrix are such tha
the eigenvalues of2 iH appear as on-diagonal elements. T
lower off-diagonal elements are all zero due to the Gram
Schmidt procedure, which results in^ci uuk&50 for i .k, but
the upper off-diagonal elements are generally nonze
Grangier and Poizat@18# have introduced the term ‘‘loss
induced coupling’’ to describe the role of these upper o
diagonal elements in the non-Hermitian character of the e
lution. However, in the present semiclassical description i
better to drop the label ‘‘loss-induced,’’ as the Hermitian a
anti-Hermitian parts of the evolution are on equal footin
the coupling can be removed both for the case of pure H
mitian and pure anti-Hermitian evolution, and even for so
special case in between~see Sec. III C!. Note that the cou-
pling constantsk i j can be easily rewritten in the eigenmod
and adjoint basis with the help of Eq.~9b!.

The top row of Eq.~21! describes the noise-driven dy
namics of the amplitude of eigenmodeuu1&5uc1& via

d

dt
c1~ t !52~g11 iv1!c1~ t !1 f 1~ t !1(

i>2
k1ici~ t !,

~22!

where we recognize the earlier separation into two no
sourcesf 1(t)5h1(t) andg1(t) @see Eq.~16!#. The additional
~excess! noise sourceg1(t) is again attributed to fluctuation
in the orthogonal subspace that evolve into the measurem
direction uu1& due to the non-Hermitian character ofH. The
evolution in this orthogonal subspace is independent of
amplitudec1 in the measurement direction, as the first c
umn of the evolution matrix in Eq.~21! contains only zero’s,
apart from it’s upper element. As this coupling has a we
defined direction, the strength and spectral coloring of
excess noise sourceg1(t) is independent of the dynamic
~read ‘‘eigenvalues’’! of the eigenmodeuu1&.

C. Excess noise and the ‘‘maximum emission principle’’

Now that we have interpreted the generating mechan
of excess noise as the evolution of fluctuations out of
orthogonal subspace into the measurement direction,
may wonder why these first-order effects occur in syste
with nonorthogonal eigenmodes but not in orthogonal s
tems. To explain this difference we will again separate
evolution operator as2 iH52 iH02A, where the ‘‘disper-
sion’’ H0 and ‘‘absorption’’ A5L2G are both Hermitian
operators. When these two operators commute, via@H0 ,A#
50, they will have a joint~orthogonal! eigenbasis and ther
is no excess noise; this is, for instance, the case when e
the absorption or the dispersion are fully isotropic in st
space. When these operators do not commute, excess
will develop as the~orthogonal! eigenbases ofH0 andA will
differ and the eigenmodesuui& of the combined evolution
‘‘look for a compromise between both evolutions’’ via

2 iH0uui&52 iv i uui&1ubi&, ~23a!

2Auui&52g i uui&2ubi&, ~23b!
1-6
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for some ubi&Þu0&. This strongly suggests that the size
ubi& is a measure for the amount of excess noise.

The eigenmodes$uui&% of the combined evolution, which
are now generally not orthogonal to each other, will diff
from the eigenmodes of the ‘‘absorption operator’’A, so that
the dominant eigenmode will generally differ from the sta
in state space that experiences maximum gain. One m
therefore say that lasers with nonorthogonal eigenmodes
late the ‘‘maximum emission principle,’’ which can be e
pressed as the ‘‘natural tendency of the laser to extrac
much of its stored energy as possible’’@32#. Excess noise
appears precisely in systems where the dominant eigenm
differs from the state of maximum gain~not an eigenmode!,
as small noise-induced deviations from the eigenmode
then already lead tofirst-ordercorrections in the experience
gain. In systems with orthogonal eigenmodes, where
dominant eigenmode does coincide with the state of m
mum gain, similar deviations will produce onlysecond-order
effects and can thus generally be ignored.

The above argument brings us to the essence of ex
noise and to the concept of ‘‘injected-wave excitation
@3,28#, which is based on the notion that fluctuations ori
nate from the combined result of noise injection and sys
evolution. From this point of view, one might wonder whic
type of injected wave produces the maximum system per
bance or in other words, ‘‘in which directionum& should we
inject a signal of unity strength to have a maximum effect
the observation directionuu1&?’’ The answer to this question
depends not only on the mode nonorthogonality, but also
the various eigenvalues. When the mode under observa
dominates over all others, with as limiting caseg150, the
best excitation is obtained for injection in the adjoint dire
tion uv1&. This adjoint injection will produce a more efficien
excitation of the low-loss eigenmodeuu1& than, e.g., direct
injection will, basically because it contains a largeruu1&
component on top of a series of other modal components
decay much more rapidly. Equivalently, one might say t
when the adjoint injection is added as a perturbation to
eigenmode it will give the largest first-order corrections
the experienced gain. When the mode under observa
does not dominate completely, the situation is more com
cated and the amount of excess noise will differ from
geometric value@see Eq.~18! and Fig. 1#.

Figure 1 illustrates the concept of injected-wave exc
tion for a simple two-dimensional~real-valued! state space
with two nonorthogonal eigenmodesuu1&5uW 1 anduu2&5uW 2,
and two adjoint modeuv1&5vW 1 anduv2&5vW 2 ~note that these
modes satisfy the biorthogonality relation^v i uui&5d i j ). As
mentioned above, the key idea is that the evolution a
excitation by noise will generally depend on the noise ‘‘d
rection’’ in state space. Excitation in the direction of a pu
eigenmode will result in a simple exponential decay alon
straight line towards equilibrium. Excitation in other dire
tions will lead to a more complicated evolution, as these s
vectors decompose into both eigenmodes, which evolve
different eigenvalues. The adjoint direction plays a spe
role in this description. When the dominant eigenmode
periences~virtually! no damping, i.e., wheng150, it can be
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optimally excited by injection into theuv1& direction. The
reason why this injection is more efficient than direct inje
tion is that the state vector passes through a region of
gain, before it projects onto the eigenmodeuu1&. When the
weaker mode cannot be neglected, i.e., when the stro
eigenmode also experiences considerable damping, injec
into the adjoint direction might not be the most efficient o
~see below!.

Figure 1 also shows the time evolution after injection
the uv2& direction, i.e., orthogonal to the eigenmodeuu1&.
The dotted curve again shows the evolution for the caseg1

50, where the projected amplitude isAKgeo21; the solid
curve shows the evolution for the caseg2.g1.0. These
traces clearly demonstrate the two subtleties that are ge
ally overlooked in the geometric description of excess no
First, we note that the excess noise takes time to develo
takes a certain time ('1/g2) for the injected noise in the
adjoint directionuv2& to evolve and project onto the eigen
mode directionuu1&. This finite response time produces
spectral coloring of excess noise. Second, we note that
for g150 will the final projected noise amplitude for or
thogonal injection be equal toAKgeo21. Forg1Þ0 the sys-
tem evolution will follow a curve like the solid one in Fig. 1
which does not reach the maximum projected amplitude
AKgeo21. Integrated over all possible noise directions th
will make the actual low-frequency excess noise fac
K1(v'0) smaller than its geometric valueKgeo,1 .

IV. APPLICATION TO LASER DYNAMICS

A. Laser below threshold

The general formalism of excess noise can be easily
plied to a laser, whereux& represents the optical field, if we
neglect optical saturation and treat the laser as a regener
amplifier of input noise, i.e., an amplifier with fixed gain. I
the geometric picture of excess noise, where one only c
siders the evolution of the coefficienta1 of the dominant

FIG. 1. Sketch of two nonorthogonal eigenvectorsuW 1 ,uW 2, and

their adjoint vectorsvW 1 and vW 2. The dotted lines depict the evolu

tion, after unity excitation in the adjoint directionsvW 1 and vW 2, for
the caseg2.g150, whereg i is the loss rate of modei. The solid
curve depicts the evolution, after unity excitation in the directi

vW 2, for the caseg2.g1.0.
1-7
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M. P. van EXTERet al. PHYSICAL REVIEW A 63 043801
eigenmode, one finds that the optical output is concentra
in the usual Lorentzian line shape, which in a system w
nonorthogonal eigenmodes now containsKgeo,1 times as
many photons as compared to the orthogonal system.
optical output will have the usual thermal or chaotic sta
tics, as we are dealing with a regenerative amplifier, so
the modal intensity fluctuations can be easily derived fr
the optical spectrum.

Inclusion of the other~weaker! modes can change thi
simple picture, if these modes are strong enough to carry
weight in the summation in Eq.~15!, which describes the
optical spectrum as projected onto the eigenmodeuun&. Side-
mode contributions will also show up in the~time-
dependent! laser output power, as projected in the eigenmo
direction uun&, which is given by

^unux&^xuun&5uanu21(
iÞn

2Re@ aian* ^unuui&#

1(
iÞn

(
j Þn

aiaj* ^uj uun&^unuui&. ~24!

If the uun& mode dominates and if there is sufficient spect
overlap between the eigenmodes, the single summatio
the above expression behaves as a heterodyne term and
therefore be more important than the double summation
the former isfirst-order in the side-mode amplitudes. It wil
thereby often dominate over the projected mode partit
effects, i.e., the double summation, which are onlysecond-
order order in the side-mode amplitudes. Still, these fir
order effects have hardly been discussed, probably bec
they only exist in nonorthogonal systems, whereas ther
extensive literature on mode partition noise in orthogo
systems ~see, for instance, Refs.@33,34# and references
therein!. In Ref. @31# and below, these first-order effects a
shown to seriously hamper the generation of intens
squeezed light in lasers with nonorthogonal eigenmodes

B. Laser above threshold; the effect of optical saturation

The formalism presented above can also be used for la
operating above the lasing threshold. As optical satura
becomes important the complex amplitude of the domin
mode should be separated into its~real-valued! amplitude
and phase, which exhibit completely different dynami
Simple results are only obtainable for lasers that are alm
single mode, up to the degree that mode partition nois
irrelevant. The amplitude and phase dynamics of the do
nant mode can then be straightforwardly obtained by line
ization around steady state, but only for the case of isotro
saturation, where all ‘‘atoms’’ are equivalent and where
single ~average! inversion is sufficient to characterize th
gain. For class-A lasers, i.e., lasers in which the invers
dynamics is so fast that it can be eliminated adiabatica
this corresponds to the case of neutral coupling, where
‘‘self-saturation’’ of the lasing mode equals the cross satu
tion that it forces upon the side modes, so that the net los
the side modes is independent of output power@23#. In prac-
tical lasers, the saturation is often isotropic due to the
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diffusion of the inversion@35#. In the other case of aniso
tropic saturation, spatial, spectral, and/or polarization h
burning should be taken into account and the solution
generally much more complicated~see below!.

As a starting point we use the general Eq.~1! for the
noise-driven dynamics of the~slowly varying component of
the! intracavity optical fieldux(t)&, and separate the evolu
tion operator2 iH in three parts~dispersionH0, lossL, and
gain G) so that

d

dt
ux~ t !&5$ 2 iH02L1G„N~ t !… %ux~ t !&1u f ~ t !&, ~25!

where only the gain operatorG(N) depends on the inversio
N. We consider an almost single-mode laser and use
normalized Gramm-Schmidt basis of Sec. III B to write

ux~ t !&5@A01DA~ t !#e2 if(t)uc1&1(
i>2

ci~ t !uci&, ~26!

whereA0 , DA(t), and f(t) are the steady-state and tim
dependent parts of the amplitude, and the phase of the d
nant modeuc1&, respectively~all real-valued!, and where
ci(t) are the complex-valued amplitudes of the weak s
modesuci&. As we assumed modeuc1& to dominate over the
others, this mode must have relatively low losses and m
practically maintain itself also in the absence of noise, so t
the steady-state condition reads

$ 2 iH02L1G~N0! %uc1&'0, ~27!

whereN0 is the threshold inversion.
With the above steady-state condition~27!, the linearized

laser rate equations can be derived by inserting Eq.~26! into
Eq. ~25!, expanding the gain operator viaG(N)5G(N0)
1 ]G/]N DN, and projecting onto the eigenmodeuc1&. The
real and imaginary parts of the resulting equation sepa
into

d

dt
DA~ t !5ReF ^c1u

]G
]N

uc1&GA0DN~ t !

1 Re@$ f 1~ t !1g1~ t !%eif#, ~28a!

d

dt
f~ t !5ImF ^c1u

]G
]N

uc1&GDN~ t !

1
1

A0
Im@$ f 1~ t !1g1~ t !%eif#, ~28b!

where Re and Im denote the real and imaginary parts. Af
and g have random phases the real and imaginary part
these noise sources are uncorrelated.

In each of these equations the three consecutive term
the right-hand side are effective ‘‘noise sources’’ due to
inversion fluctuations, the spontaneous emission noise,
the fluctuating side-mode amplitudes. Of these three only
middle corresponds to spectrally white noise, whereas
1-8
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SEMICLASSICAL DYNAMICS OF EXCESS QUANTUM NOISE PHYSICAL REVIEW A63 043801
other two contain the dynamics of the inversion and all si
mode amplitudes, respectively. The expressions for
~complex! noise sources

f 1~ t !5^c1u f ~ t !&, ~29a!

g1~ t !5(
i>2

^c1u2 iHuci& ci~ t !5(
i>2

k1i ci~ t ! ~29b!

are identical to their counterparts below threshold@see Eq.
~22!#. Even the magnitude off 1(t) will be about the same
below and above threshold, as the diffusion matrixD is de-
termined by the loss and~saturated! gain, and thereby hardly
depends on laser power. The magnitude and dynamics o
excess noiseg1(t), however, might be different below an
above threshold, but only when the optical saturation is
isotropic, i.e., when the presence of a strong lasing m
affects the strength and dynamics of the side-mode am
tudesci(t).

The generating mechanism of excess noise is thus fo
to be the same below and above threshold; in both case
excess noise originates from field fluctuations in states
thogonal to the lasing mode that project into this mode up
evolution. Also above threshold, the excess noise facto
best characterized by a frequency-dependent multip
K(v).1 that acts on the noise sources in both evolut
equations for the laser amplitude variation and optical pha
However, above threshold the functionK(v) will only be
identical to its below-threshold counterpart, when the opti
saturation is isotropic; anistropic saturation can makeK(v)
dependent on output power~see Ref.@17# for an example!.

We will finish this section with a brief discussion of th
case of anisotropic saturation, where the atoms are
equally saturated, to explore this more complicated probl
Depending on the type of anisotropy, we have to deal w
spatial, spectral, and/or polarization hole burning. One w
to do this is to separate the atomic inversion into differ
spatial, frequency, and/or spin classes. Apart from the a
age inversionN(t), we might have to introduce a spin
difference inversion, as is used to describe the polariza
dynamics in semiconductor vertical-cavity lasers@36# and
HeXe gas lasers@10#, or spatial Fourier components of
position-dependent inversionN(rW,t), as is used in the case o
spatial hole burning@23#. The anisotropy of the optical satu
ration is now related to differences in the loss rates of
various inversion classes. If the extra inversion classes
hibit rapid decay, for instance due to fast spin flips or f
spatial diffusion, the saturation becomes almost isotropic
a treatment in terms of a single average inversionN(t) might
suffice. If the decay is not so rapid the populations in th
extra inversion classes have to be included in the descrip
These populations can scatter light and thereby couple
various modes in a nonlinear way, i.e., with a pow
dependent coupling strength, which leads among other
the appearance of four-wave-mixing peaks in the opt
spectrum@37#.

The saturation properties of a class-A laser with
position-dependent inversionN(rW,t) have been discussed
length in Ref.@23#. With the optical field expressed in th
04380
-
e

he

-
e
li-

nd
the
r-
n
is
r

n
e.

l

ot
.

h
y
t
r-

n

e
x-
t
d

e
n.
he
-
to
l

Gramm-Schmidt basis of Eq.~25!, the position-dependen
saturation, which scales with the local intensityI (rW)
5uE(rW)u2, is induced by two effects@23#: ~i! the intensity
profile uE1(rW)u2 of the dominant mode can burn a spatial~or
polarization! hole in the inversion distribution~hole burning
due to weak side modes can generally be neglected!, and~ii !
the intensity profileE1(rW)Ei* (rW)1c.c. that results from inter-
ference between the dominant mode and any side mode
redistribute the inversion, leaving the spatial-average un
fected~as^ci ucj&5d i j ). For class-A lasers these effects ha
been denoted as the hole-burning part and the populat
pulsation part, respectively@23#. To keep track of the full
position dependence ofN(rW,t) we would have to introduce a
large number of inversion reservoirs, i.e., Fourier comp
nents ofN(rW,t), each of which could in principle have it
own dynamics. Together with the average inversionN these
determine the gain matrixG, which becomes quite compli
cated since a position-dependent inversion will not only p
duce isotropic gain, but will also scatter the optical field fro
one eigenmode to another. For simplicity we will therefo
assume that the additional inversion reservoirs decay v
rapidly, so that the buildup of any position dependence
N(rW,t) is heavily frustrated, and it is sufficient to work wit
a single, spatially averaged, inversionN(t).

C. Phase fluctuations in lasers above threshold

The time evolution of the phase of the dominant eige
mode, as described by Eq.~28b!, is rather simple as this
optical phase has no intrinsic dynamics, i.e., it experien
no damping, and is driven only by a combination of thr
‘‘noise sources.’’ However, of the three noise sources o
the second term, Im@ f 1(t)eif#/A0, is spectrally white, while
the other two are spectrally colored, by the dynamics of
version and side-mode amplitudes, respectively. In gene
the optical phase will therefore not perform a pure diffusio
and the optical spectrum of the emitted laser light can de
ate significantly from a simple Lorentzian form. On a lon
time scale, i.e., for small frequencies, all noise sources
be effective and the phase evolution will be approximat
diffusive, with a diffusion rate that is enhanced by the us
geometric excess noise factorKgeo,1 , possibly multiplied by
an additional excess noise factor (11a2) ~see below!. How-
ever, on a very-short-time scale, i.e., short with respect to
fluctuations inN andci , the phase evolution is only partiall
diffusive and the diffusion rate reduces to its standard va
being Dff5D/uA0u2 in our notation, as two of the thre
noise sources act only as a static frequency shift.

To demonstrate the effect of colored noise on the dyna
ics of the optical phase, we will first se
Im@^c1u]G/]Nuc1&#50 and consider only the excess noi
due to side-mode dynamics, as contained in the noise so
g1(t). We take as an example the two-mode case, which
applies to the polarization dynamics in a laser@16,17#. For
the two-mode case, the noise power spectrumug(v)u2 is con-
tained in a Lorentzian-shaped spectrum, centered around
relative frequencyv22v1, having a width that is given by
the damping rateg2 of the side mode. Forv25v1 the time
1-9
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evolution of the mean-square phase difference is easily fo
to be

uf~ t81t !2f~ t8!u2

5@ 11~Kgeo,121!~12e2g2utu! # Dff utu, ~30!

where the overline denotes averaging overt8. The solid
curve in Fig. 2~a! depicts this time evolution and thereb
demonstrates one of the consequences of the spectral c
ing of excess noise. For small timesutu!1/g2 the phase
evolves as if there is no excess noise, while for larger tim
the phase diffusion rate is enhanced by a factorKgeo,1 ; the
excess noise takes time to develop and is noticeable onl
a sufficiently long time scale. The nondiffusive short-tim
evolution will show up in the optical spectrum as deviatio
from a pure Lorentzian shape for frequenciesuv2v1u>g2.
However, such spectral deviations will be experimentally
cessible only when the diffusion rateD is not too small as
compared tog2, i.e., when the nondiffusive evolution pe
sists to large enough phase deviations~nondiffusive evolu-
tion up to angles of'1 rad will produce highly non-
Lorentzian line shapes!.

For the generalN-mode case, the phase equation~28b!
can still be solved separately from the amplitude and inv

FIG. 2. Sketch of the time evolution of the laser phase in
two-mode system. In~a! the excess noise is generated by a we
side mode that has the same resonance frequency, but a l
damping rate than the main mode@~a! corresponds toK55]. In ~b!
the excess noise is generated by the relaxation oscillation dyna
of the inversion, which can also affect the laser phase@~b! corre-
sponds toa52 and g ro /v ro50.2]. In both figures, the slope i
unaffected for small time delays, but increases at larger times
factor K and 11a2, respectively. This demonstrates how exce
noise develops only after a certain time delay.
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sion dynamics, as long as Im@^c1u]G/]Nuc1&#50. In that
case a simple Fourier transformation yields

uf~v!u25
u f ~v!u21ug~v!u2

2A0
2v2

5Kn~v!
Dff

v2
, ~31!

where we recognize the generic structure of spectrally c
ored excess noise in the form of a frequency-dependent m
tiplier Kn(v).

We will now discuss the physics of the first noise sour
in Eq. ~28b!, which contains a factor Im@^c1u]G/]Nuc1&# and
describes how the modal resonance frequency changes
population inversion. This factor is zero in lasers that oper
on the center of a symmetric gain profile, but can be nonz
otherwise. In semiconductor lasers it plays an important r
and is usually quantified by the so-called linewidth enhan
ment factor or Henry parametera, being defined as the ratio
of the imaginary and real part of]G/]N @38#. As the name
indicates, a nonzeroa leads to an enhancement of the las
linewidth, by a factor (11a2) as compared to lasers wit
a50. From the structure of Eq.~28b! it is clear that this
enhancement is also spectrally colored, and can be in
preted as just another type of excess noise. Figure 2~b! de-
picts a typical time evolution of the mean-square phase
ference, where we used Eq.~11a! from Ref. @39# with a
52 andg ro /v ro50.2 for the ratio of the relaxation oscilla
tion damping rate and frequency. For smallt the phase evo-
lution is unperturbed~see inset, which runs from 0 to 0.2 i
normalized delay time!, while the phase diffusion rate is en
hanced by a factor (11a2) for large t, i.e., larger than the
inverse relaxation oscillation frequency and damping ra
which sets the inversion dynamics. As a consequence of
nondiffusive phase evolution the optical spectrum is e
pected to deviate from a Lorentzian shape for frequency
sets comparable to the relaxation oscillation frequency,
has been observed experimentally@39#.

For a laser with bothaÞ0 and Kgeo.1 the long-term
phase diffusion rate will be enhanced by the prod
Kgeo(11a2), but only if the inversion dynamics is muc
slower than the side-mode dynamics, so that the invers
fluctuationsDN have sufficient time to get multiplied by th
same excess factorKgeo that also enhances the intensity flu
tuations. For the other extreme case, where the inver
dynamics is much faster than the side-mode dynamics,
spectral coloring of the noiseK(v) is such that the fast in-
tensity and inversion fluctuations will hardly be enhanced.
this case the overall enhancement of the long-term ph
diffusion is expected to be equal only toKgeo1a2 instead of
Kgeo(11a2).

D. Intensity fluctuations in lasers above threshold

We only consider the case of isotropic saturation, wh
applies a.o. to lasers with fast spatial diffusion of the inv
sion. In this case it is sufficient to work with a single avera
inversionN(t), and Eq.~28a! already gives a proper descrip
tion of the amplitude dynamics of the dominant mode, wh
supplemented by the rate equation for the inversion dyn
ics. For the case of isotropic saturation this equation rea
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d

dt
N~ t !5L2g i@11Ptot~ t !#N~ t !1 f N~ t !, ~32!

whereL is the pump rate,g i is the inversion decay rate i
the absence of light,Ptot is the total optical power, andf N is
a Langevin noise source. The important point to note is t
for the considered case of isotropic saturation, the opt
saturation through stimulated emission is proportional o
to the total power in all optical modes (Ptot5^x(t)ux(t)& in
our notation!, and is insensitive to the modal power distrib
tion. In the normalized Gramm-Schmidt basis of Sec.~III B !
Ptot5(uci u2 can be linearized toA0

212A0DA0 when one
mode dominates and when the second-order terms du
weak side modes are neglected. Linearization of Eq.~32!
around the steady state and in combination with the ea
Eq. ~28a! then gives the following description of the couple
intensity-inversion dynamics:

d

dt
DA0~ t !5g8A0DN~ t !1Re@$ f 1~ t !1g1~ t !%eif#,

~33a!

d

dt
DN~ t !52Mg iDN2g iN02A0DA0~ t !1 f N~ t !,

~33b!

where we have defined the gain derivativeg8
5Re@^c1u]G/]Nuc1&#, where N0 is the steady-state inver
sion, and whereM is the normalized pump parameter (M
5L/L th and the steady-state value ofPtot is M21).

As the above equations are linear inDA0(t) andDN(t),
they can be easily solved in the Fourier domain to yield
usual damped relaxation oscillation resonance for the cas
small g i!g8N0 ~class-B laser!, or the overdamped reso
nance for the case of largeg i@g8N0 ~class-A laser!. How-
ever, the above equations are different from the usual o
as the field equation~33a! contains an additional nois
source Re@g1(t)eif#. This leads to an effective enhanceme
of the total Langevin noise by a frequency-dependent mu
plier Kn(v), and thereby confirms the heuristic approa
used in Ref.@12# to explain the observed intensity noise
lasers with an unstable resonator, without yet considering
possibility of spectral coloring. Furthermore, it is importa
to note that the extra noise source shows up only in the fi
equation~33a!, where it arises from the admixture of wea
side-mode amplitudes into the dominant mode, but not in
inversion equation~33b!, which contained only second-orde
contributions of the side modes that have been neglected
the excess noise sourceg1(t) is not compensated by an an
ticorrelated noise source in the inversion equation, as is
case for f (t), it can seriously hinder the generation
intensity-squeezed light, up to the pointK.1.5, where inten-
sity squeezing is thought to become impossible@31#.

We will finish this section with an alternative descriptio
of excess intensity and inversion noise, now formulated
rectly in terms of the total optical powerPtot(t) and the
inversionN(t). To properly describe excess noise, we nee
third variable ~or set of variables! x to specify the other
degrees of freedom of the optical field, as was previou
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done with the side-mode amplitudesci . In these variables
the coupled dynamics of the inversion and total power can
written as

d

dt
Ptot5Geff~N,x!Ptot1 f P , ~34a!

d

dt
N5L2g i~11Ptot!N1 f N , ~34b!

whereGeff is the net intensity gain~5 gain minus loss!, and
where the ‘‘stimulated-emission part’’ of the noise sourc
f P and f N are anticorrelated. In this notation, excess no
will appear when the net intensity gain already depends
first order onx, so that fluctuations aroundx50 will pro-
duce an extra~excess! noise term (]G/]x) Dx Ptot in Eq.
~34a!, being equivalent to the term Re@g1(t)eif# in Eq.
~28a!. The present formulation thus provides a conveni
physical picture for the origin of excess noise; excess no
appears whenever the distribution of the optical power o
the various degrees of freedom has a serious~read ‘‘first-
order’’! effect on the net intensity gain. We note that E
~34b! does not contain such an excess noise term, as
optical saturation was assumed to be isotropic, i.e., to dep
only on the total powerPtot , but not on the distribution of
this power over the optical state space. This alternative
scription could a.o. be used to explain the occurence of
cess noise in laser cavities with tilted end mirrors and n
uniform transverse loss@40#. The variablex could then
specify the shape, i.e., position, direction, and width, of
laser beam, to emphasize that the excess noise is gene
by shape changes in the laser beam that lead to chang
the net gain, which, after a finite time, evolve into power a
phase changes of the optical field.

V. CONCLUDING DISCUSSION

We finish with a few general remarks. Excess noise w
found to originate from fluctuations in other, nonorthogon
eigenmodes that project into the dominant~5lasing! mode.
For a laser below threshold, with its simple linear dynami
the excess noise can be canceled by observation in the
joint direction, i.e., by admixture of the proper amount
correlated side-mode fluctuations. As the noise genera
mechanism is the same, similar tricks are possible for las
operating above the lasing threshold. Both the relation
tween correlated side-mode dynamics and excess noise
their use in the suppression of power fluctuations, have
cently been demonstrated in two experiments. For transv
modes (K trans), Poizatet al.cut off part of the laser beam an
thereby project correlated transverse modes into the m
sured intensity fluctuations@41#. For polarization-related ex
cess noise (Kpol), van der Leeet al.used a rotatable polarize
to admix the weak polarization mode and change the exc
intensity noise@10#.

Spectral coloring of excess noise is thought to be univ
sal in lasers, both below and above threshold. F
polarization-related excess noise (Kpol) the existence of
spectral coloring and its relation to the side-mode dynam
1-11
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has been clearly demonstrated in the measured inten
noise@10#. For lasers with excess noise due to nonorthogo
transverse modes (K trans) spectral coloring has not yet bee
observed. From the above discussion we predict that
coloring will again be related to the side-mode dynami
i.e., to the time it takes injected noise to evolve from t
adjoint direction into the eigenmode direction. In the term
nology of unstable resonators, this translates into the num
of loss-free periods that the injected adjoint light experien
before it is projected onto the eigenmode@7#.

Finally, it is interesting to consider which parts of th
physical picture developed here remain valid in a full qua
tum treatment. Reference@19# presents a treatment whe
only a single Fox-Li mode, the lasing mode, is used in
quantum theory, with all the other modes being made
thogonal to it. A description in such an orthogonal basis
the advantage that one can use the standard quantum r
and commutation relations between the modal amplitud
but the disadvantage that the mentioned orthogonal mo
are generally not eigenmodes of the system anymore@3#. To
follow as closely as possible the semiclassical approach
veloped here, we think it is more convenient to keep
quantum treatment entirely in terms of biorthogonal Fox
modes as in Ref.@42#. Then the main change that is need
to carry the semiclassical picture developed here over
quantum theory is a revision of the assumptions behind
~9a!. As Fox-Li modes are outgoing modes@43#, they can
only form a complete set for the space of outgoing fie
@42#. Semiclassically, this is not a problem because there
no incoming components as the external field emanates f
the cavity only. In a quantum theory, however, there is
er
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ways the external vacuum field, part of which does not em
nate from the cavity. This external vacuum field genera
necessarily an incoming component of the cavity field@42#
making an expansion in Fox-Li modes alone incomplete.

In summary, excess noise appears when one reduce
dynamics of anN-dimensional system with nonorthogon
eigenmodes, as in Eq.~1!, into a one-dimensional descriptio
of one of the eigenmodes. A consequence of this reductio
that the original white noise source separates into two pa
one part that represents the direct noise injection and
remains spectrally white, and another part that represents
noise injection into other modes and that evolves into
measurement direction due to the non-Hermitian system e
lution. As the ‘‘time-delayed’’ part is spectrally colored an
reflects the dynamics of the other modes, the excess n
factor is best written asKn511@Kn(v)21#. As a result of
this spectral coloring, the amount of the excess noise
found to be not only related to the geometry, i.e., the non
thogonality between the eigenmodes, but also to the sys
dynamics, i.e., The eigenvalues of the evolution mat
2 iH. For a laser with isotropic saturation, these results w
shown to apply both below and above the lasing thresho
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