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Semiclassical dynamics of excess quantum noise
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A semiclassical theoretical framework is presented to describe the essential features of the excess quantum
noise that occurs in systems with nonorthogonal eigenmodes. Excess noise is shown to be always spectrally
colored, instead of white, so that the Petermann excess noise factor is best wrktém)asstead ofK. The
consequences of this spectral coloring are analyzed for lasers, both below and above the lasing threshold.
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[. INTRODUCTION coloring has been only briefly discussed in the literature, and
mainly for the two-mode cadd6—-19. Here we will give a
The fluctuation-dissipation theorem states that noise angystematic and general description using a semiclassical
damping go together and that systems that are open to tfgamework, where the field is treated classically and the
outside world will inevitably experience noise input from quantum noise enters as a Langevin noise source. The reason
this outside world. This also applies to quantum-mechanicathat the spectral coloring is often overlooked is that one gen-
systems, where the fluctuation-dissipation theorem is linkegrally assumes one mode to dominate over all others, and
to the discrete nature of the excitation or, equivalently, thghus neglects the dynamics of weak nonorthogonal side
commutation behavior of the creation and annihilation operamodes. It is the correlated dynamics in these side modes that
tors [1]. A well-studied example of quantum noise is the projects into the measurement direction, and can thereby par-
spontaneous-emission noise in lag&g]. When the optical tially cancel the excess noise. These projections can be rela-
modes in the laser are orthogonal, this noise amounts effe¢ively strong as they correspond to a type of heterodyning
tively to “one photon per mode.” When the modes are non-and are therefore first order in the side-mode amplitude.
orthogonal the amount of noise will be enhanced by the exSpectral coloring shows up in our treatment because we ex-
cess noise factdf, which expresses that there are effectivelyplictly take into account the time dependence of all side
“K noise photons” in the lasing mod&]. The reason for modes and thereby go beyond the standard geometric picture
this noise enhancement is purely geometrical; the noise praf excess noisg3].
jection into each mode may be enhanced, but the integrated From a physical point of view it is not the noise input that
spontaneous-emission rate will not change, as the noise i enhanced, but rather the sensitivity of the system to spe-
puts in these nonorthogonal modes are correlpdgd cific noise inputs. In the geometric picture of excess noise
Experimentally the existence of excess quantum noise ihis is not immediately obvious as one considers only the
well established. For lasers with nonorthogonal eigenmodeglynamics of the dominant mode and projects the input noise
several studief5—11] have shown how the fundamental la- from its creation onto the adjoint of this mode. In this paper,
ser linewidth, which is due to laser phase diffusion, is en-we will keep track of all modal amplitudes and project onto
hanced by an excess noise fackomith respect to the so- the measurement direction only after the system evolution.
called Schawlow-Townes limit. Similar noise enhancementd'he notion that the fluctuations in the system variables arise
have been observed in the laser intensity fluctuatid®.  from the combined action of noise input and system dynam-
Excess noise is quite universal. It has been observed for noiis is therefore an implicit part of our description. In Sec. Il
orthogonal longitudinal modes in cavities with large outcou-we Wwill introduce a general mathematical framework for
pling (Kiong=7) [5.6], for transverse modes in unstable cavi- noise in nonorthogonal systems, which is based on a linear-
ties (Kyane=500) [12—15, or stable cavities with large ized description in amN-dimensional state space. In Sec. IlI
diffractional outcoupling K~13) [7—9], and for polariza- We take several points of view to show that all excess noise
tion modes Kpo~60) [10,11]. In all these cases the mode is spectrally colored. In Sec. IV we discuss the implications
nonorthogonality is related to and enforced by “anisotropyfor laser dynamics, while Sec. V contains a concluding dis-
in the net losses,” which can exist either in the longitudinalCussion.
or transverse direction in real space, or in the polarization
direction. Il. GENERAL FORMALISM FOR EXCESS NOISE
In this paper we will show that the geometric description
of excess noise is too simple and that the excess noise factor
rather acts as a frequency-dependent multipiéw), i.e., Although excess quantum noise has been studied only for
that excess noise is spectrally colored. So far, this spectrdsers, it should occur in any noise-driven system with non-
orthogonal eigenmodes. As a general problem we consider
the noise-driven dynamics of a system with states that can be
*Present address: Delft Technical University, Department of Ap-characterized by a state vecta) in an N-dimensional state
plied Physics, Lorentzweg 1, 2628 CJ Delft, The Netherlands. ~ space. The noise-free evolution pf) is taken to be time

A. Introducing the problem
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independent and linear because the system dynamics is eitheeric structure of Eq(1) remains intact, and contains the
linear or has been linearized around the steady ¢saealso  essentials of excess noise, when we let the evolution matrix
Sec. IVD. The noise-driven dynamics of our system is’H depend on the atomic populatiofsee Secs. IVB-IVD
given by for detailg.
q There are two alternative descriptions for the optical field
o o dynamics in the laser cavity. Instead of using #wolution
dt|x(t)> PHIX(D)+ (D), @ matrix —iH, we could have equally well worked with the
o ] ) ) round-trip matrix M, which relates the intracavity field after
where—i7 is the(linearized evolution operator, and where consecutive roundtrips and which for high-reflecting mirrors
|f(1)) is a Langevin type, i.e., spectrally white, noise sourcejs equal toM = exp(~iHT), T being the round-trip time. As
The time-correlation operator of this noise source is assumes third alternative we could have used theattering matrix
to be given by S, which relates the incoming fielttead “vacuum fluctua-
—_— tions”) to the outgoing field20]. All three descriptions in-
[f(t))(f(t2)| =2D3(t1—tp), (2 volve the same aspects of mode nonorthogonality and col-

whereD is the Hermitian diffusion opberator. which corre- ored excess noise. We have chosen to describe our laser in a
P ! semiclassical way with the help of the evolution matrix

sponds ‘o a frequency-correlation operator and power SPeCiy because(i) this matrix is directly linked to the time
tral density operator of

evolution, (ii) this description uses the same intracavity field
FTPNVITPY) that determines the optical saturation, in contrast to the ex-
f f =47DS w1~ w3), 3 . ; N .
[f(w1))(f(w2)|=47D (w1~ w,) (33 el fields that appear in the scattering formalism, @ing
1 (= a full guantum-mechanical description of optical saturation is
s|f><ﬂ:|f(w)><f(w)|52—J do'|f(0){f(0")|=2D, too complicated anyhow. _ o
e The essentials of excess noise are contained ifeilgen-

(3b) modes and eigenvalues of jrevolution matrix—i7H. If the
matrix H is Hermitian, its eigenmodes form an orthogonal
basis and thé\-dimensional Eq(1) can be solved trivially,
because it separates bsimple one-dimensional problems,
as the orthogonal projections of the noise sourdesare
uncorrelated. If the matrix-iH is non-Hermitian, as is gen-
that our notation in terms of ket) and |f) and linear erally the case for open or lossy systems, the eigenmodes can

: / -~ . be nonorthogonal21], in which case the solution is less
operatorsH andD, is of course equivalent to a description _ .~ . . .
trivial as theN-dimensional problem does not separate, and

that uses vectorg and f and matricesi and D; the bra  gycess noise will develop. It is then convenient to separate

where(f|=|f)" and|f(w)) are the Hermitian conjugate and
Fourier transform of f(t)), respectively, where the single
overline denotes ensembler time) averaging, and where
the overline over frequency-dependent quantities should b
interpreted as power spectral densities as in (Bh). Note

D

(x|=|x)" corresponds to the row vectaf, which has con- the evolution matrix, via—iH=—iH,—.A, in a “disper-
secutive elements that are the complex conjugates of the edive,” i.e., energy-conserving pait,, and an “absorp-
ements of the column vectar. tive,” i.e., energy-nonconserving part A= — L+ G, where

In the following sections we will use Eql) as a general the submatrices{,, A, £, and G are all Hermitian, and
and compact description of laser dynamics, in which case thehere the latter two characterize the loss and gain, respec-
variables|x) and|f) specify the(slowly varying component tively.
of the) intracavity optical field and noise field, respectively,  The diffusion matrixD plays no essential role in the gen-
in the state space of all optical modes. The intracavity opticagration process of excess noise, as it only specifies the
field |x) can be specified to various levels of accuracy. Forstrength and modal distribution of the Langevin-type noise
lasers with very lossy mirrors or apertures one should specifinput. The fluctuation-dissipation theorem imposes an
its complete spatial profile, thus opening the possibility to(operator-typgrelation between the diffusion matri® and
incorporate the longitudinal excess noise factor in the dethe energy-nonconserving term£+ G in the evolution ma-
scription. For lasers with high-reflecting mirrors the field trix i+. Just as for the one-dimensional cd22,23, the
changes per round trip are limited, so that it is sufficient tosemiclassicalN-dimension fluctuation-dissipation theorem
specify the transverse and polarization profile of the opticalvill depend on the chosen ordering of the quantum-
field in one specific transverse plane. mechanical operators. However, differences between the

Equation(1) contains the essential ingredients for the gen-various semiclassical treatments, as derived from different
eration and spectral coloring of excess noise. It gives a conpperator orderings, can be neglected for lasers operating not
plete description of the field dynamics in a laser that operatetoo far above threshold, as they arise from “reflected
sufficiently below threshold, where the laser acts as a regervacuum fluctuations’[24] and give corrections of the order
erative amplifier of input noise, operating at fixed populationof shot-noise level. For symmetric operator ordering and
inversion. It also gives a proper description for a laser opercomplete population inversion thé-dimensional version of
ating above threshold, where the nonlinear process of opticdhe fluctuation-dissipation theory reduces to the simple ex-
saturation becomes important. However, this description ipression 2=L+G, as can be deduced from calculations
then incomplete, as Eq1) has to be supplemented with a based on the concepts discussed in R28]. For normal
description of the specific population dynamics. Still, the ge-operator ordering, where all noise can be attributed to spon-
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taneous emission, the diffusion operafdcan be calculated field, these sandwich constructions are the time and fre-
from the modal projections of a position-dependent noiséluency representations of the optical spectrum as measured
source that is proportional to the local excited-state populaafter projection onto thim) direction in state space, whereas
tion N(r). the inner productx(t)|x(t)) denotes the total intensity in all

In many practical lasers the diffusion operaforis very ~ Modes. _ .
simple and approximately isotropic over the relevant part of 1€ possibly non-Hermitian character of the operator
state space, as both loss maifband gain matrixG have this can produce rich system dynamics. This is best appreciated

property. Of course, small deviations from perfect isotropyPY the introduction of the “left and right” eigenstates as
are still needed to produce the mode coupling required for

mode nonorthogonality, but these deviations can be and are Hlup) = (0;—iy)|ui), (83
in fact typically small. As the modénon)orthogonality is )
determined by the relation betweéty, and — £+ G, it em- (vilH=(wi=iy){vil, (8b)

phasizes small differences betweénand G, whereas the i ,

input noiseD e £+ G is hardly sensitive to these differences. Where each eigenvalue has been separated into a frequency
o; and damping ratey; and where|u;) and |v;) are the
corresponding eigenstate and its adjoint. By sandwiching op-
erator H between adjoint modes and eigenmodes one can
Starting from|x(t=—=))=0, the formal solution of Eq. immediately show that the sefgu;)} and {|v;)} are bi-

B. Formal solution and eigenmodes

(1), in either the time or frequency domain, is orthogonal when the eigenvalues are nondegenerate. Using
. the standard assumption that these eigenstates form a com-
|x(t)>=f dre " |f(t— 1), (49) plete set, and normalizing them such tifaf|u;)=&;;, we
0 can rewrite the unity operator and system operator as
_ ! f ab i=> => 9
|X(w)>—m| (w)). (4b) =2 lui)(vil = i lviX(uil, (9a)

The corresponding time-correlation matrix and power spec-
tral density matrix are H=2, (0;—i%) |u)vil. (9b)
1

X(t)(X(t2)| = O (t; —tp)e” " )e
For later convenience we will also normalize the eigenvec-
+O(t,—ty)CeM (1), (5a)  tors via{u;|u;y=1. This fixes the normalization afv|v;)
= (o P/ (uiup)=1.
X(@))(X(0)[=(H-w) 2D (H'-w)!, (5D
C. The standard result of honorthogonality theory

where O (t) is the Heavyside function, and where the Her- . . . .
mitian operator With the eigenmodes introduced above we can give a

more physical interpretation to the abstract result of Egjs.

o _ s For this we expand the state vector in the system’s eigen-
C=f dre "M 2pet " (6)  modes as
0
characterizes the mean fluctuations or the fluctuation prob- |x(t))=2 ai(tH)|u;). (10
I

ability distribution. The general Eqg$5) can be found in at

least one textbook26]. It is therefore somewhat surprising o o o

that their implications to the existence of excess noise and itgubstitution into Eq.(1) and projection onto the adjoint

spectral coloring has been discussed only recdafy19. modes(vjl yields the evolution of the expansion coefficients
In the above rather abstract notation one operator‘?i(t)=<vi|x(t)>

[X(t1)){x(ty)|, describes all fluctuations and correlations in q

the system. In this notation the observation on a single vari- S\ (i VA _

able, being a linear combination of the system’s degrees of dta'(t) (yi+iw)ai(t) +(uilf(D). (D

freedom, corresponds to a projection in state space onto the

“measurement direction’m). The time-correlation function The various correlation functions can be found after formal

of this measured variable is simply given by solution, or directly by sandwiching Eq$5) between two

adjoint modes. In both cases the power spectrum

(mlx(ty) ){x(t)|m)

(m|m) : @ ai(w)af (w)=(vi|x(w)}(X(w)[v})
while the corresponding power spectrum is obtained by a _ <Ui|2D|Uj> (12)
similar sandwich construction. Wher) denotes the optical [yiti(wi—o)][yj—i(0j—w)]
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shows how the eigenmode amplitudes are driven by projedn state space, but not for others it is not unreasonable to
tions of the diffusion operataP onto theadjoint modesjv;) state that “all excess noise is a form of projection noise.”
instead of onto the eigenmodhq). For a system with non-  Still, some projections appear naturally in the experiments
orthogonal modes the fluctuations in the expansion coeffilasers, for instance, automatically choose the dominant
cientsa; can therefore be much larger than in an orthogonakigenmode for laser actignwhereas other projections need
system, agv;|v;)=(uj|u;)=1. more experimental effort, like strong suppression of the las-
Two assumptions are needed to derive the standard resuitg mode to admix sufficient power from weak side modes.
of excess noise, being a simple enhancement of the projected
noise power by a geometric factdt,. First, one has to
assume that the diffusion operatbris sufficiently isotropic
in state space, which for a laser means that one assumes that A. Derivation of colored excess noise
the spontaneous-emission noise contributes evenly to the |, he rest of the paper we will discuss some general

various relevant eigenmodes. In this case, one cariDset aspects of measurements in the direction of eigenmage

[ll. EXCESS NOISE IS SPECTRALLY COLORED

=Di and rewrite(v,| D]vy) =DKgeqn [27], where such projections occur quite naturally as one generally mea-
sures specifically on the dominaflasing mode. As men-
ngqn:<vn|vn> (13)  tioned above, a projection onto the eigenmoale will not

only give the amplitude,, but also a projected fraction of

. . . . the coefficientsy; (i#n) of the other nonorthogonal modes,
is the usual geometric excess noise factor ofritie eigen-

mode[3], which has been given an additional subscgpb

to contrast it with the frequency-dependent excess noise fac-

tor K, () introduced in Sec. Ill. Second, one generally as- (Un|X>:an+; ai(Un|uj)- (14
sumes that one specific eigenmaddominates over all oth- n

ers, because it experiences considerably less damping than n

the others, i.e.y;>y,=0. In this case, it seems reasonableBY cOmbining Eqs(12) and(14) the general power spectrum
to neglect the modal amplitudes of the otheeakly excited for a measurement in the,,) direction can be written as
eigenmodes, so thak(t))~a,(t)|u,). The fluctuations in

the dominant modéu,,) are then fully determined bg,(t) -

and seeded only by the noise projection in the “adjoint” (Un|X(@))(X(w)|up)

direction |v,). Together, these two assumptions yield the

standard excess noise factye,, [3,28,29. B —
In the present paper we will retain the first assumption of _IE] {Un|ui)(ujfun) ai(w)af ()
almost isotropic diffusion, but relax the second assumption
of modal dominance. We will show how even weakly ex-
. . o . . <Un|2D|Un>
cited eigenmodes can significantly alter the projected noise P
characteristics, basically because their amplitude fluctuations [(0n— @)+ 7]
are correlated with the main modsee Eq.(12)] so that
effects already occur to first-order in side-mode amplitude. A + Re (Un|u;) (vi|4Dlvy,)

second argument to explain the surprisingly strong influence

: . _ : _ i#n [yi+i(wi—o)][yh—i(0y— )]
of even relatively weak side modes is that their relatively fast

dynamics ;>vy,=0) enhances their contribution to the (unlu;) (vil2Dlv ;) (ulug)
time-correlation function at short times, i.e., large frequen- +> > e LA
cies. As a result of the side-mode dynamics, the amount of 70 f7n [yviti(ei—o)lyj—i(ej=0)]

excess noise can differ from the geometric fadgg,, and
its strength will always depend on the observation frequency
and bandwidth, i.e. excess noise is spectrally colored.

It is interesting to note that the dynamics of the modalwhere Re denotes the real part. A direct projection of the
amplitudea, can be observed in a pure form, i.e., without 9eneral result Eq(5) onto the eigenmode directiofuy,)
admixture of other modal amplitudes, by direct projection inyields the same result. _ N . .
the adjoint directionv,). Moreover, such a projection ex- When the diffusion erratcﬁD is sufficiently isotropic in
hibits no excess noise, as the projected fluctuations should Istate space, so th@~DI, the first term in the right-most
normalized by the same quantitw,|v,) that generates part of Eq.(15) reduces to the standard result fag(w)|?: a
Kgean [S€€ EQ.(7)]. This shows that excess noise is not aLorentzian spectrum with a strength that is enhanced by a
result of the “adjoint projection” by itself, which reduces factor Ky¢,, due to excess noise. The two other terms are
the noise-driven dynamics of the full system to the simplecorrections to this result due to the projected contributions
one-dimensional problem of E¢L1), but rather of the inter- from other(nonorthogonaleigenmodes. For the typical situ-
pretation ofa,(t) as the amplitude in the eigenmode direc- ation, where one modal amplitu@dg is much larger than all
tion |u,) instead of the adjoint directiotv,). As excess others, we have separated these corrections into terms that
noise is only observed for measurements in some directionsontain only one “side-mode amplitudeg; (i #n) and oth-

(15
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ers that contain two side-mode amplitudes. The first-ordenoise source
term can be viewed upon as a kind of heterodyning between

the dominant mode and the side modes. Its relative impor- Un()=" [(yn— 7)) +i(@n— )] (Ul u;)a;(t)

tance depends crucially on the frequency difference of these i#n

modes as compared to their damping rate difference. That

first-order corrections exist at all already shows that it might =D [(ya— ) Fi(wy— )] (up|u;)

be difficult to downplay the importance of the side modes. i#n

These corrections are the prime cause of the spectral coloring "

discussed below. xf dr(vi|f(t—7))e (itiedr (17)
0

Although Eg. (15) gives a complete description of the
projected power spectrum, it is often not the most Convenienéontains all excess noise effects

one, as the fluctuating modal amplitudgscan be strongly Equation (17) demonstrates that the excess noisét)

corre_lat_ed. For a measuremgnt in the eigenmode directioH]ay be viewed upon as a delayed response ifiukedirec-
|up) it is often more convenient to remove part of thesetion from white noise that was originally projected in the
correlations, by combl.mng thg noise sources into two Uncorygijoint directions|v;) (i#n). Such a delayed response is
related parts: one projection in the eigenmode diredtigh  known to transform white noise into spectrally colored noise,
and a complementary projection in the orthogonal subspacghere the spectral coloring is given by the Fourier transform
of all adjoint modeguv;) (i#n). After substituting the ex- of the memory kernel in Eq17). It generally appears when
pansion(10) in the right-hand side of Eq1), one obtains the a system of many coupled degrees of freedom is reduced to a
following time evolution: few or rather a single variable, where we note that a given
spectral coloring can also be removed by the reverse process,
q i.e., by the introduction of new variables into a stochastic
. rate equation containing colored no[$8]. The noise source
&(un|x(t)>= ~ (ynti@n)(Upx(1)) + Fa(t) +gn(t), On(t) is uncorrelated witt ,(t) as it is built up from projec-
(16)  tions of|f(t—7)) onto all other {+n) adjoint, i.e., orthogo-
nal, directions. Due to its delayed response the noise source
0n(1) is spectrally colored by the dynamics of all other de-
where f(t)=(u,|f(t)) is the usual spectrally white-noise grees of freedom. More specifically, its power spectrum is
source, which exhibits no excess noise, whereas the secogilzen by

|gn(w)|2:2 E [(vi— o) Ti(w—w,)] [(')’j_ 'Yn)_i(wj_wn)] <un|ui><uj|un>ai(w)aj(w)*

i#n j#

=]
=}

S [(yi— ) Fi(wi—wn) ] [(yj— yn) —i(0j— o,

)]
ek [rti(o—o)][y—i(0-o)] <Un|ui><vi|2D|Uj><uj|Un>- (18

1#n

Equation(18) is the key equation for the coloring of ex- For the general case, where the above “standard assump-
cess noise. It shows how excess noise is not only determingtbn” might not be valid, one should include the frequency-
by the geometry of the eigenmodes, i.e., by the various innedlependent prefactors in the summation. This can change both
products, but also by the system’s dynamics, as described lilie magnitude and behavior of the excess noise factor. A
the prefactor with the various eigenvalues. This equatiortonvenient way to parametrize these changes is by introduc-
only reduces to the standard result when we resort to theng a frequency dependence, i.e., spectral coloring, to the

standard assumptidi3] that one specific eigenmodedomi-  excess noise factor via

nates over all others because it experiences considerably less

damping than the others, i.e., when we take>v,=0. In |gn(w)|?

this case the prefactor with the various eigenvalues will be ———=Ky(w)—1. (20
approximately unity around the observation frequeney [fo(w)|?

~w,. When we further assume the diffusion operafoto

be isotropic in state space, the double summation in(Eg). By rewriting the new excess noise factor as-[Kn(w)
simplifies to —1] we want to stress that the noise separates into a “nor-

mal” and an “excess” contribution, and that the latter is

|9n(w~wn)|2=2D(ngqn—1), (19 spectrally colored, as it originates from projections into a
subspace orthogonal to the measurement directigf,

where we have used the completeness relation of(#g. which take time to evolve into the measurement direction
and the geometric excess noise fadtg,, of Eq. (13). [see Eqs(17) and(18)]. The new excess noise factdp(w)

043801-5



M. P. van EXTERet al. PHYSICAL REVIEW A 63 043801

can differ substantially from the geometric vall&,.,, trally white and uncorrelated, as thg) basis is orthogonal,
when side modes of reasonable power and nonorthogonalignd have equal strength whéhis isotropic. Note how the
are present close to the dominant mddg . Sufficient over-  elements(c;|—iH|c;) of the evolution matrix are such that
lap between the eigenmodes is clearly a necessity to obtatihe eigenvalues of i’H appear as on-diagonal elements. The
excess nois¢20]. Only when one mode dominates over all lower off-diagonal elements are all zero due to the Gramm-
others, and when we choose our observation frequency closschmidt procedure, which results {o;|u,) =0 for i >k, but

to the resonance of that mode, i.e=0 (in the rotating the upper off-diagonal elements are generally nonzero.
basis wherev,=0), do the two excess noise factors coincideGrangier and Poizatl8] have introduced the term “loss-
Kn(w=~0)=Kyeon- For frequencies much larger than the induced coupling” to describe the role of these upper off-
system’s response, the colored excess noise will always disliagonal elements in the non-Hermitian character of the evo-
appear, i.e.K,(w—x=)=1, as|g,(w)|? decreases rapidly lution. However, in the present semiclassical description it is
for (w—wy)>(w;—o,),(vi— v, [see Eq.(18)]. Equiva- better to drop the label “loss-induced,” as the Hermitian and
lently, one can say that the slope of the time-correlatioranti-Hermitian parts of the evolution are on equal footing;
function for a very short time scalemall|t; —t,| in Eq.(7)] the coupling can be removed both for the case of pure Her-
does not yet notice the presence of excess noise, as it take¥tian and pure anti-Hermitian evolution, and even for some

time for the excess noise to develop. special case in betwegsee Sec. |l ¢. Note that the cou-
pling constantse;; can be easily rewritten in the eigenmode
B. The Gramm-Schmidt normalized basis and adjoint basis with the help of E(Rb).

L . . The top row of Eq.(21) describes the noise-driven dy-
A description in the eigenmode basis has the advantaggmics of the amplitude of eigenmotie)=|c,) via
that the dynamics of the modal amplitudes becomes simple,

but the disadvantage that a measurement will generally d .

sample a linear combination of these amplitudes so that first-  g; €1(t) =~ (7atiwi)ca () + fl(t)+i>22 K1iCi(t),

order interference effects often show up. In Sec. llIA we - 22

tried to remove some of these effects by separating the noise

sources into two part$,(t) and g,(t), being parallel and where we recognize the earlier separation into two noise
perpendicular to eigenmode,,). We will now go one step sources;(t)=h,(t) andg,(t) [see Eq(16)]. The additional
further by introducing a convenient orthogonal basis for our(exces} noise sourcey, (t) is again attributed to fluctuations
dynamic description. This orthogonal bakis) can be cre- in the orthogonal subspace that evolve into the measurement
ated from the eigenmodels;) by a Gramm-Schmidt or- direction|u,) due to the non-Hermitian character &t The
thogonalization procedure, where we tdke)=|u;) as the evolution in this orthogonal subspace is independent of the
(dominan} mode under observatioft,) proportional to that amplitudec; in the measurement direction, as the first col-
part of |u,) that is orthogonal tolu,), i.e., [co)«|u,)  umn of the evolution matrix in Eq21) contains only zero’s,
—(uq|uy)|uy), |c3) proportional to that part ofus) that is  apart from it's upper element. As this coupling has a well-
orthogonal to botHc,) and|c,), and likewise for all other defined direction, the strength and spectral coloring of the
basis vectorgc;), and where we normalize t@;|c;)=&;; . excess noise sourag(t) is independent of the dynamics
When we decompose the state vector in this convenient ofread “eigenvaluesy of the eigenmodéu, ).

thogonal basis, vig(t))==;c;(t)|c;), we find that the evo-

lution of the Coefficients:i(t) is described by the fO”OWing C. Excess noise and the “maximum emission principle”
triangular matrix equatiof31]:

Now that we have interpreted the generating mechanism

cy(t) of excess noise as the evolution of fluctuations out of an
orthogonal subspace into the measurement direction, one

E C2(1) may wonder why these first-order effects occur in systems
dt| cs(t) with nonorthogonal eigenmodes but not in orthogonal sys-

tems. To explain this difference we will again separate the
evolution operator as-iH=—iHy— A, where the “disper-
—(y1tiwy) K12 K13 sion” Hy and “absorption” A=L—G are both Hermitian
0 —(yptiwy) K23 o operators. When thes_e_ two operators _commu?e[H@,A]
= ] =0, they will have a jointorthogonal eigenbasis and there

0 0 —(ystiog) --- is no excess noise; this is, for instance, the case when either
the absorption or the dispersion are fully isotropic in state
space. When these operators do not commute, excess noise

ca(t) ha(t) will develop as théorthogonal eigenbases df{, and.A will
cy(1) ho(t) differ and the eigenmodels;;) of the combined evolution
+ , (21 “look for a compromise between both evolutions” via
cs(t) ha(t)
—iHo|uj) = —iwi|u) +[by), (239
where the Langevin noise sourdegt)=(c;|f(t)) are spec- —Alupy=—yi|u)—1by), (23b
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for some|b;)#|0). This strongly suggests that the size of AV
|b;) is a measure for the amount of excess noise. 2
The eigenmode§u;)} of the combined evolution, which
are now generally not orthogonal to each other, will differ
from the eigenmodes of the “absorption operatot) so that
the dominant eigenmode will generally differ from the state
in state space that experiences maximum gain. One might
therefore say that lasers with nonorthogonal eigenmodes vio-
late the “maximum emission principle,” which can be ex-
pressed as the “natural tendency of the laser to extract as
much of its stored energy as possibl€32]. Excess noise
appears precisely in systems where the dominant eigenmode ~—
differs from the state of maximum gainot an eigenmode \/Egeo
as small noise-induced deviations from the eigenmode can o
then already lead tfirst-ordercorrections in the experienced  FIG. 1. Sketch of two nonorthogonal eigenvectarsu,, and
gain. In systems with orthogonal eigenmodes, where théheir adjoint vectors; anduv,. The dotted lines depict the evolu-
dominant eigenmode does coincide with the state of maxition, after unity excitation in the adjoint directions and v, for
mum gain, similar deviations will produce ordgcond-order the casey,>vy;=0, wherey, is the loss rate of mode The solid
effects and can thus generally be ignored. curve depicts the evolution, after unity excitation in the direction
The above argument brings us to the essence of excess, for the casey,> y;>0.
noise and to the concept of “injected-wave excitation”
[3,28], which is based on the notion that fluctuations origi- optimally excited by injection into thév,) direction. The
nate from the combined result of noise injection and systemeason why this injection is more efficient than direct injec-
evolution. From this point of view, one might wonder which tion is that the state vector passes through a region of net
type of injected wave produces the maximum system perturgain, before it projects onto the eigenmdde). When the
bance or in other words, “in which directigm) should we weaker mode cannot be neglected, i.e., when the stronger
inject a signal of unity strength to have a maximum effect ineigenmode also experiences considerable damping, injection
the observation directiofu;)?” The answer to this question into the adjoint direction might not be the most efficient one
depends not only on the mode nonorthogonality, but also ofsee below.
the various eigenvalues. When the mode under observation Figure 1 also shows the time evolution after injection in
dominates over all others, with as limiting cage=0, the  the |v,) direction, i.e., orthogonal to the eigenmoflg).
best excitation is obtained for injection in the adjoint direc- The dotted curve again shows the evolution for the case
tion |v4). This adjoint injection will produce a more efficient =0, where the projected amplitude i&geo—l; the solid
excitation of the low-loss eigenmoda,) than, e.g., direct curve shows the evolution for the casge>y;>0. These
injection will, basically because it contains a lardern)  traces clearly demonstrate the two subtleties that are gener-
component on top of a series of other modal components thailly overlooked in the geometric description of excess noise.
decay much more rapidly. Equivalently, one might say thafFirst, we note that the excess noise takes time to develop; it
when the adjoint injection is added as a perturbation to theéakes a certain time~f1/y,) for the injected noise in the
eigenmode it will give the largest first-order corrections toadjoint direction|v,) to evolve and project onto the eigen-
the experienced gain. When the mode under observatiomode direction|u,). This finite response time produces a
does not dominate completely, the situation is more complispectral coloring of excess noise. Second, we note that only
cated and the amount of excess noise will differ from itsfor v1=0 will the final projected noise amplitude for or-
geometric valugsee Eq(18) and Fig. 1. thogonal injection be equal tgK 4eo— 1. Fory,#0 the sys-
Figure 1 illustrates the concept of injected-wave excitatem evolution will follow a curve like the solid one in Fig. 1,
tion for a simple two-dimensiondreal-valued state space which does not reach the maximum projected amplitude of
with two nonorthogonal eigenmodbs;l}:ljl and|u2>=l]2, VKgeo— 1. Integrated over all possible noise directions this
and two adjoint modév;)=v, and|u2>=52 (note that these Will make the actual Ipw-frequen_cy excess noise factor
modes satisfy the biorthogonality relatign;|u;)=5,;). As ~ Ki(«=0) smaller than its geometric vali&eq; -
mentioned above, the key idea is that the evolution after
excitation by noise will generally depend on the noise “di- IV. APPLICATION TO LASER DYNAMICS
rection” in state space. Excitation in the direction of a pure
eigenmode will result in a simple exponential decay along a
straight line towards equilibrium. Excitation in other direc- The general formalism of excess noise can be easily ap-
tions will lead to a more complicated evolution, as these statglied to a laser, wherfx) represents the optical field, if we
vectors decompose into both eigenmodes, which evolve viaeglect optical saturation and treat the laser as a regenerative
different eigenvalues. The adjoint direction plays a speciabmplifier of input noise, i.e., an amplifier with fixed gain. In
role in this description. When the dominant eigenmode exthe geometric picture of excess noise, where one only con-
periencegvirtually) no damping, i.e., whery; =0, it can be  siders the evolution of the coefficiet; of the dominant
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A. Laser below threshold
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eigenmode, one finds that the optical output is concentratediffusion of the inversion35]. In the other case of aniso-
in the usual Lorentzian line shape, which in a system withtropic saturation, spatial, spectral, and/or polarization hole
nonorthogonal eigenmodes now contaikge,; times as burning should be taken into account and the solution is
many photons as compared to the orthogonal system. Thigenerally much more complicatédee below.
optical output will have the usual thermal or chaotic statis- As a starting point we use the general Ed) for the
tics, as we are dealing with a regenerative amplifier, so thatoise-driven dynamics of thelowly varying component of
the modal intensity fluctuations can be easily derived fronthe) intracavity optical field|x(t)), and separate the evolu-
the optical spectrum. tion operator—i7 in three partgdispersiont,, loss£, and
Inclusion of the othenweakej modes can change this gainG) so that
simple picture, if these modes are strong enough to carry any
weight in the summation in Eq15), which describes the
optical spectrum as projected onto the eigenmoge. Side-
mode contributions will also show up in thétime-
dependentlaser output power, as projected in the eigenmodavhere only the gain operatdi(N) depends on the inversion
direction|u,), which is given by N. We consider an almost single-mode laser and use the
normalized Gramm-Schmidt basis of Sec. Il B to write

d
i XO)={ —1Ho= L+ GIN() }x(0) +[F(), (25

(U (xlun)=lanl*+ 3 2R aa uqu)]
|x<t>>=[A0+AA<t>]e—i¢<‘>|c1>+22ci<t)|ci>, (26)

+2 2 aiaj*<uj|un><un|ui>- (24)
tnzn where Ay, AA(t), and ¢(t) are the steady-state and time-
dependent parts of the amplitude, and the phase of the domi-

If the |Un> mode dominates and if there is sufficient Spectralnam mode|cl>' respective|y(a” rea|-va|ued, and where
overlap between the eigenmodes, the single summation ig(t) are the complex-valued amplitudes of the weak side
the above expression behaves as a heterodyne term and wilodes|c;). As we assumed mode;) to dominate over the
therefore be more important than the double summation, agthers, this mode must have relatively low losses and must
the former isfirst-orderin the side-mode amplitudes. It will practically maintain itself also in the absence of noise, so that
thereby often dominate over the projected mode partitionhe steady-state condition reads

effects, i.e., the double summation, which are oségond-

order order in the side-mode amplitudes. Still, these first- { —iHy— L+G(No) }cy)~0, (27)
order effects have hardly been discussed, probably because

they only exist in nonorthogonal systems, whereas there iﬁ/hereNO is the threshold inversion.

extensive Iiteraturg on mode partition noise in orthogonal \yith the above steady-state conditiev), the linearized
systems(see, for instance, Refd33,34 and references | ser rate equations can be derived by inserting(E@). into
therein. In Ref_. [31] and below, these flrst-qrder eff_ects are Eq. (25), expanding the gain operator Vi&(N)=G(No)
shown to _sem_)usly hamper the generation of intensity-, 9G/aN AN, and projecting onto the eigenmoltg ). The
squeezed light in lasers with nonorthogonal eigenmodes. o1 and imaginary parts of the resulting equation separate
into
B. Laser above threshold; the effect of optical saturation

The formalism presented above can also be used for lasers EAA(t)z R{(cll §|Cl>
operating above the lasing threshold. As optical saturation dt dN
becomes important the complex amplitude of the dominant i

mode should be separated into {tgal-valued amplitude + Re[{f(t)+gu(t)}e'’], (283
and phase, which exhibit completely different dynamics.

Simple results are only obtainable for lasers that are almost E(ﬁ(t): Im
single mode, up to the degree that mode partition noise is dt
irrelevant. The amplitude and phase dynamics of the domi- 1
pan_t mode can then be straightforwardly obtained by Imear- + —Im[{f,(t)+g(t)}e?], (28b)
ization around steady state, but only for the case of isotropic Ao

saturation, where all “atoms” are equivalent and where a

single (average inversion is sufficient to characterize the where Re and Im denote the real and imaginary partsf As
gain. For class-A lasers, i.e., lasers in which the inversiorand g have random phases the real and imaginary parts of
dynamics is so fast that it can be eliminated adiabaticallythese noise sources are uncorrelated.

this corresponds to the case of neutral coupling, where the In each of these equations the three consecutive terms at
“self-saturation” of the lasing mode equals the cross saturathe right-hand side are effective “noise sources” due to the
tion that it forces upon the side modes, so that the net loss dfiversion fluctuations, the spontaneous emission noise, and
the side modes is independent of output pof@&]. In prac-  the fluctuating side-mode amplitudes. Of these three only the
tical lasers, the saturation is often isotropic due to the fasmiddle corresponds to spectrally white noise, whereas the

AGAN(1)

AN(t)

g
(c4 IN 1)

043801-8



SEMICLASSICAL DYNAMICS OF EXCESS QUANTUM NOISE PHYSICAL REVIEW /43 043801

other two contain the dynamics of the inversion and all side-Gramm-Schmidt basis of Eq25), the position-dependent
mode amplitudes, respectively. The expressions for th@aturation, which scales with the local intensityr)
(complex noise sources =|E(R)|?, is induced by two effect§23]: (i) the intensity
fo(t)=(c4|(1)), (293 profile |E;(r)|? of the dominant mode can burn a spatia
polarization hole in the inversion distributiothole burning
, due to weak side modes can generally be neglécsed (i)
gl(t):iZZ (el =iH]cy) Ci(t):g‘z k1 Gi(1) (290 the intensity profileE;(r)E* (r) +c.c. that results from inter-
ference between the dominant mode and any side mode, can
are identical to their counterparts below threshidde Eq. redistribute the inversion, leaving the spatial-average unaf-
(22)]. Even the magnitude ofy(t) will be about the same fected(as(ci|c;)= &;;). For class-A lasers these effects have
below and above threshold, as the diffusion mafPixs de- been denoted as the hole-burning part and the population-
termined by the loss an@aturategigain, and thereby hardly pulsation part, respectively23]. To keep track of the full
depends on laser power. The magnitude and dynamics of theysition dependence df(r,t) we would have to introduce a

excess noisg)(t), however, might be different below and |arge number of inversion reservoirs, i.e., Fourier compo-

above threshold, but only when the optical saturation is anzants ofN(F,t), each of which could in principle have its

isotropic, i.e., when the presence of a strong lasing mOd.Swn dynamics. Together with the average inverdibthese
affects the strength and dynamics of the side-mode ampl'determine the gain matri@, which becomes quite compli-
tudesc;(t). cated since a position-dependent inversion will not only pro-

i [1— h?hgeneratlrtl)g Imechadnlstr)'n of J:ehxceis I39|.seb|strt]hus fou:l uce isotropic gain, but will also scatter the optical field from
0 be the same below and above thresnold, in both cases %%e eigenmode to another. For simplicity we will therefore
excess noise originates from field fluctuations in states or:

. o . assume that the additional inversion reservoirs decay ver
thogonal to the lasing mode that project into this mode upo y very

evolution. Also above threshold, the excess noise factor ilapldly, so that the buildup of any position dependence in

best characterized by a frequency-dependent multiplief(" 1) is heavily frustrated, and it is sufficient to work with
K(w)>1 that acts on the noise sources in both evolutior® SiNgle, spatially averaged, inversibit).

equations for the laser amplitude variation and optical phase.

However, above threshold the functi¢f(w) will only be C. Phase fluctuations in lasers above threshold

identical to its below-threshold counterpart, when the optical The time evolution of the phase of the dominant eigen-
saturation is isotropic; anistropic saturation can meke) mode, as described by E¢8b), is rather simple as this
dependent on output powésee Ref[17] for an example  optical phase has no intrinsic dynamics, i.e., it experiences

We will finish this section with a brief discussion of the no damping, and is driven On|y by a combination of three
case of anisotropic saturation, where the atoms are noijse sources.” However, of the three noise sources only
equally saturated, to explore this more complicated problemye second term, I, (t)e'?]/A,, is spectrally white, while
Depending on the type of anisotropy, we have to deal withne other two are spectrally colored, by the dynamics of in-
spatial, spectral, and/or polarization hole burning. One wayersjon and side-mode amplitudes, respectively. In general,
to do this is to separate the atomic inversion into differenthe optical phase will therefore not perform a pure diffusion,
spatial, frequency, and/or spin classes. Apart from the avefyng the optical spectrum of the emitted laser light can devi-
age inversionN(t), we might have to introduce a spin- ate significantly from a simple Lorentzian form. On a long-
difference inversion, as is used to describe the polarizatiogme scale, i.e., for small frequencies, all noise sources will
dynamics in semiconductor vertical-cavity las¢86] and  pe effective and the phase evolution will be approximately
HeXe gas laser$10], or spatial Fourier components of a giffusive, with a diffusion rate that is enhanced by the usual
position-dependent inversidi(r,t), as is used in the case of geometric excess noise factdy.,1, possibly multiplied by
spatial hole burning23]. The anisotropy of the optical satu- an additional excess noise factor{ ) (see beloyw. How-
ration is now related to differences in the loss rates of theaver, on a very-short-time scale, i.e., short with respect to the
various inversion classes. If the extra inversion classes extuctuations inN andc; , the phase evolution is only partially
hibit rapid decay, for instance due to fast spin flips or fastdiffusive and the diffusion rate reduces to its standard value,
spatial diffusion, the saturation becomes almost isotropic antleing D ,,=D/|A¢|? in our notation, as two of the three
a treatment in terms of a single average inverdigt) might  noise sources act only as a static frequency shift.
suffice. If the decay is not so rapid the populations in these To demonstrate the effect of colored noise on the dynam-
extra inversion classes have to be included in the descriptioics of the optical phase, we will first set
These populations can scatter light and thereby couple thin[(c,|3G/dN|c,)]=0 and consider only the excess noise
various modes in a nonlinear way, i.e., with a power-due to side-mode dynamics, as contained in the noise source
dependent coupling strength, which leads among others tg,(t). We take as an example the two-mode case, which a.o.
the appearance of four-wave-mixing peaks in the opticahpplies to the polarization dynamics in a la§#6,17. For
spectrum(37]. the two-mode case, the noise power spectigfw)|? is con-

The saturation properties of a class-A laser with atained in a Lorentzian-shaped spectrum, centered around the
position-dependent inversiadd(r,t) have been discussed at relative frequencyw,— w4, having a width that is given by
length in Ref.[23]. With the optical field expressed in the the damping ratey, of the side mode. Fo#,= w; the time

043801-9



M. P. van EXTERet al. PHYSICAL REVIEW A 63 043801

& 8 @ sion dynamics, as long as [{t,|dG/dN|c,)]=0. In that
i) case a simple Fourier transformation yields
03 T, 2.1, 192
N [f(w)]?+|g(w)]? Dyy
A 2_ —
o (w)| =——5——=K(0w)—-, (31
% |#(w) 2Agw2 " w?
;t where we recognize the generic structure of spectrally col-
= ored excess noise in the form of a frequency-dependent mul-

tiplier K,(w).

We will now discuss the physics of the first noise source
in Eq. (28b), which contains a factor Ipdc,|dG/dN|c;)] and
describes how the modal resonance frequency changes with
population inversion. This factor is zero in lasers that operate
on the center of a symmetric gain profile, but can be nonzero
otherwise. In semiconductor lasers it plays an important role
and is usually quantified by the so-called linewidth enhance-
ment factor or Henry parameter, being defined as the ratio
of the imaginary and real part @fG/JN [38]. As the name
indicates, a nonzera leads to an enhancement of the laser
linewidth, by a factor (# «?) as compared to lasers with
a=0. From the structure of Eq28b) it is clear that this
enhancement is also spectrally colored, and can be inter-
preted as just another type of excess noise. FigUog de-

FIG. 2. Sketch of the time evolution of the laser phase in aPICts @ typical time evolution of the mean-square phase dif-
two-mode system. Irfa) the excess noise is generated by a weakference, where we used E(L13a from Ref. [39] with «
side mode that has the same resonance frequency, but a larger2 andy,,/w,,=0.2 for the ratio of the relaxation oscilla-
damping rate than the main mofl@) corresponds t& =5]. In (b) tion damping rate and frequency. For sntalhe phase evo-
the excess noise is generated by the relaxation oscillation dynamidgtion is unperturbedsee inset, which runs from 0 to 0.2 in
of the inversion, which can also affect the laser phabg corre-  normalized delay time while the phase diffusion rate is en-
sponds toa=2 and y,/w,,=0.2]. In both figures, the slope is hanced by a factor (+ o) for larget, i.e., larger than the
unaffected for small time delays, but increases at larger times by fverse relaxation oscillation frequency and damping rate,
factor K and 1+ «?, respectively. This demonstrates how excesswhich sets the inversion dynamics. As a consequence of this
noise develops only after a certain time delay. nondiffusive phase evolution the optical spectrum is ex-
pected to deviate from a Lorentzian shape for frequency off-
evolution of the mean-square phase difference is easily foungets comparable to the relaxation oscillation frequency, as
to be has been observed experimentdBg].
- iz For a laser with bothw#0 andKgy.,>1 the long-term
[p(t"+1)— p(t")] phase diﬁ;usion rate will be enhanced by the product
_ _ _ a7l Kgeo(1+ a®), but only if the inversion dynamics is much
[1+(Kgear=1)(1=€7725) [Dyy 1], (30 slower than the side-mode dynamics, so that the inversion
fluctuationsAN have sufficient time to get multiplied by the
same excess fact#l,¢, that also enhances the intensity fluc-
tuations. For the other extreme case, where the inversion
Qf{/namics is much faster than the side-mode dynamics, the
. : . . -~ spectral coloring of the noisk(w) is such that the fast in-
evolves as If there is no excess noise, while for larger tlme?‘ensity and inversion fluctuations will hardly be enhanced. In

the phase.dn‘fusmn rate Is enhanced by.a fae.t%o’l; the this case the overall enhancement of the long-term phase
excess noise takes time to develop and is noticeable only o

o b
a sufficiently long time scale. The nondiffusive short—timei‘ﬁu?'ﬁr_] Cllszfxpected to be equal onlykgeot+ o instead of
evolution will show up in the optical spectrum as deviations  9¢° '
from a pure Lorentzian shape for frequendies- w4|= v,.
However, such spectral deviations will be experimentally ac-
cessible only when the diffusion raf is not too small as We only consider the case of isotropic saturation, which
compared toy,, i.e., when the nondiffusive evolution per- applies a.o. to lasers with fast spatial diffusion of the inver-
sists to large enough phase deviatignendiffusive evolu-  sion. In this case it is sufficient to work with a single average
tion up to angles of~1 rad will produce highly non- inversionN(t), and Eq.(289 already gives a proper descrip-
Lorentzian line shapes tion of the amplitude dynamics of the dominant mode, when
For the generaN-mode case, the phase equati@8b) supplemented by the rate equation for the inversion dynam-
can still be solved separately from the amplitude and inverics. For the case of isotropic saturation this equation reads

o

<lo(t'+t)-o(t)*> /D_ [rad?]

normalized delay time v,t

where the overline denotes averaging ovtér The solid
curve in Fig. Za) depicts this time evolution and thereby
demonstrates one of the consequences of the spectral col
ing of excess noise. For small timég<1/y, the phase

D. Intensity fluctuations in lasers above threshold
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done with the side-mode amplitudes. In these variables

GiNO=A=y[1+ P IN(1) + n(1), (32 the coupled dynamics of the inversion and total power can be
written as
where A is the pump ratey is the inversion decay rate in q
the absence of ligh®, is the total optical power, anf}, is — Pe=Gur(N. Y)Pot 34
a Langevin noise source. The important point to note is that, dt o= CerlN )Pt fe (343

for the considered case of isotropic saturation, the optical

saturation through stimulated emission is proportional only d

to the total power in all optical mode®{=(x(t)|x(t)) in ﬁN:A_ Y1+ PN+ Ty, (34b)

our notation, and is insensitive to the modal power distribu-

tion. In the normalized Gramm-Schmidt basis of Sé¢B)  whereG. is the net intensity gaif= gain minus losg and
Pwi==2|ci|? can be linearized to!-\?pLZAOAA0 when one where the “stimulated-emission part” of the noise sources
mode dominates and when the second-order terms due f@ and fy are anticorrelated. In this notation, excess noise
weak side modes are neglected. Linearization of B8  will appear when the net intensity gain already depends to
around the steady state and in combination with the earliefirst order ony, so that fluctuations aroung=0 will pro-

Eq. (289 then gives the following description of the coupled duce an extragexces$ noise term ¢G/dy) Ax Py in Eq.

intensity-inversion dynamics: (34a, being equivalent to the term Rg(t)e'?] in Eq.
q (28a. The present formulation thus provides a convenient
el . n + i physical picture for the o_rigin o_f excess noise; excess noise
thAO(t) 9'AcAN(D +Rel{T1()+g1(D}e7], appears whenever the distribution of the optical power over

(339 the various degrees of freedom has a serigaad “first-
order”) effect on the net intensity gain. We note that Eq.
(34b) does not contain such an excess noise term, as the
optical saturation was assumed to be isotropic, i.e., to depend

(33b only on the total powePy,, but not on the distribution of

] . o this power over the optical state space. This alternative de-

where we have defined the gain derivativg’  scription could a.0. be used to explain the occurence of ex-

=Rd(c1|dG/IN|cy)], where Ny is the steady-state inver- cess noise in laser cavities with tilted end mirrors and non-

sion, and whereM is the normalized pump parameteé¥(  yniform transverse los§40]. The variabley could then

= AlAy, and the steady-state value B, is M —1). specify the shape, i.e., position, direction, and width, of the

As the above equations are linearAmMo(t) andAN(t),  |aser beam, to emphasize that the excess noise is generated
they can be easily solved in the Fourier domain to yield theyy shape changes in the laser beam that lead to changes in
usual damped relaxation oscillation resonance for the case ¢fe net gain, which, after a finite time, evolve into power and

small y<g’'N, (class-B laser or the overdamped reso- phase changes of the optical field.
nance for the case of largg>g'N, (class-A laser How-

ever, the above equations are different from the usual ones,
as the field equatior(33a contains an additional noise
source REg;(t)€'?]. This leads to an effective enhancement  We finish with a few general remarks. Excess noise was
of the total Langevin noise by a frequency-dependent multifound to originate from fluctuations in other, nonorthogonal,
plier K,(w), and thereby confirms the heuristic approacheigenmodes that project into the domin&rtlasing mode.
used in Ref[12] to explain the observed intensity noise in For a laser below threshold, with its simple linear dynamics,
lasers with an unstable resonator, without yet considering ththe excess noise can be canceled by observation in the ad-
possibility of spectral coloring. Furthermore, it is important joint direction, i.e., by admixture of the proper amount of
to note that the extra noise source shows up only in the fieldorrelated side-mode fluctuations. As the noise generating
equation(33g, where it arises from the admixture of weak mechanism is the same, similar tricks are possible for lasers
side-mode amplitudes into the dominant mode, but not in theperating above the lasing threshold. Both the relation be-
inversion equatiori33h), which contained only second-order tween correlated side-mode dynamics and excess noise, and
contributions of the side modes that have been neglected. Akeir use in the suppression of power fluctuations, have re-
the excess noise sourgg(t) is not compensated by an an- cently been demonstrated in two experiments. For transverse
ticorrelated noise source in the inversion equation, as is thmodes K.,9, Poizatet al.cut off part of the laser beam and
case for f(t), it can seriously hinder the generation of thereby project correlated transverse modes into the mea-
intensity-squeezed light, up to the pokat>1.5, where inten-  sured intensity fluctuation€l1]. For polarization-related ex-
sity squeezing is thought to become imposs[i3&]. cess noisek ), van der Leeet al. used a rotatable polarizer
We will finish this section with an alternative description to admix the weak polarization mode and change the excess
of excess intensity and inversion noise, now formulated diintensity noisg10].
rectly in terms of the total optical powdP,,(t) and the Spectral coloring of excess noise is thought to be univer-
inversionN(t). To properly describe excess noise, we need &al in lasers, both below and above threshold. For
third variable (or set of variables y to specify the other polarization-related excess nois& () the existence of
degrees of freedom of the optical field, as was previouslyspectral coloring and its relation to the side-mode dynamics

d
aAN(t) =—My AN—= 7y Ng2AsAAq(t) + (),

V. CONCLUDING DISCUSSION
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has been clearly demonstrated in the measured intensityays the external vacuum field, part of which does not ema-
noise[10]. For lasers with excess noise due to nonorthogonahate from the cavity. This external vacuum field generates
transverse modeK(,,9 Spectral coloring has not yet been necessarily an incoming component of the cavity figld]
observed. From the above discussion we predict that thimaking an expansion in Fox-Li modes alone incomplete.
coloring will again be related to the side-mode dynamics, In summary, excess noise appears when one reduces the
i.e., to the time it takes injected noise to evolve from thedynamics of anN-dimensional system with nonorthogonal
adjoint direction into the eigenmode direction. In the termi-eigenmodes, as in E¢L), into a one-dimensional description
nology of unstable resonators, this translates into the numbearf one of the eigenmodes. A consequence of this reduction is
of loss-free periods that the injected adjoint light experienceshat the original white noise source separates into two parts,
before it is projected onto the eigenmdda. one part that represents the direct noise injection and that
Finally, it is interesting to consider which parts of the remains spectrally white, and another part that represents the
physical picture developed here remain valid in a full quan-oise injection into other modes and that evolves into the
tum treatment. Referenddl9] presents a treatment where measurement direction due to the non-Hermitian system evo-
only a single Fox-Li mode, the lasing mode, is used in thdution. As the “time-delayed” part is spectrally colored and
guantum theory, with all the other modes being made orteflects the dynamics of the other modes, the excess noise
thogonal to it. A description in such an orthogonal basis hagactor is best written ak,=1+[K,(w)—1]. As a result of
the advantage that one can use the standard quantum reciihés spectral coloring, the amount of the excess noise was
and commutation relations between the modal amplitudedpund to be not only related to the geometry, i.e., the nonor-
but the disadvantage that the mentioned orthogonal modekogonality between the eigenmodes, but also to the system
are generally not eigenmodes of the system anyf®jteTo  dynamics, i.e., The eigenvalues of the evolution matrix
follow as closely as possible the semiclassical approach de-i. For a laser with isotropic saturation, these results were
veloped here, we think it is more convenient to keep theshown to apply both below and above the lasing threshold.
guantum treatment entirely in terms of biorthogonal Fox-Li
modes as in Re[._42]. T_hen the main change that is needed ACKNOWLEDGMENTS
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