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Bose-Einstein condensation of a finite number of particles trapped in one or three dimensions
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Bose-Einstein condensatidBEC) of an ideal gas is investigated for a finite number of particles. In three
dimensions, we find a transition temperature which is lower than in the thermodynamic limit. Lowering the
dimension increases the transition temperature and is therefore favorable for BEC. This is in contrast to the
standard result obtained in the thermodynamic limit which states that BEC is not possible in, e.g., a one-
dimensional(1D) harmonic potential. As a result, 1D atom traps, such as radially tightly confining magnetic
traps or optical dipole traps, are promising for studying BE$1050-294{@6)06807-2

PACS numbg(s): 03.75.Fi, 05.30.Jp, 64.60i, 32.80.Pj

The recent observations of Bose-Einstein condensatiosemble[4]. B is related to the temperatuiieby 8= 1/kgT.
(BEC) in ultracold trapped atomic gasgk-3] have created a The energy of the ground state has been taken to be zero.
wave of renewed interest in this phenomenon. BEC is &he fugacityz can be expressed by the chemical potential
purely quantum-statistical phase transition, characterized by asz=exp(Bu). It is determined by the constraint that the
a macroscopic population of the ground state below the trartotal number of particles in the systemNs
sition temperaturd .. In most textbooks of statistical me-

chanics, e.g.[4], the theory of BEC is formulated for non- -

interacting bosons in a three-dimension@D) box. This i:EO N(E;j)=N. @)
treatment has been extended to power-law potent@a&

and lower-dimensional systerfig-9], leading to the conclu-  Degeneracy factors are avoided by accounting for degen-

sion that BEC in one- and two-dimensional systems is onlyerate states individually. The phenomenon of BEC for non-
possible for sufficiently confining potentials. In all these interacting particles is fully described by Eq4) and (2).
treatments either the thermodynamic limit was used, or th@he nontrivial aspect is the determination of the chemical
discrete level structure was approximated by a continuoupotential as a function ol and T. Once . is known, all
density of states under the assumption that the level spaciniermodynamic quantities like total energy, specific heat, and
was negligible compared to the temperature. Recent BEGompressibility follow directly from sums over the energy
experiments on atomic gases, however, were performed witlevels involving the occupation numbers in Ed). Several
numbers of particledl ranging from a few thousar{d] to a  authors have discussedT) for finite N [5,10,11, but have
few million [3]. For these relatively low numbers neither of not discussed the conclusions presented in this paper.
the above approximations seemgriori justified, and one is Using
led to wonder whether this leads to deviations from the theo-
retical predictions. T _
In this paper, we study BEC for finitd. We focus on the N= 2«0 J_Zl Z'exp(— ] BE)), 3
harmonic potential, because of its relevance to the recent
experiments and its mathematical simplicity. We indeed findgr 3 3D isotropic harmonic potential with frequeneywe
marked differences from the usual treatments: a measurab§htain
correction to the transition temperature for low values of
N, and, surprisingly, the occurrence of BEC in low- S 3 4 .
dimensional systems, in cases where it does not appear in the N=2 2| X exp—jnBfiw)| =2 2I(1-x)3
usual treatments. Furthermore, our treatment is of pedagogi- =1 An=0 =t @)
cal value: it discusses BEC without the continuous spectrum
approximation, there are no divergent integrals, and no spevhere x=exp(—B#w). Note that no special treatment is
cial role is given to the ground state of the system. This workgiven to the ground state, in contrast to what is necessary
also illuminates subtleties involved in the limit of infinite with the continuous spectrum approximatid.
N. In Fig. 1, the number of atoms in the ground state
As a starting point we assume that the populati;) No=2/(1-2), is plotted versus temperature for various val-
of a state with energ¥; is given by the Bose-Einstein dis- ues ofN. z was determined numerically from E¢4). The

]

tribution reference temperatufg is given by
N(Eyo L _ ze F5i L o [ N \Phw
B)= g1~ Tz P& @ T7lem) % ©

This result is derived from first principles of statistical with the usual definition of the Bose functiong,(z)
mechanics, most conveniently using the grand canonical er~ EJ?":l(zJ/j”) [4]. Figure 1 demonstrates that the signature
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+27,2((1(1-x)]*~1) before applying the high-
temperature expansiofl3]. Formally, this corresponds to
splitting off the ground-state population. The result is

z 3

N kgT
T1z ey,

kgT\?
+ %gz(Z)(%) . ®

At this point we briefly digress to describe the usual treat-
ment of BEC in a 3D harmonic potentif] in some more
detail. Starting from Eq(3), the ground-state population is
split off, and the finite sum over the excited states is replaced
by an integral

N— Nozjgl Z :p(E)exp(—jﬁE)dE @)

where p(E) is the density of states, usually taken to be
(E/hw)?/2. The result is

z kgT\3
. - N=T+93(Z)(—) : ®
FIG. 1. The condensate fraction for a finite numbkeof atoms 1-z ho
in a three-dimensional harmonic potential versus temperature. Plots
are shown folN= 100 (solid line), 1000, 16, and infinite(dotted. The critical temperatur@ . can now be found by setting
The lower plot enlarges the region around the transition temperaNo=0 andz=1. The physical meaning of this is that the
ture. second term in Eq(8) represents the maximum number of
particles which can be accommodated in excited states when
the fugacityz reaches its maximum value of 1. All particles
exceeding this maximum number must condense in the
ound state. This results in E() for the critical tempera-
re, and a condensate fraction given by

of BEC in systems with a small number of particles is very
similar to the case of infinite number, the major difference
being a shifted and smeared out onset of the macroscop%r
population of the ground state. The population of the first
excited level is shown in Fig. 2. It reaches at most a few —1_ 3

percent in systems of less than a thousand particles, and van- No/N=1=(T/T¢)" ©

ishes in the limit of largeN. It has been argued that ex-  |tisin fact possible to obtain the last term in E6) using

change interaction is necessary to prevent the macroscopifs traditional approach: since the degeneracy of the state
population ofseveralstates which are almost degenerate in,,;i, energynfiw is (N+1)(n+2)/2, a better approximation

the thermodynamic I|m|t[12] Figure 2 shows that, for for the density of states Iﬁ(E)=%[(E/ﬁw)2+3(E/hw)]
N—o0, the population of the first excjted state i_s negligible,nserting this expression into Eq7) yields Eq. (6). This
even in the absence of any interactiddd], provided that  ghoys that there is no fundamental difference between the
the limit is correctly taken by first calculating the properties ge of discrete sums or a continuous spectrum if the density
for finite N and then lettind\ approactve. of states is correctly approximated. In Fig. 3, several ap-
To compare our results with the standard treatment, weoyimations to the exact result are compared. Already for
approximate Eq4) for kgT>1 w, retaining the two highest- - 1000, results obtained with E¢6) are almost indistin-
order terms irkg T/A w. SinceT the sum in Ed4) diverges for guishable from the exact resyiEq. (4)]. However, the con-
z—1, one has to rewrite Eq.4) as N=2z/(1-2)  gipution of the last term in Eq) is important.
Strictly speaking, phase transitions only occur in the ther-
modynamic limit(e.qg., for infiniteN). That is why we have
so far avoided using the term “phase transition,” but rather
concentrated on the fraction of atoms in the ground state
which can be exactly calculated even for the firlitesystem.
However, as was shown above, the behavior of the fidite-
system is very similar to the thermodynamic limit, even for
N as low as 1. Phase transitions are usually defined by
singularities and critical behavior. In the case of BEC, the
— phase transition is characterized by the appearance of a com-
o 05 1 15 plex order parametgmwhich can be identified with the con-
T/TO densate wave functigrand the onset of off-diagonal long-
range order[14]. For the finiteN system, we adopt the
FIG. 2. The fraction of atoms in thghreefold degenerardirst ~ treatment described abo{&], and take the macroscopic oc-
excited level versus temperature for 1Q@pper curvg 1000, 16,  cupation of the ground state as the defining characteristic of
and 1G (lower curve atoms. the BEC phase transition. Note that in the recent experiments

0.05

N,/N
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FIG. 4. The condensate fraction for a finite numbeof atoms
in a one-dimensional harmonic potential versus temperature. Plots
are shown foN=100 (solid line), 10*, 1%, and infinite(dotted.

for kgT>hw;.
0 05 . The correction term to the transition temperaturdlit)
/T has to be multiplied by;= w; /(Ilw;)Y3, which is =1, i.e.,
anisotropy enhances the loM-decrease of the transition
FIG. 3. Various approximations for the condensate fraction vertemperature.
sus temperature fod= 1000 atoms(a) The exact resuitsolid line) A nice feature of the exact result Ed.2) is that it is valid
is compared to the result obtained using H).(short dashgsand  for arbitraryw; . It is therefore possible to study the freezing
Eq. (8) (long dashes (b) Comparison with Eq(9) (short dashgs  out of degrees of freedom and the transition from a 3D sys-
and Eq.(9) with T replaced byT? (long dashes tem to systems of lower dimensions. The 1D case is particu-
larly interesting because the standard result is that BEC is
[1-3], the appearance of a macroscopic occupation of th@ot possible, based on the use of the continuous spectrum
ground state was also regarded as evidence for BEC. W&]. AssumingkgT<%w; fori=1 and 2, from Eq(12) with
thus define the transition temperatdrg for a finiteN sys- = w,; andx=exp(— Bhws), we obtain
tem by

Zixi
e as

* 1 ) . )
. =N. 10 = i[(1—xl)= ——
2 EmeTT (10) N ]le/(l X)) 1—z+1-211
Using approximatior(6) results in a transition temperature
Figure 4 shows the fraction of ground-state atoms versus

TC 92(1)93(1)_2/3 —1/3 ~1/3 f : li ivel he “ d :
—=1- " N"¥=1-0.7273N"3 (11)  temperature for varioudl. Qualitatively, the “condensation
Te 2 phenomenon” looks very similar to the 3D case, clearly in-

- ) . dicating that BEC exists in a 1D harmonic potential in con-
For N=1000, the transition temperature is lowered by 7% st to previous predictior].

compared to the usual resylEq. (5)] extrapolated from For s =fw/kgT<1, Eq.(14) is approximated by15]
N=o. To measure this finitd¢ effect is in reach of current
experiments[1—3]. Equation(9) describes the condensate
fraction very well even for finité\; however, it is important 1
to useT, [Eq. (11)] and notT? (Fig. 3. N= +Z
All experiments on BEC of atomic gases were done in B
anisotropic parabolic potentials. The generalization of the
above treatment to a potential with three different frequen- = ~ B
cies w; is straightforward, and yields the exact result —Z w

[~

[zexp —&/2)]!
1 j

s
1-zex —w . (15

M s

=

J

[~
=~
—

[EEN
B~

oo 3
N=, Z /H (1—-x), (12 This approximation is already excellent fo¥=100.
=1 =1 Equation (15 can also be obtained from Ed7) using
p(E)=1/A w, and introducingi w/2 as the lower limit of the
integral to avoid the unphysical low-frequency divergence.
The transition temperaturg, is determined by

with x;=exp(— Bhw;), and

z kgT\3 1 92(2) (KgT 22 ©
N=1=5+03(2)| 7~ + -+

o) )Hwi a )Hwi \ kBTCI(ZkBTC)

= n ,

(13 ho X0)

(16)
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and the condensate fraction idlog/N=1—[TIn(2kgT/  peratures which have been reached by evaporative cooling
hw)/ T In(2ksT./hw)] with the logarithmic terms becoming [1]. Below 100 nK the systems behaves as a 1D harmonic
negligible for largeN. oscillator, but will still undergo BEC. For example, with an
In the limit of largeN, the relation between the number of axial frequency of 5 Hz, one-dimensional BEC would hap-
atoms and the transition temperatdrgin 1D is given by  pen at 50 nK withN=1060. Another example of a highly
(16), in 2D it is [7] N=(kgTc/hw)’g,(1), and in 3D  anisotropic atom trap is the optical dipole trf8,19. In
N=(kgT/fw)%g5(1). This demonstrates that the generalthis case, transverse oscillation frequencies can be tens of
rule [implied by (10)], the tighter the confinement the higher kHz resulting in a transition from 3D to 1D dynamics at a
the transition temperature for a givéh is still valid when temperature of about &K.
degrees of freedom freeze out and the system becomes two | conclusion, we have discussed BEC in systems with a
or one dimensional. It is only the usual .thermcd)d'yr?amlc limitginite number of particles. It was shown that corrections due
n d dw_nensmns, Wh'ch assumels—wc_wnh Ne f_|n|te_[5], to the finite number are small, but observable in the case of a
which mcorrectly predicts that BEC is not possible in a 1D3D harmonic oscillator. Highly anisotropic trapping configu-
harmonic potential. rations may correspond to a 1D harmonic oscillator or to a

A 2D. box has_the same density of sta;:f{E)ocE_as a_lD 2D or 1D box. In these configurations, BEC was predicted
harmonic potential, and should therefore show identical be-

naor around the BEC anston. Usisg wih th energy 1110 196681, e were bl o show tal s concluson
of the first excited state as the low-frequency limit of the y y

integral, we obtain the relation betwedhand T. in a 2D not apply to the situat_ion_rea}lized in atoms traps where a
box N=2(L/A)2In(L/A,), compared taN=(L/A)3gs(1) finite number of atoms is givefinstead of a linear density or

) . X ; face densily
in a 3D box of linear sizeL. A,=(2m%2/mksT)¥2 is the 254 : . o
thermal de Broglie wavelength.t Aéaiz the Ir(ﬁjrr)mer of atoms We have restricted the discussion in this paper to the case

N needed to reach BEC at a given temperaliyés lower in of the ideal gas. It is well known that the inclusion of inter-
2D than in 3D. However, the thermodynamic limit ihdi- actions between the particles profoundly changes the nature

; . - L f the BEC ph iti is i for th
mensions assumes—o with N/LY finite, resulting in a of the C phase transitiod], and is important for the

" occurrence of a macroscopic phdse., of a broken symme-
it:]a:;]sils'tlﬁrr:]ittemperature of zefor the absence of BEn 2D try). It would be very interesting to study how such interac-
Our result on the possibility of observing BEC in a 1D tions would affect the results presented here.

e . Note added: After submission of this work we learned
atom trap is important for current experimental efforts. Tothat Eqs.(6) and (11) were derived independently by Gross-
achieve BEC in alkali vapors requires tight confinement in '

. . ; : . dnann and Holthaus using the density-of-state appréa@h
magnetic trap. This was achieved using time-dependent MaGhese authors have alsogdiscussed f)i/hiteffects oﬁpB{I)EC]Rn
netic fields [1], permanent magnetf?], or an optically

lugged magnetic trap3]. All these solutions entail quite a box potentia[21,23. For the case of the 1D harmonic
plugge 1gn ‘ i . q potential, similar results were obtained by W. J. Mullpri-
some inflexibility for future experiments. The tightest con- o

i ) . : : . .vate communication
finement in a more conventional magnetic trap is achieved in
the loffe-Pritchard configuratiofl6,17] with a very tight We are grateful to William Lichten for a discussion which
radial confinement. Transverse gradients of 500 G/cm and @iggered our interest in this subject, and to Kerson Huang
bias field of 0.1 G result in a radial field curvature of for valuable comments. This work was supported by ONR,
2.5x10° G/cm? corresponding to an oscillation frequency NSF, JSEP, and the Sloan Foundation. N.J.v.D. would like to
for Na atoms in theF=2 hyperfine state of 4 kHz. The acknowledge financial support from “Nederlandse Organi-
separation between radial oscillator levels is 200 nK. Wesatie voor Wetenschappelijk Onderzo@¥WO)” and sup-
therefore expect the radial oscillations to freeze out at temport from NACEE.
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