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Bose-Einstein condensation~BEC! of an ideal gas is investigated for a finite number of particles. In three
dimensions, we find a transition temperature which is lower than in the thermodynamic limit. Lowering the
dimension increases the transition temperature and is therefore favorable for BEC. This is in contrast to the
standard result obtained in the thermodynamic limit which states that BEC is not possible in, e.g., a one-
dimensional~1D! harmonic potential. As a result, 1D atom traps, such as radially tightly confining magnetic
traps or optical dipole traps, are promising for studying BEC.@S1050-2947~96!06807-2#

PACS number~s!: 03.75.Fi, 05.30.Jp, 64.60.2i, 32.80.Pj

The recent observations of Bose-Einstein condensation
~BEC! in ultracold trapped atomic gases@1–3# have created a
wave of renewed interest in this phenomenon. BEC is a
purely quantum-statistical phase transition, characterized by
a macroscopic population of the ground state below the tran-
sition temperatureTc . In most textbooks of statistical me-
chanics, e.g.,@4#, the theory of BEC is formulated for non-
interacting bosons in a three-dimensional~3D! box. This
treatment has been extended to power-law potentials@5,6#
and lower-dimensional systems@7–9#, leading to the conclu-
sion that BEC in one- and two-dimensional systems is only
possible for sufficiently confining potentials. In all these
treatments either the thermodynamic limit was used, or the
discrete level structure was approximated by a continuous
density of states under the assumption that the level spacing
was negligible compared to the temperature. Recent BEC
experiments on atomic gases, however, were performed with
numbers of particlesN ranging from a few thousand@1# to a
few million @3#. For these relatively low numbers neither of
the above approximations seemsa priori justified, and one is
led to wonder whether this leads to deviations from the theo-
retical predictions.

In this paper, we study BEC for finiteN. We focus on the
harmonic potential, because of its relevance to the recent
experiments and its mathematical simplicity. We indeed find
marked differences from the usual treatments: a measurable
correction to the transition temperature for low values of
N, and, surprisingly, the occurrence of BEC in low-
dimensional systems, in cases where it does not appear in the
usual treatments. Furthermore, our treatment is of pedagogi-
cal value: it discusses BEC without the continuous spectrum
approximation, there are no divergent integrals, and no spe-
cial role is given to the ground state of the system. This work
also illuminates subtleties involved in the limit of infinite
N.

As a starting point we assume that the populationN(Ei)
of a state with energyEi is given by the Bose-Einstein dis-
tribution

N~Ei !5
1

eb~Ei2m!21
5

ze2bEi

12ze2bEi
. ~1!

This result is derived from first principles of statistical
mechanics, most conveniently using the grand canonical en-

semble@4#. b is related to the temperatureT by b51/kBT.
The energy of the ground state has been taken to be zero.
The fugacityz can be expressed by the chemical potential
m asz5exp(bm). It is determined by the constraint that the
total number of particles in the system isN:

(
i50

`

N~Ei !5N. ~2!

Degeneracy factors are avoided by accounting for degen-
erate states individually. The phenomenon of BEC for non-
interacting particles is fully described by Eqs.~1! and ~2!.
The nontrivial aspect is the determination of the chemical
potential as a function ofN and T. Oncem is known, all
thermodynamic quantities like total energy, specific heat, and
compressibility follow directly from sums over the energy
levels involving the occupation numbers in Eq.~1!. Several
authors have discussedm(T) for finite N @5,10,11#, but have
not discussed the conclusions presented in this paper.

Using

N5(
i50

`

(
j51

`

zjexp~2 jbEi !, ~3!

for a 3D isotropic harmonic potential with frequencyv we
obtain

N5(
j51

`

zj S (
n50

`

exp~2 jnb\v!D 35(
j51

`

zj /~12xj !3,

~4!

where x5exp(2b\v). Note that no special treatment is
given to the ground state, in contrast to what is necessary
with the continuous spectrum approximation@6#.

In Fig. 1, the number of atoms in the ground state
N05z/(12z), is plotted versus temperature for various val-
ues ofN. z was determined numerically from Eq.~4!. The
reference temperatureTc

0 is given by

Tc
05S N

g3~1! D
1/3\v

kB
~5!

with the usual definition of the Bose functionsgn(z)
5( j51

` (zj / j n) @4#. Figure 1 demonstrates that the signature
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of BEC in systems with a small number of particles is very
similar to the case of infinite number, the major difference
being a shifted and smeared out onset of the macroscopic
population of the ground state. The population of the first
excited level is shown in Fig. 2. It reaches at most a few
percent in systems of less than a thousand particles, and van-
ishes in the limit of largeN. It has been argued that ex-
change interaction is necessary to prevent the macroscopic
population ofseveralstates which are almost degenerate in
the thermodynamic limit@12#. Figure 2 shows that, for
N→`, the population of the first excited state is negligible
even in the absence of any interactions@10#, provided that
the limit is correctly taken by first calculating the properties
for finite N and then lettingN approach̀ .

To compare our results with the standard treatment, we
approximate Eq.~4! for kBT@\v, retaining the two highest-
order terms inkBT/\v. Since the sum in Eq.~4! diverges for
z→1, one has to rewrite Eq.~4! as N5z/(12z)

1( j51
` zj„@1/(12xj )#321… before applying the high-

temperature expansion@13#. Formally, this corresponds to
splitting off the ground-state population. The result is

N5
z

12z
1g3~z!S kBT\v D 31 3

2 g2~z!S kBT\v D 2. ~6!

At this point we briefly digress to describe the usual treat-
ment of BEC in a 3D harmonic potential@6# in some more
detail. Starting from Eq.~3!, the ground-state population is
split off, and the finite sum over the excited states is replaced
by an integral

N2N05(
j51

`

zjE
0

`

r~E!exp~2 jbE!dE ~7!

where r(E) is the density of states, usually taken to be
(E/\v)2/2. The result is

N5
z

12z
1g3~z!S kBT\v D 3. ~8!

The critical temperatureTc can now be found by setting
N050 and z51. The physical meaning of this is that the
second term in Eq.~8! represents the maximum number of
particles which can be accommodated in excited states when
the fugacityz reaches its maximum value of 1. All particles
exceeding this maximum number must condense in the
ground state. This results in Eq.~5! for the critical tempera-
ture, and a condensate fraction given by

N0 /N512~T/Tc!
3. ~9!

It is in fact possible to obtain the last term in Eq.~6! using
this traditional approach: since the degeneracy of the state
with energyn\v is (n11)(n12)/2, a better approximation
for the density of states isr(E)5 1

2@(E/\v)213(E/\v)#.
Inserting this expression into Eq.~7! yields Eq. ~6!. This
shows that there is no fundamental difference between the
use of discrete sums or a continuous spectrum if the density
of states is correctly approximated. In Fig. 3, several ap-
proximations to the exact result are compared. Already for
N51000, results obtained with Eq.~6! are almost indistin-
guishable from the exact result@Eq. ~4!#. However, the con-
tribution of the last term in Eq.~6! is important.

Strictly speaking, phase transitions only occur in the ther-
modynamic limit~e.g., for infiniteN). That is why we have
so far avoided using the term ‘‘phase transition,’’ but rather
concentrated on the fraction of atoms in the ground state
which can be exactly calculated even for the finite-N system.
However, as was shown above, the behavior of the finite-N
system is very similar to the thermodynamic limit, even for
N as low as 104. Phase transitions are usually defined by
singularities and critical behavior. In the case of BEC, the
phase transition is characterized by the appearance of a com-
plex order parameter~which can be identified with the con-
densate wave function! and the onset of off-diagonal long-
range order@14#. For the finite-N system, we adopt the
treatment described above@6#, and take the macroscopic oc-
cupation of the ground state as the defining characteristic of
the BEC phase transition. Note that in the recent experiments

FIG. 1. The condensate fraction for a finite numberN of atoms
in a three-dimensional harmonic potential versus temperature. Plots
are shown forN5100 ~solid line!, 1000, 104, and infinite~dotted!.
The lower plot enlarges the region around the transition tempera-
ture.

FIG. 2. The fraction of atoms in the~threefold degenerate! first
excited level versus temperature for 100~upper curve!, 1000, 104,
and 105 ~lower curve! atoms.
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@1–3#, the appearance of a macroscopic occupation of the
ground state was also regarded as evidence for BEC. We
thus define the transition temperatureTc for a finite-N sys-
tem by

(
i51

`
1

eEi /kBTc21
5N. ~10!

Using approximation~6! results in a transition temperature

Tc
Tc
0 512

g2~1!g3~1!22/3

2
N21/35120.7275N21/3. ~11!

For N51000, the transition temperature is lowered by 7%
compared to the usual result@Eq. ~5!# extrapolated from
N5`. To measure this finite-N effect is in reach of current
experiments@1–3#. Equation ~9! describes the condensate
fraction very well even for finiteN; however, it is important
to useTc @Eq. ~11!# and notTc

0 ~Fig. 3!.
All experiments on BEC of atomic gases were done in

anisotropic parabolic potentials. The generalization of the
above treatment to a potential with three different frequen-
ciesv i is straightforward, and yields the exact result

N5(
j51

`

zj Y)
i51

3

~12xi
j !, ~12!

with xi5exp(2b\vi), and

N5
z

12z1g3~z!S kBT\ D 3 1

) v i

1
g2~z!
2 S kBT\ D 2( v i

) v i

~13!

for kBT@\v i .
The correction term to the transition temperature in~11!

has to be multiplied by13(v i /()v i)
1/3, which is>1, i.e.,

anisotropy enhances the low-N decrease of the transition
temperature.

A nice feature of the exact result Eq.~12! is that it is valid
for arbitraryv i . It is therefore possible to study the freezing
out of degrees of freedom and the transition from a 3D sys-
tem to systems of lower dimensions. The 1D case is particu-
larly interesting because the standard result is that BEC is
not possible, based on the use of the continuous spectrum
@7#. AssumingkBT!\v i for i51 and 2, from Eq.~12! with
v5v3 andx5exp(2b\v3), we obtain

N5(
j51

`

zj /~12xj !5
z

12z
1(

j51

`
zjxj

12xj
. ~14!

Figure 4 shows the fraction of ground-state atoms versus
temperature for variousN. Qualitatively, the ‘‘condensation
phenomenon’’ looks very similar to the 3D case, clearly in-
dicating that BEC exists in a 1D harmonic potential in con-
trast to previous predictions@7#.

For «5\v/kBT!1, Eq. ~14! is approximated by@15#

N5
z

12z
1
1

« (
j51

`
@zexp~2«/2!# j

j

5
z

12z
2
kBT

\v
lnF12zexpS 2

\v

2kBT
D G . ~15!

This approximation is already excellent forN5100.
Equation ~15! can also be obtained from Eq.~7! using
r(E)51/\v, and introducing\v/2 as the lower limit of the
integral to avoid the unphysical low-frequency divergence.

The transition temperatureTc is determined by

N5
kBTc
\v

lnS 2kBTc\v D , ~16!

FIG. 3. Various approximations for the condensate fraction ver-
sus temperature forN51000 atoms.~a! The exact result~solid line!
is compared to the result obtained using Eq.~6! ~short dashes! and
Eq. ~8! ~long dashes!. ~b! Comparison with Eq.~9! ~short dashes!
and Eq.~9! with Tc replaced byTc

0 ~long dashes!.

FIG. 4. The condensate fraction for a finite numberN of atoms
in a one-dimensional harmonic potential versus temperature. Plots
are shown forN5100 ~solid line!, 104, 108, and infinite~dotted!.
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and the condensate fraction isN0 /N512@T ln(2kBT/
\v)/Tcln(2kBTc /\v)] with the logarithmic terms becoming
negligible for largeN.

In the limit of largeN, the relation between the number of
atoms and the transition temperatureTc in 1D is given by
~16!, in 2D it is @7# N5(kBTc /\v)2g2(1), and in 3D
N5(kBTc /\v)3g3(1). This demonstrates that the general
rule @implied by ~10!#, the tighter the confinement the higher
the transition temperature for a givenN, is still valid when
degrees of freedom freeze out and the system becomes two
or one dimensional. It is only the usual thermodynamic limit
in d dimensions, which assumesN→` with Nvd finite @5#,
which incorrectly predicts that BEC is not possible in a 1D
harmonic potential.

A 2D box has the same density of statesr(E)}E as a 1D
harmonic potential, and should therefore show identical be-
havior around the BEC transition. Using~7! with the energy
of the first excited state as the low-frequency limit of the
integral, we obtain the relation betweenN andTc in a 2D
box N52(L/L t)

2ln(L/Lt), compared toN5(L/L t)
3g3/2(1)

in a 3D box of linear sizeL. L t5(2p\2/mkBT)
1/2 is the

thermal de Broglie wavelength. Again, the number of atoms
N needed to reach BEC at a given temperatureTc is lower in
2D than in 3D. However, the thermodynamic limit ind di-
mensions assumesN→` with N/Ld finite, resulting in a
transition temperature of zero~or the absence of BEC! in 2D
in this limit.

Our result on the possibility of observing BEC in a 1D
atom trap is important for current experimental efforts. To
achieve BEC in alkali vapors requires tight confinement in a
magnetic trap. This was achieved using time-dependent mag-
netic fields @1#, permanent magnets@2#, or an optically
plugged magnetic trap@3#. All these solutions entail quite
some inflexibility for future experiments. The tightest con-
finement in a more conventional magnetic trap is achieved in
the Ioffe-Pritchard configuration@16,17# with a very tight
radial confinement. Transverse gradients of 500 G/cm and a
bias field of 0.1 G result in a radial field curvature of
2.53106 G/cm2 corresponding to an oscillation frequency
for Na atoms in theF52 hyperfine state of 4 kHz. The
separation between radial oscillator levels is 200 nK. We
therefore expect the radial oscillations to freeze out at tem-

peratures which have been reached by evaporative cooling
@1#. Below 100 nK the systems behaves as a 1D harmonic
oscillator, but will still undergo BEC. For example, with an
axial frequency of 5 Hz, one-dimensional BEC would hap-
pen at 50 nK withN51060. Another example of a highly
anisotropic atom trap is the optical dipole trap@18,19#. In
this case, transverse oscillation frequencies can be tens of
kHz resulting in a transition from 3D to 1D dynamics at a
temperature of about 1mK.

In conclusion, we have discussed BEC in systems with a
finite number of particles. It was shown that corrections due
to the finite number are small, but observable in the case of a
3D harmonic oscillator. Highly anisotropic trapping configu-
rations may correspond to a 1D harmonic oscillator or to a
2D or 1D box. In these configurations, BEC was predicted
not to happen. We were able to show that this conclusion is
only an artifact of the usual thermodynamic limit which does
not apply to the situation realized in atoms traps where a
finite number of atoms is given~instead of a linear density or
a surface density!.

We have restricted the discussion in this paper to the case
of the ideal gas. It is well known that the inclusion of inter-
actions between the particles profoundly changes the nature
of the BEC phase transition@4#, and is important for the
occurrence of a macroscopic phase~i.e., of a broken symme-
try!. It would be very interesting to study how such interac-
tions would affect the results presented here.

Note added: After submission of this work we learned
that Eqs.~6! and~11! were derived independently by Gross-
mann and Holthaus using the density-of-state approach@20#.
These authors have also discussed finite-N effects on BEC in
a box potential@21,22#. For the case of the 1D harmonic
potential, similar results were obtained by W. J. Mullin~pri-
vate communication!.
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