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An alternative approach is proposed to discuss mode coupling in bidirectional ring lasers that is
induced by backscattering. It is shown that various features can be simply discussed in terms of the
mode structure of the corresponding passive ring cavity. The nature of the backscattering is found
to play a crucial role in determining the normal-mode structure. For instance, we show theoretical-
ly that, for a rotating ring laser (gyro), the characteristics of frequency locking are already present
in the passive-mode structure if the mode coupling has a dissipative nature, i.e., if the backscatter-
ing originates in localized losses. If, on the other hand, the backscattering has a conservative na-
ture, i.e., originates in steps of the refractive index, a frequency splitting is found in the passive-
mode structure, making so-called oscillatory instability possible. Experimental observations are re-
ported to support this point of view. The recently reported m-phase jumps in He-Ne ring lasers are
shown to fit naturally into this scheme. These jumps can be described as transitions between the

normal modes of the passive ring cavity.

I. INTRODUCTION

The behavior of the counterpropagating traveling
waves in ring lasers in the presence of backscattering has
been the subject of many papers.! ~!* The backscattering
produces a linear coupling of the clockwise (cw) and
counterclockwise (ccw) propagating waves. Additionally,
since we deal with a laser, the two modes are nonlinearly
coupled by the saturation of the gain medium. The in-
terest in these phenomena stems partly from the field of
ring-laser gyroscopes where backscattering gives rise to
locking at low rotation rates.!”’ Interest has also been
generated by the statistical properties of ring lasers with
backscattering or by their nonlinear dynamics.3™'* In-
teresting features have been discovered, such as oscillato-
ry instabilities>”!!1>1% and phase jumps.'® 113

It is our aim here to show that, although a full analysis
of these systems leads inevitably into the field of non-
linear dynamics, many features in ring-laser behavior
may conveniently be discussed in the context of the mode
structure of the passive ring cavity.”'*!” This involves,
essentially, solving an eigenvalue problem and perform-
ing a transformation towards the basis of passive eigen-
modes. As an example, a coupling term (backscattering)
that arises in one basis may appear as a frequency shift in
a different basis.

We feel that the convenience of this approach has been
insufficiently appreciated so far. It is particularly useful
when the linear coupling by the backscattering dominates
the nonlinear coupling by the gain medium. This situa-
tion occurs naturally when the cross-saturation of the
counterpropagating modes equals the self-saturation, so
that the mode competition is neutral. A single Ne-
isotope He-Ne ring laser tuned to line center comes very
close to this condition® and we report in this paper, apart
from the theoretical discussion, some experimental re-
sults on backscattering-induced mode-coupling phenome-
na in such a laser. Related work on ring dye lasers will
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be published elsewhere.'*

Our theoretical approach is presented in Sec. II. We
show in Sec. III that, depending on the nature of the
backscattering, the mode structure of a passive rotating
ring cavity may display either frequency locking or fre-
quency repulsion. Some implications for the performance
of a laser gyro are considered. The well-known oscillato-
ry instabilities in (nonrotating) ring lasers with back-
scattering are described in Sec. IV in terms of normal-
mode frequency splittings. In Sec. V we present a novel
interpretation of the so-called 7-phase jumps. In Sec. VI
experimental results on the oscillatory instability will be
presented; these support the point of view that the insta-
bility can be seen as a normal-mode frequency splitting.
Conclusions are given in Sec. VII.

II. LINEAR MODE-COUPLING ANALYSIS

Within the context of third-order laser theory, the be-
havior of a (single-mode) ring laser is described quite ade-
quately by a set of nonlinear equations of motion for the
counterpropagating wave amplitudes. We assume zero
detuning from line center (i.e., we disregard self- and
cross-pushing and -pulling effects) and give the equations
in dimensionless form:%!#

E,=—i(KE,+K ,E,))—(|E,|*+¢£|E,|)E, , (1a)

EZZ_I(KZIEI+K22E2)—(|E2|2+§|E112)E2 Py (lb)

Here E, and E, are the complex amplitudes of the
clockwise and counterclockwise propagating waves, £ is
the ratio of the cross- and self-saturation coefficients
(0=¢£¢=<2), and the numbers I?,-j constitute a 2X2 com-
plex dynamical matrix describing the linear part of the
evolution. The equations are essentially the same as
those used by other authors;>®° our notation is some-
what unconventional in order to stress the connection
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with the eigenvalue problem of the passive cavity. Unless
explicitly stated otherwise, we shall retain the dimension-
less form of the equations throughout this paper.

In general the nonlinear equations have to be integrat-
ed numerically. Here we restrict ourselves to situations
where the mode structure of the passive cavity provides a
convenient framework for discussing ring-laser behavior.
Therefore we first consider the linear part of Egs. (1a) and
(1b), determine the eigenmodes and then consider the
nonlinear terms, which give rise to competition between
the eigenmodes of the linear system. The linear part of
Egs. (1a) and (1b) can be considered as a coupled oscilla-
tor model for the counterpropagating waves* and can be
written as

E,
E,

E,
E,

d
dt

=—iK

(2)

The eigenmodes of the linear system are now given by the
eigenvectors of the dynamical matrix K. The real and
imaginary parts of the corresponding eigenvalues give the
frequencies and damping rates of the modes. Note that
in this 2X2 matrix description it is implicitly assumed
that the two modes under consideration are well isolated
from other cavity modes. Stated differently, the frequen-
cy difference between the modes as determined by K must
be small as compared to the free spectral range of the
ring cavity.

For an interpretation of the physics underlying the ma-
trix elements K; it is instructive to decompose K into its
Hermitian and anti-Hermitian parts:

R=4R+KEH+LUK—-KHh=A+id, (3)

where a daggerlr denotes Hermitian conjugation. Since H
and A are now both Hermitian, their eigenvalues will be
real. The form of Eq. (3) suggests that H contains conser-
vative mechanisms, i.e., mechanisms that merely redistri-
bute energy between different modes. Conversely, 4 may
be interpreted as containing all dissipative mechanisms,
including linear gain.

The diagonal elements of H and A represent the fre-
quencies and damping rates, respectively, of the traveling
wave modes in the absence of coupling. A frequency
difference between the uncoupled cw and ccw waves may
be caused by a nonreciprocal phase, e.g., the Sagnac
effect in a ring-laser gyroscope, or the Faraday
effect.'® " 1® A difference in damping rate between cw and
ccw waves occurs, for example, in ring dye lasers
equipped with a unidirectional device.

The off-diagonal elements of H and A represent cou-
pling between the cw and ccw waves due to backscatter-
ing. We shall call the coupling produced by H “‘conser-
vative” and that by 4 “dissipative.” With the term con-
servative we adhere to the definition given by Haus, Statz
and Smith.> An alternative, widely used, terminology is
“off-phase” for conservative and “in-phase” for dissipa-
tive.>!2 The difference between these two kinds of back-
scattering becomes clear in the following examples. Let
us consider a dynamical matrix where the only nonzero
components are the off-diagonal elements of either H or
A:
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K=p We ¢ 0 ’ @

where W is a dimensionless backscattering rate (real and
positive) and S=1 or i for conservative or dissipative
backscattering, respectively. The phase ¢ is determined
by the position of the backscatterer relative to a chosen
reference plane and is not essential for the results to be
obtained. We shall therefore set ¢=0 throughout this
paper. The results for arbitrary ¢ may be found by multi-
plying the cw component of the eigenvectors by e'®/? and
the ccw component by e ‘4’2, In view of the spatial
dependence of the cw and ccw waves (~e** and
~e ~'*2)  this is essentially a displacement along the beam
axis. Irrespective of the type of backscattering (i.e., the
value of ), the eigenvectors of K are

1
1

—1
1

1
V7?2

1

, ‘/—5 (5)

The corresponding eigenvalues are =B8W. Since the cw
and ccw amplitudes are equal in magnitude, the eigenvec-
tors represent standing waves. The two eigenvectors are
orthogonal, which expresses the spatial complementarity
of the standing waves: the nodes of one standing wave
coincide with the antinodes of the other. For the conser-
vative case the eigenvalues are real, so that the standing
waves have different frequencies. For the dissipative
case, we find imaginary eigenvalues, i.e., different loss
rates. (We actually find one mode with gain, so that in a
passive system K must contain an additional loss term.)

The two types of backscattering may arise from local-
ized steps in the refractive index or in the absorption
coefficient for the conservative and dissipative case, re-
spectively. By “localized” we refer to spatial variation on
a scale smaller than a wavelength. A similar distinction
is made in Refs. 3 and 5. In the context of distributed
feedback media, the same distinction appears between
“index coupling” (conservative) and “‘gain coupling” (dis-
sipative).””!® We shall give a simple example of both
types of backscattering.

Consider, as a first example, a plane-parallel plate,
made from a lossless dielectric, aligned perpendicular to
the mode axis in a ring-resonator cavity. This element
evidently gives rise to backward reflection and thus cou-
ples the counterpropagating waves. Since the dielectric is
lossless, the plate can only redistribute intensity between
the two directions of propagation and must therefore be a
conservative scatterer. It was shown in earlier work that
such a backscattering element gives normal modes that
are standing waves, with a frequency difference deter-
mined by the effective reflection coefficient of the back-
scatterer.”!>'%!® Using a transmission matrix formal-
ism,'® it can be shown that the low-frequency mode has
an antinode in the center of the dielectric plate and the
high-frequency mode has a node. This suggests an inter-
pretation of the frequency difference as a difference in
dielectric polarization energy.’

In our second example we replace the plate by a local-
ized absorber, e.g., an absorbing layer, thin as compared
to a wavelength, perpendicular to the mode axis. It can
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be shown that Mie scattering by a dust particle some-
where along the resonator (e.g., on one of the mirrors)
may serve the same purpose.’ If we consider two stand-
ing waves, one with a node at the absorber and the other
with an antinode, it is clear that the former experiences
no loss (ideally), whereas the latter has maximum loss.
Apart from an overall loss rate, these standing waves are
exactly the eigenmodes of the matrix in Eq. (4) with S=1.
We may convince ourselves of the scattering mechanism
inherent to localized absorption (or gain), by considering
a traveling wave, clockwise say, that is present at a cer-
tain time inside the cavity. Alternatively this traveling
wave may seen as a superposition of the standing waves
just discussed. The standing-wave component with an
antinode at the absorber will decay, whereas the standing
wave with a node at the absorber remains undamped.
The remaining standing wave can, in its turn, be seen as a
superposition of cw and ccw traveling waves. Since in
the overall process part of the initial cw traveling wave
has been converted to a ccw traveling wave, localized ab-
sorption clearly implies a scattering mechanism.

A more formal argument shows that the presence of
orthogonal standing-wave eigenmodes (e.g., imposed by
symmetry) already implies a scattering mechanism, pro-
vided that the (complex) eigenvalues are different. In the
standing-wave eigenbasis the dynamical matrix is now
evidently diagonal. A unitary transformation to a basis
of traveling waves then yields a dynamical matrix with
nonzero off-diagonal elements which represent back-
scattering. One may verify that the magnitude of the ob-
tained backscattering rate is equal to |A|, where 22 is the
difference between the complex eigenvalues. In other
works, the traceless part of K takes the form of Eq. (4),
with BW replaced by A and with B=e'? somewhere on
the unit circle in the complex plane. The coupling thus
found is therefore in general intermediate between con-
servative and dissipative. Such a coupling may clearly be
realized by using an intracavity étalon, made from a ma-
terial with a complex refractive index, again perpendicu-
lar to the mode axis. The full range from conservative to
dissipative coupling can also be realized by using two ex-
tracavity backreflectors.? 1013

III. BACKSCATTERING
IN ROTATING RING CAVITIES

Frequency locking in ring-laser gyroscopes is generally
attributed to backscattering. However, in treatments of
laser gyroscopes, conservative and dissipative back-
scattering are rarely distinguished in their effect on lock-
ing behavior. By solving the eigenvalue problem as
defined in Sec. II, we shall show here that the nature of
the backscattering strongly determines the passive-mode
structure. Subsequently we shall consider some implica-
tions for the performance of an active (laser) gyro.

Restricting ourselves to the extreme cases of purely
conservative and purely dissipative coupling, we write the
dynamical matrix in the form

S BwW
W —S

. (6)
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Here 2S5 is the rotation-induced frequency splitting be-
tween the cw and ccw modes in the absence of back-
scattering (Sagnac effect), and 8 and W are defined as in
Eq. (4). Note that we have chosen the zero of our fre-
quency scale in such a way that K is traceless.

The parameters in Eq. (6) are defined as dimensionless
quantities. The actual dimensions are retrieved if we re-
place Wby rc /L, where L /c is the cavity round-trip time
and r is the fractional amount of backscattering per
round-trip (i.e., the effective amplitude-reflection
coefficient), with r << 1 in view of the validity of the two-
mode approach. The dimensionless frequency splitting
2S must then be replaced by the actual splitting produced
by the Sagnac effect, in units of angular frequency. The
resulting eigenvalues of K are then obtained as angular
frequencies.

A. Frequency locking by dissipative backscattering

For dissipative coupling (8=i) we find for the eigen-
values A=+(S%2— W?)!/2 i.e., real values for |S|> W and
imaginary values for |S|<W. The frequency splitting,
which depends linearly on S in an ideal gyro, is reduced
by the backscattering and vanishes below a critical rota-
tion rate, thus defining a locking region: |S|<W; see
Fig. 1(a). The width of the locking region (2W) is pro-
portional to the amplitude backscattering rate. We thus
recognize the familiar locking behavior of a laser gyro al-
ready in the passive cavity mode structure, if the back-
scattering is dissipative.

One must realize that the eigenmodes of a rotating
laser gyro with dissipative backscattering are generally
not orthogonal. Inside the locking region (|S| < W) the
eigenvectors of Eq. (6) have equal frequencies but
different damping rates and represent standing waves:

a —ia

1
V2

.
’ \/—2

ie

ie
e“ a

, (7
e

a

with cos2a=—S/W. Note that 2a is essentially the
phase difference of the cw and ccw components. This
dependence of 2a on the rotation rate is well known for
laser gyros in the locked regime, where only one standing

Re X
Im

[V

FIG. 1. Eigenmode frequencies (thick solid line; Re A and o)
and damping rates (dashed line; Im A) of passive rotating ring
resonators. In both cases S is the rotation rate and W the back-
scattering rate. In (a) the backscattering is dissipative; locking
occurs for |S| < W. In (b) the backscattering is conservative and
the modes are undamped.
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wave is present.6 Physically this means that the position
of the standing wave is shifted along the ring when the
ring is set into rotation. The maximum position shift is
reached at the locking threshold (|S|=W) and equals
A/8, where A is the wavelength. The scalar product of
the eigenvectors (overlap of the modes) is equal to
—S /W, so that the modes are orthogonal for zero rota-
tion rate and become identical when the locking thresh-
old is reached (|S| W). Outside the locking region
(|S|> W), the eigenvectors have equal damping rate but
different frequencies and are given by

i coshy
sinhy

i sinhy
coshy |’
where coth2y=—S /W and N =1/V cosh2y is a normal-
ization factor. The scalar product of the eigenvectors is
now — W /S, so that far from the locking threshold
(|S] >> W) the modes approach their asymptotic forms of
cw and ccw traveling waves and become orthogonal.
Again, the modes become identical upon approaching the
locking threshold (|S|~\ W).

For a complete description the nonlinear coupling in
the gain medium must be taken into account. This is re-
quired, e.g., to explain the anharmonic beat signals
occurring just above the locking threshold."®%!* Note
that such a description is also complicated by the
nonorthogonality of the modes. A complete description
therefore remains a complicated problem. What we want
to stress here, is that locking characteristics are a proper-
ty of the passive ring cavity if the backscattering is dissi-
pative. The assumption of a dissipative contribution to
the backscattering seems reasonable for actual laser
gyros, where it may originate in dust particles and
scattering losses in the mirrors.

N

, N

(8)

B. Frequency repulsion by conservative backscattering

For conservative coupling (f=1) we always find real
eigenvalues of K [Eq. (6)]: A=w==(S2+ W22 In
contrast with the dissipative case of Sec. III A, the
difference between the eigenfrequencies is now larger
than in the absence of backscattering (W =0). The
dependence of the eigenfrequency on the rotation rate S
shows an avoided crossing [Fig. 1(b)] with a minimum
separation given by 2W. For the eigenvectors we find
cosf } —sind ]

sin@ cosf ©)

with cot260=S /W. The eigenvectors are orthogonal as a
consequence of the Hermiticity of K. Note that for a
nonrotating cavity (S =0), the corresponding eigenmodes
are standing waves, as was shown already in Sec. II.
With increasing rotation rate the eigenmodes gradually
approach their asymptotic forms, i.e., cw and ccw travel-
ing waves.

In a ring laser, the nonlinear interaction of the waves
in the gain medium leads to competition between the pas-
sive normal modes. For the laser gyro with conservative
backscattering two possibilities exist in the limit of low
rotation rate (|S| << W). The laser may either oscillate
simultaneously in both normal modes (approximately

SPREEUW, NEELEN, van DRUTEN, ELIEL, AND WOERDMAN 42

NE
BN
E
]ccw
lC'

FIG. 2. Ring laser (a) with conservative backscatterer E, os-
cillating in the two standing-wave modes of Fig. 1(b) in the ab-
sence of rotation (S =0). The corresponding normal-mode fre-
quency diagram is shown in (b) with standing-wave amplitudes
F, and F,. The beat frequency of the standing waves (2W) cor-
responds to intensity modulation of the traveling waves, so-
called oscillatory instability (c). The cw and ccw intensities I,
and I, are oscillating in antiphase between the levels
(F—F,)*/2 and (F,+F,)*/2. These levels are shown as
dashed lines.

standing waves), or in only one, depending on whether
the competition between the standing waves is weak or
strong.’ In the former case we observe cw and ccw inten-
sities that are modulated at the beat frequency (=2W for
low rotation rate, see Fig. 2), whereas in the latter case
no beat is present.'* In Sec. IV we discuss which situa-
tion actually occurs for different gain media.

From an operational point of view, laser oscillation in
a single normal mode, as may occur here due to conserva-
tive backscattering, is difficult to distinguish from fre-
quency locking due to dissipative backscattering. In both
cases the beat note of the laser gyro disappears for low
rotation rates. In fact, according to the definition of
locking in Ref. 5, i.e., a situation in which the phase
difference between the traveling waves is constant in
time, both situations are actually called locking. This re-
sult contradicts the statement in Ref. 5 that conservative
backscattering does not lead to locking. This statement is
based on the commonly made assumption that the ampli-
tudes of the counterpropagating waves are equal. Let us
examine the validity of this assumption by considering
first a laser oscillating in a single normal mode. In this
case we expect from Eq. (9) that the cw and ccw ampli-
tudes are generally different and equal only for zero rota-
tion rate (S=0). In the other possible case, where the
laser oscillates simultaneously in both normal modes, the
counterpropagating intensities are modulated in anti-
phase at the beat frequency (see also Sec. IV), so that they
are evidently unequal. We conclude therefore, that the
common assumption of equal amplitudes is not justified
and leads to incorrect results. Also conservative back-
scattering can lead to locking.

The linear two-mode analysis as presented in this sec-
tion is valid as long as the two modes are well isolated
from other longitudinal modes. In other words, the fre-
quency splittings produced by W and S must be small as
compared to the free spectral range of the ring cavity.
The complete mode structure of a rotating ring resonator
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with conservative backscattering, containing all longitu-
dinal modes, can be obtained from a transmission matrix
formalism and leads to an optical band structure.!*~!®
The mode frequencies, expressed in units of angular fre-
quency (i.e., not dimensionless), are then given by

=c
L

Here ¢ /L is the free spectral range of the cavity, g is an
integer (the cavity mode number), r is the amplitude-
reflection coefficient of the backscatterer, and ¢ is the
nonreciprocal (Sagnac) phase per round-trip. The longi-
tudinal mode splitting (for fixed g) reduces to the two-
mode result when r and ¢ are small
(ry¢s <<1): Aw=(2c/L)r*+¢%)!"/2. A similar exten-
sion may be made for the dissipative case.

@ {2mgq tarccos[(1—r2)2cosds]] . (10)

IV. OSCILLATORY INSTABILITY

Oscillatory instabilities in (nonrotating) ring lasers with
backscattering were reported for several laser sys-
tems.>7 111313 Ip the time domain they can be described
with an oscillatory cross-correlation function for the
traveling-wave intensities.'© We shall give here a descrip-
tion in the frequency domain that is conceptually simpler.
We describe the phenomenon as a stable operation in two
standing waves, the eigenmodes of the passive cavity (Fig.
2). The nonlinearity associated with gain saturation of
the laser medium leads to mode competition between the
passive eigenmodes.

We shall restrict ourselves to the situation where the
backscattering is equally strong in both directions, but in-
termediate between dissipative and conservative. The
dynamical matrix for this situation may be written as

ia BW
BW ia

, (1n

where we have set S=0 (nonrotating ring laser) and
where a is the (dimensionless) pump parameter, i.e., the
amount of unsaturated gain minus loss (cf. Ref. 9). We
assume the pump parameter to be real and equal for both
traveling waves, which is correct for zero detuning from
line center. The parameter B=e'? determines the nature
of the backscattering, with sinyy=0 for conservative and
cosyy=0 for dissipative backscattering. The backscatter-
ing rate W is real and positive as before. The eigenvalues
are ia+We 'V with eigenvectors given by Eq. (5). We thus
find two orthogonal standing-wave modes with a frequen-
cy splitting 2W cosy and a difference in damping rate
2W ssiny. For cosy=0 the backscattering is dissipative
and the difference in frequency vanishes. On the other
hand, the difference in damping rate vanishes for sinyy=0
or conservative backscattering. We now choose the
standing-wave normal modes of Eq. (5) as a basis for our
two-mode problem, i.e., we express the field in the com-
plex standing-wave amplitudes F, and F, through the
transformation
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E,|_ F, [1] F [—1]
~ - +—_
E, v (1 v L1
T (12)
v2 |1 1 ||F,

In order to describe competition between the modes F 1.2
we must return to the nonlinear equations (1a) and (1b).
With Eq. (12) and the coefficients K;; from Eq. (11), Egs.
(1a) and (1b) are transformed into the following evolution
equations for the standing-wave amplitudes:>!?

B= a—iWei"’—l—;élﬁllz—lf‘zlz F,
+%<Frﬁz)ﬁz : (13a)

£,= a+,Wef¢—1—“2“§;F —|F, 1 |F,
+§;—1<F1F;>F1 : (13b)

where the asterisk * denotes complex conjugation. We
may now introduce a,,=axtWsiny as the effective
pump parameters for the standing waves and Q,,
=1 W cosy as the frequencies of the standing waves. If
we assume =1 (which is generally found to describe a
single Ne-isotope He-Ne ring laser tuned to line center’®),
these equations reduce to

Fy=(a,—iQ,—|F,|*~|F,|))F, , (14a)

F,=(a,—iQ,—|F,|*—|F,|>)F, . (14b)

We see that only the sum of the intensities |F, |>+ |F, |?
appears as a saturation term, so that the degree of satura-
tion is equal for both modes, i.e., mode competition is
neutral.

If, additionally, the coupling is conservative, we have
sinyy=0, so that a, =a,=a and Q,=—Q,= W (choosing
cosyy=+1). This leads to the following stationary solu-
tions of Eqgs. (14a) and (14b), up to constant phase fac-
tors:

F\(t)=Fe ", (15a)
F,(t)=F,e™", (15b)
with F; and F, chosen as real and positive and

Fi+F}=a. As aconsequence of the neutral character of
the mode competition (§=1), this stationary solution is
indifferent with respect to a redistribution of the intensity
between the modes F| and F,. We will come back to this
point in Sec. V A. Transforming the solutions Eqs. (15a)
and (15b) back to the traveling-wave basis, we find for the
cw and ccw amplitudes
1

El(t)=7_5[(F1—Fz)cosWt—i(Fl+F2)sinWt] ,

E2(1)=‘%[(F1+F2 )cosWt —i(F,—F,)sinWt] .

(16a)

(16b)



4320

The cw and ccw intensities |E,(¢)|? and |E,(¢)|? will
therefore be modulated in antiphase at a frequency 2W,
with a modulation depth determined by 1(F,—F,)* and
H(F,+F, )%; see Fig. 2. This behavior, which was called
“oscillatory instability” or “intensity oscillation” by
several authors,“““'”'14 corresponds in our picture
with a stable operation in two standing-wave modes.
Oscillatory instability was also observed in ring-laser
systems for which the condition £=1 is not met. We can
see from Egs. (13a) and (13b) that the ratio of the cross-
and self-saturation coefficients for the standing waves is
equal to 2/(1+¢&). Therefore weak competition between
traveling waves (§<1) leads to strong competition be-
tween standing waves [2/(1+£)>1] and vice versa.
Note that we disregard the influence of the last terms in
Egs. (13a) and (13b), since they vary rapidly in time. It is
shown in Ref. 14 that these terms do not influence the
character (i.e., strong or weak) of the mode competi-
tion.?% For oscillatory instability we need weak (or neu-
tral) competition between standing waves, or £>1. Ring
lasers with a homogeneously broadened gain medium,
such as dye ring lasers, satisfy this condition (§=2) and
therefore show oscillatory instability.®!* Ring lasers for
which £ <1, such as a He-Ne ring laser with an isotopic
mixture of °Ne and ?*Ne, have not been observed to
show oscillatory instability. These lasers oscillate instead
in one standing-wave mode, as was observed in ring-laser

gyros.3

V. m-PHASE JUMPS

The applicability of our linear two-mode analysis to a
ring laser with backscattering is determined by the rela-
tive strength of the linear coupling as compared to that of
the nonlinear coupling. We may expect our approach to
be useful in those cases where the linear coupling dom-
inates. As mentioned already in Sec. IV, the nonlinear
terms in Egs. (13a) and (13b) reduce to a very simple form
for £=1 (neutral mode competition), a situation that ap-
plies to a single Ne-isotope He-Ne ring laser on line
center. In this case the nonlinear coupling is absent so
that any amount of linear coupling will dominate. We
shall now use the linear two-mode approach to discuss
so-called 7-phase jumps that were reported recently for
exactly this type of laser in the presence of backscatter-
ing.!®!3 The terminology refers to sudden jumps (by an
amount 7) in the relative phase of the counterpropagat-
ing waves in the ring laser. Note that phase jumps were
also reported for ring lasers without backscattering.?!
These jumps are completely governed by the nonlinear
dynamics and will not be addressed here.

We distinguish here three categories of (backscatter-
ing-induced) m-phase jumps, two of which, the “noise-
driven jumps” and the ‘“‘deterministic jumps,” were also
discussed by Chyba.!* The third category, which we call
‘“detuning-driven jumps,” has not been discussed before
and is predicted in the present paper.

A. Noise-driven jumps

Noise-driven jumps were reported!® for conditions of
conservative backscattering [siny=0 in Egs. (13a) and
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FIG. 3. Pictorial representation of three categories of 7-
phase jumps in the standing-wave picture. The hyperbola dia-
grams refer to Fig. 1(b). In (a) the intensity difference of the
standing-wave modes changes sign. In (b) and (c) the laser
makes a mode hop between the standing-wave normal modes,
induced by a change of the backscattering phase (b), or a change
in cavity detuning (c). The processes in (a), (b), and (c) are
called noise-driven jumps, deterministic jumps, and detuning-
driven jumps, respectively.

(13b)] and laser tuning to line center, so that £=1. Under
these conditions oscillatory instability was shown to
occur in Sec. IV and the behavior of the laser is again
most easily understood in the standing-wave picture.
Equations (15a) and (15b) show that simultaneous oscilla-
tion occurs in two standing-wave modes with frequency
difference 2W. As mentioned already, the solution is
indifferent to a redistribution of the intensity between the
standing waves. Therefore as a result of spontaneous
emission and other noise processes, the amplitudes F,
and F, will fluctuate, while the sum of their squares is
stabilized, by gain saturation, to the value F %+F §=a.
The phase difference between the standing waves in-
creases linearly in time, at a rate given by their beat fre-
quency 2W. Although the noise sources will cause some
diffusion around the linear increase of the phase, no sud-
den jumps in this phase are expected.

We will now show that a sudden jump in the phase
difference between the traveling wave does occur, when
the intensity difference of the standing waves, F% —F%,
changes sign (and thus F; —F,) due to the random inten-
sity redistributions. Figure 3(a) shows a pictorial repre-
sentation of such a process, in which the intensity distri-
bution changes from dominantly in the ‘“‘upper” mode
(Fy>F,) to dominantly in the “lower” mode (F, <F,).

In order to understand that a 7-phase jump occurs in
this situation, we must return to the traveling-wave pic-
ture. In Egs. (16a) and (16b) the complex traveling-wave
amplitudes E,(t) and E,(t) are expressed in the
standing-wave amplitudes F; and F,. Let us assume that
before the phase jump occurs (¢ <t;), the upper mode is
the stronger one (F,>F,). As is apparent from Egs.
(16a) and (16b), the evolution of the traveling-wave ampli-
tude E,(¢) in the complex plane is along an ellipse with
semi-major and -minor axes (1/V2)(F,+F,) and
(1/V'2)|F, —F,|, respectively. For E,(t) the axes are in-
terchanged. The ellipses are drawn in Fig. 4(a) for the
situation that F, > F,. The individual phases of the trav-
eling waves (argE,| and argE,) will therefore evolve ac-
cording to the ‘‘staircases” in Fig. 4(c) for ¢ <t;. The
time dependence of the phase difference ¢, =argk,
—argE, is also given in Fig. 4(c). Note that the series of
regular jumps in ¢,, by an amount 7 for ¢ <t; is purely
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FIG. 4. Evolution of the traveling-wave amplitudes E,(t)
and E,(t) in the complex plane (a) before and (b) after a noise-
driven 7 jump at t=¢,, with snapshots for t=¢, 5 c <t,. The
ellipses have semi-major and -minor axes (F,+F,)/V'2 and
|F\—F,|/V2, respectively. At t=t, the sign of F,—F,
changes, so that the sense of circulation around the ellipses is
reversed. In (c) the corresponding evolution of the individual
phases of E,(t) and E,(¢t) and their phase difference ¢,, is
given.

deterministic and not of interest here. As mentioned
above, the effect of noise is a fluctuation of the standing-
wave amplitudes F, ,, which manifests itself in Fig. 4(a)
as a change in ellipticity. Let us assume now that F; and
F, fluctuate in such a way that F|; —F, changes sign at
t=t,, i.e., we consider a process as shown in Fig. 3(a). As
a consequence the ellipses will evolve into line segments
at t=t; and reappear at t>1t; [F, <F,, see Fig. 4(b)].
However, since the sign of F; —F, is reversed during this
process, so is the sense of circulation around the ellipses.
The phases of the individual traveling waves thus change,
at t=t;, from a decreasing into an increasing function of
time; see Fig. 4(c). The corresponding trace of the phase
difference ¢,; shows an irregular jump by an amount +7
near t =t;.

In conclusion, we find that these noise-driven m-phase
jumps arise as an artifact if we choose to work in the
traveling-wave basis. If we work instead in the standing-
wave basis, i.e., if we use the passive normal modes, we
find laser operation in two modes with fluctuating ampli-
tudes.

B. Deterministic jumps

Deterministic 7-phase jumps were reported in experi-
ments on He-Ne ring lasers where the backscattering
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phase ¥ was a controllable parameter.'* We shall show
here that these jumps may be interpreted as a mode hop
between two standing waves [see Fig. 3(b)], induced by a
zero crossing of siny. In terms of the discussion of Sec.
II, the condition siny70 implies that the backscattering
is not purely conservative but also contains a dissipative
component. Since we associated dissipative coupling
with localized losses, we may expect that the standing-
wave modes will have different loss and therefore a
different threshold gain and a different pump parameter.

In order to see how a mode hop can be induced by ad-
justing 1, let us return to Egs. (14a) and (14b) and assume
sinyy>0. For the effective pump parameters a; and a, we
find the relation a,=a+ Wsiny>a —Wsiny=a,. As
can be seen from Eq. (14a), for steady-state oscillation we
have a,—|F,|*—|F,|?=0, which directly implies that
a,—|F|*—|F,|*<0. In other words, mode F, will ex-
perience loss, so that the stable solution is

Fi(t)=e Wreost(g + Wsiny)! /2, (17a)

Fy(1)=0 . (17b)

Obviously, for the opposite sign of siny the roles of F,
and F, are interchanged, so that the laser responds with a
mode hop to a change in sign of siny. If the phase
difference of the traveling waves is monitored, a jump by
an amount 7 is observed, since the standing-wave modes
F, and F, are 90° out of phase, spatially. During the
transient, when both standing waves are present, a beat
frequency is observed. We predict another effect that
should accompany this phase jump, not reported in Ref.
13, namely a change in frequency of the laser output.
The frequency changes by an amount Q,—Q,=2W cos,
i.e.,, by an amount 2W, since the mode hop occurs when
singy=0.

C. Detuning-driven jumps

Detuning-driven jumps have, to our knowledge, not
been discussed before. We expect such jumps to occur
when the He-Ne laser is operated with conservative back-
scattering, as a response to tuning the cavity through the
center of the Doppler-broadened line. These detuning-
driven jumps may, just like the deterministic jumps, be
identified as mode hops between the two standing-wave
normal modes [see Fig. 3(c)]. Actually, when the cavity
detuning is a controllable parameter, the detuning-driven
jumps are deterministic as well. However, we shall
adhere to the present nomenclature in order to maintain
the distinction with the deterministic jumps of Sec. V B.

So far all our results were obtained for (single-mode)
He-Ne ring lasers tuned to line center leading to a mode-
coupling parameter £=1. This situation reduced the
nonlinear effects to the very simple form given in Egs.
(14a) and (14b). When we detune the laser from line
center, the nonlinear effects are more complicated. For
example, the pump parameter and the self- and cross-
saturation coefficients all become complex valued. Mene-
gozzi and Lamb® showed theoretically that for an inho-
mogeneously broadened ring laser with conservative
backscattering, detuned from line center, only one stand-
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ing wave oscillates, the oscillating mode being deter-
mined by the sign of the detuning. Therefore, if we tune
the cavity through line center, we expect a mode hop [see
Fig. 3(c)]. As a result a 7 jump is observed in the phase
difference between the traveling waves. As in Sec. VB,
the phase jump is predicted to be accompanied by a fre-
quency jump of 2W.

We suspect this to be the mechanism underlying the
polarization-azimuth flips reported by de Lang and
Bouwhuis.”> In their experiments with a linear 1.15-um
He-Ne laser (i.e., no ring laser) they found that the
(linear) polarization of the laser switched from E, to E,
when tuning the laser through the Doppler profile. In or-
der to see the connection with 7r-phase jumps, it must be
realized that the linear two-mode analysis of Sec. II is not
at all restricted to describe the coupling between cw and
ccw traveling waves in a ring cavity with backscattering.
It could equally well be applied to describe the coupling
between the opposite circular polarizations of a linear
cavity with spurious birefringence. We can then describe
the flip of the linear polarization by a 7 jump in the phase
difference between its circular-polarization components.

VI. EXPERIMENTS

In Sec. IV we interpreted the oscillatory instability in
ring lasers with conservative backscattering as a frequen-
cy splitting of the normal modes. Although experimental
observations of the oscillatory instability have been re-
ported, >’ 111314 it was, to our knowledge, never ob-
served as a spectral feature. The experiments described
in this section are intended to fill this gap and thus sup-
port the point of view that the splitting of the passive
normal modes, as reported in Refs. 7, 15, and 16, under-
lies the oscillatory instabilities in the active system. Ex-
periments on phase jumps were reported before!®!"!* and
will not be addressed here.

We performed experiments in two He-Ne ring lasers,
both of which were constructed from four mirrors with
high reflectivity at A=633 nm. The gain medium was a
plasma tube from a Spectra-Physics model 120S He-Ne

FP2 (300 or 75 MHz)

% M4
EY ] PZT
£2
PD
SA ’ :
M1 PT D M2
OSC —emT

FIG. 5. Experimental setup. M1-M4, mirrors; PT, He-Ne
plasma tube; El, backscattering étalon; E2, étalon for spectral
selection (only for single-mode experiment); D, diaphragm; PD,
photodiode; PMT, photomultiplier tube; SA, rf spectrum
analyzer; OSC, oscilloscope; FP1, confocal 1.5-GHz Fabry-
Pérot étalon; FP2, confocal 75- or 300-MHz Fabry-Pérot étalon
(see text).
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laser. The tube had Brewster windows and was filled
with a 9:1 mixture of *He:?°Ne at a tip-off pressure of 3.4
Torr.

The first laser had a length of 1.37 m corresponding to
a free spectral range (FSR) of 219 MHz (see Fig. 5). Mir-
rors M1 and M4 were plane, mirror M2 had a radius of
curvature of 6 m and mirror M3 of 1 m. Mirror M4 was
mounted on a piezoelectric element to allow for tuning of
the cavity. As a backscattering element we used a 1-mm
uncoated quartz étalon (E1) perpendicular to the beam,
so that the backscattering was always (dominantly) con-
servative. For spectral selection an extra étalon (E2; 5-
mm uncoated quartz) was placed in the beam, slightly
tilted to avoid additional backscattering. The laser light
coupled out through mirror M3 was analyzed by two
confocal Fabry-Pérot interferometers, FP1 and FP2 with
a FSR of 1.5 GHz and 300 MHz, respectively. We also
monitored the laser light coupled out through mirror M1
in the time domain, using a photomultiplier tube connect-
ed to an oscilloscope. The power spectrum of this laser
output was measured with an rf spectrum analyzer. The
number of oscillating longitudinal modes of the ring laser
was monitored with Fabry-Pérot FP1. We used Fabry-
Pérot FP2 and the rf spectrum analyzer to detect the
backscattering-induced doublet splitting of the individual
longitudinal modes. By adjusting étalon E2 the laser
could be forced to operate in a single longitudinal mode.
Most of the time the laser oscillated in a single-standing-
wave mode and no splitting was observed. This is the re-
sult to be expected for a He-Ne laser detuned from line
center as discussed in Sec. VC. For the two standing
waves to oscillate simultaneously, the laser must be tuned
to line center. By adjusting étalon E2 and the piezovol-
tage of M4 we could indeed observe a doublet on Fabry-
Pérot FP2 [Fig. 6(a)], and at the same time a single longi-
tudinal mode on FP1 [Fig. 6(b)]. Typical results for the
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FIG. 6. Experimental results for the spectral and temporal
properties of a He-Ne ring laser with conservative backscatter-
ing, oscillating in a single longitudinal mode. High- and low-
resolution optical spectra obtained with FP1 and FP2 are shown
in (a) and (b). The arrows indicate the free spectral range of
FP1 and FP2. A longitudinal-mode splitting is visible in (a).
The traveling-wave intensity, recorded with the PMT, shows (c)
an 8-MHz oscillation and (d) the rf spectrum analyzer reveals
the same frequency in the beat spectrum.
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corresponding beat note are shown in Figs. 6(c) and 6(d).
The photomultiplier signal in Fig. 6(c) shows the oscilla-
tory instability. Only one peak was visible in the rf spec-
trum, at 8 MHz [Fig. 6(d)]. The mode splitting was not
observed when the backscattering étalon El was re-
moved. All this provides convincing support for the
point of view that the oscillatory instabilities can be inter-
preted as a splitting of the longitudinal mode of the ring
laser, in agreement with Sec. IV.

Although it was assumed throughout this paper that
the laser operated in a single longitudinal mode, we also
performed experiments in a multimode laser. This laser
has a length of 2.97 m, corresponding to a FSR of 101
MHz. The radii of curvature were now 1 m for mirrors
M1 and M2, 5 m for mirror M3, and 6 m for mirror M4.
In this experiment FP2 was a confocal Fabry-Pérot inter-
ferometer with a FSR of 75 MHz. Etalon E2 was re-
moved; as a consequence the ring laser oscillated simul-
taneously in 5-10 longitudinal modes [see Fig. 7(a)]. In-
sertion of a 1-mm quartz étalon perpendicular to the
beam (E1) produced a splitting of these modes of about 6
MHz [Fig. 7(b)]. In the rf beat spectrum the same mode
splitting was visible through the occurrence of 6-MHz
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FIG. 7. Spectral and temporal properties of a multimode
He-Ne ring laser with conservative backscattering. A low-
resolution optical frequency spectrum, obtained with FP1 (free
spectral range 1.5 GHz), is shown in (a), where the collection of
longitudinal modes appears. The longitudinal mode spacing,
i.e., the free spectral range of the laser cavity, is 101 MHz. A
high-resolution spectrum, obtained with FP2 (free spectral
range 75 MHz), shows (b) the splitting (6 MHz) of the individual
modes. (c) The rf spectrum displays 6-MHz sidebands at inter-
mode beats at multiples of the free spectral range of the laser
cavity.
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sidebands at all intermode beat frequencies [0 and 101
MHz, 202 MHz, .. .; see Fig. 7(c)]. In order to verify
the dependence of the splittings on the strength of the
backscattering, we replaced the 1-mm quartz étalon (E1)
by an étalon with a piezoelectrically adjustable air spac-
ing. The plates of this étalon, a Spectra-Physics model
581B-16, were dielectrically coated. In a separate experi-
ment we established that the effective intensity-reflection
coefficient R could be varied from O to 0.73 (at 633 nm)
by adjusting the piezovoltage. According to Eq. (10) we
may then expect the mode splitting to vary between 0 and
33 MHz. In Fig. 8 we show the mode splitting (deter-
mined from the rf beat spectrum) as a function of the
piezovoltage, together with the splitting as calculated
from Eq. (10). The data show good agreement with
theory. The periodicity in Fig. 8 is due to the periodic
dependence of R on the étalon spacing. The period cor-
responds with a free spectral range of the étalon. The ob-
servations show that the linear analysis from Sec. II is ap-
parently also useful in the multimode case. In that case
we find the same backscattering-induced longitudinal-
mode splitting.

VII. CONCLUSIONS

The linear formalism presented in this paper provides a
convenient framework to discuss backscattering-induced
mode coupling in ring lasers in terms of competition be-
tween the normal modes of the passive cavity. The ap-
proach is useful in those cases where the linear mode cou-
pling due to backscattering dominates the nonlinear cou-
pling due to gain saturation. We have applied the for-
malism to discuss several effects of backscattering in (ro-
tating) ring lasers. By examining the extreme cases of
conservative and dissipative backscattering, the nature of
the backscattering was shown to play a crucial role. Dis-
sipative backscattering, associated with localized losses,
leads to frequency locking in the mode structure of the
passive cavity and will therefore tend to lock the laser
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FIG. 8. Behavior of the longitudinal mode splitting in a mul-
timode He-Ne ring laser as the reflection coefficient of an air-
spaced backscattering étalon is varied periodically. The étalon
spacing depends roughly linearly on the piezovoltage and deter-
mines the effective reflection coefficient. The solid curve was
calculated with Eq. (10), using a maximum reflection coefficient
R =0.73. The deviation from the theoretical curve at low volt-
ages is attributed to the nonlinearity of the piezo response.
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modes. Conservative backscattering, associated with lo-
calized jumps in refractive index, leads to a normal-mode
splitting and thus makes oscillatory instability possible.
We showed that the latter phenomenon may be seen as a
stable operation in the two normal modes of the passive
cavity. These are standing-wave modes with a frequency
difference proportional to the effective backscattering
rate.

The recently reported m-phase jumps in He-Ne ring
lasers may be described conveniently in terms of the nor-
mal modes of the passive cavity. The noise-driven 7-
phase jumps were shown to arise as a peculiarity of a
description in traveling waves, instead of the normal
modes of the passive cavity, which are standing waves.
Deterministic jumps can be seen as a mode hop between
two standing-wave modes, induced by a change in back-
scattering phase. We also predicted an alternative type of
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phase jump, the detuning-driven jump, which may again
be seen as a mode hop between the two standing-wave
modes, this time induced by tuning the laser frequency
through the Doppler profile. Finally we have presented
experimental results on the oscillatory instability, reveal-
ing the spectral mode splitting of the individual longitu-
dinal modes, in agreement with the theory developed
here.
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