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Abstract

It is shown that the transverse modes of a Raman amplifier with Gaussian pump are equivalent to those of a mi-
crochip laser with combined quadratic index guiding and Gaussian gain guiding. This equivalence allows for consid-
erable cross-fertilization between these two hitherto separate fields. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

The transverse mode structure of optical am-
plifiers and lasers is often of critical importance for
their operation [1-4]. The most widely used sets of
modal profiles are the so-called Hermite— and
Laguerre-Gaussian (HG and LG) modes. These
are solutions to the paraxial wave equation in free
space, and are thus the “normal modes of free
space” [1]. In addition, they are the transverse ei-
genmodes of stable-cavity laser resonators. De-
spite their widespread use, however, the HG and
LG modes are often only crude approximations to
the true transverse modes of practical optical am-
plifiers and lasers. Since it is desirable to maximize
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the overlap between the laser mode and the gain, it
is common practice to make the width of the gain
profile similar to (or even less than) that of the
lowest-order mode. In this case, gain guiding and
possibly also gain-related index guiding (where a
change in the gain leads to a concomitant change
in refractive index) will need to be taken into ac-
count in addition to the guiding mechanisms al-
ready present; this will generally lead to
eigenmodes that differ from the standard HG and
LG modes. The actual shape of the eigenmodes
will typically depend on the details of the precise
configuration, type of gain, and the transverse
profiles of both the gain and losses that are pre-
sent. This suggests that each particular laser or
optical amplifier requires an analysis that is spe-
cific to that system.

In this paper we will show that two of these
analyses, that previously have been treated com-
pletely separately, can in fact be directly mapped
onto one another, and thus both lead to the same
set of transverse eigenmodes. This set of modes
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can deviate significantly from the standard HG
and LG modes. Specifically, we show that the well-
established equations for the transverse modes of a
Raman amplifier pumped by a Gaussian beam
[3,5,6] are equivalent to the equations we have
recently used to describe the transverse modes in a
rare-earth microchip laser [7,8]. Both can be trea-
ted as a wave guide which combines parabolic in-
dex guiding with a Gaussian gain guide (see

Amplified Stokes _g

laser crystal
output coupler

»
laser output

(b) mirror coating J AT coating

Fig. 1. The different systems we consider in this paper. The
transverse modes of the experimental systems (a) and (b) are
both equivalent to those of the hypothetical wave guide (c). The
amplified eigenmode is indicated with dashed curves in all three
cases. (a) Free-space Raman amplifier, pumped by a focused
Gaussian beam; the spatially varying solutions for the amplified
Stokes beam have the same Rayleigh range z, as the pump
beam. (b) Microchip laser with localized gain and an effective
index guide; the index guide may be caused by, e.g., the weakly
curved output coupler, cf. [7,8]. (¢) Longitudinally homoge-
neous wave guide with combined transverse quadratic index
guide An, and Gaussian gain guide Any; the total guiding is
Ane = An; + Any.

Fig. 1). This finding was inspired by the striking
similarity between the results in [7] and those in [6]
(e.g., compare [7, Fig. 2] with [6, Fig. 3]). In the
following, we will show how these two problems
can be directly mapped onto each other. We will
first demonstrate the equivalence of the equations,
and next discuss some of the insights that can be
directly transferred from one case to the other.

2. Demonstration of equivalence

We start with the case of Fig. 1(a), a free-space
Raman amplifier pumped by a focused Gaussian
pump beam. The aim is to describe the (spatially
dependent) amplification at the Stokes wave-
length. To this end, [5,6] start from the paraxial
wave equation, including gain and index guiding.
For an electric field

E(r,t) = Re{expli(wt — kz)]&(x) } (1)
traveling in the +z direction with wave vector

k =2mn/A, with &(r) the slowly varying amplitude,
this may be written as

(Vf - 2ik§)é”(r) = —ikG(r)&(r) (2)
iz
with the transverse Laplacian
? o
2 _
Vi = ox? + 02’ (3)

Perry et al. [5,6] studied Eq. (2) with the guiding
G(r) proportional to the intensity of a lowest-
order Gaussian mode with Rayleigh range z.
Expansion of the field & into the cylindrically
symmetric LG modes (solutions of Eq. (2) for
G(r) =0) with the same Rayleigh range z,
transforms the wave equation (2) into a set of
ordinary linear coupled differential equations in z
for the mode amplitudes [5,6]. Analogously, one
could use the modes of free space with rectan-
gular symmetry, the Hermite—Gaussian (HG)
functions [1]. The disadvantage of these ap-
proaches is that the resulting first-order differ-
ential equations still depend on z. We now show
that under a quite general condition for G, one
may rewrite Eq. (2) so that the z-dependence
factorizes out explicitly.
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First, inspired by the approach in [5,6], we note
that the solutions to the homogeneous (G =0)
part of wave equation (2), the LG and HG func-
tions [1], all have the same form for a given Ray-
leigh range z,. We use this as trial solution to
Eq. (2) of the form

| .
&(r) = at (F) explivs (r)], (4)
where r=(%,7,Z) is a scaled -coordinate,
¥=x/o(z), y=y/a(z), and z =z arctan(z/zp)
with transverse scaling factor

o(z) = |1+ <i> (5)
and

- _xZ +y2 E
lp(r) - 0'2(2) 22% . (6)

The transverse scaling factor o(z) gives the z-de-
pendence of the waist size w(z) = wyo(z), with wy
the focused waist size for wavelength A and Ray-
leigh range z, i.e., wj = Azy/m [1]. We leave f un-
specified for now and insert the trial solution (4)
into the left-hand side of Eq. (2). This yields after
some manipulation

(vf . Zik%)o@(r) _ 1 expliyy (r)]

63(2)
vl C2("“‘2 y~2)

Zy

x - 2ik% £

()

with the scaled transverse Laplacian

- *?

2 _ _
Vi=m g (8)
Eq. (7) now becomes extremely useful when, as in
[5,6], the gain and/or index term G can be written as

G(r) G(%, 7). 9)

~ @)
For such G the z-dependence of Eq. (2) drops out,
by using Eq. (7), leading to

B k2 =2 ~2 L~ .0
0

As a result of the above exercise, the scaled
equation for a free-space Raman amplifier with a
focused Gaussian pump has become equivalent to
the equation for propagation in a wave guide [1].
Writing the base refractive index of the wave guide
as ny and the transverse (complex-valued) varia-
tion of the refractive index as Anc, the equivalence
can be explicitly stated as An./ny =
— (% +7%)/222 +1i G/2k. The resulting guiding is
now completely independent of z, and the problem
of solving the three-dimensional (3D) paraxial
wave equation (2) is reduced to finding the eigen-
modes of the left-hand side of Eq. (10), a 2D
problem. In principle, our approach is not different
from the approach in [5,6], where the z-dependence
is also effectively eliminated by a coordinate
transformation. However, the above treatment
shows explicitly how the free-space Raman
guiding problem is directly equivalent to a longi-
tudinally invariant wave guide. The coordinate
transformation replaces the z-dependence with a
parabolic index guide, and replaces G with G. Note
that traveling from z = —oo to z = +oo in Eq. (2)
corresponds to traveling a distance AZ = mz, in the
wave guide of Eq. (9). Note in addition that Eq. (9)
is very general: it holds when G is proportional to
the intensity of any LG or HG mode with Rayleigh
range zp (cf. Eq. (4)), and also for any sum of in-
tensities of such modes.

The transverse eigenmodes of the Raman am-
plifier are now determined by the left-hand side of
Eq. (10). This is exactly the eigenmode problem we
studied in the case of microchip lasers around
threshold (see Fig. 1(b) and [7,8]). There, Eq. (10)
was derived via a completely different route,
however. In the theory of transverse modes in
microchip lasers, one commonly assumes that the
mode profile hardly changes upon a single round
trip through the cavity. This then allows averaging
the guiding effects over the cavity length, elimi-
nating the dependence on the longitudinal (z) co-
ordinate. In this way one also arrives at an
equivalent wave guide, as in Eq. (10). In the case of
a microchip laser, the parabolic index guide effec-
tively arises from weak thermal lensing and/or
from curvature of the mirrors [9], and the source of
the gain is a longitudinal pumping beam with a
transverse profile G.
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Before discussing the correspondence between
the two systems, it is useful to first simplify Eq.
(10) further. Because of the cylindrical symmetry
of the effective index guide that appears in
Eq. (10) besides G, it is sensible to switch to
cylindrical coordinates (p,¢). In addition, we
scale the transverse coordinates to the waist size
wp of the parabolic index guide, i.e., we use X =

pwocos¢ and J = pwysin¢. This converts
Eq. (10) into
1 .
=3V, +20 =21 2(p,0) | f(p, b)
.0
:7217f(p7¢)7 (11)

o0

where we have defined g(p, ) = zG(%,7)/2,
0 =z/z, and

~ * 10 1 @
2 _ 22 Y Lo 1o
v *Wovt*apz paerpzaqbz'

P
Note that with this scaling no free parameters re-
main: once g is given, the eigenvalues and the
corresponding eigenmodes f of the left-hand side
of Eq. (11) are fixed. This is essentially identical to
the left-hand side of [8, Eq. (7)]. The only re-
maining differences are notational, with 2i g re-
placing zpg of [8]. Note that the sign convention
for the phase adopted here is the same as that of
[5,6], while in our previous work the opposite sign
was used (compare [8, Eq. (1)-(3)]). We here define
the eigenvalues # via 9f /06 = inf. For g =0 the
resulting # are real-valued positive integers and the
eigenmodes f correspond to scaled cross-sections
of LG and HG modes.

(12)

3. Discussion

Both the initial theoretical work on Raman
amplifiers [5,6] and our own initial theoretical
work on microchip lasers [7], were limited to gain
functions g that corresponded to pumping by the
lowest-order LG mode (identical to the lowest-
order HG mode)

g = Gyexp(—2p*/p}) (13)

and to pure gain (i.e., no gain-related index guid-
ing) so that g is purely real-valued G, = G,,. More

recently, the effect of detuning the amplified field &
in frequency from maximum gain has been inves-
tigated. For a homogeneously broadened gain
transition around frequency w,, with a width
(FWHM) 2rI', this leads to

G, = G,o(1 —id)/(1 + %) (14)

in Eq. (13) with 0 = (v — w,)/I" the normalized
detuning. For Raman amplifiers, this extension was
studied both theoretically and experimentally in
[3,10]. For microchip lasers this extension was
studied in [8].

Given the correspondence demonstrated above,
it is not surprising that identical results have been
obtained for Raman amplifiers and microchip
lasers. For instance, both in [3,10] and in [8] it
was found that maximum modal gain occurs at a
detuning towards higher frequencies, because
there the gain-related index guiding helped in
confining the mode transversely within the high-
gain region.

In addition, there are quite a number of results
of either system that have not been found for the
other yet. Thus, the above correspondence can be
used to carry over the results in the extensive
literature on Raman amplifiers (e.g., [3,5,6,10,11]
and references therein) to the relatively new field
of microchip lasers, leading to some insights that
are new in the latter context. For instance, for
small gain (with g as in Eq. (13)) first-order
perturbation theory shows that the lowest-order
mode f; = exp(—p?) has a gain Imn = uG,, with
pw= p;/(1+p3) (cf. [6, Eq. (21)]). In addition,
[5,6] found that the cross-over between small g
(where the parabolic index guide dominates) and
large g (where the gain-related guiding will
dominate) occurs at uG, ~ 1. Physically, this
corresponds to the point where the modal gain
per AZ =z,/2 equals unity. In other words, the
point where the modal gain can compensate for
diffraction losses.

On the other hand, the interesting variety of
possible mode profiles found for microchip lasers in
[8] has not been discussed for Raman amplifiers yet.
In addition, we have recently demonstrated theo-
retically that Eq. (11) can have strongly nonor-
thogonal eigenmodes, leading to large and resonant
excess noise factors K [12]. Although the nonor-
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thogonality of the eigenmodes of Eq. (2) has been
recognized for Raman amplifiers [11,13,14], the
possibility of resonant K factors had not been un-
covered yet.

Other work on microchip lasers has mainly
considered gain-related guiding and index guiding
[9] separately. For gain-related guiding, the effects
of saturation have been included [2], analytical
solutions have been found for certain transverse
pump profiles [15], and the interplay between
longitudinal and transverse modes (in particular
the role of detuning) has been investigated [16].
Recently, one has investigated the effects of addi-
tional gain-related guiding in a regime where the
thermally induced index guide dominates [17]. It
seems likely that some of this work will be useful in
the context of Raman amplifiers as well.

Of course there are many differences between
Raman amplifiers and microchip lasers. One such
issue, directly related to the use of Eq. (11), is the
following: for the case of Raman amplifiers, the
scaled gain waist size p, is fixed by the requirement
that the Rayleigh range of gains equals zj, i.e.
Py = Wg/Wo = g/, with J, the pump wavelength,
and w, the waist size of the pump. In contrast, for
microchip lasers the gain waist size p, can be ar-
bitrarily chosen.

4. Conclusion

In conclusion, we have shown that the eigen-
modes of free-space Raman amplifiers with fo-
cused Gaussian gain are equivalent to those of a
rare-earth-doped microchip laser. This should lead
to considerable cross-fertilization between these
two hitherto separate fields.
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