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Abstract
Coherently manipulating Rydberg atoms in mesoscopic systems has proven challenging due to
the unwanted population of nearby Rydberg levels by black-body radiation. Recently, there have
been some efforts towards understanding these effects using states with a low principal quantum
number that only have resonant dipole–dipole interactions. We perform experiments that exhibit
black-body-induced dipole–dipole interactions for a state that also has a significant van der
Waals interaction. Using an enhanced rate-equation model that captures some of the long-range
properties of the dipolar interaction, we show that the initial degree of Rydberg excitation is
dominated by the van der Waals interaction, while the observed linewidth at later times is
dominated by the dipole–dipole interaction. We also point out some prospects for quantum
simulation.

Keywords: Rydberg atoms, long-range interactions, black-body radiation, van der Waals
interactions, Rydberg blockade, ultracold atoms, atom chips

Rydberg atoms have been celebrated for their strong, tunable
interactions that make them interesting for applications in
quantum information and simulation. While there has been
significant progress with a few Rydberg atoms in arrays of
optical tweezers [1–3] and in small ensembles [4], the pro-
gress obtained with larger numbers of atoms has been more
modest. Rydberg dressing of Bose–Einstein condensates, for
instance, has proven difficult [5, 6], and typically there is a
handful of mechanisms at work limiting the coherence.

One endemic problem is the undesired decay to nearby
Rydberg states under the influence of black-body radiation
(BBR). These states have a large, resonant dipole–dipole
interaction with the state being excited primarily, leading to

rapid dephasing of the coherent excitation [7–9]. While this
effect has been known for some time [10], the implications
have only recently been recognized in a quantum information
context. A solution is to operate experiments under cryogenic
conditions [8, 11], and to completely squeeze out any
remaining BBR by operating in the narrow gap between two
conducting parallel plates [12]. While these are interesting
approaches, they require larger expenses and increase the
complexity of setups. Most experiments will have to cope
with these undesired pollutant atoms, and the dephasing they
impose.

The essence of the problem lies in that the pollutant states
that are populated via BBR have lifetimes that are similar to
or longer than that of the original state, which means atoms
can get shelved there. By the very nature of their creation
mechanism, these shelved atoms have a strong, resonant
dipole–dipole exchange interaction with atoms in the initial
Rydberg state. This interaction is usually much stronger than
all other energy and frequency scales involved, and leads to
dephasing, causing significant broadening of the Rydberg
linewidth.
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Here, we present experiments in an ultracold gas where
the BBR-induced dipole–dipole interaction is in strong
competition with the van der Waals interaction among excited
Rydberg atoms. Under conditions where the latter would limit
the degree of excitation (‘blockade’), we show that such van-
der-Waals-interacting systems are extremely sensitive to
(BBR-induced) impurity Rydberg states, down to the level of
only a few impurities within the cloud (figure 1). This com-
bination has not been studied experimentally before, and
leads to different behavior compared to previous experiments.
We find that the energy scale of the dipolar exchange is
comparable to that of the van der Waals interaction under our
experimental conditions.

We describe the interplay of these two types of interac-
tion among N≈104 atoms with a relatively simple model
based on rate equations. The model, with fully a priori
determined atomic parameters, describes our data reasonably
well. Furthermore, we point out that accounting for BBR-
induced impurities naturally leads to interesting extensions of
existing Rydberg-based proposals; for instance models for
epidemic dynamics [13, 14] would now allow for including a
generalized ‘incubation period’ [15]. This highlights the
importance of BBR for Rydberg-based interactions, and
shows that BBR should not only be regarded as a limiting
factor, but may actually be an important contributor to

realizing interesting (quantum) many-body systems with
Rydberg atoms.

We start by describing the experimental results. The
setup is very similar to that of our recent work on the coherent
collective onset and Rydberg blockade [16] on an atom chip
[17]. Here we focus on longer timescales where BBR-induced
Rydberg–Rydberg transitions also become relevant. In short,
the starting point is a cloud of approximately 2×104 87Rb
atoms in the ∣ = = ñF m2, 2F Zeeman sublevel of the elec-
tronic ground state, at a temperature of 2 μK, magnetically
trapped in vacuum about 100 μm below the gold surface of
the chip. The trap is cigar-shaped and has axial and radial
trapping frequencies of w p =2 46 Hz and ω⊥/2π=
860 Hz, respectively. Under these conditions the cloud has a
peak density n0≈4 μm−3.

For Rydberg excitation we use a two-photon excitation
scheme with counter-propagating lasers with 480 and 780 nm
wavelengths which are stabilized to a reference cavity [18].
The lasers are tuned near the ∣ = ñD m28 , 5 2J5 2 Rydberg
level, with a van der Waals interaction coefficient

p m=C 2 21.5 MHz m6
6 (root-mean-square angle-averaged;

with positive C6 corresponding to attractive interactions:
VvdW=−C6/r

6) and lifetime τr=15.2 μs [19] (at a BBR
temperature of 300 K). The excitation scheme uses the
intermediate 5P3/2 state, with a detuning of 100MHz to
reduce scattering off of it. The remaining atom number after
the Rydberg excitation is detected using absorption imaging
of the cloud after time of flight.

By scanning the frequency of the 480 nm laser we obtain
Rydberg loss spectra, which are shown in figure 2. For each
scan we set the two-photon Rabi frequency Ω and pulse
duration tp by adjusting the power and pulse time of the
780 nm laser, such that we have an observable loss signal. For
short pulse times (tp<100 μs) we measured the cumulative
losses of two pulses separated by much more than the Ryd-
berg lifetime, in order to improve the signal-to-noise ratio.
Note that the widths of these spectra can be several tens of
MHz for pulse times of a few Rydberg lifetimes (upper
curves), two orders of magnitude larger than what one would
expect based on the two-photon Rabi frequency alone. The
duration of our pulses ranges from 37.5 to 2625 μs for the
highest and lowest Rabi frequencies, respectively. These
pulse times are longer than the lifetime of the 28D5/2 state, so
there is enough time for pollutant states to become populated.

The observed spectra are fitted by Gaussian functions;
using these fits we extract both the linewidth Γ (full width at
half maximum, FHWM) and the (average) loss rate on reso-
nance during the excitation pulse. Both increase roughly
linearly with the Rabi frequency, see figure 3. While this is in
qualitative agreement with the steady-state description of
BBR-induced Rydberg populations explored previously [7], a
quantitative description necessitates the inclusion of van der
Waals interactions, as we shall demonstrate below. Similar
experiments on BBR-induced Rydberg interactions were done
with the 18S1/2 state of rubidium [7–9]. Since the van der
Waals interaction scales with the principal quantum number n
as n11 [20], its effects were negligible in that case.

Figure 1. Left: illustration of the dynamics in our experiment.
Ground state atoms (red) get excited to Rydberg states (blue),
separated by the range of the van der Waals blockade (blue disks).
Rydberg states either decay out of the system (gray) or, due to a
black-body photon, to a nearby Rydberg state (black). This pollutant
state strongly limits the coherence in its vicinity (gray disks), thereby
reducing the blockade radii of the Rydberg atoms surrounding it.
Right: single-atom level diagram of our experiment. The straight
arrow denotes the coherent driving by the laser light, the wavy and
jagged arrows denote spontaneous and BBR-stimulated decay,
respectively; the dashed arrows indicate both the van der Waals and
the dipolar exchange interaction.
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A description of our experiments in terms of the many-
body Hamiltonian that underpins this system is not feasible in
practice, due to the exorbitant size of the Hilbert space it
covers. Instead, in order to analyze the experimental data, we
use a model that combines several features of models
described elsewhere [8, 9, 16, 21]. We extend the rate-
equation model presented in [8] to include the van der Waals
interaction, and attempt to include the long-range character of
the dipolar interaction in a more realistic manner. So far, this
interaction has often been described as a homogeneous
broadening arising from a constant density of pollutant states.
However, under that assumption the integral describing the
strength of this interaction would diverge. To illustrate: take a

single Rydberg atom at the origin of a homogeneous sea of
pollutant atoms (with density n0ρp, where n0 is the overall
density). The energy associated with this interaction is given
by:

( )ò òr µn
C

r
d

r
drr

1
, 1p

r

r

0
3
3

min

max

which diverges logarithmically for large rmax, highlighting the
importance of the long-range character of the dipolar inter-
action. The lower limit, rmin is, in practice, set by the (van der
Waals) blockade.

Instead, our model takes the spatially-varying density
into account by dividing the cloud into cells with constant
density. We found this was necessary, because neither the
localized rate-equation model of [8], nor the Liouville–von
Neumann approach we developed earlier [16] described our
data well. The use of rate equations instead of a description in
terms of coherent population dynamics is justified by obser-
ving that the excitation times we are concerned with presently
(tp10 μs) are far larger than the coherence times measured
in the past [16].

The van der Waals interaction is included as an effective
detuning in our rate equations. This is motivated by the fact
that it is a diagonal term in the Hamiltonian describing the
light–matter coupling. The dipolar interaction is off-diagonal,
meaning it leads to increased dephasing. This will be
accounted for by a decoherence term that depends on the
populations throughout the cloud. Effective decay rates
describe population transfer towards pollutant states and
untrapped states, which register as loss.

Of course, there is more than one decay channel (see
table 1), but under the assumption that there are no interstate

Figure 2. Measured ∣ = ñD m28 , 5 2J5 2 spectra for varying Rabi
frequency Ω (points), and Gaussian functions fitted to the data
(dashed, gray lines). The solutions to the cellular model with added
pollutant states are shown by the blue, solid lines, these show a clear
deviation away from the non-interacting case (dotted, black lines). In
the experiments we varied the number of pulses and the pulse time tp
to obtain a strong enough loss signal, both these parameters and the
Rabi frequency are included in each plot.

Figure 3. Linewidth Γ and on-resonance loss rate (points) extracted
from the experimental data in figure 2, together with the steady-state
scaling (i.e. disregarding the van der Waals interaction, dashed, gray
line) and the parameters obtained from fits to spectra calculated
using the cellular model (solid, blue lines). The error bars denote the
95% confidence bound of the parameters obtained from the fits to the
measured data.
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interactions among the decay products (i.e. assuming the
dominant interaction is with the initially excited Rydberg
state), we can model them as a single level with an effective
interaction coefficient

~
C3 and branching ratio b. To this end,

we take the average of the C3 coefficients and the decay rates,
weighted by the branching ratios bi and lifetimes τi, similar to
the procedure in [7, 8]. That is,

∣ ∣( ) t
t

º
å

å
~
C

C b

b
,i

i
i i

i i i
3

3

where the sums run over all pollutant states. For our para-
meters, we find p m=

~
C 2 165 MHz m3

3 and an effective
lifetime [ ( ) ]t t mº å å =-b b 22.3 sp i i i i i

1 . The branching
ratio b into this compound level is then given by the sum of
the branching ratios of the levels that constitute it, which is
∼0.20. Note that BBR can, in principle, also re-excite decay
products back to the initial excited state. As has been pointed
out elsewhere, this can increase the effective lifetime by 10%
[22, 23]. Since the dynamics we observe are only weakly
sensitive to the absolute lifetimes we do not expect this to
make a large difference, and believe our ‘one-way’ model to
be a good approximation.

For a lattice consisting of cells denoted by indices i, these
considerations result in the following rate-equation model.
Here ρs,i denotes the relative population in state { }Îs g r p, ,
in cell i, γr denotes the decay rate of state ∣ ñr , and g t= 1p p:
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The total local density we denote by ni, and the cell-
specific dephasing rate is given by:
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The first term, γ0, is the dephasing due to other experimental
factors, and the second and third term describe the dephasing
due to interactions with other cells, and within one cell,
respectively. The distance between cells i and j is denoted by
rij, and Vcell is the physical volume of a cell. If the lattice
spacing is zs (see figure 4), this equals z3 2s

3 .
The intracell interaction γii is obtained by integrating (1)

from the typical distance between two atoms in the ∣ ñr state
[ ( ) ]p r=r n3 4 rmin

1 3 to the typical radius associated with the
cell size [ ( )p=r V3 4max cell

1 3]. For rmin<rmax this yields

( )g
p

r r=
~
C n n V

4

3
ln .ii i p i r i3 , , cell

For rmin�rmax we take γii=0. Physically, this means there
is only intracell dephasing when the blockade radius is
smaller than the cell size. This is reasonable, since there is at
most one Rydberg atom within a cell if the blockade radius is
larger than that cell, which means that the dipolar interaction
between atoms within the cell can be neglected. In practice,
we find that γii only contributes very little to the calculated
results, because the majority of cells is smaller than the
blockade radius. The weak dependence on γii also confirms
the dominance of the long-range (intercell) part of the dipolar
interactions.

To keep the bookkeeping of the calculation manageable,
we divide the cloud into slices along the major axis of the
ellipsoid, and define a five-ring honeycomb lattice on the
individual slices (see figure 4). Using the sixfold rotational
symmetry, it is possible to identify groups of cells that have
the same density and the same neighbors (up to a rotation).
Combined with the reflection symmetry along the major axis
as well, this means that we only need to calculate the popu-
lations for about one in twelve cells, provided we correctly
account for the degeneracies in all the relevant terms.

We take a base dephasing rate γ0/2π=1×106 s−1,
based on our previous experiments [16, 24], and choose a
lattice spacing zs=1.5 μm such that we have ∼6500 cells in
total. This is approximately equal to the blockade radius
(∼μm). It is a trade-off between the parts of the cloud that we
cover, and the interactions that can be accounted for. Redu-
cing the cell size means the description of the interaction
should become more accurate, but at the same time we would
need more cells to cover the cloud, which is computationally
costly. In total, however, we see at most a few hundred atoms
in the ∣ ñp state at any given time, meaning the average number
per cell is much smaller than one.

To obtain the dynamics of the total populations across the
cloud, we take sums of the population fractions ρs,i weighted
by the local densities ni. The coarseness of our lattice leads to
some deviations between the experimental and the calculated
atom number; to adjust for that, the simulated results are

Table 1. Properties of the most important decay products ∣ ∣ñ = ñi nLJ

of the D28 5 2 state, which itself has a (BBR included) lifetime of
15.2 μs. All cited lifetimes τi, branching ratios bi, and transition rates
include BBR at 300 K. The cited dipole–dipole interaction
coefficient C3 is the root-mean-square value obtained after
calculating it for several angles using [19], see the main text for more
details. For comparison, the 5P3/2 state is listed as well; its dipole–
dipole interaction is, of course, negligible, and it does not contribute
to the dephasing.

∣ ñi Transition τi bi C3/2π
nLJ rate (s−1) (μs) ratio (%) ( mMHz m3)

26F7/2 4 684 19.8 7.1 83.8
27F7/2 3 183 21.9 4.8 265.6
29P3/2 1 941 24.2 3.0 297.3
30P3/2 3 052 26.4 4.6 92.0

5P3/2 27 445 0.026 41.7 0.0
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normalized to have the same baseline atom number (this is
typically a 10% correction).

We have simulated our measured spectra in this fashion, see
figure 2. They show a clear deviation from the non-interacting
case, which is dominated by broadening due to depletion. We
have extracted the linewidth and loss rate from these simulated
features by fitting Gaussian lineshapes to them. These numbers
have been included in figure 3 as well, where they show the
same trend as the values we have found experimentally.

Our measured data show a slight asymmetric tail towards
more negative detunings; this is typically ascribed to the
excitation of Rydberg pairs at a distance smaller than the
blockade radius [25], such that their energies are shifted. Our
present model includes the interaction as a mean-field-like
shift and thus does not take these pair states into account
fully, and the asymmetric tail towards more negative detuning
is not reflected in the results of our calculations. For certain
parameters our model actually shows an asymmetric tail
towards less negative detuning instead (also see figure 6).
This happens because the mean-field term in (2) itself is not
constant, but depends on the Rydberg population. Thus the
mean-field shift becomes detuning-dependent, which skews
an otherwise Lorentzian lineshape in this manner.

In order to gain further insight, it is useful to consider the
steady-state limit as well, as in [7–9]. The populations in the
levels we are concerned with reach a steady state if we
assume the system to be closed. The solution simplifies
considerably if we furthermore assume the van der Waals
interaction to be zero. This is not necessarily an accurate
approximation for our Rydberg state of choice, but it will
serve as a useful comparison because we can isolate the role
of the dipole–dipole interaction.

Under these assumptions, the resonant excitation rate is
trivially Ω2/γ. All populations are constant by definition, and

they are fully determined by the excitation rate, lifetimes, and
branching ratios. In this regime, the contribution to the line-
width from the dipole–dipole interaction is typically tens of
MHz, and can be assumed to be dominant over other exper-
imental factors as captured by γ0, which means the full
dephasing rate can be approximated by [7, 8]

∣ ∣( )åg g r» = C n ,SS
i

i
i3 0

where the summation is over the pollutant states such as in
table 1. Here we have [7]

r r t= R b ,i g i i

which we can use to express γSS as

( )g r b= W n , 3SS g0 3

with

åb tº
~
C b .

i
i i3 3

When summing over the four nearest states (see table 1) we
find b m= 4553 m3

3. The results of this steady-state analysis
are also indicated in figure 3.

Using the relations given above we can derive the exci-
tation rate to be / r b= WR n g0 3 , but this significantly
overestimates the loss rate, as can be seen in figure 3 (where
we used a peak density of m= -n 4 m0

3). The reason is that
the van der Waals interaction manifests itself as a suppression
of the Rydberg population, and hence losses, which element
is missing in the above steady-state analysis. Thus, in the
experiment the excitation rate slows down once a few exci-
tations have been created.

Figure 4. Illustration of the cellular method that was used to calculate the spectral properties. The dipolar interaction has a fundamentally
long-range character, and thus the excitation at one point in the cloud is affected by all others. Left: transversally, we use a hexagonal grid
with lattice spacing zs in which each cell is assumed to have a homogeneous density ni, with associated state fractions r rg i l i, , . Right: the

first two rings of the hexagonal lattice. The axial symmetry means the populations in a lot of cells will be equivalent to that in other cells
(gray). We do not need to calculate these, provided we account for them in the various summations that are carried out.
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The linewidth that we measure, on the other hand, is
described rather well by (3). It may be a surprise that we can
describe this without accounting for the blockade, but as (2)
shows, in our description the blockade only leads to an
effective detuning.

To obtain an intuition for the energy scales of the inter-
actions, we can look at their time evolutions as given by the
model, see figure 5. In particular this shows that the char-
acteristic energy scale associated with the dipole–dipole
interaction is comparable to the van der Waals interaction
after a few tens of μs, and dominates for longer timescales,
which is where most of our data was obtained.

Motivated by this evolution, we can go to a slightly
shorter timescale where the van der Waals interaction is still
dominant, and look at the relative effects of the interactions.
For a pulse of 10 μs, the calculated spectra clearly show that
the van der Waals interaction suppresses the excitation, while
the dipole–dipole interaction causes broadening (see figure 6).

From the point where the excited state populations
saturate, the frequency associated with the dipolar exchange is
so large, that a single pollutant will get a chance to explore the
entire system within a Rydberg lifetime, as long as there are
Rydberg states available to exchange with [26]. This does not

have consequences for the relative populations, so we are
rather insensitive to it, but it is potentially interesting for
experiments looking to study transport phenomena in strongly
interacting systems, especially in the presence of deco-
herence [27].

Recently, for instance, it has been argued that Rydberg-
based, open quantum systems can be mapped onto simple
models describing epidemic dynamics [13, 14]. Such models
describe the evolution of ‘individuals’ between any of three
states: susceptible, infectious, and recovered (SIR); in our
terminology this would be ∣ ñg , ∣ ñr , and ∣ ñl , respectively. By
adding impurities it is possible to extend such a model to one
that would include a generalized ‘incubation period’ [15].
This would yield a (quantum mechanical) analog of a Sus-
ceptible-Exposed-Infectious-Recovered (SEIR)-like model. In
that case ∣ ñr and ∣ ñp would take the role of the exposed and
infectious states, respectively.

In conclusion, we have studied the combined effects of
the van der Waals interaction and resonant dipole–dipole
interaction in experiments with Rydberg excitation in a dense
and ultracold cloud of rubidium atoms, for timescales that are
similar to the Rydberg state lifetime. The initial degree of
Rydberg excitation is dominated by the van der Waals
interaction. For later times, the dipole–dipole interaction
dominates due to BBR-induced decay to nearby states. We
have derived a cellular rate-equation model that includes both
interactions, and takes the long-range character of the dipolar
interaction into account. It is a first attempt to do so in a
computationally tractable manner. These results indicate that
the atomic cloud acts as a strongly interacting, driven-dis-
sipative many-body system with an interplay between the
(short-range) van der Waals interaction and the long-range
dipolar interaction. They point to several interesting direc-
tions for further study.

Figure 5. Resonant (Δ=0) time evolution in the cellular model of
some relevant properties in the central cell at a peak density of
4 μm−3 assuming a Rabi frequency of 2π×0.42 MHz. Top:
population dynamics for a total atom number of ∼20×103.
Bottom: typical energy scales for the dipole–dipole and van der
Waals interactions. The energy scale associated with the van der
Waals interaction is purely local, while the energy scale associated
with the dipole–dipole interaction depends on all other cells, and
hence contains a summation. Both energy scales exceed the
linewidth (Γ≈2π×50 MHz) observed in the spectrum for this
Rabi frequency in figure 2 because they are computed for the central
cell, which has a high density.

Figure 6. Spectra calculated from the cellular model, with parameters
chosen to make the contributions of the different interactions stand
out. For a pulse time of 10 μs and a Rabi frequency of
2π×0.42 MHz it is clear that the van der Waals interaction by itself
(the case C3=0; blue, dashed–dotted line) causes a strong
suppression of losses when compared to the noninteracting case
(C3=0, C6=0; light-gray line). On the other hand, when we look
at the individual effect of the dipole–dipole interaction (C6=0;
dotted line) we mostly see a broadening. When combined in the
fully-interacting case (red line) a broadened, suppressed spectrum
emerges.
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