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Threshold behavior of a laser with nonorthogonal
polarization modes

A. M. van der Lee,* M. P. van Exter, H. A. Assadian, N. J. van Druten,† and J. P. Woerdman

Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands

Received February 22, 2001; revised manuscript received November 28, 2001

We investigate experimentally and theoretically the influence of the excess quantum noise in a laser on the
laser’s input–output curve near threshold. As an experimental system we use a He–Xe gas laser with non-
orthogonal polarization modes. We observe that the excess quantum noise is absent far below threshold and
steadily builds up as threshold is approached. The excess noise is fully developed when the mode that (above
threshold) becomes the lasing mode dominates in power the other, nonlasing, modes. This situation may al-
ready occur considerably below threshold, namely, when the hot-cavity photon lifetime of the dominant mode
exceeds the coloring time of the excess noise. © 2002 Optical Society of America
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1. INTRODUCTION
Nonorthogonality of the modes of a laser resonator leads
to excess quantum noise, which is quantified by an
excess-noise factor that is usually denoted K.1,2 The ex-
istence of excess quantum noise is well established nowa-
days. It has been demonstrated in unstable-resonator
lasers,3,4 stable-resonator lasers with small apertures,5,6

and lasers with nonorthogonal polarization modes.7,8

The usual way to study excess quantum noise has been by
measurement of the noise’s effect on the linewidth of the
laser.

In this paper we investigate the effect of excess quan-
tum noise on the time-averaged output power of a laser as
a function of pump strength P. It is well known that the
input–output curve of a laser when it is plotted on a loga-
rithmic scale is an S curve, as shown in Fig. 2 below.
This curve is given by9

s 5
M 2 1 1 @~M 2 1 !2 1 4bM#1/2

2b
, (1)

where s is the number of photons in the cavity of a single
mode and M 5 P/Pthr is the normalized pump strength.
The shape of the S curve is fully determined by parameter
b, i.e., the fraction of spontaneous emission emitted into
the lasing mode. The question now is whether Eq. (1) is
the same for a laser with nonorthogonal modes and, if not,
in what way should it be modified. We show both theo-
retically and experimentally how the S curve is modified
as a result of the nonorthogonality of the modes of the la-
ser cavity.

As we shall see, this is a nontrivial modification of Eq.
(1), i.e., not simply a change of b to Kb, as was postulated
previously.10 This is so because the strength of the ex-
cess noise (i.e., the K factor) is determined not only by the
nonorthogonality of the cavity modes (i.e., by the geom-
etry) but also by the time constants involved in gain and
loss of these modes (i.e., by the dynamics). The latter
property leads to coloring of excess quantum noise.7
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Experimentally we have control over the dynamics of
the excess noise, which includes its buildup time.11 In
this way we demonstrate in the input–output curve the
transition below threshold from normal spontaneous
emission into the lasing mode toward an enhanced spon-
taneous emission rate.

The paper is organized as follows: In Section 2 we de-
rive theoretically a modified expression of the input–
output curve for a laser with nonorthogonal modes. In
Section 3 we introduce the experimental setup, and in
Section 4 we give the experimental results for the S curve.
We compare experiment and theory and end in Section 5
with a conclusion.

2. INPUT–OUTPUT CURVE FOR A LASER
WITH NONORTHOGONAL MODES
The standard input–output curve for a single-mode laser
is obtained from the steady-state solution of the coupled
rate equations for the photon number in the lasing mode
and the inversion number, including saturation of the
inversion.9 This curve leads to the well-known result of
Eq. (1).

In the case of a laser with nonorthogonal modes the
situation is more complicated. Above threshold the S
curve will not change appreciably, as the output is deter-
mined by the saturation that is due to stimulated emis-
sion, which is not affected by excess noise.1,2 In contrast,
below threshold the output power is mainly amplified
spontaneous emission noise. A first-order correction was
proposed in Ref. 10: it was assumed that the spontane-
ous emission is always amplified by K, but this assump-
tion is in fact too simplistic and fails far below
threshold,12 where the excess-noise factor can disappear
completely because of its spectral coloring. To be more
specific, it was shown in Ref. 11 that the excess spontane-
ous emission that ends up in the lasing mode can be di-
vided into two types: normal spontaneous emission,
which is emitted directly into the lasing mode, and extra-
spontaneous emission, which is emitted in orthogonal di-
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rections to the laser mode and evolves also into the lasing
mode. Thus the excess spontaneous emission takes time
(the so-called coloring time) to build up. Above thresh-
old, the photon decay time of the hot cavity is long enough
that the excess noise can build up completely. Below
threshold, however, the photon decay time of the hot cav-
ity will at a certain point get shorter than the coloring
time of the excess quantum noise; hence the excess quan-
tum noise will not build up properly, resulting in less en-
hancement of the spontaneous emission in the lasing
mode.

For a laser with nonorthogonal modes, the output
power below threshold is generally difficult to calculate,
as a large number of modes will contribute to that power.
For a laser with nonorthogonal polarization modes con-
sidered in this paper we can perform this calculation, as
only two modes are involved. We use the following pro-
cedure: Starting with the evolution equation of the opti-
cal field (instead of the power), we calculate the field–field
time-correlation matrix. From the trace of this correla-
tion matrix at zero time difference we obtain the output
intensity. Finally, this output power is again related to
the saturated inversion such that we obtain the input–
output curve.

The evolution equations for the x- and y-polarized
modes, Ex and Ey , of our laser with nonorthogonal polar-
ization modes are

d

dt
S Ex

Ey
D 5 F2j 2 A 2 V

V 2j 1 AG S Ex

Ey
D 1 S fx

fy
D , (2)

where j (.0) is the net polarization isotropic loss (polar-
ization isotropic loss minus gain). A is the linear dichro-
ism, i.e., the difference in loss between x- and y-polarized
modes; this difference leads to a polarization anisotropic
loss. V is the circular birefringence, i.e., the difference in
refractive index between s1- and s2-polarized modes,
which leads to coupling of the two linearly polarized
modes Ex and Ey . In Appendix A we briefly discuss the
eigenvalues and the polarization eigenmodes of the evolu-
tion matrix. (Note that one can also create nonorthogo-
nal polarization modes by using linear birefringence in
combination with linear dichroism.8) The spontaneous
emission noise is given by the Langevin noise sources
fx,y , with diffusion constants given by ^ fi

†(t1)fj(t2)&
5 Rspd ijd (t1 2 t2). Rsp is the spontaneous emission
rate into the lasing mode, with Rsp approximately con-
stant near threshold. To incorporate the polarization iso-
tropic saturation of the gain we need an equation to relate
the net (amplitude) loss j to the pump rate. We model
the behavior of the laser near threshold to the following
standard rate equation for inversion N:

d

dt
N 5 P 2 gnN~1 1 bs !, (3)

where P is the pump rate and gn is the inversion decay
rate, b is the fraction of spontaneous emission in the las-
ing mode, and s is the number of photons in the lasing
mode. Because the value of K and the (intensity) cavity
loss rate (Gc) depend on the values of A and V, it is prac-
tical to define a threshold inversion value and a normal-
ized pump rate for a laser with isotropic polarization
losses (i.e., A 5 0).13 The value for which the unsatur-
ated gain that is due to the inversion is equal to the losses
yields the threshold inversion value Nth,iso
5 Gc,iso /(bgn), and by normalizing the pump rate to its
threshold pump rate we obtain M iso 5 Pb/Gc,iso . Using
these definitions, we find the steady-state net-loss rate for
a polarization isotropic laser:

2j

Gc,iso
[ S 1 2

N

N iso,th
D 5 1 2

M iso

1 1 bs
. (4)

In typical experimental situations the polarization
anisotropies are relatively small, so in general the polar-
ization anisotropic saturation barely influences the out-
put power.14

For a fixed j Eq. (2) is easily formally solved, leading to
the following correlation matrix (t . 0):

C~t! 5 exp~Lt!E
0

`

dt8 exp~Lt8!Rsp exp~L†t8!, (5)

where L is the evolution matrix of Eq. (2). The correla-
tion function can be calculated from the eigenvalues,
eigenmodes, and adjoint modes of matrix L.16 The lin-
early polarized eigenmodes and adjoint modes are de-
picted graphically in Fig. 1. The vectors represent the di-
rections of linear polarization.

When we use mode-nonorthogonality theory1,2 we ob-
tain for the excess-noise factor K

K 5
1

cos2~2u!
5

1

1 2 ~V/A !2 . (6)

Note that Eq. (6) shows the direct relation between the
nonorthogonality of the eigenmodes (2u) and the K factor.
When uVu , A, the eigenmodes have a difference in loss,
as the eigenvalues are l1,2 5 2j 6 D, with D 5 A/AK.
In the case of this two-mode laser the coloring time of the
excess noise corresponds to the difference in loss rate, 2D.
The threshold of the mode involved is reached when the
mode’s eigenvalue approaches zero; so for the laser the

Fig. 1. Schematic picture of the polarization eigenmodes and
adjoint modes of the resonator. They are linearly polarized, and
the vectors show the polarization directions of the eigenmodes
uei& and the corresponding adjoint modes uai& (with ^eiuei& 5 1
and ^aiuai& 5 K). The nonorthogonality of the eigenmodes is de-
termined by angle 2u.
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threshold is determined by that of the low-loss mode,
which is the place where j → D.

To derive an expression for stot [ Ex
2 1 Ey

2, which is
the number of photons in the cavity in both x- and
y-polarized modes, we use the matrix relation exp(Lt)
5 (i exp(lit)uei&^aiu and take the trace of the correlation
matrix of Eq. (5) at t 5 0:

Tr@C~0 !# 5 (
ij

2Rsp

l i 1 l j*
uei&^aiuaj&^eju, (7)

leading to

stot 5
Rsp

2 F K

j 2 D
1

K

j 1 D
1

2~1 2 K !

j
G . (8)

In Eq. (8) one might associate the first two terms with the
two (polarization) eigenmodes and the third term with
their interference. Note that the contributions of both
eigenmodes are enhanced by excess-noise factor K but
that the interference term has a negative value and can
thereby cancel the enhancement. Two situations are eas-
ily analyzed: Far below threshold, when the hot cavity’s
loss rate 2j is much larger than spectral coloring rate 2D,
i.e., the frequency/loss difference between the eigen-
modes, the cancellation from the interference is maxi-
mum and the noise enhancement disappears. The oppo-
site situation occurs close to threshold, when the hot-
cavity loss rate of the dominant mode is much smaller
than the coloring rate, i.e., when j/D 2 1 ! 1. The first
term in Eq. (8) then dominates the others, and the
amount of spontaneous emission that ends up in the las-
ing mode is K times enhanced.

To obtain the input–output curve for the laser with
nonorthogonal modes we have to include the polarization
isotropic saturated gain j, which we do by substituting
Eq. (4) into Eq. (8) and taking Rsp to be approximately
constant, as it is close to threshold. We arrive at the fol-
lowing 4th-order equation in stot :

@bstot
2 1 ~1 2 M iso 2 2b!stot 2 2#F ~1 1 btot 2 M iso!

2

2
4A2

Gc,iso
2K

~1 1 bstot!
2G 2

8A2

Gc,iso
2 ~1 1 bstot!

3 5 0.

(9)

Equation (9) is numerically solved. In Fig. 2 we have
plotted the results for a laser with b 5 1026 and 2A/Gc
5 0.025 for two values of the K factor, K 5 1 and K
5 5.3. We used linear scaling to transform M iso into M
@M 5 M iso /(1 2 D)#, so the threshold for all curves in
Fig. 2 is at M 5 1. For comparison we also plotted an
input–output curve (short-dashed curve) for the hypo-
thetical case when the spontaneous emission in the lasing
mode would be enhanced by K 5 5.3 on any time scale
(i.e., neglecting the coloring).

We can repeat this calculation to obtain the input–
output curve of a laser with N modes, which could be a
model description of the transverse K factor of an un-
stable cavity for which many modes are involved.17 By
combining Eq. (4) with the N-mode version of Eq. (8) we
find the input–output curve to be an @N2 1 1#th-order
equation in stot , so it will become difficult to calculate the
input–output curve (see Appendix B). In this case the
asymptotic behavior close to threshold and that far below
threshold should still be the same as for a two-mode laser,
namely, a K-times-enhanced spontaneous emission rate
and a normal spontaneous emission rate, respectively.
The transition between these two asymptotic regimes is
governed by the dynamics of all modes.

3. EXPERIMENTAL SETUP
The experiments were performed with a He–Xe gas laser
with a quasi-Brewster plate to create linear dichroism
and an axial magnetic field in the He–Xe gain tube to in-
duce circular birefringence (see Ref. 15 for calibration of
these polarization anisotropies). The cavity consisted of
a plane gold mirror and a concave dielectric mirror with a
radius of curvature of 230 cm and a reflectivity of 27%.
The mirrors were separated by 7 cm. A dressed cavity
loss rate of Gc/2p 5 200 MHz was achieved (‘‘dressed’’
means that bad-cavity effects are included18).

We varied the laser gain by changing the amplitude
VRF of the rf power supply that drives the He–Xe gas dis-
charge. The variation of VRF remained small enough
(&10%) to make the gain linearly proportional to this
variation. In general the normalized pump parameter is
given by M 2 1 5 a(VRF /Vth 2 1), where Vth is the
value of the rf voltage at laser threshold. Experimen-
tally the lasing threshold is found as the rf voltage at
which the relative increase in the output power is largest.
We experimentally calibrated this proportionality con-
stant a by changing the cavity losses and measuring the
corresponding shift in threshold pump power, VRF , of the
laser, which yielded a ' 1. This result can be under-
stood as follows: The physics of the rf excited discharge
is almost the same as that of a dc discharge, as the rf field
still varies slowly with respect to the collision dynamics in
the discharge. In a dc discharge the voltage remains ap-
proximately constant, so the electrical power that is dis-
sipated in the discharge, which corresponds to the pump

Fig. 2. Input–output curve for a two-mode laser with K 5 5.3
and input–output curve for K 5 1. Both curves were obtained
by numerical solution of Eq. (9) with b 5 1 3 1026 and 2A/Gc
5 0.025. The short-dashed curve is the input–output curve for
a hypothetical laser with a K 5 5.3 times enhanced spontaneous
emission rate for all pump rates (i.e., coloring is neglected).
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rate, is linearly proportional to the current.19 As a re-
sult, a 5 1 when the voltage over the ballast resistor (in
the rf case this is a ballast capacitance) is much larger
than over the discharge such that M } I } VRF .

The pump strength could be adjusted to better than
DM 5 0.001. The overall reproducibility of the adjusted
gain from measurement to measurement was not so good
as this. This result can be partly attributed to the Xe
cleanup effect20; i.e., the gain changed during the mea-
surement. Another cause of this larger uncertainty is
that the actual length of the discharge in the gain tube is
slightly dependent on the rf voltage and moreover shows
hysteresis behavior. The input–output curve measured
by increasing the gain is slightly different from that mea-
sured by decreasing the gain. By making the measure-
ment of the input–output curve within 15 min and by
measuring always from high to low rf voltage we found a
reproducibility of DM 5 0.004. We used a chopper and a
lock-in amplifier to measure more accurately the low-
output powers below threshold.

4. MEASUREMENT OF THE
INPUT–OUTPUT CURVE
To measure the input–output curve we start by determin-
ing parameter b of the laser. To this end we measure the
input–output curve of the low-loss mode for a laser with
orthogonal modes, K 5 1. The low-loss mode is filtered
from the total output of the laser by a polarizer. Figure 3
shows the output power as a function of normalized pump
parameter M. The experimental data were fitted with
Eq. (1) and yielded b 5 9 3 1027.

Now we address the experimental input–output curve
for a laser with nonorthogonal modes. We measured
the total power to compare the result with theory [cf.
Eqs. (8) and (9)]. Figure 4(a) shows the raw data ob-
tained for a laser with K 5 5 and 2A/2p 5 5 MHz as a
function of the rf voltage, VRF ; for comparison we also
show the data for a laser with K 5 1. In Fig. 4(a) the
shift in threshold between the curves as a result of the de-
pendence of the polarization anisotropic loss D on K ob-
scures the modified threshold behavior.21 Therefore we
have plotted in Fig. 4(b) the input–output curves as a
function of their normalized pump parameter, M. This
result shows clearly how the threshold behavior differs

Fig. 3. Input–output curve of the lasing mode measured behind
a polarizer for K 5 1. From the fit curve we can determine
that b ' 9 3 1027.
for the laser with nonorthogonal modes. The threshold
transition has become broader. Sufficiently far below
threshold, i.e., when M & 0.95, the two curves are identi-
cal; for increasing M the excess spontaneous emission in
the low-loss mode can continue to build up such that the
output power of the laser with nonorthogonal modes is en-
hanced compared with that of a laser with orthogonal
modes. The coloring rate, l1 2 l0 , is 1% of the cavity
loss rate, implying that at M 5 0.99 the hot-cavity decay
rate is equal to the coloring rate. So above M 5 0.99 the

Fig. 4. (a) Total output power plotted versus VRF . (b) Total
output power as a function of M. The strength of the linear di-
chroism was 2A/2p 5 5 MHz, and the dressed cavity loss rate
was Gc/2p'200 MHz. Solid curves, theoretical curves based on
Eq. (9).

Fig. 5. Input–output curve of a laser with a larger strength of
the linear dichroism 2A/2p 5 11.1 MHz and a dressed cavity
loss rate Gc/2p ' 200 MHz for values of K 5 5.3 and K 5 1.
Solid curves, theoretical curves based on Eq. (9). Because of the
larger value of A the output power of the curve with K 5 5.3 is
higher for the same M than the curve in Fig. 4(b) (the vertical
scale used for the intensities in Figs. 4 and 5 is the same).
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excess noise is fully developed. Above threshold, i.e.,
when M . 1, the stimulated emission saturates the gain
and the two curves are identical again.

The solid curves in Fig. 4 are theoretical curves ob-
tained from Eq. (9). To calculate the input–output
curves we used the values 2A/Gc 5 0.025, K 5 5.3, and
b 5 1.0 3 1026, which were determined independently; b
followed from the input–output curve of Fig. 3 and is
slightly modified for a better fit (b 5 0.9 3 1026 from Fig.
3 and b 5 1.0 3 1026 used in fitting Fig. 4). A and K
were determined by the polarization-rotation method dis-
cussed in Ref. 16, yielding A and V. To fit the solid
curves to the experimental data we can use only horizon-
tal and vertical scaling to link the lock-in voltage to the
output power and the rf voltage to the pump parameter.
Note the good agreement between theory and measure-
ment.

As a next step we increase the linear dichroism by
making the tilt angle of the glass plate larger, thus de-
creasing the coloring time of the excess quantum noise.
Figure 5 shows the result for a laser whose strength of
linear dichroism 2A/2p was 11.1 MHz; this means that
the coloring time has become approximately two times
shorter.

Again we measured the input–output curve for
K 5 5.3 and K 5 1. The solid curves were calculated
from Eq. (9) with b 5 1 3 1026 and 2A/Gc 5 0.055.
When the input–output curves of Figs. 5 and 4(b) are
compared, the consequence of the faster coloring time is
obvious. The input–output curve of a laser with nonor-
thogonal modes K 5 5.3 differs from that of a laser with
K 5 1 over a larger range of M.

5. CONCLUSIONS
We have experimentally and theoretically investigated
the input–output curve of a laser with nonorthogonal po-
larization modes. The influence of the excess-noise factor
on the input–output curve has been shown. Whereas
just below threshold the spontaneous emission rate into
the lasing mode is enhanced by geometrical excess-noise
factor K, far below threshold the excess noise disappears.
For our two-mode laser we can calculate the input–output
curve explicitly, and the comparison between theory and
experiment is good.22

In the case of transverse-mode nonorthogonality, for ex-
ample, in an unstable resonator, the excess noise is
caused by many more than two nonorthogonal modes.
Explicit calculation of the input–output curve is almost
impossible, as the dynamics of all modes is involved.
However, it is expected that the asymptotic behavior will
be qualitatively the same as in the two-mode case. Spe-
cifically, we predict that above and just below threshold,
where the (hot-cavity) photon decay time is still much
longer than the coloring time, the excess spontaneous
emission rate in the lasing mode will be fully developed.
In the opposite case, for which the photon decay time is
much shorter than the coloring time, the excess spontane-
ous emission will disappear and the spontaneous emis-
sion rate into the lasing mode will be normal. That this
behavior was not observed in the research reported in
Ref. 10 is so because the laser was not operated far
enough below threshold. For the unstable resonator
used in that research the ratio of coloring time and pho-
ton lifetime was smaller than in the experiment reported
in this paper.16 Therefore the measurements could be
well described by a model that assumes a constant en-
hancement of the spontaneous emission by K, which is the
asymptotic limit of the full theory close to threshold.

Recent speculations on use of the Petermann K factor
to create a thresholdless laser10 and modification of the
spontaneous emission of a single atom in a cavity with
nonorthogonal modes23 have neglected the influence of
the dynamics of the Petermann K factor. As we have
shown in this paper, the influence of the nonorthogonality
of the cavity modes depends crucially on the ratio of col-
oring time and the hot-cavity photon lifetime; i.e., the Pe-
termann excess noise factor is not only geometry but also
dynamics (see also Refs. 11, 12, and 16). The inclusion of
the dynamics in the speculations mentioned above is
therefore highly recommended, as it might (significantly)
influence the outcome of the calculations.

APPENDIX A. POLARIZATION
EIGENMODES OF THE RESONATOR
In this appendix we briefly summarize the polarization
eigenmodes of a cavity with linear dichroism and circular
birefringence that are needed for calculation of the output
power. A more elaborate discussion of the evolution ma-
trix and of the consequences of the nonorthogonal polar-
ization eigenmodes can be found in Ref. 24. Our starting
point is the evolution matrix of Eq. (2). The eigenvalues
of this matrix are

l1,2 5 2j 6 AA2 2 V2. (A1)

The real and the imaginary parts of the eigenvalues of the
matrix give their damping rates and corresponding fre-
quencies (relative to the carrier frequency), respectively.
We observe that when uVu , uAu the eigenvalues are pure
real, so the eigenmodes have the same frequency but dif-
ferent loss. This corresponds to a single-mode laser:
The mode with the lowest loss will lase and clamp the in-
version such that the other, more lossy, mode will always
experience loss. The experiments presented in this pa-
per were performed in this regime. In the other regime,
uVu . uAu, the eigenmodes have the same loss but a dif-
ferent frequency. In this case the laser is no longer single
mode. See Ref. 7 for discussion of this regime.

In Fig. 6 we show the exact behavior of the eigenvalues
of both polarization eigenmodes as a function of V/A.
The dashed and the solid curves give the losses and the
frequencies, respectively, of the eigenmodes. Also, the
polarization ellipses of the eigenmodes are indicated. In
the experiments presented in this paper we operated the
laser such that uVu , A. The polarization eigenmodes
are linearly polarized, and the polarization angle 90°
2 2u between them is given by (see Fig. 1 for the defini-
tion of angle u)

sin~2u! 5 V/A. (A2)
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So, when V 5 0, the eigenmodes are orthogonally polar-
ized, but increasing V → A makes the polarization eigen-
modes increasingly more nonorthogonal. The corre-
sponding adjoint modes uai& are found from the
biorthogonality relation1,2 ^ejuai& 5 d ij (where uej& are the
eigenmodes).

APPENDIX B. DERIVATION OF
INPUT–OUTPUT CURVE FOR A LASER
WITH N-NONORTHOGONAL MODES
The derivation of the input–output curve for a laser in the
general case of N nonorthogonal modes is basically a mat-
ter of bookkeeping. Therefore we start with a slightly re-
written version of Eq. (7):

stot 5 Tr@C~0 !# 5
Rsp

Gc,iso
(
i, j

Aij

Gc,iso

2j 1 g ij
, (B1)

where Aij 5 ^eiuej&^aiuaj& expresses the overlap among
the nonorthogonal eigenmodes of the cavity. In the de-
nominator we have separated from the two eigenvalues l i
and l j* the isotropic hot-cavity loss j and the anisotropic
part of the eigenvalues g ij 5 l i 1 l j* 2 2j. Below, we
assume that the ratio Rsp /Gc,iso is constant and unity; this
assumption is valid close to threshold. Equation (B1) can
in the same way as Eq. (8) be subdivided into diagonal
terms (i 5 j) that correspond to the power in each eigen-
mode and into cross terms (i Þ j) that describe the inter-
ference between the eigenmodes.

Hot-cavity loss j depends on the photon number [see
Eq. (4)]:

2j 5
Gc,iso~1 1 bstot 2 M iso!

1 1 bstot
. (B2)

Substituting Eq. (B2) into Eq. (B1) and multiplying the
denominators result in a rather complicated polynomial
equation for stot of the order of N(N 1 1)/2 1 1 for a spe-
cific N-mode case. The argument goes as follows: When

Fig. 6. Frequencies (solid curves) and net gains (dashed curves)
of the eigenmodes as functions of V/A. The polarization states
of the eigenmodes are also indicated.
we assume that the eigenmodes differ from one another
only in damping but not in frequency, the anisotropic loss
rates g ij are real valued, and Eq. (B1) contains N terms
with i 5 j and two identical sets of N(N 2 1)/2 cross
terms with i Þ j. Bringing these terms under a common
denominator gives a polynomial expression in j of the or-
der N(N 1 1)/2. The substitution of Eq. (B2) finally in-
creases the order by 1 to the mentioned @N(N 1 1)/2
1 1#-th order in stot . For N 5 2 this is Eq. (9). When

the N eigenmodes also differ in frequency, a similar argu-
ment shows that we are generally stuck with a polyno-
mial expression of order N2 1 1.
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van Eijkelenborg, Å. M. Lindberg, M. P. van Exter, and J. P.
Woerdman, ‘‘Excess quantum noise due to nonorthogonal
polarization modes,’’ Phys. Rev. Lett. 79, 4357–4360 (1997).

8. O. Emile, M. Brunel, A. le Floch, and F. Bretenaker, ‘‘Vecto-
rial excess noise factor in common lasers,’’ Europhys. Lett.
43, 153–157 (1998).

9. A. E. Siegman, Lasers (University Science Books, Mill Val-
ley, Calif., 1986).

10. M. A. van Eijkelenborg, M. P. van Exter, and J. P. Woerd-
man, ‘‘Threshold characteristics and intensity fluctuations
of lasers with excess quantum noise,’’ Phys. Rev. A 57, 571–
579 (1998).



1460 J. Opt. Soc. Am. B/Vol. 19, No. 6 /June 2002 van der Lee et al.
11. A. M. van der Lee, M. P. van Exter, A. L. Mieremet, N. J.
van Druten, and J. P. Woerdman, ‘‘Excess quantum noise is
colored,’’ Phys. Rev. Lett. 81, 5121–5124 (1998).

12. P. Grangier and J.-P. Poizat, ‘‘Quantum derivation of the ex-
cess noise factor in lasers with nonorthogonal eigenmodes,’’
Eur. Phys. J. D 7, 99–105 (1999).

13. We have chosen a symmetric form for absorption A in the
evolution matrix in Eq. (2) to simplify the equations.

14. In our own experiment we have V , A; in this case the po-
larization anisotropic saturation does not influence the dc
output power at all.15 This result can be understood as fol-
lows: The strength of the anisotropic saturation is propor-
tional to the ellipticity of the light [see Eq. (10) of Ref. 15],
and the polarization eigenstates of the resonator are lin-
early polarized, so one will conclude that the anisotropic
saturation vanishes.

15. A. M. van der Lee, A. L. Mieremet, M. P. van Exter, N. J.
van Druten, and J. P. Woerdman, ‘‘Quantum noise in a laser
with nonorthogonal polarization modes,’’ Phys. Rev. A 61,
033812 (2000).

16. M. P. van Exter, N. J. van Druten, A. M. van der Lee, S. M.
Dutta, G. Nienhuis, and J. P. Woerdman, ‘‘Semiclassical dy-
namics of excess quantum noise,’’ Phys. Rev. A 63, 043801
(2001).
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