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1 Introduction

As this volume indicates, the technology of atom chips is currently enjoying great success for a
large variety of experiments on degenerate quantum gases. Because of their geometry and their
ability to create highly confining potentials, they are particularly well adapted to realizing one
dimensional (1D) situations [1–9]. This characteristic has contributed to a revival of interest in
the study of 1D Bose gases with repulsive interactions, a system which provides a vivid example
of an exactly solvable quantum many-body system [10–12]. The quantum many-body eigenstates
[10, 11] and thermodynamics [12] can be calculated without resorting to approximations. In
addition, the 1D Bose gas shows a remarkably rich variety of physical regimes (see Fig. 1)
that are very different both from those found in 2D and in 3D. One dramatic example of the
difference is the tendency for a 1D Bose gas to become morestronglyinteracting as its density
decreases[10]. Finally, and in a more practical vein, a good understanding of its behavior is
relevant for guided-wave atom lasers [13] and trapped-atominterferometry [14]. Because of the
effects of interactions, the analogy to the manipulation oflight in single mode fibers needs to be
examined carefully.

An atom chip is not the only means of producing a 1D Bose gas. Optical trapping has been
used to generate similarly elongated trap geometries. In particular, a 2D optical lattice can be
used to generate a 2D array of 1D traps [15–19]. Because of themassively parallel nature of this
system, it is possible to work with only a few atoms per tube, and still get a sizeable signal per
experimental cycle. Thus, the strongly interacting regimealluded to above can be reached. This
regime has yet to be reached with an atom chip. But as we will show here, a key feature of atom
chips is that they produce individual samples in which one does not intrinsically average over
many realizations. Fluctuation phenomena are therefore readily accessible, an aspect which we
will treat later in this chapter.

In the following we first give an introduction to the various regimes of the homogeneous
1D Bose gas, with particular emphasis on the behavior of the density profiles and the density
fluctuations in the context of approximate models. Then we will discuss the exact solution and
how it differs from the approximations. Next, we discuss some of the important issues involved
in realizing 1D gases in a 3D trap. Finally, we describe a series of experiments performed in
Orsay and Amsterdam using atom chips to explore and illustrate features of the 1D Bose gas.

2 Regimes of one-dimensional gases

First, we review some theoretical results concerning the one-dimensional Bose gas with repulsive
interactions. Most of these results are derived in Refs. [10,12,20–24]. Here we will concentrate
on intuitive arguments, and the reader is referred to the above references for more careful demon-
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strations. The system is described by the Hamiltonian

H = − ~
2

2m

∫

dzψ+∂
2

∂2
z

ψ +
g

2

∫

dzψ+ψ+ψψ, (1)

whereψ is the field operator in second quantization, andg is the coupling constant characterizing
the interactions between particles. From this coupling constant, one can deduce an intrinsic
length scale related to the interactions,

lg =
~

2

mg
, (2)

as well as an energy scale:

Eg =
mg2

2~2
=

~
2

2ml2g
. (3)

In thermal equilibrium, the gas is described by the temperatureT and the linear atomic den-
sityn. Rescaling these two quantities by the intrinsic scales introduced above, and setting Boltz-
mann’s constant equal to unity (i.e., measuring temperature in units of energy) we find that the
properties of the gas are functions of the dimensionless quantities

t =
T

Eg
, (4)

and

γ =
mg

~2n
=

1

nlg
, (5)

the latter being the famous Lieb-Liniger parameter [10].
It is useful to also introduce two other relevant scales, namely the thermal de Broglie wave-

length,

λdB = ~

√

2π

mT
= lg

√

4π

t
, (6)

and the quantum degeneracy temperature

Td =
~

2n2

2m
=
Eg

γ2
. (7)

In the above(t, γ) parametrization, quantum degeneracy (T ≈ Td, or equivalentlynλdB ≈ 1) is
reached around

t ≈ 1

γ2
. (8)

The thermal equilibrium for the hamiltonian of Eq. (1) has been extensively studied theoreti-
cally [12,22]. Without going into great detail however, we can present some important features of
this system. Several regimes may be identified in the parameter space(γ, t), as sketched in Fig. 1.
We begin by noting that the regionγ ≫ 1, t ≪ 1 (dark grey area) defines a strongly interacting
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Figure 1:Physical regimes of a 1D Bose gas with repulsive contact interactions in the parameter
space(γ, t), adapted from [22]. The dashed diagonal line separates the degenerate and nonde-
generate gases. The strongly interacting regime is shown indark grey. The weakly interacting
regime is divided into the nearly ideal gas regime (also called decoherent regime) shown in white
and the quasicondensate regime shown in light grey. Note that the nearly ideal gas can be de-
generate. The quasicondensate regime is divided into the thermal and quantum regimes. The
lines represent smooth (and often wide) crossovers rather than phase transitions. The crossovers
are given in Eqs. (10), (11), (8), (25) and (41). The dashed area shows the parameter space
investigated in the experiments presented in this chapter.

regime that occurs at low density and low temperature, oftenreferred to as the Tonks-Girardeau
gas [20,25,26].

In the weakly interacting regime,γ < 1, several sub-regimes are identified. These are the
regimes which to date have been accessible in atom chip experiments, and we shall elaborate
further on their nature in the discussion below. The two mainregimes are the nearly ideal gas
regime (white area) and the quasi-condensate regime (lightgrey area). Each one permits an
approximate description that we present later in this section and which allows the identification
of sub-regimes. For the moment we simply wish to emphasize that no phase transition occurs
in the 1D Bose gas and that all the boundaries represent smooth (and often broad) crossovers in
behavior.

2.1 Strongly versus weakly interacting regimes

We first comment on the distinction between strong and weak interactions. Following the ap-
proach of Ref. [20], we study the scattering wave function oftwo atoms interacting via the
potentialgδ(z1−z2), wherez1 andz2 are the position of the two atoms. For this, we consider the
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wave functionψ in the center-of-mass frame, with reduced massm/2 and subject to the potential
gδ(z). The effect of the potential is described by the continuity condition

∂

∂z

ψ(0+) − ∂

∂z

ψ(0−) =
mg

2~2
ψ(0) (9)

where0+ (0−) denotes the limit whenz goes to zero through positive (negative) values. Let us
consider the scattering solution for an energyE = ~

2k2/m. Since we consider bosons, we look
for even wave functions of the formcos(k|z| + φ). The continuity conditions giveφ and thus
the valueψ(0). We find then that the energyEg given by Eq. (3) is the relevant energy scale and
that forE ≪ Eg, ψ(0) is close to zero, while, forE ≫ Eg, ψ(0) is close to one, as illustrated in
Fig. 2.

The above results hold for a gas of particles since the continuity relation (9) holds for the
many-body wavefunction when two atoms are close to the same place. Thus, as long as the
typical energy of the particles is much lower thanEg, the many-body wavefunction vanishes
when two particles are at the same position: the gas is then inthe strongly interacting, or Tonks-
Girardeau regime. The vanishing of the wave function when two particles are at the same place
mimics the Pauli exclusion principle and the gas acquires some similarities with a gas of non
interacting fermions. More precisely, in this strong interaction regime, the available wave func-
tions of the many body problem are, up to a symmetrization factor, the wave functions of an
ideal Fermi gas [26]. Since the wave function vanishes when two atoms are at the same place,
the energy of the system is purely kinetic energy and the eigen energies are those of the Fermi
system. Thus the 1D strongly interacting Bose gas and the ideal 1D Fermi gas share the same
energy spectrum. This implies in particular that all thermodynamic quantities are identical for
both systems.

To identify the parameter space of the strongly interactingregime, we suppose the gas to be
strongly interacting and then require that the typical energy of the atoms be smaller thanEg. To
estimate the typical energy per atom, we use the Bose-Fermi mapping presented above. If the
gas is degenerate, the temperature is smaller than the degeneracy temperatureTd, Eq. (7), andTd

corresponds to the "Fermi" energy of the atoms. The typical atom energy is thereforeTd and it
is of orderEg if

γ ≃ 1. (10)

The strongly interacting regime thus requiresγ ≫ 1. If the gas is non degenerate, the typical
energy of the equivalent Fermi gas isT and interactions become strong whenT = Eg or

t ≃ 1. (11)

We then find that the gas is strongly interacting fort≪ 1.
The condition (10) is often derived using the following alternative argument, valid at zero

temperature. At zero temperature, there are two extremes for the possible solutions for the wave
function ψ(z1, z2, ...). As seen in Fig. 2, either the wave function vanishes when twoatoms
are at the same place, or the wave function is almost uniform,corresponding to the strongly
and weakly interacting configurations respectively. In theweakly interacting configuration, the
kinetic energy is negligible and the interaction energy perparticle, of the order ofgn, determines
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Figure 2:Strong interaction versus weak interaction regime. We showthe wave function in the
center-of-mass frame of two atoms for (a) strong interactions, scattering energyE much smaller
thanEg = mg2/2~

2 and (b) weak interactions,E much larger thanEg. We also plot the wave
functionψ(z1, z2, z3, ...) for given positions ofz2, z3, ... in (c) the strongly interacting regime and
(d) the weakly interacting regime.

the total energy. In the strongly interacting configuration, on the other hand, the interaction
energy vanishes while the typical kinetic energy per particle is ~

2n2/m. Comparing these two
energies, we find that the strongly interacting configuration is favorable only forγ > 1.

2.2 Nearly ideal gas regime

At sufficiently high temperatures, interactions between atoms have little effect and the gas is
well described by an ideal Bose gas. In Ref. [22], this regimewas referred to as the "decoherent
regime"; We will call it the (nearly) ideal Bose gas regime. A1D ideal Bose gas at thermal equi-
librium is well described using the grand canonical ensemble, introducing the chemical potential
µ. All properties of the gas are calculated using the Boltzmann law which states that, for a given
one-particle state of momentum~k, the probability to findN atoms in this state is proportional
to e−(~2k2/(2m)−µ)N/T ; note thatµ < 0 in this description. In the following, we use a quantization
box of sizeL (tending to infinity in the thermodynamic limit) and periodic boundary conditions
so that the available states are the momentum states with momentumk = 2πj/L wherej is an
integer.

Let us first consider the linear gas density. From the Boltzmann law, we find that the mean
population is the Bose distribution

〈nk〉 =
1

e(~2k2/(2m)−µ)/T − 1
. (12)

The atom number, and thus the linear density, is obtained by summing the population over the
states and one finds

n =
1

λdB

g1/2(e
µ/T ), (13)

whereg1/2(x) is one of the Bose functions

gn(x) =
∞

∑

l=1

xl

ln
, (14)
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also known as the polylogarithmic functions [27, 28]. Unlike in 3D systems, where the excited-
state density is given byρe = g3/2(e

µ/T )/λ3
dB in this approach [27], no saturation of the excited

states occurs (the functiong1/2 diverges as
√

−πT/µ asµ → 0 from below, whereasg3/2(1) =
2.612 is finite): in the thermodynamic limit no Bose-Einstein condensation is expected and the
gas is well described by a thermal gas at any density.

Two asymptotic regimes may be identified: the non degenerateregime for which−µ ≫ T
and~

2n2/m ≪ T and the degenerate regime for which−µ ≪ T and~
2n2/m ≫ T . In the non

degenerate regime, the linear density is well approximatedby the Maxwell-Boltzmann formula

n =
1

λdB
eµ/T , (15)

In this regimenλdB is much smaller than unity. In the degenerate regime, the states of energy
much smaller thanT are highly occupied and the linear density is given by

n =
T

~

√

m

−2µ
(16)

This density is much larger than1/λdB, i.e. nλdB ≫ 1.
As we will discuss in the experimental section, fluctuationsare also very important for char-

acterizing the gas. It is thus instructive to consider the correlation functions. The normalized
one body correlation function isg(1)(z) = 〈ψ+(0)ψ(z)〉/n, whereψ is the field operator in
the second quantization picture. Using the expansion of thefield operator in the plane wave
basisψ(z) =

∑

k ake
−ikz/

√
L whereak is the annihilation operator for the modek, we find

g(1)(z) =
∑

k〈nk〉e−ikz/(Ln). Herenk = a+
k ak is the atom number operator for the modek.

Simple analytical expressions are found in the nondegenerate and highly degenerate limits. In
the non degenerate limit (−µ≫ T or, equivalentlyn≪ 1/λdB), we find

g(1)(z) ≃ e
− z2

4πλ2

dB . (17)

As the gas becomes more degenerate, the correlation length increases and, in the degenerate
regime (−µ≪ T or, equivalentlyn≫ 1/λdB), we find

g(1)(z) ≃ e−
mTz

n~2 = e
− 2πz

nλ2

dB . (18)

In this regime the correlation length, aboutnλ2
dB, is much larger than the de Broglie wavelength

(and the mean interparticle distance1/n) sinceλdB ≫ 1/n.
Next we consider the normalized density-density or two bodycorrelation function

g(2)(z) = 〈ψ+(z)ψ+(0)ψ(0)ψ(z)〉/n2. (19)

This function is proportional to the probability of finding an atom at positionz andat position
z = 0. It is given by

n2g(2)(z) =
∑

k1k2k3k4

〈a+
k1
a+

k2
ak3

ak4
〉eik1ze−ik4z/L2. (20)
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Using Bose commutation relations and the fact that, since atoms do not interact, different mo-
mentum state populations are uncorrelated, the sum simplifies to:

n2g(2)(z) =
∑

k1 6=k2

〈nk1
〉〈nk2

〉(1 + ei(k1−k2)z)/L2 +
∑

k

〈a+
k a

+
k akak〉/L2. (21)

In the last term, the commutation relations give:〈a+
k a

+
k akak〉 = 〈n2

k〉 − 〈nk〉, and in thermal
equilibrium one has:

〈n2
k〉 = 〈nk〉 + 2〈nk〉2. (22)

Therefore we find:
g(2)(z) = 1 + |g(1)(z)|2, (23)

a result which one can also obtain directly from Wick’s theorem [29]. Equation (23) means that
the probability of finding atoms within less than a correlation length in a thermal Bose gas is
twice that of finding two atoms far apart. This phenomenon is often referred to as "bunching"
and has been observed in cold atoms in several experiments [30–32]. Bunching is closely related
to density fluctuations. As one can see from Eq. (22), in a thermal gas, fluctuations in the occu-
pation of a single quantum state,δnk

2 = 〈n2
k〉 − 〈nk〉2, show a "shot noise" term,〈nk〉 and an

"excess noise" term,〈nk〉2. The density fluctuation experiment described later in thischapter has
demonstrated this behavior.

Validity of the ideal gas treatment.The two body correlation function has been used to
characterize the crossover between the ideal gas and quasi-condensate regimes [22]. When in-
teractions become important, they impose an energy cost on density fluctuations and the latter
tend to smooth out. This amounts to a reduction in the value ofg(2)(0). In the quasi-condensate
regime which we discuss in the next section, the bunching effect is absent andg(2)(0) is close
to unity. The ideal Bose gas description fails when the typical interaction energy per particlegn
is not negligible compared to−µ. Using Eq. (16) one finds that the ideal Bose gas description
fails when the temperature is no longer much smaller than thecrossover temperature, which we
define as

Tco ≃ Td
√
γ. (24)

Using the reduced dimensionless temperaturet = T/Eg, this can be written as

tco ≃
1

γ3/2
. (25)

This line separates the nearly ideal gas regime from the quasi-condensate regime in Fig. 1. Note
that, in terms of chemical potential, the domain of validityof the ideal gas model is−µ ≫ µco

where we define the crossover chemical potential as

µco =
T

t1/3
. (26)

In making this estimate, we have assumed that the gas is degenerate at the crossover. From
Eq. (24), one can see that if one is in the weakly interacting regime (γ ≪ 1) this assumption
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is indeed true. The experiments described below confirm thatone can observe the effects of
degeneracy before the onset of the reduction of density fluctuations.

A precursor of the reduction of density fluctations is shown by a perturbative calculation valid
in the nearly ideal gas regime which gives, to lowest order ing [22],

g(2)(0) ≃ 2 − 4(Tco/T )2. (27)

To accurately treat the crossover regime however, it is necessary to make use of the exact solution
to the 1D Bose gas model. The exact solution in the crossover regime is discussed in Sec. 2.4.

The correlation lengths of the gas are important parametersof the gas that will be used in the
following to estimate the validity criteria of the local density approximation. In the degenerate
regime, the correlation length islc ≃ nλ2

dB (see Eq. (18)). Using Eq. (24), we find that, close to
the crossover, the correlation length of the gas is close to the healing length

ξ =
~√
mgn

. (28)

2.3 Quasi-condensate regime

On the other side of the crossover,i.e. for T ≪ Tco, the bunching effect is entirely suppressed
and theg(2) function is close to unity for anyz. This regime is the quasi-condensate regime1.
In this section, we present a description of the gas, valid inthe quasi-condensate regime. This
description permits a simple estimate of the density fluctuations. We thus verifya posteriorithat
the quasi-condensate regime is obtained forT ≪ Tco. We also give a simple calculation of phase
fluctuations in the quasi-condensate regime.

In the quasi-condensate regime density fluctuations are strongly reduced compared to their
value in an ideal Bose gas where the bunching effect is responsible for density fluctuations of the
order ofn2. In other words:

δn2 ≪ n2 (29)

In this regime, a suitable description is realized by writing the field operator asψ = eiθ
√
n + δn

where the real numbern is the mean density and the operatorδn and the phase operatorθ are
conjugate:[δn(z), θ(z′)] = iδ(z − z′). Note that the definition of a local phase operator is subtle
and the condition Eq. (29) is not well defined since, because of shot noise,δn2 is expected to
diverge in a small volume. A rigorous and simple approach consists in discretizing the space so
that in each cell a large number of atoms is present while the discretisation step is much smaller
than the correlation length of density and phase fluctuations [33].

Following this prescription, one first minimizes the grand canonical HamiltonianH − µN
with respect ton to obtain the equation of state

µ = gn. (30)

1It is also called coherent regime since theg(2) function is close to unity, as in a coherent state. On the other
hand, the first order correlation function still decays and so the gas is not strictly coherent in this sense. Within this
terminology, the ideal Bose gas regime is called the decoherent regime [22].
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To second order inδn, this is the correct expression of the chemical potential. This equality
ensures that the Hamiltonian has no linear terms inδn and∇θ. Linearizing the Heisenberg
equations of motion inδn and∇θ, we obtain [33]

{

~∂θ/∂t = − 1
2
√

n
(− ~

2

2m
∆ + 2gn) δn√

n

~∂δn/∂t = 2
√
n(− ~

2

2m
∆)θ

√
n

(31)

These equations are the so-called hydrodynamic equations.They are derived from a Hamiltonian
quadratic inδn and∇θ, that can be diagonalized using the Bogoliubov procedure [33]. It is not
the purpose of this chapter to detail this calculation and togive exact results within this theory.
We will simply give arguments that enable an estimate of the density fluctuations and of their
correlation length. This estimate will then be used to checkthat δn2 ≪ n2, as assumed in
Eq. (29). We will show that this condition is the same as the conditionT ≪ Tco whereTco given
in Eq. (24). After that, we will give similar arguments to estimate the phase fluctuations. Since
in the following we will study the gas properties versus the chemical potential, it is instructive to
rewrite the conditionT ≪ Tco in terms of chemical potential. Using Eq. (30), we find that the
quasi-condensate regime is valid as long asµ≫ µco whereµco is given by Eq. (26).

2.3.1 Density fluctuations

To estimate the density fluctuations introduced by the excitations, it is convenient to divide the
excitations in two groups: the excitations of low wave vector for which the phase representation
is most appropriate and the excitations of high wave vector for which a particle point of view is
most convenient.

In the following, we use the expansions on sinusoïdal modesθ =
∑

k>0

√
2(θck cos(kz) +

θsk sin(kz)) andδn =
∑

k>0

√
2(δnck cos(kz) + δnsk sin(kz)). Hereδnjk andθjk are conjugate

variables ([δnjk, θj′k′] = (i/L)δjj′δkk′) wherej stands forc or s. For modes of small wave
vectork, the excitations are phonons, or density waves, for which the relative density modulation
amplitudeδnjk/n is much smaller than the phase modulation amplitudeθjk. In this case, the local
velocity of the gas is given by~∇θ/m and the kinetic energy term is simplyLn~

2k2θ2
jk/(2m).

The Hamiltonian for this mode then reduces to

Hjk = L
(

gδn2
jk/2 + n~

2k2θ2
jk/(2m)

)

. (32)

This hamiltonian could also have been derived from the equations of motion given in Eq. (31),
provided that the quantum pressure term~

2/(2m)∆δn/n is neglected: indeed, for a given wave
vector k, the laplacians in Eq. (31) give a factork2 and Eqs. (31) are simply the equations
of motion derived from the Hamiltonian Eq. (32). For temperatures much larger thanng, the
thermal population of these phonon modes is large and classical statistics apply. Thus, the mean
energy per quadratic degree of freedom isT/2 and we obtain

〈δn2
jk〉 = T/(Lg). (33)

and
〈θ2

jk〉 = mT/(Lnk2
~

2). (34)
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We can now check the validity of the assumptionδnk/n ≪ θk: it is valid as long ask ≪√
mgn/~. Sincek values are spaced by2π/L, there are aboutL

√
mgn/(π~) modes that satisfy

this condition. Since the contribution of each of these modes to the relative density fluctuations is
given in Eq. (33), we find that the contribution of these low momentum excitations to the relative
density fluctuations is of the order of

〈δn2〉phonons

n2
≃ T

n~
√

gn/m
≃ T

Td
√
γ
≃ T/Tco (35)

For wave vectors much larger than
√
mgn/~, the phase-density representation is not the

most appropriate. An excitation of wave vectork ≫ √
mgn/~ corresponds to the presence of

an atom of momentumk, whose wave function iseikz/
√
L and whose energy is~2k2/(2m).

The anihilation operator for this mode isak as introduced in section 2.2. For temperatures much
larger than~2k2/m, the thermal population of this mode is large and classical field theory, in
which ak is treated as a c-number, is adequate. We then find thatak has a Gaussian distribution
which satifies〈|ak|2〉 = 2mT/(~2k2). The density fluctuations caused by the presence of such
high momentum atoms result mainly from the interference between the atomic fieldake

ikz/
√
L

and the atomic field of long wavelength spatial variations, whose amplitude is close to
√
n. The

density fluctuations are thusδn =
√
n(ake

ikz + a∗ke
−ikz)/

√
L. We then find that the contribution

of the mode of wave vectork to density fluctuations isδn2
k = 4nmT/(L~

2k2). Summing the
contributions of the modes for allk >

√
mgn/~, we obtain an estimate of the density fluctuations

〈δn2〉atoms caused by high momentum excitations:

〈δn2〉atoms

n2
≃ T

Td
√
γ
≃ T

Tco
. (36)

One also sees from the above argument that the density fluctuations fall off as1/k2 abovek =√
mgn/~. The inverse of this scale gives the length scale of density fluctuations and we find that

this correlation length is the healing lengthξ defined in Eq. (28).
From Eq. (35) and Eq. (36), we find thatδn2/n2 ≃ T/Tco. Thus, the quasi-condensate

treatment is valid as long asT ≪ Tco, In conclusion, we have shown thatTco gives the limit
of both the ideal gas regime, valid as long asT ≫ Tco, and the limit of the quasi-condensate
regime, valid forT ≪ Tco. Equivalently, in terms of chemical potential, as long as the chemical
potential is positive and much larger thanµco of Eq. (26), the gas is in the quasi-condensate
regime whereas for negative chemical potential of absolutevalue much larger thanµco the gas
is in the ideal gas regime. This is illustrated in Fig. 3. The two regimes differ by the fact that
theg(2)(z) function is modified: it is close to one for anyz in the quasi-condensate regime while
g(2)(0) = 2 in the ideal gas regime.

2.3.2 Phase fluctuations

In the quasi-condensate regime, although the gas is coherent with respect to theg(2) function, it
is not coherent with respect to theg(1) function. This is why the gas is called aquasi-condensate.
The phase fluctuations have been measured experimentally invarious experiments where the
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quasi-condensate presented a one-dimensional character [34–38]. The description of the quasi-
condensate given above permits a simple calculation of those phase fluctuations as we now show.
Phase fluctuations are given by

〈(θ(z) − θ(0))2〉 =
∑

k>0

2〈θ2
ck〉(cos(kz) − 1)2 +

∑

k>0

2〈θ2
sk〉 sin2(kz). (37)

Using Eq. (34) and(cos(kz) − 1)2 + sin2(kz) = 2(1 − cos(kz)) this gives

〈(θ(z) − θ(0))2〉 = 4(mT/(Ln~
2))

∑

k>0

1 − cos(kz)

k2
. (38)

Transforming
∑

k intoL/(2π)
∫ ∞
0
dk and using

∫ ∞
0

(1 − cos(kz))/k2dk = πz/2, we obtain

〈(θ(z) − θ(0))2〉 =
mTz

n~2
=

2πz

nλ2
dB

. (39)

Since density fluctuations are very small, theg(1) function is aboutg(1)(z) = n〈ei(θ(z)−θ(0))〉.
Since the Hamiltonian is quadratic, we can use the Wick theorem to compute〈ei(θ(z)−θ(0))〉,
which gives〈ei(θ(z)−θ(0))〉 = e−〈(θ(z)−θ(0))2〉/2. We find

g(1)(z) ≃ e−mTz/(2n~2). (40)

Comparing this to Eq. (18), we observe that the behavior ofg(1) is close to that in the ideal gas
regime. The factor of 2 difference in the correlation lengthformulae is because for the ideal
gas regime, both density and phase fluctuations contribute to g(1) whereas only phase fluctua-
tions remain in the quasi-condensate regime. The crossoverfrom the ideal gas regime to the
quasi-condensate regime, at a temperatureTco, Eq. (25), corresponds to the situation where the
correlation length of phase fluctuations, given by Eq. (40),equals the correlation length of den-
sity fluctuations given by Eq. (28).

In both this section and the previous one, we assumed that thetemperature is high enough that
the population of the relevant modes (whose wavelengths areof the order ofξ) is much greater
than unity. This is no longer the case whenT reaches values of the order or smaller thangn.
For lower temperatures, quantum fluctuations are expected to be dominant. This is the so-called
quantum quasi-condensate and the boundary between the thermal quasi-condensate regime and
the quantum quasi-condensate regime is atT ≈ ng, corresponding to

t ≈ 1

γ
(41)

and is shown as a line in Fig. 1. A recent experiment using an atom chip observed these quantum
phase fluctuations [39]. In the experiments we describe herehowever, the temperature is high
enough that thermal fluctuations dominate.
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2.4 Exact thermodynamics

In sections 2.2 and 2.3, we have discussed models that apply independently in the asymptotic lim-
its of the nearly ideal gas regime (T ≫ Tco or equivalently−µ≫ µco) and the quasi-condensate
regime (T ≪ Tco or equivalentlyµ ≫ µco) respectively. While the above classification gives
very useful insight, it should be emphasized that the boundary between these two regimes is a
smooth crossover, not a sharp transition and that neither ofthe two theories presented above ac-
count for the physics in the vicinity of the crossover. Sincein many cases we are interested in
the precise behavior near the crossover from the ideal gas tothe quasi-condensate regime, it is
not sufficient to use the asymptotic results.

As already mentioned in the introduction, the 1D Bose gas with repulsive delta-function
interactions is an example of an exactly solvable model [40,41], This allows us to quantita-
tively compare predictions of the two approximate descriptions to the exact results, and verify
the regions of validity of the approximations. Furthermorethe exact results will turn out to be
important for an accurate description of the experiments.

Exactly solvable models typically occur in lower dimensions (1D quantum systems [40, 41]
and 2D classical systems [42]) and allow one to obtain exact solutions for the quantum many-
body eigenstates through a method known as the “Bethe Ansatz” (due to Hans Bethe [43]),
for anyvalue of the interaction strength. For the repulsive delta-interacting 1D Bose gas (with
periodic boundary conditons), these solutions were first obtained by Eliot Lieb and Werner Lin-
iger [10,11]. Furthermore, the method based on the Bethe Ansatz can be extended to also obtain
the thermodynamics exactly (forany temperature), via a method due to C. N. Yang and C. P.
Yang [12].

For a concise and lucid description of the Yang-Yang method to obtain the exact thermody-
namics of the 1D Bose gas and the related equations, we refer the reader to the original litera-
ture [12]. In brief, each exact quantum many-body eigenstate of the Lieb-Liniger hamiltonian
Eq. (1) is characterized by a set of distinct integer quantumnumbers and a corresponding set
of distinct quasi-momentak, obtained through the Bethe Ansatz. For a large system, one can
consider the distribution of these quasi-momentaρ(k) and also of the “holes”ρh(k), the latter
corresponding to the “missing” values in the set of integerscharacterizing the individual quantum
states. By considering the entropy for given distributionsρ(k) andρh(k), Yang and Yang showed
that the condition of thermal equilibrium leads to a set of nonlinear integral equations that can
be solved by iteration. Subsequently, from the resulting distributions thermodynamic quantities
such as pressure and free energy can be obtained. Once these quantities have been found, further
thermodynamic quantities can be calculated using the standard thermodynamic relations.

Although numerical solutions to the Yang-Yang equations were already obtained at an early
stage by C. P. Yang [44], important further insight into the Yang-Yang thermodynamics was
gained much more recently by Kheruntsyan, Gangardt, Drummond and Shlyapnikov [22, 23].
They calculated both density and the normalized local density-density correlation functiong(2)(0),
and compared to approximate results in the various regimes discussed above. The former,
n(µ, T ), is obtained as part of the equation of state. The latter is obtained from the derivative of
free energy with respect to the coupling constantg, using the Hellmann-Feynman theorem.

As an important example, a comparison to the approximate results of the previous sections
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is shown in Fig. 3, for a fixed scaled temperature oft = 1000. This value is in the relevant
range for the experiments to be described below. Such curvesas a function of chemical potential
µ are particularly useful to describe the behavior in a trap, since in this case one has a well-
defined global temperature, while the density varies (within the local density approximation)
with the local chemical potentialµ(z) according toµ(z) = µ−V (z), whereV (z) is the trapping
potential. This will be discussed in more detail in the following section.

Figure 3(a) shows that the exact density(n ∝ 1/γ) indeed approaches the ideal-gas behavior
asµ/µco becomes sufficiently negative, while for large positiveµ/µco it approaches the quasi-
condensate result. There is a large range in density (more than a factor 4) over which neither
asymptotic description gives correct predictions. In the same vein, the local density-density
correlation functiong(2)(0) (Fig. 3(b)) smoothly crosses over from 2, the value for an ideal gas,
to about 1, as expected for a quasi-condensate. This smoothness is characteristic of crossover
behavior, and is drastically different from the step-like behavior typical for a 3D gas.

Looking more closely at Fig. 3, one sees that the ideal gas description begins to fail for a gas
that is only moderately degenerate: already atµ/T = −0.5 (µ/µco = −5 for the consideredt
parameter), a chemical potential for whichnλdB ≈ 10 and the population in thek = 0 mode
according to Eq. (12) is≈ 1.5, the ideal Bose gas prediction is off by about 10%. This is because
the interaction-induced crossover is sufficiently wide that for the used value oft (1000), the
chemical potential at degeneracy (µ/T ≈ −1) is not very far removed. The narrowness of the
degenerate ideal gas regime is also seen in Fig. 1. To achievewell separated regimes, one would
need to work at much highert and much smallerγ. For t = 1000, the effect of degeneracy
is nevertheless visible before the quasi-condensate crossover. This is shown by comparing the
density with both the true ideal gas model and the Maxwell-Boltzmann model in Fig. 3: at
µ/µco ≃ −5 the ideal gas model gives a prediction for the density accurate within 10% as
mentioned above (and the nearly-ideal-gas description canthus be expected be applicable) while
the Maxwell-Boltzmann prediction is off by a factor of about2.

Concerning the local pair correlation functiong(2)(0), it deviates from the ideal-gas value of
2 for the entire range plotted in the figure. The experiments presented in this chapter however
(see Sec. 4), are not precise enough to detect this deviation. Finally, the value ofg(2)(0) can
take values below unity in the quasi-condensate regime. We will briefly return to this point in
Sec. 4.3.3.

Despite its power, the Yang-Yang theory does not permit calculation of any non-thermodynamic
quantities. For example, only thelocal value of the density correlation functiong(2)(0) has be
obtained from thermodynamics, while the full behavior ofg(2)(z) has been obtained from the
exact solution only at zero temperature [46]. At finite temperature, the behavior ofg(2)(z) has
been obtained only by perturbative calculations valid in each asymptotic regime [47], but they do
not describe the crossover itself. An alternative approachuses the fact that the crossover appears
in a highly degenerate gas. In this case, the modes are highlypopulated and a classical field
approach is possible [48,49].
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Figure 3:Normalised density (1/γ) and local pair correlationg(2)(0) as a function of chemical
potential scaled to the crossover chemical potentialµco given in Eq. (26) for fixed temperature
corresponding tot = 1000. Numerical results from the Yang-Yang equations (solid lines, cour-
tesy K. Kheruntsyan) are compared to the ideal Bose gas model(dotted line in (a), Eq. (13)) and
the quasi-condensate model (dashed line in (a), Eq. (30)). The vertical line in (a) indicates the
degeneracy chemical potential−µ = T . The classical Maxwell-Boltzmann prediction Eq. (15)
is shown as dashed-dotted line. In (b) the asymptotic valuesof g(2)(0) are indicated for both
the ideal-gas regime (g(2)(0) = 2 for µ ≪ −µco, dotted line), and the quasi-condensate regime
(g(2)(0) = 1 for µ≫ µco, dashed line). Adapted from Refs. [38,45].
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3 1D gases in the real world

In real experimental situations, the atomic gas is neither homogeneous nor purely one-dimensional.
As usual, in our experiments the trapping is to a good approximation harmonic. The trap has
cylindrical symmetry and is characterized by a tight radialtrapping frequencyω⊥ and a much
lower axial trapping frequencyω. Here, we briefly summarize the main issues related to realiz-
ing a 1D system in this trapping geometry. We first discuss thelink between transverse effects
related toω⊥ and we present a model based on the Yang-Yang thermodynamics, valid at low
enough linear densities, that takes into account these transverse degrees of freedom. We then
discuss the effect of the longitudinal trapping potential.We finish by discussing the link with the
3D physics, in particular with regard to the usual Bose-Einstein condensation in 3D.

3.1 Transverse trapping and nearly 1D Bose gases

Strictly speaking the conditions to be 1D in a transversely trapped gas are that both temperature
and chemical potential are much smaller than the radial vibration quantum,T, µ ≪ ~ω⊥. If this
is the case, the gas is frozen in the transverse direction both thermally and in terms of chemical
potential, and the (many-body) wave functions can be factorized into the product of a transverse
part (the gaussian ground-state wavefunction of the radialtrap) and an axial part. The system is
then kinematically one-dimensional. Studying the scattering properties, Ref. [20] has shown that
the interactions can be modeled by an effective 1D coupling constantg and, as long as the 3D
scattering lengtha is much smaller than the typical size of the transverse oscillator wavefunction,
l⊥ =

√

~/mω⊥,
g = 2a~ω⊥. (42)

In most experiments on atom chips, neither of the above conditions on temperature and chem-
ical potential are well-fullfilled, and is it necessary to also take into account the transverse degrees
of freedom.

It is useful to consider the linear densitynl, obtained from the actual 3D densityρ(x, y, z)
through integration

nl(z) =

∫ ∫

dxdyρ(x, y, z). (43)

When the gas is strictly 1D, one can identifynl with the 1D densityn. We will present our main
experimental results in terms of this linear density, because it turns out thatnl is often the key
parameter, in particular when considering the crossover to3D at low temperatures.

This is in particular true for the quasi-condensate regime,at temperaturesT ≪ ~ω⊥. In
this regime, the chemical potential is close to its value at zero temperature, which is given by
the solution of the radial Gross-Pitaevskii equation [50, 51]. It was found from comparison to
numerical integration of the radial Gross-Pitaevskii equation [50,51] that, in the quasi-condensate
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regime, to good approximation the chemical potential can beexpressed as2

µ = ~ω⊥
(√

1 + 4nla− 1
)

. (44)

For linear densitynl ≪ 1/4a, we find thatµ ≃ 2~ω⊥an. We recover here the chemical potential
gn of the 1D case. At larger linear density, the chemical potential is reduced compared to the
formula 2~ω⊥anl. This reflects the fact that, for large densities, the transverse cloud size is
increased with respect to the transverse vibrational ground state. As another example of hownl

is the relevant quantity for low enough temperatures, we note that the expression Eq. (40) for the
phase coherence length remains correct also on the 3D side ofthe crossover, if we replace the
1D densityn by the linear densitynl [52].

3.2 Applying 1D thermodynamics to a 3D trapped gas

Another case that one can consider is when the interaction energy is in the 1D regime,ng ≪ ~ω⊥,
while temperature is in the 1D-3D crossover,T ≃ ~ω⊥. A model for this regime was introduced
in Ref. [8], and we describe it here. The key step is to separately consider the radial states. Under
the above conditions only the radial ground state is significantly affected by the interactions,
while the radially excited states can still be treated as an ideal gas. Thus, for the radial ground
state, the solutionnY Y (µ, T ) to the Yang-Yang equations must be used. Each radially excited
state with radial quantum numberj ≥ 1 is now considered as an independent ideal 1D gas, in
thermal equilibrium with the rest of the cloud. Each of the radially excited states is thus taken to
have a density (cf. Eq. (13))

ne(µj, T ) =
1

λdB
g1/2(exp(µj/T )), (45)

where an effective chemical potentialµj has been introduced that takes into account the radial
excitation energy,

µj = µ− j~ω⊥. (46)

Taking into account the degeneracy factorj + 1 of the radially excited states, the total linear
density in this model thus becomes

nl(µ, T ) = nY Y (µ, T ) +

∞
∑

j=1

(j + 1)ne(µj, T ). (47)

As long asµ < ~ω⊥, we haveµj < 0 which is necessary to avoid divergence ofg1/2 in Eq. (45).
In fact, from the previous discussion in Sec. 2.4, for our parameters (t ≈ 1000), we can expect
an ideal-gas treatment of the radially excited density to begin to break down forµj/T > −0.5
since this is where interactions will become important. In practical cases whereT ≈ ~ω⊥, the
model should thus be accurate as long asµ < 0.5~ω⊥, while forµ > 0.5~ω⊥ the model will start
to become inaccurate.

2An additional factor−1 has been introduced in brackets in Eq. (44) compared to Ref. [51]. This subtracts the
radial zero-point energy~ω⊥, so thatµ = 0 corresponds to the energy of the lowest energy (k = 0) state, as in the
treatment in Sec. 2.
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3.3 Longitudinal trapping

Experimentally, cold gases are axially confined in a confining potentialV (z) and the cloud is not
infinite and homogeneous as assumed in the previous section.However, as seen below, for weak
enough axial confinement, the results for homogeneous gasescan be applied using a local density
approximation. In the first following sub-section, we present the local density approximation and
discuss its predictions. We then evaluate the condition of validity of this approximation.

3.3.1 Local density approximation

If the confinement is weak enough that the correlation lengthof the gas is, at each position, much
smaller than the length of the mean density variations, thenthe gas may be divided into small
slices in which the thermodynamics of uniform systems applies. A slice located at positionz is
in equilibrium with the rest of the gas. It is thus described by the grand canonical ensemble at
temperatureT and at a chemical potentialµ0. The energy of the gas contained in this slice is
shifted by the quantityV (z). It is equivalent to assuming that the chemical potential isµ0−V (z),
while the energy of the gas is unshifted. Thus, the local properties of the gas are that of a
homogeneous infinite gas at temperatureT and local chemical potentialµ(z) = µ0 −V (z). This
is the so-called local density approximation.

Within the local density approximation, all the results presented in the previous section hold.
Thus, performing local analysis, one can observe all the features of homogeneous 1D gases: the
presence of the ideal gas regime, which includes the degenerate regime, the crossover towards a
quasi-condensate and the quasi-condensate regime. In particular, a quasi-condensate appears in
the center of the trap, when the peak density exceeds the crossover densitynco given by Eq. (24).

It is often interesting to investigate the behavior of the gas using the extensive variableN ,
whereN is the total atom number. As long as the peak density is much smaller thannco, the
density profile is well described using the equation of staten(µ, T ) of an ideal Bose gas. Then
the total atom number is easily computed and, for gases that are degenerate at the trap center, we
obtain [45]

N = T/(~ω) ln(T/|µ0|). (48)

The atom number at the crossover towards a quasi-condensateis obtained when the peak density
reachesnco. Inserting Eq. (16) and Eq. (24) into Eq. (48) we find that the atom number at the
crossover is approximately

Nco = T/(~ω) ln
(

(~2T/(mg2))1/3
)

= T/(3~ω) ln(t/2). (49)

Since t1/3 ≫ 1 (see text below Eq. (24)), this equation can be inverted to give a crossover
temperature

Tco = N~ω/ ln
(

(N~
3ω/(mg2))1/3

)

. (50)

A comparison of this formula with a numerical calculation using Yang-Yang thermodynamics
shows very good agreement [45]. Sincet ≫ 1 at the crossover, Eq. (49) shows that the ratio
Nco/Nd, whereNd = ~ω/T is the atom number at degeneracy, is larger than one at the crossover.
Thus, even considering the extensive variableN , the degenerate ideal gas regime is in principle
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identifiable. However, the ratioNco/Nd only grows as logarithm oft and it is in practice difficult
to haveNco/Nd very large.

3.3.2 Validity of the local density approximation

All the previous results use the local density approximation, which requires that the correlation
lengthlc of the gas be much smaller than the scaleL of variation of the density. At the crossover,
the correlation length of the gas is aboutlc ≃ ξ = ~/

√
mgn, as seen in section 2. To estimateL,

let us approach the crossover from the ideal gas regime. The density profile of the central part of
the cloud, obtained using Eq. (16) and the local chemical potentialµ(z) = µ0 −mω2z2/2, turns
out to be a lorentzian of width

√

|µ0|/mω2. Thus,L ≃
√

|µ0|/mω2 ≃ (gTco/m~ω3)1/3 at the
crossover. We thus find that the condition of validity of the local density approximation,lc ≪ L,
can be rewritten as

ω ≪ ωco =
(EgT

2)1/3

~
=
µco

~
, (51)

a result which has been derived in [45].
If the local density approximation (51) is not satisfied, thediscrete structure of the trap energy

levels has to be taken into account. In the opposite limit,ω ≫ ωco, the quantization of energy
levels plays a role while the gas is still described by an ideal Bose gas. Then, it has been shown
in [53] that one expects a condensation phenomenon to occur at a temperature

TC = N~ω/ ln(2N). (52)

In contrast to the crossover described in the previous section (referred to now as the interaction-
induced crossover), this is a finite size phenomenon sinceT goes to zero when the trap confine-
mentω goes to 0,Nω being fixed. This condensation phenomenon will dominate theinteraction
induced crossover whenTC > Tco. This condition is equivalent toω ≫ ωco, which shows
consistency of our analysis.

Experimentally, the condition (51) to observe the interaction induced crossover is very easily
satisfied: using Eq. (42), the condition (51) reduces to

ω ≪ ω⊥(T/~ω⊥)2/3(a/l⊥)2/3. (53)

One can check that, for most alkali atoms, in trapping potentials with ω⊥ ranging from 1 to
several tens of kilohertz and for temperatures between 0.1~ω⊥ and~ω⊥, this condition is easily
fulfilled, unlessa is extremely small (a < 0.1 nm). Thus, one expects that a trapped 1D gas
undergoes the interaction induced crossover towards a quasi-condensate and that the local density
approximation is valid to describe the gas.

3.4 3D physics versus 1D physics

Experimentally, one expect a crossover from a one-dimensional behavior to a three dimensional
behavior as the temperature of the gas increases and, at large enough temperature, one expects
to recover the physics of a three-dimensional gas. The physics of a 3D gas is very different from
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that of a 1D gas. The most striking difference is that, even inthe absence of interactions, a 3D
Bose gas undergoes a phase transition towards a BEC due to saturation of the population of the
excited states. This is in contrast to 1D gases where, in absence of interactions between atoms,
the gas behaves, for any density, as a thermal gas in which bosonic bunching is present. For
weakly interacting gases, in both 1D and 3D gases, a transition towards a (quasi-)condensate is
expected. However, these transitions are different in nature and this difference can be captured
by studying the validity of mean field theories in both cases.

In 3D weakly interacting gases (ρa3 ≪ 1), the effect of interactions between atoms on the
onset of Bose Einstein condenstation is very small. This is why 3D Bose gases with weak in-
teractions are well described by mean field theories. For instance, the thermodynamics is given
with a very good approximation by the Hartree-Fock-Bogoliubov self consistent theory [54,55].
In such a theory, at temperatures larger than the critical condensation temprature, the gas is
described by the Hartree-Fock approach, in which correlations between atoms introduced by
interactions are neglected. Condensation is then due, as for an ideal Bose gas, when the den-
sity reaches2.612.../λdB. For higher densities, a non zero condensate wave function appears,
which is the order parameter of this second-order phase transition. The experimental value of the
critical temperature in weakly interacting ultra-cold Bose gases is in good agreeement with this
theory [56].

However, even for weakly interacting gases, such a mean fieldtheory is expected to fail very
close to the critical point of temperatureTc. This is due to the large long wave length fluctuations
that develop in the vicinity of the transition. In the condensate side,i.e. for T < Tc, the Hartree-
Fock-Bogoliubov self consistent theory is valid only if thefluctuations of the condensate wave
function, averaged over a volume of the order of the correlation length, are smaller than its
mean-field value. This is the so-called Ginzburg criteria and it gives [55]

Tc − T

Tc

≫ aρ1/3. (54)

The same criterion (up to an absolute value) is true aboveTc. The region around the transition
where |Tc − T |/Tc is of the order or smaller thanaρ1/3 is not expected to be described by a
mean-field. Beyond mean-field effect include a modification of the transition temperature. Since
interactions tend to decrease long wave length density fluctuations, they favor the appearance of a
condensate and, for small paramateraρ1/3, an increase of the critical temperature is expected [57–
59]. Such a modification is very small in cold atom experiments and has never been observed.
A second non mean-field effect is the modification of the critical exponent that describes the
divergence of the correlation length in the vicinity of the critical point. Measuring beatnodes
between the atomic field extracted at different places in theatomic cloud, the critical exponent
was measured recently in dilute atomic gases, in agreement with beyond mean-field theories [60].

The physics is very different in 1D systems, since long wavelength fluctuations play an en-
hanced role compared to 3D systems. The crossover towards a quasi-condensate is, in 1D gases,
a phenomenon driven by interactions. More precisely, the crossover towards a quasi-condensate
is produced by the correlations between atoms brought by theinteractions. It cannot be captured
by the Hartree-Fock theory because Hartree-Fock theory neglects correlations between atoms in-
troduced by interactions. Thus, in real systems the failureof the Hartree-Fock theory to describe

20



the appearance of a (quasi-)condensate is a signature of the1D nature of the physics involved.

4 Experiments

In this section we will discuss several experiments that have been carried out in both Orsay and
Amsterdam using atom chips which probe the ideas discussed in the previous sections. Atom
chip setups are very well suited to study one-dimensional geometry since very tight atom guides
are easily realised by going close to a current-carrying micro-wire. The atom chips which were
used in the experiment presented below are sufficiently similar that we will attempt to describe
both at once. We will refer the reader to the individual experiments for more detailed information.
The atom chips we used employed current carrying wires to create magnetic trapping fields for
87Rb atoms in theF = 2, mF = 2 state. Magneto-optical traps, laser cooling and evaporative
cooling were used to load atoms into the chip-based traps, which tended to be highly confining
but rather shallow. Typical currents were on the order of a few amperes and the atoms were
at a distance of several tens of microns from the wire surface. Typical transverse confinement
frequences (ω⊥/2π) were about 3 kHz, while longitudinal frequencies were on the order of 10
Hz. This transverse frequency corresponds to a temperature~ω⊥/kB of 144 nK, and evaporative
cooling was able to reach a temperature equal to or slightly above this value. For Rb atoms, with
3D scattering lengtha = 5.24 nm, the energy scaleEg corresponds to 0.20 nK, and 144 nK in
reduced temperature units corresponds tot = 720. Since the longitudinal trapping potential is
roughly harmonic, the linear atom density varied in space, and thus a single sample permits one to
probe a large range in density at constant temperature. A single density profile thus corresponded
to a horizontal line in Fig. 1. The value of the parameterγ was typically between10−1 to 10−3.
The data consisted of absorption images of the cloud, taken either in situ or after a very short
expansion time. Temperature measurements were made by fitting the wings of the cloud, or by
fitting to the Yang-Yang model (see description below).

The first set of measurements we describe are simple observations of the density profiles of
nearly one-dimensional gases on an atom chip. The measurements were carried out with two pur-
poses in mind. In the first measurements, carried out in Orsay, emphasis was placed on proving
that in the region of the crossover between the ideal gas and quasi-condensate regimes, no theo-
retical approach which neglected interaction induced correlations between particles, in particular
the Hartree-Fock approach, could explain the profiles. In the second set, carried out in Amster-
dam, it was shown that the exact thermodynamic treatment accounted very well for the entire
observed profile, notably when the gas was in the crossover regime. After examining the profiles
we move to another type of measurement in which the absorption images were analyzed to give
information about density fluctuations. Although these measurements where chronologically the
first, we will treat them last.

4.1 Failure of the Hartree-Fock model

A typical density profile is shown in Fig. 4. Superimposed on the data are three different theo-
retical predictions. The dashed line shows the profile as predicted by the ideal gas model. In the
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wings of the profile this model should be valid, and indeed thefit to the wings of the distribution
was used to deduce the temperature and the chemical potential of the gas. Clearly, however the
ideal gas prediction begins to rapidly deviate from the data, because, without interactions, a 1D
Bose gas can accommodate arbitrarily high densities at a given temperature. The dash-dotted
line shows the prediction of the quasi-condensate model Eq.(44), at the same chemical potential
as was found by fitting the wings. This model accurately reproduces the high density part of the
distribution, but not the presence of so many atoms in the wings of the distribution.

The Hartree-Fock theory is a variational method in which theatoms are described by a gas
of non interacting bosons subject to an effective potentialVHF due to the mean field of the other
atoms. Minimizing the free-energy of the gas, one finds

VHF (r) = 2g3Dρ (55)

whereg3D = 4π~
2a/m is the 3D coupling constant andρ is the 3D gas density. This theory

is thus self consistent, since for a given chemical potential and temperature,ρ depends onVHF .
The factor 2 reflects the bunching, which is present in the Hartree-Fock approximation since the
gas is descibed by a gas of non interacting bosons.

Using minimisation techniques, the Hartree-Fock density profile was calculated in Ref. [6]
for the experimental three-dimensional trapping potential and for the temperature and chemical
potential found by fitting the wings of the distribution. Onesees that the Hartree-Fock density
profile, shown as a solid line in Fig. 4, reproduces the wings of the density profile, and does
not diverge as does the ideal gas profile. It does not however,reproduce the high density part
of the profile. Moreover, the Hartree-Fock calculation shows that the Hartree-Fock gas is far
from being saturated: the population of the ground state is very small, and no condensation is
expected according to this mean-field model. The excess of atoms in the center is the onset of a
quasi-condensate, although the cloud is not deep into the quasi-condensate regime. This peak is
formed by the effects of interactions altering the two body correlation function so as to lower the
interaction energy relative to a Hartree-Fock gas at the same density.

4.2 Yang-Yang analysis

Two more examples of axial density profiles measured [8] at two different temperatures and a
peak linear density of≈ 50 µm−1 are shown in Fig. 5. These profiles were fit to the model
based on the exact Yang-Yang solutions described in Sec. 3.2. The fits are shown in the Figure as
continuous curves, and the resulting temperatureT and chemical potentialµ are also indicated.
The chemical potentialµ and the temperatureT are the only free parameters in the model, and
it was found that the full set ofin situ measurements could be explained by the Yang-Yang-
based model [8]. For comparison, The ideal-gas prediction and the quasi-condensate prediction
are also shown. Clearly, the Yang-Yang-based model describes the entire profiles well, while
the approximate models fail, in particular the smooth crossover between the two approximate
models in the region whereµ(z) ≈ 0 is captured very well by the model.

This analysis was further corroborated by measurements of the axial momentum distribution
[8], obtained using Bose gas focusing [37]. The tails of the momentum distribution were used to
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Figure 4:Failure of Hartree-Fock theory in a quasi-1D gas. The experimental profile (crosses)
is compared with the profiles expected for a quasi-condensate (dotted-dashed), for an ideal Bose
gas (dashed), and to the profile predicted by the Hartree-Fock theory (continuous line) for the
same temperature and chemical potential. The vertical axisis the number of detected atoms per
6 µm longitudinal pixel. The temperature of the gas wasT = 360 nK= 2.75~ω⊥. Adapted from
Ref. [6].

extract temperatures, and these were found to agree very well with the temperatures derived from
the Yang-Yang fit to thein situ data. The full momentum distribution is not a thermodynamic
quantity, and can thus not be obtained directly from the Yang-Yang analysis.

The similarity of the measured density profiles of Figures 5(b) and 4 clearly suggests that
the same physics of an interaction-induced crossover applies to both experiments. Although it is
tempting to apply the Yang-Yang-based analysis of Sec. 3.2 also to the data of Fig. 4, this has not
been done. It is likely that the result would not be quantitatively accurate, because at the higher
linear densities and temperatures of Fig. 4, the validity limits of the model of Sec. 3.2 are reached
near the peak of the profile (since bothµ ≈ ~ω⊥ andT ≈ ~ω⊥). Interactions are then expected
to also play a role in the radially excited states, and also interactions among the different radial
states will be significant.

4.3 Measurements of density fluctuations

As we have emphasized in Sec. 2, the transition towards a quasi-condensate in 1D gases is
characterized by the inhibition of atom bunching, the largedensity fluctuations characteristic of
a thermal Bose gas. A direct measurement of the density fluctuations through the crossover thus
captures an essential characteristic of the crossover.

The measurement of density fluctuations proceeds similarlyto the density profile measure-
ments. The difference is that many (about 300) profiles are acquired and, roughly speaking,
for each observation pixel, we compute the variance of the density measurements as well as the
mean. We can relate this variance to the density fluctuationspredicted by various theoretical
approaches as described below.
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Figure 5: Comparison of experiment to Yang-Yang thermodynamics. Themodel described in
Sec. 3.2 is fit to two examples of measured linear densitiesnl (dots) in the Amsterdam experiment
[8, 38]. The resulting fits (continuous curves) yield chemical potentialµ and temperatureT as
indicated. Dotted curves: ideal-gas profile at the same temperature and chemical potential
exhibiting divergence forµ(z) = 0. Dashed curve in (b): quasi-condensate profile with the
same peak density as the experimental data. In these experiments~ω⊥ = 158 nK. Adapted from
Ref. [8].
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The measurements involve several subtleties requiring careful normalizations and corrections
of the data. These are described in detail in [7, 61]. The measurement requires a high degree of
reproducibility in the data. The atom chip geometry permitsthe construction of a very compact
apparatus with low sensitivity to vibration. The images contain not only noise due to atom
fluctuations, but also photon shot noise. The photon noise must be carefully characterized and
subtracted. Examples of the data are shown in Figs. 6 and 7.

4.3.1 A local density analysis

The pixel size in the experiment is∆ = 6 µm. The pixel size is much larger than the correlation
length of the gas which is always smaller than a micron in these experiments, but much smaller
than the longitudinal length scale of mean density variation. Thus, the data should reproduce
number fluctuations predicted in a longitudinal local density treatment. More precisely, the gas
contained in the pixel located at positionz can be described as a gas, confined transversely by the
transverse potential of frequencyω⊥ and confined longitudinally by a box like potential of size
∆. The properties of this slice, which can exchange energy andparticles with the rest of the gas,
is well described within the grand-canonical ensemble. Theenergy shiftV (z) of this slice can
be converted to a shift−V (z) of the chemical potential. This is the local density approximation,
already discussed in sec. 3. Since∆ is large compared to correlation length of the gas, the
boundary conditions used to compute thermodynamic quantities are all equivalent and we use
the periodic boundary conditions in the following.

Within the local density approximation, the confinement potentialV (z) is irrelevant to an-
alyze the atom-number fluctuations. The atom number fluctuation δN2 in each pixel depends
only on the temperatureT and on the local chemical potential. Equivalently,δN2 is a function
of T and〈N〉, since the linear density is a monotonically increasing function of the chemical
potential. We thus choose, for each cloud temperature, to represent the measured atom number
fluctuation as a function of the mean atom number in the pixel.Experimental results are shown
in Fig. 6 and fig. 7.

4.3.2 Ideal gas regime : observation of bunching

If the gas within a pixel can be considered ideal, we can use the results of Sec. 2.2. The fluctua-
tions of atom numberni in each one-atom quantum state|i〉 are

〈n2
i 〉 − 〈ni〉2 = 〈ni〉 + 〈ni〉2. (56)

The fluctuations of the total atom numberN are thus

〈N2〉 − 〈N〉2 = 〈N〉 +
∑

i

〈ni〉2, (57)

where the sum is performed over all the quantum states. The mean values〈ni〉 are given by the
Bose distribution and the fluctuations ofN are easily computed.
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Figure 6: Density fluctuations of a gas on an atom chip. The atom number variance in an
observation pixel (6µm) is plotted as a function of the mean number. The open cirlesare the
fluctuations measured for a hot cloud (T = 1.3 µK corresponds to10~ω⊥) for which bunching is
unobservable because of the large number of transverse states involved. The variance is due to
atom shot noise. Full circles correspond to a colder cloud, at a temperatureT = 2.1~ω⊥. The
increase in fluctuations is due to bunching. The theoreticalprediction for an ideal Bose gas at
the same temperature is given by the dashed curve. The prediction for a nondegenerate cloud,
Eq. (61), is shown as the dotted curve. The degeneracy of the gas is evident. Adapted from
Ref. [7].

Figure 7: Density fluctuations in the quasi-condensate regime. The dashed-dotted curve is the
prediction for an ideal Bose gas at the same temperature as infigure 6. The dashed curve is the
prediction for a quasi-condensate. In units of transverse energy, the temperature isT = 1.4~ω⊥.
Adapted from Ref. [7].
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A rough calculation is as follows: ifM quantum states are populated with similar popula-
tions, Eq. (57) simplifies to

〈N2〉 − 〈N〉2 = 〈N〉 + 〈N〉〈N〉
M

. (58)

The first term of the right hand side is the shot noise term, expected for uncorrelated, statistically
independent atoms. The second term on the right hand side is the effect of the bunching. We
see from this expression that as long as〈N〉/M is much smaller than 1, the bunching term is
negligible compared to the shot noise term. The ratio〈N〉/M is approximately the phase space
density of the gas and is much smaller than 1 if the gas is non degenerate. Thus one expects
the measured atom number fluctuations to be dominated by the shot noise term for gases at high
temperature. This is observed experimentally for non-degenerate clouds, as shown by the open
circles in Fig. 6. The linearity of the measured value of〈N2〉 − 〈N〉2 versus〈N〉 shows that the
fluctuations are given by the shot noise. The fact that the slope is smaller than the expected slope
of 1 is due to the fact that the optical resolution (about 10µm) is larger than the pixel size [7].

One can also give a more precise calculation of the fluctuations. For this purpose, we in-
dex the quantum states by the integernx andny, which label the transverse vibrational levels,
and the longitudinal wave vectorkz, which takes values in multiples of2π/∆. For a highly
nondegenerate gas,|µ| ≫ T , the population of each state is given by the Boltzmann law

〈nnx,ny,kz
〉 = Ae−(~2k2

z/2m+~ω⊥(nx+ny))/T , (59)

where the normalization factorA is

A =
NλdB

∆
√

2π

(

1 − e−~ω⊥/T
)2
. (60)

Inserting this into Eq. (57), we obtain

〈N2〉 − 〈N〉2 = 〈N〉 + 〈N〉2 λdB√
2∆

tanh2(~ω⊥/2T ). (61)

We thus recover an expression similar to Eq. (58), withM =
√

2∆/(λdB tanh2(~ω⊥/2T )). The
tanh term accounts for the number of populated transverse states. The term

√
2∆/λdB, which

accounts for the longitudinal states, may be recovered by a semiclassical analysis: the volume
of the occupied phase space isΩ ≃ ∆

√
mT and the number of quantum states contained in this

volume is of the order ofΩ/~. Equation (61) is valid if the gas is non degenerate. When thegas
becomes degenerate, the distribution of the mean occupation number〈n〉 versus the state energy
becomes more peaked around zero. This amounts to a reductionof the effective number of
occupied statesM and the effect of bunching is larger than the prediction of Eq. (61). For highly
degenerate gases, Eq. (61) underestimates the true fluctuations, which become large compared
to the shot noise level.

The bunching effect is quite clear for a cold enough cloud as shown in Fig. 6. In this ex-
periment, the bunching term is even larger than the shot noise term, indicating that the gas is
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degenerate. The degeneracy is also shown by a comparison of the data with Eq. (61) shown
as a dotted line. This equation, valid for a non degenerate gas, underestimates the measured
fluctuations. On the other hand, a calculation of Eq. (57) using the true Bose occupation factor
is in much better agreement with the data. This comparison shows that, at least as concerns
fluctuations, the gas is well described by an ideal, degenerate Bose gas.

4.3.3 Quasi-condensate regime: saturation of atom number fluctuations

At sufficiently high density and low temperature, repulsiveinteractions between atoms are no
longer negligible. As described in section 2, one expects the interactions to reduce the density
fluctuations to lower the interaction energy. The gas then enters the quasi-condensate regime.
For the temperatureT = 2.1 ~ω⊥ of the data in Fig. 6, using Eq. (42) and assuming a purely 1D
gas, Eq. (24) gives a density at the crossover of about 130 atoms per pixel. Although Eq. (24)
does not apply since the gas is not purely 1D, this rough estimate shows that the crossover
to a quasi-condensate is achievable at slightly higher atomnumber and/or lower temperature.
Measurements of atom number fluctuations in a regime where the cloud center is in the quasi-
condensate regime are shown in Fig. 7. Whereas at low atomic density the measured fluctuations
are in agreement with the ideal Bose gas prediction, one seesa saturation of the fluctuations at
higher densities.

To calculate the fluctuations, we first suppose the gas to be purely one dimensional, with
a coupling constantg given by Eq. (42). In a local density approximation, we consider atom
number fluctuations in a longitudinal box of length∆ in equilibrium with a reservoir of energy
at temperatureT and a reservoir of particles at chemical potentialµ. As explained in sec. 2.3, the
Hamiltonian is quadratic inδn in the quasi-condensate approximation andδn can be expanded
as a sum of independent modes indexed by the wave vectork. The atom number fluctuations
N − 〈N〉 are obtained by integratingδn over the pixel size. Thus, the only excitation that leads
to atom number fluctuation is the zero momentum mode. Its energy, derived from Eq. (32), is

Hk=0 = ∆
g

2
δn2

0. (62)

Using the equipartition theorem, we findδn2
0 = T/(g∆). The atom number fluctuations, which

are(∆δn0)
2, are thus given by:

〈N2〉 − 〈N〉2 =
∆T

g
. (63)

Thus, we expect the atom number fluctuations to be independent of 〈N〉. The shot noise term
is not present in this quasi-condensate regime: interactions between atoms prevent even the
shot noise fluctuations and at temperature smaller thangn, one expects to observe sub-shotnoise
fluctuations. This feature is also seen in Fig. 3 whereg(2)(0) goes below unity in the exact
solution.

In the experimental results shown in Fig. 7, the typical interaction energy is about0.7~ω⊥. In
these conditions, the transverse degrees of freedom cannotbe neglected and the result of Eq. (63)
must be corrected. More precisely, the phonons, which are longitudinal density waves, are as-
sociated with a breathing of the transverse shape of the cloud. For phonons of frequency much
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smaller than the transverse frequency, the transverse shape of the cloud follows adiabatically the
ground state equilibrium state for the local linear density. We denote byEeq(n) the energy of
the gas per unit length for a linear densityn. The phonon Hamiltonian of Eq. (32) is the term
of the Hamiltonian of order two inδn and∇θ. Thus, the interaction term of the phonons is
Eint = 1

2
L(∂2Eeq/∂n

2)δn2
k. Since∂Eeq/∂n is the chemical potential of the gas (to zero order

in δn), we can rewrite the former expression asEint = 1
2
L(∂µ/∂n)δn2

k. In particular, the zero
momentum term is

Hk=0 =
1

2
L
∂µ

∂n
δn2

0. (64)

Then, the atom number fluctuations are

〈N2〉 − 〈N〉2 =
∆T

∂µ/∂n
. (65)

Although we derived this expression in the approximate quasi-condensate theory using expansion
of the Hamiltonian to second order inδn, we recover here a well known result of statistical
physics. More precisely, as shown in [62], Eq. (65) holds forany system in equilibrium with a
particle reservoir at chemical potentialµ and with an energy reservoir of temperatureT .

To apply Eq. (65) to the experiment, we need the equation of stateµ(n). Using Eq. (44) and
Eq. (65), one can compute the expected fluctuations. Fig. 7 shows that the results are in fairly
good agreement with the measured atom number fluctuations.

5 Conclusion

We hope that we have given the reader a useful overview of the physics of 1D gases in the weakly
interacting regime. These systems are rich and manifest several different regimes separated by
smooth crossovers. It is often necessary to appeal to many different physical models to under-
stand them. The existence of exact solutions allows us to test the models and to explore their
validity in the face of highly non-trivial many body correlations. Although the experimental and
theoretical work we have described is quite extensive, we believe that much work remains to be
done. The study of fluctuation phenomena is still at an early stage. For example the exact ther-
modynamics should admit a careful comparison with data suchas that in Fig. 7, and improved
experiments should probe larger parameter ranges and possibly even permit measurements of
the correlation length. It may also be possible in the near future to enter the strongly interacting
regime using an atom chip. Experiments are also capable of measuring momentum distribu-
tions [8], but so far no quantitative theoretical comparison has been made. Finally measurements
of fluctuations and correlations in momentum space are also experimentally feasible [32].
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