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1 Introduction

As this volume indicates, the technology of atom chips isentty enjoying great success for a
large variety of experiments on degenerate quantum gaseauBe of their geometry and their
ability to create highly confining potentials, they are mautarly well adapted to realizing one
dimensional (1D) situations [1-9]. This characteristis santributed to a revival of interest in
the study of 1D Bose gases with repulsive interactions, gesy#hich provides a vivid example
of an exactly solvable quantum many-body system [10—12¢. quantum many-body eigenstates
[10, 11] and thermodynamics [12] can be calculated withesbrting to approximations. In
addition, the 1D Bose gas shows a remarkably rich varietyhyfsizal regimes (see Figl 1)
that are very different both from those found in 2D and in 3MeQiramatic example of the
difference is the tendency for a 1D Bose gas to become stavaglyinteracting as its density
decrease$10]. Finally, and in a more practical vein, a good undergiag of its behavior is
relevant for guided-wave atom lasers [13] and trapped-atbenferometry [14]. Because of the
effects of interactions, the analogy to the manipulatiohgdft in single mode fibers needs to be
examined carefully.

An atom chip is not the only means of producing a 1D Bose gasic@grapping has been
used to generate similarly elongated trap geometries. tincpkar, a 2D optical lattice can be
used to generate a 2D array of 1D traps [15-19]. Because ofiéissively parallel nature of this
system, it is possible to work with only a few atoms per tulvel still get a sizeable signal per
experimental cycle. Thus, the strongly interacting regaiheded to above can be reached. This
regime has yet to be reached with an atom chip. But as we vailvstere, a key feature of atom
chips is that they produce individual samples in which onesdoot intrinsically average over
many realizations. Fluctuation phenomena are theref@muilyeaccessible, an aspect which we
will treat later in this chapter.

In the following we first give an introduction to the variousgimes of the homogeneous
1D Bose gas, with particular emphasis on the behavior of #msitly profiles and the density
fluctuations in the context of approximate models. Then wediscuss the exact solution and
how it differs from the approximations. Next, we discuss sarvfithe important issues involved
in realizing 1D gases in a 3D trap. Finally, we describe aeseof experiments performed in
Orsay and Amsterdam using atom chips to explore and illigsteatures of the 1D Bose gas.

2 Regimes of one-dimensional gases

First, we review some theoretical results concerning tleedimensional Bose gas with repulsive
interactions. Most of these results are derived in Refs.]2(20-24]. Here we will concentrate
on intuitive arguments, and the reader is referred to theetmferences for more careful demon-



strations. The system is described by the Hamiltonian
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wherey is the field operator in second quantization, grisithe coupling constant characterizing
the interactions between particles. From this couplingstamt, one can deduce an intrinsic
length scale related to the interactions,
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as well as an energy scale:
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In thermal equilibrium, the gas is described by the tempeeat and the linear atomic den-
sity n. Rescaling these two quantities by the intrinsic scalesdhiced above, and setting Boltz-
mann’s constant equal to unity (i.e., measuring tempegatuunits of energy) we find that the
properties of the gas are functions of the dimensionlesstdies
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the latter being the famous Lieb-Liniger parameter [10].
It is useful to also introduce two other relevant scales, elgirthe thermal de Broglie wave-

length,
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and the quantum degeneracy temperature
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In the abovgt, ) parametrization, quantum degenera€y~ 7}, or equivalentlyn\;5 ~ 1) is
reached around

I~ —. (8)

The thermal equilibrium for the hamiltonian of EQ] (1) hagbextensively studied theoreti-
cally [12,22]. Without going into great detail however, vangresent some important features of
this system. Several regimes may be identified in the paemapacé-, t), as sketched in Figl 1.
We begin by noting that the region>> 1, ¢t < 1 (dark grey area) defines a strongly interacting

3



T T

106 " nearly ideal gas i
0’@ > ~
Loy, >~
. eoera N classical
10 the . 7
i May
102 | quasi-conden . |
-~ N ~
1k quantum .
10—2 -
10—4 A Ll A Ll A Ll A A
1074 103 102 1071 1 10 102

v

Figure 1:Physical regimes of a 1D Bose gas with repulsive contactactens in the parameter
space(v, t), adapted from [22]. The dashed diagonal line separates #gederate and nonde-
generate gases. The strongly interacting regime is shovdaik grey. The weakly interacting
regime is divided into the nearly ideal gas regime (alsoextiecoherent regime) shown in white
and the quasicondensate regime shown in light grey. Notettiganearly ideal gas can be de-
generate. The quasicondensate regime is divided into thrend and quantum regimes. The
lines represent smooth (and often wide) crossovers rati@r phase transitions. The crossovers
are given in Egs.L(10)[(11)[|(8)._(R5) and {41). The dashexhahows the parameter space
investigated in the experiments presented in this chapter.

regime that occurs at low density and low temperature, attégrred to as the Tonks-Girardeau
gas [20, 25, 26].

In the weakly interacting regime;, < 1, several sub-regimes are identified. These are the
regimes which to date have been accessible in atom chip iexgretis, and we shall elaborate
further on their nature in the discussion below. The two nmagimes are the nearly ideal gas
regime (white area) and the quasi-condensate regime (jigyt area). Each one permits an
approximate description that we present later in this sacind which allows the identification
of sub-regimes. For the moment we simply wish to emphasiaertb phase transition occurs
in the 1D Bose gas and that all the boundaries represent bBrenad often broad) crossovers in
behavior.

2.1 Strongly versus weakly interacting regimes

We first comment on the distinction between strong and wetgtantions. Following the ap-
proach of Ref. [20], we study the scattering wave functionvad atoms interacting via the
potentialgd(z; — z2), wherez; andz, are the position of the two atoms. For this, we consider the
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wave functiony in the center-of-mass frame, with reduced mag& and subject to the potential
gd(z). The effect of the potential is described by the continudwgdition

9 04) — L) = ™9 40y ©)

0, 0. - 2h2
where0, (0_) denotes the limit when goes to zero through positive (negative) values. Let us
consider the scattering solution for an enefgy= h*k?/m. Since we consider bosons, we look
for even wave functions of the forrvs(k|z| + ¢). The continuity conditions give and thus
the valuey(0). We find then that the energy, given by Eq.[(B) is the relevant energy scale and
that for £ < E,, ¢(0) is close to zero, while, foE > E,, 1(0) is close to one, as illustrated in
Fig.[2.

The above results hold for a gas of particles since the coityimelation [9) holds for the
many-body wavefunction when two atoms are close to the sdaoe.p Thus, as long as the
typical energy of the particles is much lower thap, the many-body wavefunction vanishes
when two particles are at the same position: the gas is théreistrongly interacting, or Tonks-
Girardeau regime. The vanishing of the wave function whemperticles are at the same place
mimics the Pauli exclusion principle and the gas acquire@sessimilarities with a gas of non
interacting fermions. More precisely, in this strong iaieion regime, the available wave func-
tions of the many body problem are, up to a symmetrizatiotofathe wave functions of an
ideal Fermi gas [26]. Since the wave function vanishes whenatoms are at the same place,
the energy of the system is purely kinetic energy and theneggergies are those of the Fermi
system. Thus the 1D strongly interacting Bose gas and tted ide Fermi gas share the same
energy spectrum. This implies in particular that all thedyrmamic quantities are identical for
both systems.

To identify the parameter space of the strongly interaateggme, we suppose the gas to be
strongly interacting and then require that the typical gp@f the atoms be smaller thds),. To
estimate the typical energy per atom, we use the Bose-Feappimg presented above. If the
gas is degenerate, the temperature is smaller than theetaggriemperaturé,, Eq. (1), andl,
corresponds to the "Fermi" energy of the atoms. The typicahaenergy is thereforg, and it
is of orderE if

v~ 1. (10)

The strongly interacting regime thus requiress> 1. If the gas is non degenerate, the typical
energy of the equivalent Fermi gas/isand interactions become strong wher= £, or

t~1. (11)

We then find that the gas is strongly interactingffeg 1.

The condition[(ID) is often derived using the following aitative argument, valid at zero
temperature. At zero temperature, there are two extremmeéldgossible solutions for the wave
function ¢(z1, 22, ...). As seen in Figl]2, either the wave function vanishes whenatems
are at the same place, or the wave function is almost unifeommesponding to the strongly
and weakly interacting configurations respectively. Inwmeakly interacting configuration, the
kinetic energy is negligible and the interaction energypaeticle, of the order ofn, determines
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Figure 2: Strong interaction versus weak interaction regime. We sti@wave function in the
center-of-mass frame of two atoms for (a) strong interaxgj®cattering energyy much smaller
than £, = mg?/2h* and (b) weak interactionsy much larger than®,. We also plot the wave
functiony(zy, 2, 23, ...) for given positions ofs, z3, ... in (c) the strongly interacting regime and
(d) the weakly interacting regime.

the total energy. In the strongly interacting configuration the other hand, the interaction
energy vanishes while the typical kinetic energy per plrti€s°n? /m. Comparing these two
energies, we find that the strongly interacting configuraeisofavorable only fory > 1.

2.2 Nearly ideal gas regime

At sufficiently high temperatures, interactions betweeset have little effect and the gas is
well described by an ideal Bose gas. In Ref. [22], this regivas referred to as the "decoherent
regime"; We will call it the (nearly) ideal Bose gas regimelB ideal Bose gas at thermal equi-
librium is well described using the grand canonical ensefribtroducing the chemical potential
. All properties of the gas are calculated using the Boltamlaw which states that, for a given
one-particle state of momentuh#, the probability to findV atoms in this state is proportional
to e~ ("*+*/2m)=mN/T- note thatu < 0 in this description. In the following, we use a quantization
box of sizeL (tending to infinity in the thermodynamic limit) and periodioundary conditions
so that the available states are the momentum states witremtamk = 275 /L wherej is an
integer.

Let us first consider the linear gas density. From the Boltemlaw, we find that the mean
population is the Bose distribution

B 1
() = memremmr — 1

(12)

The atom number, and thus the linear density, is obtaineditnyrsng the population over the

states and one finds 1

" s

whereg, ;»(z) is one of the Bose functions

n 91/2(€M/T)7 (13)

gnl) =D 50 (14)
=1
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also known as the polylogarithmic functions [27, 28]. Uelik 3D systems, where the excited-
state density is given by, = gs2(e*/T) /A3 in this approach [27], no saturation of the excited
states occurs (the functign, diverges as/—=1'/p asp — 0 from below, whereags (1) =
2.612 is finite): in the thermodynamic limit no Bose-Einstein cendation is expected and the
gas is well described by a thermal gas at any density.

Two asymptotic regimes may be identified: the non degeneegiene for which—u > T
andh?n?/m < T and the degenerate regime for whielp << 7" andh?n?/m > T. In the non
degenerate regime, the linear density is well approximayeitie Maxwell-Boltzmann formula

n= Le”/T, (15)
AiB
In this regimen ), iIs much smaller than unity. In the degenerate regime, thesstd energy
much smaller thafi” are highly occupied and the linear density is given by

T m
n:%M——Qﬂ (16)

This density is much larger than Az, i.e. n\gp > 1.

As we will discuss in the experimental section, fluctuatiaresalso very important for char-
acterizing the gas. It is thus instructive to consider theeatation functions. The normalized
one body correlation function ig®")(z) = (*(0)y(2))/n, wherew is the field operator in
the second quantization picture. Using the expansion ofiéh& operator in the plane wave
basisi(z) = >, are"*?/v/L wherea,, is the annihilation operator for the mode we find
g (z) = Y, (ng)e~™**/(Ln). Heren, = aa; is the atom number operator for the made
Simple analytical expressions are found in the nondegemaral highly degenerate limits. In
the non degenerate limit(u > T or, equivalentlyn < 1/\;5), we find

22

g(l)(z) ~ e ™5, (17)

As the gas becomes more degenerate, the correlation lemg#ases and, in the degenerate
regime (u < T or, equivalentlyn > 1/\;5), we find

mT 2 _ 27z

gV (2) e mi? =e ™s. (18)

In this regime the correlation length, abaut?, is much larger than the de Broglie wavelength
(and the mean interparticle distancé:) sincel;z > 1/n.
Next we consider the normalized density-density or two bomtyelation function

9P (z) = W ()Y (0)y(0)¥(2)) /n’. (19)

This function is proportional to the probability of finding atom at positionr and at position
z = 0. Itis given by

ntg¥(z) = Z (af af agyap, )™ 7e™ "% /L2, (20)
k1kokska



Using Bose commutation relations and the fact that, sinematdo not interact, different mo-
mentum state populations are uncorrelated, the sum siggploi

n’g? (2) = Y (ng, Y ng, ) (L + €W 752%) /L2 N “(afafagay) /L. (21)
k1#ka k

In the last term, the commutation relations give; a; arar) = (ni) — (ng), and in thermal
equilibrium one has:

(ni) = (i) + 2(n)”. (22)

Therefore we find:
9P (z) =1+ gV (2)], (23)

a result which one can also obtain directly from Wick’s treanif29]. Equation(23) means that
the probability of finding atoms within less than a corraatiength in a thermal Bose gas is
twice that of finding two atoms far apart. This phenomenonftsroreferred to as "bunching”
and has been observed in cold atoms in several experimé&at82R8 Bunching is closely related
to density fluctuations. As one can see from [Eql (22), in anthégas, fluctuations in the occu-
pation of a single quantum stat®;,> = (n}) — (n,)?, show a "shot noise" term{n;) and an
"excess noise" ternfp,,)?. The density fluctuation experiment described later in¢hipter has
demonstrated this behavior.

Validity of the ideal gas treatmentThe two body correlation function has been used to
characterize the crossover between the ideal gas and cpradénsate regimes [22]. When in-
teractions become important, they impose an energy coseositg fluctuations and the latter
tend to smooth out. This amounts to a reduction in the valug’af0). In the quasi-condensate
regime which we discuss in the next section, the bunchirecefé absent ang®(0) is close
to unity. The ideal Bose gas description fails when the tgfgiateraction energy per particle:
is not negligible compared te .. Using Eq. [(I6) one finds that the ideal Bose gas description
fails when the temperature is no longer much smaller tharibgsover temperature, which we
define as

T., ~ Td\/’_}/ (24)
Using the reduced dimensionless temperatus€el’/ E,, this can be written as

1
tco ~ W (25)
This line separates the nearly ideal gas regime from the-goaslensate regime in Figl 1. Note
that, in terms of chemical potential, the domain of validifythe ideal gas model is i > 1.,
where we define the crossover chemical potential as

T
Heo = m (26)

In making this estimate, we have assumed that the gas is eiegerat the crossover. From
Eq. (Z4), one can see that if one is in the weakly interactaggme ¢ < 1) this assumption



is indeed true. The experiments described below confirmdhatcan observe the effects of
degeneracy before the onset of the reduction of densityutticins.

A precursor of the reduction of density fluctations is showaIperturbative calculation valid
in the nearly ideal gas regime which gives, to lowest order[22],

g(0) ~ 2 — A(T,/T)>. (27)

To accurately treat the crossover regime however, it isssang to make use of the exact solution
to the 1D Bose gas model. The exact solution in the crossegémne is discussed in Séc. 2.4.

The correlation lengths of the gas are important paramefdhe gas that will be used in the
following to estimate the validity criteria of the local dgty approximation. In the degenerate
regime, the correlation length is~ n\%, (see Eq.[(IB)). Using EJ_(R4), we find that, close to
the crossover, the correlation length of the gas is closedadeéaling length

= - (28)

2.3 Quasi-condensate regime

On the other side of the crossovee. for T < T.,, the bunching effect is entirely suppressed
and theg® function is close to unity for any. This regime is the quasi-condensate regime
In this section, we present a description of the gas, valithénquasi-condensate regime. This
description permits a simple estimate of the density fluatna. We thus verifya posteriorithat
the quasi-condensate regime is obtained/fex 7.,. We also give a simple calculation of phase
fluctuations in the quasi-condensate regime.

In the quasi-condensate regime density fluctuations anadir reduced compared to their
value in an ideal Bose gas where the bunching effect is ressiplerfor density fluctuations of the
order ofn?. In other words:

on® < n? (29)

In this regime, a suitable description is realized by witihe field operator ag = ¢v/n + on
where the real number is the mean density and the operaierand the phase operatérare
conjugatefin(z),0(z")] = id(z — 2’). Note that the definition of a local phase operator is subtle
and the condition Eq[(29) is not well defined since, becatishat noise n? is expected to
diverge in a small volume. A rigorous and simple approachsists in discretizing the space so
that in each cell a large number of atoms is present while ifwetisation step is much smaller
than the correlation length of density and phase fluctuatjda).

Following this prescription, one first minimizes the grarahenical Hamiltoniand — /N
with respect to: to obtain the equation of state

- (30)

LIt is also called coherent regime since #1& function is close to unity, as in a coherent state. On therothe
hand, the first order correlation function still decays amdh& gas is not strictly coherent in this sense. Within this
terminology, the ideal Bose gas regime is called the deewttieegime [22].




To second order idn, this is the correct expression of the chemical potentidiis Bquality
ensures that the Hamiltonian has no linear termsrirand V6. Linearizing the Heisenberg
equations of motion inn andV6, we obtain [33]

T v (31)
hoon /Ot = 2v/n(— L2 A)0y/n

These equations are the so-called hydrodynamic equafitwey.are derived from a Hamiltonian
quadratic indn andV 6, that can be diagonalized using the Bogoliubov procedusg [Bis not
the purpose of this chapter to detail this calculation anglite exact results within this theory.
We will simply give arguments that enable an estimate of #esdy fluctuations and of their
correlation length. This estimate will then be used to chiek 6on? < n?, as assumed in
Eq. (29). We will show that this condition is the same as thedition 7" < 7., whereT,., given

in Eq. (24). After that, we will give similar arguments to iesate the phase fluctuations. Since
in the following we will study the gas properties versus themical potential, it is instructive to
rewrite the conditiorl” < T, in terms of chemical potential. Using E. {30), we find that th
quasi-condensate regime is valid as long.as 1., wherey,, is given by Eq.[(ZB).

{mwm:—44—%A+@mﬂ

2.3.1 Density fluctuations

To estimate the density fluctuations introduced by the akotts, it is convenient to divide the
excitations in two groups: the excitations of low wave vedéto which the phase representation
is most appropriate and the excitations of high wave vectowhich a particle point of view is
most convenient.

In the following, we use the expansions on sinusoidal mades)", ., v2(0. cos(kz) +
O sin(kz)) andon = Y, o V2(0ne, cos(kz) 4 dng,sin(kz)). Heredn;, andd;, are conjugate
variables [6n;x, 0;/] = (i/L)d;;0k) Wherej stands forc or s. For modes of small wave
vectork, the excitations are phonons, or density waves, for whielhative density modulation
amplitudein;;,/n is much smaller than the phase modulation amplitygleln this case, the local
velocity of the gas is given biV6/m and the kinetic energy term is simplynh?k>63, /(2m).
The Hamiltonian for this mode then reduces to

Hjy, =1L (gén?kﬂ + nh2k29j2-k/(2m)) . (32)

This hamiltonian could also have been derived from the égusiof motion given in EqL(31),
provided that the quantum pressure tétty(2m)Adn/n is neglected: indeed, for a given wave
vector k, the laplacians in Eq[(31) give a factét and Eqgs.[(31) are simply the equations
of motion derived from the Hamiltonian Eq.(32). For temperes much larger thang, the
thermal population of these phonon modes is large and cisgatistics apply. Thus, the mean
energy per quadratic degree of freedorfi’j2 and we obtain

(0nji) = T/(Lg). (33)

and
<‘9]2k> = mT/(Lnk*h?). (34)
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We can now check the validity of the assumption, /n < 6. it is valid as long ag: <
v/mgn/h. Sincek values are spaced I2y/L, there are aboult,/mgn/(mh) modes that satisfy
this condition. Since the contribution of each of these nsadehe relative density fluctuations is
given in Eq.[(3B), we find that the contribution of these lowmemtum excitations to the relative
density fluctuations is of the order of

<5n2>phonons ~ T ~ T
n?  nhy/gn/m Tay/y

For wave vectors much larger thapimgn/h, the phase-density representation is not the
most appropriate. An excitation of wave vectors- ,/mgn/h corresponds to the presence of
an atom of momentuna, whose wave function is**/v/L and whose energy i82k%/(2m).

The anihilation operator for this modeds as introduced in sectidn 2.2. For temperatures much
larger thank?k?/m, the thermal population of this mode is large and classietd fiheory, in
which a,, is treated as a c-number, is adequate. We then findithadis a Gaussian distribution
which satifies(|a,|?) = 2mT/(h?k?). The density fluctuations caused by the presence of such
high momentum atoms result mainly from the interferencevben the atomic field,c** /v/L

and the atomic field of long wavelength spatial variationspse amplitude is close tgn. The
density fluctuations are thus, = \/n(aze’™* + ate="*)/+/L. We then find that the contribution

of the mode of wave vectdr to density fluctuations ign; = 4nmT/(LA?k?). Summing the
contributions of the modes for a@ll > | /mgn/h, we obtain an estimate of the density fluctuations
(0n?) atoms CaUSEd by high momentum excitations:

~T/T, (35)

<6n2>atoms ~ T ~ 1
n? - Tdﬁ B TCO.

One also sees from the above argument that the density flisctadall off as1/k* abovek =
v/mgn/h. The inverse of this scale gives the length scale of densityifations and we find that
this correlation length is the healing lengtllefined in Eq.[(28).

From Eq. [3b) and Eq[(86), we find th&w?/n*> ~ T/T.,. Thus, the quasi-condensate
treatment is valid as long a8 < T,,, In conclusion, we have shown th&t, gives the limit
of both the ideal gas regime, valid as long7as> T,,, and the limit of the quasi-condensate
regime, valid for’ <« T.,. Equivalently, in terms of chemical potential, as long as¢hemical
potential is positive and much larger thap, of Eq. (26), the gas is in the quasi-condensate
regime whereas for negative chemical potential of absalakee much larger than,., the gas
is in the ideal gas regime. This is illustrated in Hig. 3. Tive regimes differ by the fact that
the ¢g® () function is modified: it is close to one for amyin the quasi-condensate regime while
g?(0) = 2 in the ideal gas regime.

(36)

2.3.2 Phase fluctuations

In the quasi-condensate regime, although the gas is caheittrrespect to thg® function, it
is not coherent with respect to th€) function. This is why the gas is calledj@asicondensate.
The phase fluctuations have been measured experimentalBrimus experiments where the
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guasi-condensate presented a one-dimensional chara4t€3d]. The description of the quasi-
condensate given above permits a simple calculation oéthbase fluctuations as we now show.
Phase fluctuations are given by

((0(2) = 0(0))°) = > 2(62) (cos(kz) — 1)* + D 2(62,) sin® (k=). 37)

k>0 k>0

Using Eq. [(3#) andcos(kz) — 1)% + sin®(kz) = 2(1 — cos(kz)) this gives

((6() — 0(0))%) = mT (L)) Y0 2] (38)
Transforming}_, into L/(2x) [ dk and using[,” (1 — cos(kz))/k*dk = mz/2, we obtain
(012) — 00)) = " = =5 (39

Since density fluctuations are very small, & function is abouty")(z) = n(e!@=)-60)),
Since the Hamiltonian is quadratic, we can use the Wick #raoto computge’(?=)=6(0)),
which gives(ei(?(z)-0(0)y — =((#(=)=0(0))*)/2 Ve find

g(1)<z) ~ e—mTz/(2nh2). (40)

Comparing this to EqL{18), we observe that the behavigr'dfis close to that in the ideal gas
regime. The factor of 2 difference in the correlation lenfitmulae is because for the ideal
gas regime, both density and phase fluctuations contribuj€t whereas only phase fluctua-
tions remain in the quasi-condensate regime. The cros$ovarthe ideal gas regime to the
guasi-condensate regime, at a temperafuseEq. (25), corresponds to the situation where the
correlation length of phase fluctuations, given by Eq] (4@uals the correlation length of den-
sity fluctuations given by Eq._(28).

In both this section and the previous one, we assumed thegrtipgerature is high enough that
the population of the relevant modes (whose wavelengthefatee order of¢) is much greater
than unity. This is no longer the case whErreaches values of the order or smaller tlyan
For lower temperatures, quantum fluctuations are expeotbd tlominant. This is the so-called
guantum quasi-condensate and the boundary between tiealhguasi-condensate regime and
the quantum quasi-condensate regime ig at ng, corresponding to

t~ — (41)

and is shown as a line in Figl. 1. A recent experiment using@m ahip observed these quantum
phase fluctuations [39]. In the experiments we describe henever, the temperature is high
enough that thermal fluctuations dominate.
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2.4 Exact thermodynamics

In section§ 2.2 arld 2.3, we have discussed models that ag@péndently in the asymptotic lim-
its of the nearly ideal gas regimé& (> T, or equivalently—u > u.,) and the quasi-condensate
regime (" <« T,, or equivalentlyu > u.,) respectively. While the above classification gives
very useful insight, it should be emphasized that the boynldetween these two regimes is a
smooth crossover, not a sharp transition and that neithiiyeafvo theories presented above ac-
count for the physics in the vicinity of the crossover. Sintenany cases we are interested in
the precise behavior near the crossover from the ideal gideetquasi-condensate regime, it is
not sufficient to use the asymptotic results.

As already mentioned in the introduction, the 1D Bose gaé wapulsive delta-function
interactions is an example of an exactly solvable model44(, This allows us to quantita-
tively compare predictions of the two approximate deswis to the exact results, and verify
the regions of validity of the approximations. Furthermtire exact results will turn out to be
important for an accurate description of the experiments.

Exactly solvable models typically occur in lower dimensdaD quantum systems [40, 41]
and 2D classical systems [42]) and allow one to obtain ex@atisns for the quantum many-
body eigenstates through a method known as the “Bethe An&hie to Hans Bethe [43]),
for anyvalue of the interaction strength. For the repulsive digitaracting 1D Bose gas (with
periodic boundary conditons), these solutions were firsiobd by Eliot Lieb and Werner Lin-
iger [10, 11]. Furthermore, the method based on the Bethat&msin be extended to also obtain
the thermodynamics exactly (fany temperature), via a method due to C. N. Yang and C. P.
Yang [12].

For a concise and lucid description of the Yang-Yang metlaabtain the exact thermody-
namics of the 1D Bose gas and the related equations, we hefeeader to the original litera-
ture [12]. In brief, each exact quantum many-body eigeastéthe Lieb-Liniger hamiltonian
Eq. () is characterized by a set of distinct integer quantumbers and a corresponding set
of distinct quasi-momenta, obtained through the Bethe Ansatz. For a large system, ame c
consider the distribution of these quasi-momesita) and also of the “holesp, (k), the latter
corresponding to the “missing” values in the set of integbegacterizing the individual quantum
states. By considering the entropy for given distributipfis andp; (), Yang and Yang showed
that the condition of thermal equilibrium leads to a set ofilireear integral equations that can
be solved by iteration. Subsequently, from the resultirsgrdhiutions thermodynamic quantities
such as pressure and free energy can be obtained. Once tiaeditigs have been found, further
thermodynamic quantities can be calculated using the atdriiermodynamic relations.

Although numerical solutions to the Yang-Yang equationsevadready obtained at an early
stage by C. P. Yang [44], important further insight into theny-Yang thermodynamics was
gained much more recently by Kheruntsyan, Gangardt, Drunthamd Shlyapnikov [22, 23].
They calculated both density and the normalized local dgukinsity correlation function® (0),
and compared to approximate results in the various reginssissed above. The former,
n(u, T), is obtained as part of the equation of state. The lattertisioéd from the derivative of
free energy with respect to the coupling constanising the Hellmann-Feynman theorem.

As an important example, a comparison to the approximatétsesf the previous sections
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is shown in Fig[B, for a fixed scaled temperaturet 6 1000. This value is in the relevant
range for the experiments to be described below. Such cas/asgunction of chemical potential
1 are particularly useful to describe the behavior in a trapcesin this case one has a well-
defined global temperature, while the density varies (withie local density approximation)
with the local chemical potential(z) according tqu(z) = p— V' (z), whereV/(z) is the trapping
potential. This will be discussed in more detail in the faliog section.

Figure[3(a) shows that the exact densityx 1/+) indeed approaches the ideal-gas behavior
asu/u., becomes sufficiently negative, while for large positivg.., it approaches the quasi-
condensate result. There is a large range in density (maredtfactor 4) over which neither
asymptotic description gives correct predictions. In taee vein, the local density-density
correlation functiory®(0) (Fig.[3(b)) smoothly crosses over from 2, the value for amlidgs,
to about 1, as expected for a quasi-condensate. This snesstlis characteristic of crossover
behavior, and is drastically different from the step-lilkehhvior typical for a 3D gas.

Looking more closely at Fid.l 3, one sees that the ideal gagigéisn begins to fail for a gas
that is only moderately degenerate: already. 8’ = —0.5 (u/u., = —5 for the considered
parameter), a chemical potential for whigh,;z =~ 10 and the population in the = 0 mode
according to Eq[(12) is¢ 1.5, the ideal Bose gas prediction is off by about 10%. This isbee
the interaction-induced crossover is sufficiently widet thoat the used value of (1000), the
chemical potential at degeneraqy/(" ~ —1) is not very far removed. The narrowness of the
degenerate ideal gas regime is also seen ir(Fig. 1. To achi/eeparated regimes, one would
need to work at much highérand much smalley. Fort = 1000, the effect of degeneracy
is nevertheless visible before the quasi-condensatearessThis is shown by comparing the
density with both the true ideal gas model and the Maxweltzoann model in Figl]3: at
i/ e =~ —b the ideal gas model gives a prediction for the density ateundthin 10% as
mentioned above (and the nearly-ideal-gas descriptionhzanbe expected be applicable) while
the Maxwell-Boltzmann prediction is off by a factor of ab@ut

Concerning the local pair correlation functigf? (0), it deviates from the ideal-gas value of
2 for the entire range plotted in the figure. The experimentsgnted in this chapter however
(see Sec[14), are not precise enough to detect this deviafimally, the value ofy® (0) can
take values below unity in the quasi-condensate regime. Wébrefly return to this point in
Sec[4.3B.

Despite its power, the Yang-Yang theory does not permitutalion of any non-thermodynamic
quantities. For example, only thecal value of the density correlation functigi’) (0) has be
obtained from thermodynamics, while the full behaviorgé? (z) has been obtained from the
exact solution only at zero temperature [46]. At finite tenapere, the behavior of? () has
been obtained only by perturbative calculations valid icheesymptotic regime [47], but they do
not describe the crossover itself. An alternative apprases the fact that the crossover appears
in a highly degenerate gas. In this case, the modes are higiplylated and a classical field
approach is possible [48, 49].
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Figure 3:Normalised densityl(/~) and local pair correlationg®(0) as a function of chemical
potential scaled to the crossover chemical poteniialgiven in Eq. [(2b) for fixed temperature
corresponding td = 1000. Numerical results from the Yang-Yang equations (soliedjrcour-
tesy K. Kheruntsyan) are compared to the ideal Bose gas nfddiéd line in (a), Eq[L(13)) and
the quasi-condensate model (dashed line in (a), [E]. (33)& VErtical line in (a) indicates the
degeneracy chemical potentialu = 7. The classical Maxwell-Boltzmann prediction Hg.l(15)
is shown as dashed-dotted line. In (b) the asymptotic vadiigs” (0) are indicated for both
the ideal-gas regimeg(? (0) = 2 for u < —u.,, dotted line), and the quasi-condensate regime
(¢®(0) = 1for > .., dashed line). Adapted from Refs. [38, 45].
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3 1D gases in the real world

In real experimental situations, the atomic gas is neitberdgeneous nor purely one-dimensional.
As usual, in our experiments the trapping is to a good appration harmonic. The trap has
cylindrical symmetry and is characterized by a tight ratliapping frequencyw, and a much
lower axial trapping frequency. Here, we briefly summarize the main issues related to realiz
ing a 1D system in this trapping geometry. We first discusdittkebetween transverse effects
related tow, and we present a model based on the Yang-Yang thermodynavaias at low
enough linear densities, that takes into account thesevease degrees of freedom. We then
discuss the effect of the longitudinal trapping potentisié finish by discussing the link with the
3D physics, in particular with regard to the usual Bose-teimscondensation in 3D.

3.1 Transverse trapping and nearly 1D Bose gases

Strictly speaking the conditions to be 1D in a transverselgpied gas are that both temperature
and chemical potential are much smaller than the radiahtidim quantum?’, i < hw, . If this

is the case, the gas is frozen in the transverse directidnthetmally and in terms of chemical
potential, and the (many-body) wave functions can be fadrinto the product of a transverse
part (the gaussian ground-state wavefunction of the ra@ip) and an axial part. The system is
then kinematically one-dimensional. Studying the scattgoroperties, Ref. [20] has shown that
the interactions can be modeled by an effective 1D couplorgtanty and, as long as the 3D
scattering length is much smaller than the typical size of the transverselaszilwavefunction,

lJ_ = \/h/mwl,

g=2ahw,. (42)

In most experiments on atom chips, neither of the above tiondion temperature and chem-
ical potential are well-fullfilled, and is it necessary te@take into account the transverse degrees
of freedom.

It is useful to consider the linear density, obtained from the actual 3D densjtyz, v, z)
through integration

m(z) = / / drdyp(z, y, 7). (43)

When the gas is strictly 1D, one can identifywith the 1D density.. We will present our main
experimental results in terms of this linear density, bseatiturns out that, is often the key
parameter, in particular when considering the crossovabtat low temperatures.

This is in particular true for the quasi-condensate regiatdemperatured’ < hw,. In
this regime, the chemical potential is close to its valueesib zemperature, which is given by
the solution of the radial Gross-Pitaevskii equation [3(], 3t was found from comparison to
numerical integration of the radial Gross-Pitaevskii émqug{50,51] that, in the quasi-condensate
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regime, to good approximation the chemical potential caexpeessed Bs
p=thoy (VIT dma —1). (44)

For linear density); < 1/4a, we find thatu ~ 2hw, an. We recover here the chemical potential
gn of the 1D case. At larger linear density, the chemical padkrg reduced compared to the
formula 2hw  an;. This reflects the fact that, for large densities, the trarsy cloud size is
increased with respect to the transverse vibrational gi@tate. As another example of hoy

is the relevant quantity for low enough temperatures, we tiwit the expression E. {40) for the
phase coherence length remains correct also on the 3D sitle cfossover, if we replace the
1D densityn by the linear density;, [52].

3.2 Applying 1D thermodynamics to a 3D trapped gas

Another case that one can consider is when the interactienggis in the 1D regimeyg < hw
while temperature is in the 1D-3D crossovEry fiw, . A model for this regime was introduced

in Ref. [8], and we describe it here. The key step is to seprabnsider the radial states. Under
the above conditions only the radial ground state is sigamfly affected by the interactions,
while the radially excited states can still be treated agdaaligas. Thus, for the radial ground
state, the solutiomyy (1, T') to the Yang-Yang equations must be used. Each radiallyeskcit
state with radial quantum numbgr> 1 is now considered as an independent ideal 1D gas, in
thermal equilibrium with the rest of the cloud. Each of théiadly excited states is thus taken to
have a density (cf. Eq._(13))

no(u;, T) = im(exp(wm), (45)

where an effective chemical potentjal has been introduced that takes into account the radial
excitation energy,
pi = — jhwy. (46)

Taking into account the degeneracy facjor 1 of the radially excited states, the total linear
density in this model thus becomes

nl(:uvT) = Nyy u, Z ] + 1 ne :ujv ) (47)

As long as < fw,, we haveu; < 0 which is necessary to avoid divergenceyof, in Eq. (45).
In fact, from the previous discussion in SEc]?2.4, for ouapaaters# ~ 1000), we can expect
an ideal-gas treatment of the radially excited density wirb& break down foy;/T" > —0.5
since this is where interactions will become important. Hagtical cases whergé ~ hw , the
model should thus be accurate as long as 0.5hw, , while for i > 0.5hw, the model will start
to become inaccurate.

2An additional factor—1 has been introduced in brackets in Eql(44) compared to B&J. This subtracts the
radial zero-point energhw, , so thatu = 0 corresponds to the energy of the lowest enekgy=(0) state, as in the
treatment in Se€l2.
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3.3 Longitudinal trapping

Experimentally, cold gases are axially confined in a confjuatentiall’ (=) and the cloud is not
infinite and homogeneous as assumed in the previous sekkmvever, as seen below, for weak
enough axial confinement, the results for homogeneous gasdse applied using a local density
approximation. In the first following sub-section, we pr&s@e local density approximation and
discuss its predictions. We then evaluate the conditiorabdlity of this approximation.

3.3.1 Local density approximation

If the confinement is weak enough that the correlation lengithe gas is, at each position, much
smaller than the length of the mean density variations, thergas may be divided into small
slices in which the thermodynamics of uniform systems &gplA slice located at positionis

in equilibrium with the rest of the gas. It is thus describgdlie grand canonical ensemble at
temperaturé/” and at a chemical potential. The energy of the gas contained in this slice is
shifted by the quantity’(z). Itis equivalent to assuming that the chemical potentighis V' (z),
while the energy of the gas is unshifted. Thus, the local @rogs of the gas are that of a
homogeneous infinite gas at temperatlirend local chemical potential(z) = po — V' (z). This

is the so-called local density approximation.

Within the local density approximation, all the resultsgmeted in the previous section hold.
Thus, performing local analysis, one can observe all theeifea of homogeneous 1D gases: the
presence of the ideal gas regime, which includes the degtenegime, the crossover towards a
guasi-condensate and the quasi-condensate regime. icutarta quasi-condensate appears in
the center of the trap, when the peak density exceeds theomersdensity:.., given by Eq.[(24).

It is often interesting to investigate the behavior of the gaing the extensive variablé,
where N is the total atom number. As long as the peak density is mudilenthann,.,, the
density profile is well described using the equation of stdje 7") of an ideal Bose gas. Then
the total atom number is easily computed and, for gases tbakegenerate at the trap center, we
obtain [45]

N =T/ (hw) In(T/|pol). (48)

The atom number at the crossover towards a quasi-condessditiained when the peak density
reaches.,. Inserting Eq.[(16) and EJ._(P4) into EQ. {48) we find that thkmmanumber at the
crossover is approximately

Ny = T/ (hw) In ((K2T/(mg?)) %) = T/(3hw) In(t/2). (49)

Sincet!/3 > 1 (see text below Eq[(24)), this equation can be inverted te gi crossover
temperature
T, = Nhw/In (NE*w/(mg?))"?) . (50)

A comparison of this formula with a numerical calculationngsYang-Yang thermodynamics
shows very good agreement [45]. Since> 1 at the crossover, Eq. (49) shows that the ratio
Ne /Ny, whereN,; = hw/T is the atom number at degeneracy, is larger than one at thearer.
Thus, even considering the extensive variailethe degenerate ideal gas regime is in principle
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identifiable. However, the rati®&/,,/ N, only grows as logarithm ofand it is in practice difficult
to haveN,,/N, very large.

3.3.2 \Validity of the local density approximation

All the previous results use the local density approxinmgtishich requires that the correlation
lengthi. of the gas be much smaller than the sdalef variation of the density. At the crossover,
the correlation length of the gas is about- { = h/,/mgn, as seen in sectidn 2. To estimdte
let us approach the crossover from the ideal gas regime. @&ty profile of the central part of
the cloud, obtained using E@.{16) and the local chemicamt@tl 1i(z) = o — mw?2%/2, turns
out to be a lorentzian of widtR/| | /mw?. Thus,L ~ \/|pol/mw? ~ (gT.,/mhw?)'/? at the
crossover. We thus find that the condition of validity of tbedl density approximation, < L,
can be rewritten as

(BT preo

h h’ (1)

WK Wep =

a result which has been derived in [45].

If the local density approximatioh (b1) is not satisfied, discrete structure of the trap energy
levels has to be taken into account. In the opposite limity> w.,, the quantization of energy
levels plays a role while the gas is still described by anliBese gas. Then, it has been shown
in [53] that one expects a condensation phenomenon to otaueaperature

Te = Nhw/ In(2N). (52)

In contrast to the crossover described in the previous@e(teferred to now as the interaction-
induced crossover), this is a finite size phenomenon sihgees to zero when the trap confine-
mentw goes to 0 Nw being fixed. This condensation phenomenon will dominatérttezaction
induced crossover whefh, > T,,. This condition is equivalent ta > w,.,, which shows
consistency of our analysis.

Experimentally, the condition (51) to observe the intamacinduced crossover is very easily
satisfied: using Eql.{42), the conditidn51) reduces to

w <<(UJ_(T/hU)J_)2/3(a/lJ_)2/3. (53)

One can check that, for most alkali atoms, in trapping paéntvith w, ranging from 1 to
several tens of kilohertz and for temperatures betweeh.Q. andsw |, this condition is easily
fulfilled, unlessa is extremely small{ < 0.1 nm). Thus, one expects that a trapped 1D gas
undergoes the interaction induced crossover towards &qoaadensate and that the local density
approximation is valid to describe the gas.

3.4 3D physics versus 1D physics

Experimentally, one expect a crossover from a one-dimeasizehavior to a three dimensional
behavior as the temperature of the gas increases and, atdaayigh temperature, one expects
to recover the physics of a three-dimensional gas. The physdia 3D gas is very different from
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that of a 1D gas. The most striking difference is that, evethéabsence of interactions, a 3D
Bose gas undergoes a phase transition towards a BEC dueitatsat of the population of the
excited states. This is in contrast to 1D gases where, imabsef interactions between atoms,
the gas behaves, for any density, as a thermal gas in whigdnlwobunching is present. For
weakly interacting gases, in both 1D and 3D gases, a trandibwards a (quasi-)condensate is
expected. However, these transitions are different inreadnd this difference can be captured
by studying the validity of mean field theories in both cases.

In 3D weakly interacting gasesd{® < 1), the effect of interactions between atoms on the
onset of Bose Einstein condenstation is very small. Thishg @D Bose gases with weak in-
teractions are well described by mean field theories. Faamtg, the thermodynamics is given
with a very good approximation by the Hartree-Fock-Boguwtiv self consistent theory [54, 55].
In such a theory, at temperatures larger than the criticalensation temprature, the gas is
described by the Hartree-Fock approach, in which corgglatibbetween atoms introduced by
interactions are neglected. Condensation is then duerafaeal Bose gas, when the den-
sity reache®.612.../)\;5. For higher densities, a non zero condensate wave funcfipaaas,
which is the order parameter of this second-order phassitiam The experimental value of the
critical temperature in weakly interacting ultra-cold Bagases is in good agreeement with this
theory [56].

However, even for weakly interacting gases, such a meanthielaty is expected to fail very
close to the critical point of temperatufg. This is due to the large long wave length fluctuations
that develop in the vicinity of the transition. In the condate sidei.e. for " < T, the Hartree-
Fock-Bogoliubov self consistent theory is valid only if thectuations of the condensate wave
function, averaged over a volume of the order of the cormlalength, are smaller than its
mean-field value. This is the so-called Ginzburg criterid dgives [55]

C

T

The same criterion (up to an absolute value) is true aliova he region around the transition
where|T, — T'|/T. is of the order or smaller thamp'/? is not expected to be described by a
mean-field. Beyond mean-field effect include a modificatibtne transition temperature. Since
interactions tend to decrease long wave length densityufiticins, they favor the appearance of a
condensate and, for small paramaitet’®, an increase of the critical temperature is expected [57—
59]. Such a modification is very small in cold atom experirsearid has never been observed.
A second non mean-field effect is the modification of the @aitiexponent that describes the
divergence of the correlation length in the vicinity of thetical point. Measuring beatnodes
between the atomic field extracted at different places imatbenic cloud, the critical exponent
was measured recently in dilute atomic gases, in agreem#mibayond mean-field theories [60].
The physics is very different in 1D systems, since long wewvgth fluctuations play an en-
hanced role compared to 3D systems. The crossover towargssacpndensate is, in 1D gases,
a phenomenon driven by interactions. More precisely, thesover towards a quasi-condensate
is produced by the correlations between atoms brought bynteeactions. It cannot be captured
by the Hartree-Fock theory because Hartree-Fock theotgcsgorrelations between atoms in-
troduced by interactions. Thus, in real systems the fafitbe Hartree-Fock theory to describe

> ap/®. (54)
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the appearance of a (quasi-)condensate is a signature bbthature of the physics involved.

4 Experiments

In this section we will discuss several experiments thaehseen carried out in both Orsay and
Amsterdam using atom chips which probe the ideas discusstittiprevious sections. Atom
chip setups are very well suited to study one-dimensionaggry since very tight atom guides
are easily realised by going close to a current-carryingoaare. The atom chips which were
used in the experiment presented below are sufficientlyiairtiiat we will attempt to describe
both at once. We will refer the reader to the individual expents for more detailed information.
The atom chips we used employed current carrying wires taten@agnetic trapping fields for
87Rb atoms in theé = 2, mp = 2 state. Magneto-optical traps, laser cooling and evaperati
cooling were used to load atoms into the chip-based trapgsivtanded to be highly confining
but rather shallow. Typical currents were on the order ofva &nperes and the atoms were
at a distance of several tens of microns from the wire surfdgpical transverse confinement
frequencesy, /27) were about 3 kHz, while longitudinal frequencies were o ¢hder of 10
Hz. This transverse frequency corresponds to a temperaturg: ; of 144 nK, and evaporative
cooling was able to reach a temperature equal to or slighttyathis value. For Rb atoms, with
3D scattering lengtlhh = 5.24 nm, the energy scal&, corresponds to 0.20 nK, and 144 nK in
reduced temperature units corresponds o 720. Since the longitudinal trapping potential is
roughly harmonic, the linear atom density varied in spacd thus a single sample permits one to
probe a large range in density at constant temperature.glesiiensity profile thus corresponded
to a horizontal line in Fig.J1. The value of the parametavas typically between0~—* to 10-3.
The data consisted of absorption images of the cloud, takkerén situ or after a very short
expansion time. Temperature measurements were made by fite wings of the cloud, or by
fitting to the Yang-Yang model (see description below).

The first set of measurements we describe are simple obesvalf the density profiles of
nearly one-dimensional gases on an atom chip. The measntemere carried out with two pur-
poses in mind. In the first measurements, carried out in Qesaghasis was placed on proving
that in the region of the crossover between the ideal gas aasi-gondensate regimes, no theo-
retical approach which neglected interaction inducedeatations between particles, in particular
the Hartree-Fock approach, could explain the profiles. énstcond set, carried out in Amster-
dam, it was shown that the exact thermodynamic treatmemtuated very well for the entire
observed profile, notably when the gas was in the crossogenee After examining the profiles
we move to another type of measurement in which the absorptiages were analyzed to give
information about density fluctuations. Although these soe@ments where chronologically the
first, we will treat them last.

4.1 Failure of the Hartree-Fock model

A typical density profile is shown in Fi§] 4. Superimposed loa data are three different theo-
retical predictions. The dashed line shows the profile adigted by the ideal gas model. In the
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wings of the profile this model should be valid, and indeedittte the wings of the distribution
was used to deduce the temperature and the chemical potdrttia gas. Clearly, however the
ideal gas prediction begins to rapidly deviate from the da¢gause, without interactions, a 1D
Bose gas can accommodate arbitrarily high densities atengemperature. The dash-dotted
line shows the prediction of the quasi-condensate mode{y), at the same chemical potential
as was found by fitting the wings. This model accurately rdpoes the high density part of the
distribution, but not the presence of so many atoms in thgsvof the distribution.

The Hartree-Fock theory is a variational method in whichdtems are described by a gas
of non interacting bosons subject to an effective potemfial due to the mean field of the other
atoms. Minimizing the free-energy of the gas, one finds

VHF(I“) = 2g3pp (55)

wheregsp = 4rh%a/m is the 3D coupling constant andis the 3D gas density. This theory
is thus self consistent, since for a given chemical poteatid temperature; depends oy r.
The factor 2 reflects the bunching, which is present in therBler-ock approximation since the
gas is descibed by a gas of non interacting bosons.

Using minimisation techniques, the Hartree-Fock densibfile was calculated in Ref. [6]
for the experimental three-dimensional trapping potéatia for the temperature and chemical
potential found by fitting the wings of the distribution. Osees that the Hartree-Fock density
profile, shown as a solid line in Fig@l 4, reproduces the winfgghe density profile, and does
not diverge as does the ideal gas profile. It does not howey@mduce the high density part
of the profile. Moreover, the Hartree-Fock calculation shdhat the Hartree-Fock gas is far
from being saturated: the population of the ground stateerg small, and no condensation is
expected according to this mean-field model. The exces®ofsin the center is the onset of a
guasi-condensate, although the cloud is not deep into thgi-q@ndensate regime. This peak is
formed by the effects of interactions altering the two bodgrelation function so as to lower the
interaction energy relative to a Hartree-Fock gas at theesgansity.

4.2 Yang-Yang analysis

Two more examples of axial density profiles measured [8] atdfferent temperatures and a
peak linear density of& 50 um~! are shown in Figl]5. These profiles were fit to the model
based on the exact Yang-Yang solutions described iH SecTBeXits are shown in the Figure as
continuous curves, and the resulting temperafusnd chemical potential are also indicated.
The chemical potentigl and the temperaturg are the only free parameters in the model, and
it was found that the full set ah situ measurements could be explained by the Yang-Yang-
based model [8]. For comparison, The ideal-gas predictiohte quasi-condensate prediction
are also shown. Clearly, the Yang-Yang-based model descthe entire profiles well, while
the approximate models fail, in particular the smooth avass between the two approximate
models in the region where(z) ~ 0 is captured very well by the model.

This analysis was further corroborated by measurementeaitial momentum distribution
[8], obtained using Bose gas focusing [37]. The tails of tleemantum distribution were used to
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Figure 4:Failure of Hartree-Fock theory in a quasi-1D gas. The expwmntal profile (crosses)
is compared with the profiles expected for a quasi-conder(siatited-dashed), for an ideal Bose
gas (dashed), and to the profile predicted by the HartreeRbeory (continuous line) for the
same temperature and chemical potential. The vertical igxise number of detected atoms per
6 «m longitudinal pixel. The temperature of the gas Was- 360 nK= 2.75/w, . Adapted from
Ref. [6].

extract temperatures, and these were found to agree verwitlethe temperatures derived from
the Yang-Yang fit to then situ data. The full momentum distribution is not a thermodynamic
guantity, and can thus not be obtained directly from the Ydagg analysis.

The similarity of the measured density profiles of FigurHs) ®nd[4 clearly suggests that
the same physics of an interaction-induced crossoveregpfdiboth experiments. Although itis
tempting to apply the Yang-Yang-based analysis of Get.I8d%a the data of Fid.]4, this has not
been done. It is likely that the result would not be quantitdy accurate, because at the higher
linear densities and temperatures of Eig. 4, the validityts of the model of Se€. 3.2 are reached
near the peak of the profile (since both~ iw, andT ~ hw,). Interactions are then expected
to also play a role in the radially excited states, and alseractions among the different radial
states will be significant.

4.3 Measurements of density fluctuations

As we have emphasized in Sé¢. 2, the transition towards a-qoadensate in 1D gases is
characterized by the inhibition of atom bunching, the latgasity fluctuations characteristic of
a thermal Bose gas. A direct measurement of the density 8tions through the crossover thus
captures an essential characteristic of the crossover.

The measurement of density fluctuations proceeds similartile density profile measure-
ments. The difference is that many (about 300) profiles ageieed and, roughly speaking,
for each observation pixel, we compute the variance of tlmsilemeasurements as well as the
mean. We can relate this variance to the density fluctuapoedicted by various theoretical
approaches as described below.
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Figure 5: Comparison of experiment to Yang-Yang thermodynamics. middel described in
Sec[3.P is fit to two examples of measured linear densiti@ots) in the Amsterdam experiment
[8, 38]. The resulting fits (continuous curves) yield cheahjwotential x and temperaturd” as
indicated. Dotted curves: ideal-gas profile at the same t&natpre and chemical potential
exhibiting divergence fop(z) = 0. Dashed curve in (b): quasi-condensate profile with the
same peak density as the experimental data. In these exgeshy, = 158 nK. Adapted from
Ref. [8].
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The measurements involve several subtleties requirirgfarormalizations and corrections
of the data. These are described in detail in [7,61]. The noreasent requires a high degree of
reproducibility in the data. The atom chip geometry perrfitsconstruction of a very compact
apparatus with low sensitivity to vibration. The images team not only noise due to atom
fluctuations, but also photon shot noise. The photon noiss bl carefully characterized and
subtracted. Examples of the data are shown in Eigs. &land 7.

4.3.1 Alocal density analysis

The pixel size in the experimentis = 6 um. The pixel size is much larger than the correlation
length of the gas which is always smaller than a micron ingleegeriments, but much smaller
than the longitudinal length scale of mean density vanmati®hus, the data should reproduce
number fluctuations predicted in a longitudinal local dgnseatment. More precisely, the gas
contained in the pixel located at positieigan be described as a gas, confined transversely by the
transverse potential of frequencey and confined longitudinally by a box like potential of size
A. The properties of this slice, which can exchange energypartitles with the rest of the gas,
is well described within the grand-canonical ensemble. &iergy shiftl/(z) of this slice can

be converted to a shift1/(z) of the chemical potential. This is the local density appmadion,
already discussed in sdd. 3. Sinfieis large compared to correlation length of the gas, the
boundary conditions used to compute thermodynamic questire all equivalent and we use
the periodic boundary conditions in the following.

Within the local density approximation, the confinementemtial V'(2) is irrelevant to an-
alyze the atom-number fluctuations. The atom number flluciuatV? in each pixel depends
only on the temperatur€ and on the local chemical potential. Equivalendli}? is a function
of T"and (N), since the linear density is a monotonically increasingcfiom of the chemical
potential. We thus choose, for each cloud temperature pi@sent the measured atom number
fluctuation as a function of the mean atom number in the p&rperimental results are shown
in Fig.[d and fig[Y.

4.3.2 ldeal gas regime : observation of bunching

If the gas within a pixel can be considered ideal, we can usedsults of Se¢. 2.2. The fluctua-
tions of atom number; in each one-atom quantum staieare

(n?) — (ni)* = (ni) + (ni)*. (56)
The fluctuations of the total atom numb¥rare thus
(N?) = (N)? = (N) + ) (n;)*, (57)

where the sum is performed over all the quantum states. Tlaa veduegn;) are given by the
Bose distribution and the fluctuations &fare easily computed.
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Figure 6: Density fluctuations of a gas on an atom chip. The atom numéeance in an
observation pixel (6:m) is plotted as a function of the mean number. The open creshe
fluctuations measured for a hot cloufl & 1.3 uK corresponds ta0hw, ) for which bunching is
unobservable because of the large number of transversessiatolved. The variance is due to
atom shot noise. Full circles correspond to a colder clouda éemperatureél’ = 2.1hw, . The
increase in fluctuations is due to bunching. The theoreficatiction for an ideal Bose gas at
the same temperature is given by the dashed curve. The pogdior a nondegenerate cloud,
Eq. (81), is shown as the dotted curve. The degeneracy ofatésgevident. Adapted from
Ref. [7].
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Figure 7: Density fluctuations in the quasi-condensate regime. Tis@etdkdotted curve is the
prediction for an ideal Bose gas at the same temperature éigume[6. The dashed curve is the
prediction for a quasi-condensate. In units of transversergy, the temperature i = 1.4/w .
Adapted from Ref. [7].
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A rough calculation is as follows: i/ quantum states are populated with similar popula-
tions, Eq.[(5V) simplifies to

(N7 — (N = (N + () (58)

The first term of the right hand side is the shot noise termeetgul for uncorrelated, statistically
independent atoms. The second term on the right hand sitte isffiect of the bunching. We
see from this expression that as long(a8 /M is much smaller than 1, the bunching term is
negligible compared to the shot noise term. The raNo /M is approximately the phase space
density of the gas and is much smaller than 1 if the gas is ngerdgate. Thus one expects
the measured atom number fluctuations to be dominated bytiasise term for gases at high
temperature. This is observed experimentally for non-dege clouds, as shown by the open
circles in Fig[®. The linearity of the measured valué 8f) — (V)2 versus(N) shows that the
fluctuations are given by the shot noise. The fact that theeslkosmaller than the expected slope
of 1 is due to the fact that the optical resolution (abou:&) is larger than the pixel size [7].
One can also give a more precise calculation of the fluctngtid-or this purpose, we in-
dex the quantum states by the integgrandn,, which label the transverse vibrational levels,
and the longitudinal wave vectdr,, which takes values in multiples @fr/A. For a highly
nondegenerate gag,| > T, the population of each state is given by the Boltzmann law

Mgy ) = Ae™ PR/ 2mths (natny))/T (59)

where the normalization factot is

N _
= L (1= ™)’ (60
Inserting this into Eq[(87), we obtain
(N?) — (N)2 = (N) + (N)? %BA tanh®(hw, /2T). (61)

We thus recover an expression similar to Eq] (58), with= v/2A /(\gp tanh?(hw, /2T)). The
tanh term accounts for the number of populated transverse st@testermy/2A /) 5, which
accounts for the longitudinal states, may be recovered lmactassical analysis: the volume
of the occupied phase spacelis~ AvmT and the number of quantum states contained in this
volume is of the order of?/A. Equation[(6]) is valid if the gas is non degenerate. Whermg#se
becomes degenerate, the distribution of the mean occupatimber(n) versus the state energy
becomes more peaked around zero. This amounts to a redwétitwe effective number of
occupied states/ and the effect of bunching is larger than the prediction of@&f). For highly
degenerate gases, EQ.](61) underestimates the true fioosiawhich become large compared
to the shot noise level.

The bunching effect is quite clear for a cold enough cloudhresve in Fig.[6. In this ex-
periment, the bunching term is even larger than the shoerteisn, indicating that the gas is
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degenerate. The degeneracy is also shown by a compariste ofata with Eq.[{81) shown
as a dotted line. This equation, valid for a non degenerate waderestimates the measured
fluctuations. On the other hand, a calculation of [Eq] (57\aisine true Bose occupation factor
is in much better agreement with the data. This comparisowslthat, at least as concerns
fluctuations, the gas is well described by an ideal, degén8wse gas.

4.3.3 Quasi-condensate regime: saturation of atom numbenittuations

At sufficiently high density and low temperature, repulsnteractions between atoms are no
longer negligible. As described in section 2, one expeasdrteractions to reduce the density
fluctuations to lower the interaction energy. The gas thdarsrihe quasi-condensate regime.
For the temperatur€ = 2.1 hw, of the data in Fig.16, using E4.(42) and assuming a purely 1D
gas, Eq.[(24) gives a density at the crossover of about 130saper pixel. Although Eq[(24)
does not apply since the gas is not purely 1D, this rough estirshows that the crossover
to a quasi-condensate is achievable at slightly higher atomber and/or lower temperature.
Measurements of atom number fluctuations in a regime whereltud center is in the quasi-
condensate regime are shown in Elg. 7. Whereas at low atamgity the measured fluctuations
are in agreement with the ideal Bose gas prediction, oneaeasuration of the fluctuations at
higher densities.

To calculate the fluctuations, we first suppose the gas to balypane dimensional, with
a coupling constang given by Eq.[(4R). In a local density approximation, we cdasiatom
number fluctuations in a longitudinal box of lengthin equilibrium with a reservoir of energy
at temperaturé@ and a reservoir of particles at chemical potentials explained in se€. 2.3, the
Hamiltonian is quadratic ian in the quasi-condensate approximation andcan be expanded
as a sum of independent modes indexed by the wave viéctdhe atom number fluctuations
N — (N) are obtained by integrating: over the pixel size. Thus, the only excitation that leads
to atom number fluctuation is the zero momentum mode. Itgygnderived from Eq.(32), is

Hyo = Agéng. (62)

Using the equipartition theorem, we fidd? = 7'/(gA). The atom number fluctuations, which
are(Adng)?, are thus given by:

_ar

.

Thus, we expect the atom number fluctuations to be indepénded). The shot noise term

is not present in this quasi-condensate regime: intemasthetween atoms prevent even the
shot noise fluctuations and at temperature smaller ghaonne expects to observe sub-shotnoise
fluctuations. This feature is also seen in Fiy. 3 whefé(0) goes below unity in the exact
solution.

In the experimental results shown in Hig. 7, the typicaliatéon energy is abolt 74w, . In
these conditions, the transverse degrees of freedom chamaglected and the result of Hg.l(63)
must be corrected. More precisely, the phonons, which argitiadinal density waves, are as-
sociated with a breathing of the transverse shape of thalclear phonons of frequency much

(N?) — (N)? (63)
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smaller than the transverse frequency, the transverse stidipe cloud follows adiabatically the
ground state equilibrium state for the local linear densitye denote by, ,(n) the energy of
the gas per unit length for a linear density The phonon Hamiltonian of Eq.(B2) is the term
of the Hamiltonian of order two idn andV#. Thus, the interaction term of the phonons is
By = $L(8*E,,/On*)én}. SincedE,,/On is the chemical potential of the gas (to zero order
in 6n), we can rewrite the former expressionfag, = %L(&u/ﬁn)éni. In particular, the zero
momentum term is

1 0p
Hy—y = 5[/8—”5710 (64)
Then, the atom number fluctuations are
AT
N?) — (N)? = , 65
(N%) = (N = 5 (65)

Although we derived this expression in the approximate goasdensate theory using expansion
of the Hamiltonian to second order im, we recover here a well known result of statistical
physics. More precisely, as shown in [62], Hg.1(65) holdsdioy system in equilibrium with a
particle reservoir at chemical potentjabnd with an energy reservoir of temperatiite

To apply Eq.[(6b) to the experiment, we need the equatioratégtr). Using Eq.[(44) and
Eq. (63), one can compute the expected fluctuations.[FigoWskhat the results are in fairly
good agreement with the measured atom number fluctuations.

5 Conclusion

We hope that we have given the reader a useful overview ofitheigs of 1D gases in the weakly
interacting regime. These systems are rich and manifestaedifferent regimes separated by
smooth crossovers. It is often necessary to appeal to méfieyatit physical models to under-
stand them. The existence of exact solutions allows us tdtiesmodels and to explore their
validity in the face of highly non-trivial many body corréifans. Although the experimental and
theoretical work we have described is quite extensive, viev®ethat much work remains to be
done. The study of fluctuation phenomena is still at an easlges For example the exact ther-
modynamics should admit a careful comparison with data ssdfat in Figl17, and improved
experiments should probe larger parameter ranges andopossen permit measurements of
the correlation length. It may also be possible in the netaréuto enter the strongly interacting
regime using an atom chip. Experiments are also capable asum@&g momentum distribu-
tions [8], but so far no quantitative theoretical companibas been made. Finally measurements
of fluctuations and correlations in momentum space are ajserenentally feasible [32].
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