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Abstract. In this paper we discuss a uniform method for constructing free modal
and distributive modal algebras. This method draws on works by (Abramsky
2005) and (Ghilardi 1995). We revisit the theory of normal forms formodal logic
and derive a normal form representation for positive modal logic. Wealso show
that every finitely generated free modal and distributive modal algebraaxioma-
tised by equations of rank1 is a reduct of a temporal algebra.

1 Introduction

Modal logics play an important role in many areas of computerscience. In recent years,
the connection of modal logic and coalgebra received a lot ofattention, see eg [30].
In particular, it has been recognised that modal logic is to coalgebras what equational
logic is to algebras. The precise relationship between the logics and the coalgebras can
be formulated using Stone duality [9]. From this perspective, algebras are the logical
forms of coalgebras [1]; and the algebras that appear in thisway give rise to modal
logics.

In this paper we take the opposite view and ask how coalgebraic and categorical
methods can elucidate traditional topics in modal logic. Algebraic methods and tech-
niques proved to be very useful in investigations of modal logics, see eg [8, 30]. Here
we apply a mix of algebraic and coalgebraic (and categorical) techniques to shed some
light on the construction of canonical models of modal logics. In principle, almost all
properties of a given modal logic are enshrined in its free modal algebras or, dually and
equivalently, in its canonical models [8]. Therefore, an understanding of the structure
of the canonical model of a given modal logic can be the key forunderstanding the
properties of this logic.

The general idea that we will discuss in this paper has appeared before in differ-
ent contexts. Fine [16] used his canonical formulas for describing canonical models of
modal logics and for deriving completeness results for these logics. Moss [25] revisited
Fine’s formulas to give a filtration type finite-model property proofs for various modal
logics. Abramsky [2] constructed the canonical model of closed formulas of the basic
modal logic as the final coalgebra for the Vietoris functor and Ghilardi [18, 17] gave
a similar description of canonical models of modal and intuitionistic logics to derive a
normal form representation for these logics. For positive modal logic similar techniques
were developed by Davey and Goldberg [13].
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The aim of this paper is to unify all these approaches and present a coherent method
for constructing free modal and distributive modal algebras. Modal algebras are alge-
braic models of (classical) modal logic and distributive modal algebras are algebraic
models of positive (negation-free) modal logic. We will show how to construct free al-
gebras for a varietyV equipped with an operatorf . In case of modal algebrasV is the
variety of Boolean algebras and in case of distributive modal algebrasV is the variety
of distributive lattices. The main idea of the constructionis the following: We start with
the freeV-algebra and step by step add freely to it the operatorf . As a result we obtain
a countable sequence of algebras whose direct limit is the desired free algebra.

We apply this general method to modal and distributive modalalgebras. For dis-
tributive modal algebras these results appear to be new. In case of modal algebras this
approach gives simple and coherent proofs of known results.We use the Stone dual-
ity for Boolean algebras and the Priestley duality for distributive lattices to describe
the dual spaces of the finite approximants of the free algebras. The key for dualising
these constructions lies in the coalgebraic representation of modal spaces as coalgebras
for the Vietoris functor [22] and in the coalgebraic representation of modal Priestley
spaces as coalgebras for the convex set functor [20, 27]. This allows us to represent the
canonical models of modal and positive modal logic as a limitof finite sets and posets,
respectively. We also observe that the underlying Stone space of the canonical model
of the basic modal logic is homeomorphic to the so-called Pelczynski space. This space
appears to be one of the nine fixed points of the Vietoris functor on compact Hausdorff
spaces with a countable basis [28, 26].

As we will see below, this method directly applies to modal and positive modal
logics that are axiomatised by the formulas of rank1. We also indicate how to adjust
our techniques to modal logics that are not axiomatised by formulas of rank 1. As an
example we consider the ‘reflexive’ modal logic, that is, themodal logic axiomatised
by the additional reflexivity axiomϕ → ♦ϕ, which is not of rank 1. This example
also highlights how the Sahlqvist correspondence—an important technique of modal
logic—can be applied to our method in order to describe canonical models of modal
logics that are not axiomatised by formulas of rank 1.

In the end of the paper we revisit Fine’s normal forms for modal logic in a manner
similar to Abramsky [2] and Ghilardi [18] and derive normal forms for positive modal
logic. We also generalise Ghilardi’s result that every freemodal algebra is a reduct of a
temporal algebra to all varieties of modal and distributivemodal algebras axiomatised
by formulas of rank 1.

Other Related Work Canonical models of modal logics have been investigated quite
thoroughly. However, these investigations mostly concentrated on transitive modal log-
ics; that is, modal logics with transitive Kripke frames. For an overview of these results
we refer to [12, Section 8.6 and 8.7] (see also [7, Chapter 3] for similar results in the
case of intuitionistic logic). The method of constructing canonical models for transitive
modal logics is based on building the canonical model of a given logic layer by layer,
that is, inductively on the depth of the canonical model. Although very useful, this
method does not go through for non-transitive modal logics.For building free algebras
for non-transitive modal logics one needs to use a differentapproach.
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2 Dualities for Boolean algebras and distributive lattices

In this section we briefly recall the Stone duality for Boolean algebras and the Priestley
duality for distributive lattices.

2.1 Stone duality for Boolean algebras

A Stone space is a0-dimensional (a topological space with a basis of clopens) compact
Hausdorff space. For every Stone spaceX let Clp(X) denote the set of clopens (closed
and open subsets) ofX. We also letP(X) denote the powerset ofX. The next theorem
states the celebrated Stone representation theorem.

Theorem 2.1. (eg [19, 4.4], [14, 11.4]) For every Boolean algebraB there is a Stone
spaceXB such thatB is isomorphic to(Clp(XB),∪,∩,−, ∅). If B is finite thenXB is
finite andClp(XB) = P(XB).

Proof. (Sketch) LetB be a Boolean algebra. LetXB := the set of all maximal filters
of B. Fora ∈ B let â = {x ∈ XB : a ∈ x}. We declare{â : a ∈ B} to be a basis for a
topology onXB . ThenXB becomes a Stone space andB is isomorphic toClp(XB).

Let BA denote the category ofBoolean algebras and Boolean homomorphisms. Let
alsoStone denote the category ofStone spaces and continuous maps. The Stone rep-
resentation theorem can be extended to corresponding categories.

Theorem 2.2. (see eg [19, 4.4]) BA ≃ Stone
op.

Proof. (Sketch) By Theorem 2.1 one only needs to deal with morphisms. Let f : X →
Y be a continuous map. Thenf−1 : Clp(Y ) → Clp(X) is a Boolean homomorphism.
Conversely, ifh : A → B is a Boolean homomorphism, then the maph−1 : XB → XA

is continuous. It is also easy to check that this correspondence is one to one.

Next we will discuss the duality between join preserving maps between Boolean alge-
bras and special relations on corresponding Stone spaces. LetX andY be Stone spaces.
A relationR ⊆ X × Y is calledpoint closedif R[x] = {y ∈ Y : xRy} is a closed set
for everyx ∈ X. We say thatR is aclopen relationif for every clopenU ⊆ Y the set
〈R〉U = {x ∈ X : R[x] ∩ U 6= ∅} is a clopen subset ofX.

Theorem 2.3. (see e.g., [8]) There is a one-to-one correspondence between join pre-
serving maps between Boolean algebras and point-closed andclopen relations on their
dual Stone spaces. Moreover, on finite Stone spaces all relations are point-closed and
clopen.



Proof. (Sketch) (1) Leth : A → B be a join preserving map, that is, for alla, b ∈ A
we haveh(0) = 0 andh(a ∨ b) = h(a) ∨ h(b). Let XA andXB be the Stone spaces
dual toA andB, respectively. We defineRh ⊆ XB × XA by

xRhy iff y ⊆ h−1(x)

or, equivalently,xRhy iff (a ∈ y implies ha ∈ x).1 Conversely, ifR ⊆ XB × XA is
a point-closed and clopen relation, then〈R〉 is the desired mapClp(XA) → Clp(XB).

Vietoris spacesand their duals, defined below, are central to our investigations.

Definition 2.4 (Functor V ). LetB be a Boolean algebra. LetV (B) be the free Boolean
algebra over the set{♦a : a ∈ B} modulo the equations, for alla, b ∈ B,

(1) ♦0 = 0 (2) ♦(a ∨ b) = ♦a ∨ ♦b

Thus,V is a functor on Boolean algebras. Now we define the dual toV on Stone spaces.

Definition 2.5 (Functor K). For every Stone spaceX we letK(X) be the set of all
closed subsets ofX equipped with a topology a subbasis of which is given by the sets

��(U) = {F ∈ K(X) : F ⊆ U} ♦♦(U) = {F ∈ K(X) : F ∩ U 6= ∅}

whereU ranges over clopen subsets ofX.

The next theorem shows that the two definitions are dual to each other.

Theorem 2.6. [19, Proposition 4.6] LetB a Boolean algebra andX its dual Stone
space. Then the algebraV (B) is dual toK(X). If B is finite,V (B) is dual toP(X).

It follows from the definition ofV (B) that a map♦ : B → V (B) mapping each
elementa ∈ B to ♦a is join-preserving. The next proposition characterises the relation
on X × K(X) which is dual to♦. We just need to observe thatR♦ defined as in the
proof of Theorem 2.3 is∈.

Proposition 2.7. Let R♦ ⊆ K(XA) × XA be the relation corresponding to the join-
preserving map♦ : B → V (B). Then for everyU ∈ K(X) and x ∈ XA we have
UR♦x iff x ∈ U .

2.2 Priestley duality for distributive lattices

We briefly review the duality between distributive latticesand Priestley spaces (Stone
spaces with special partial orders). Recall that a subsetU of an ordered set(X,R) is
called anupsetif for every x, y ∈ X we havex ∈ U andxRy imply y ∈ U . The
complement of an upset is called adownset. A relationR on a Stone spaceX is said to
satisfythe Priestley separation axiomif

¬(xRy) implies there exists a clopen upsetU such thatx ∈ U andy /∈ U .

1 Readingc ∈ z asz satisfiesc, we see thath acts here as a modal♦.



Definition 2.8. A pair X = (X,R) is called a Priestley space ifX is a Stone space
andR a partial order satisfying the Priestley separation axiom.

For every Priestley spaceX = (X,R) we let ClpUp(X) denote the set of all clopen
upsets ofX. We also denote byUp(X) the set of all upsets ofX.

Theorem 2.9. (see, e.g, [14, 11.23]) For every distributive latticeD there is a Priest-
ley spaceXD such thatD is isomorphic to(ClpUp(XD),∪,∩, ∅). If D is finite, thenXD

is finite andClpUp(XD) = Up(XD).

Let DL be the category of distributive lattices and lattice homomorphisms. Let also
Priest denote the category of Priestley spaces and continuous order-preserving maps.
We have the following analogue of Theorem 2.2.

Theorem 2.10. (see, e.g, [14, 11.30])DL ≃ Priest
op.

Next we will briefly discuss the connection of meet and join preserving maps with
Priestley relations. For a relationR ⊆ X × Y andU ⊆ Y we let [R]U = {x ∈ X :
R[x] ⊆ U}. LetX = (X,R) andY = (Y, S) be Priestley spaces. A relationQ ⊆ X×Y
is calledclopen increasing(resp. clopen decreasing) if for everyx ∈ X the setQ[x] is
a closed upset ofY (resp. a closed downset ofY) and for every clopen upsetU of Y the
set[Q]U is a clopen upset ofX (resp.〈Q〉U is a clopen upset ofX).

Theorem 2.11. (eg [11]) There is a one-to-one correspondence between joinpre-
serving (resp. meet preserving) maps between distributivelattices and clopen increas-
ing (resp. clopen decreasing) relations on their dual Priestley spaces. Moreover, on
finite Priestley spaces a relationQ is clopen increasing (clopen decreasing) iffQ[x] is
an upset (resp. a downset) and[Q] (resp.〈Q〉) maps upsets to upsets.

Vietoris construction for Priestley spaces and distributive lattices

Definition 2.12. For every distributive latticeD let V (D) denote the free distributive
lattice over the set{♦a : a ∈ D} ∪ {�a : a ∈ D} modulo the equations

1. ♦0 = 0, �1 = 1,
2. ♦(a ∨ b) = ♦a ∨ ♦b, �(a ∧ b) = �a ∧ �b,
3. �(a ∨ b) ≤ �a ∨ ♦b, �a ∧ ♦b ≤ ♦(a ∧ b).

Next we describe the dual construction of the Vietoris spacefor Priestley spaces [27].
Let X = (X,R) be a Priestley space. A setF ⊆ X is calledconvexif for every
x, y, z ∈ X if x, y ∈ F andxRz andzRy, thenz ∈ F . For every Priestley space
X = (X,R) let Conv(X) denote the set of all closed convex subsets ofX. We define a
topology onConv(X) a basis of which is given by the Boolean closure of the sets

��(U) = {F ∈ Conv(X) : F ⊆ U} ♦♦(U) = {F ∈ Conv(X) : F ∩ U 6= ∅}

whereU ranges over clopen upsets ofX.2 Moreover, for everyY,Z ∈ Conv(X) we
define the so-called Egli-Milner orderREM by

2 We note that this definition of topology on the set of closed and convex subsets of a Priestley
space together with Theorem 2.13 below solves the problem raised in [27,Section 7.1] on how
to define an analogue of the Vietoris topology on the set of closed and convex subsets of a
Priestley space.



Y REMZ iff Y ⊆ 〈R〉Z andZ ⊆ 〈Ř〉Y .

whereŘ is the converse ofR. Then(Conv(X), REM ) is a Priestley space. The next
theorem, which is the Priestley space version of a theorem ofJohnstone [20] (see also
Palmigiano [27]), shows that the convex set construction onPriestley spaces is the dual
to V .

Theorem 2.13. Let D be a distributive lattice andX = (X,R) be its dual Priestley
space. Then(Conv(X), REM ) is the Priestley space dual toV (D).

As in the case of modal algebras, we have join-preserving andmeet-preserving maps♦
and� from D to V (D), mapping every elementa ∈ D to ♦a and�a, respectively.

Proposition 2.14. Let R♦, R� ⊆ Conv(XA) × XA be the relations corresponding to
♦ : D → V (D) and � : D → V (D), respectively. ThenR♦ = R� and for every
U ∈ Conv(X) andx ∈ X we haveUR♦x iff x ∈ U .

3 Modal algebras and distributive modal algebras

In this section we recall the definitions of modal and distributive modal algebras. We
also look at the dual order-topological spaces of these algebras.

Modal algebras A modal algebra(see e.g.[8, 5.2]) is a pair(B,♦B) such thatB
is a Boolean algebra and♦B : B → B is a unary operator called amodal operator
satisfying the equations of Definition 2.4. We also use a shorthand�Ba = −♦B − a,
for everya ∈ B. Next we recall the representation theorem for modal algebras.

Definition 3.1. (see e.g., [8, Definition 5.65 and Proposition 5.83]) A pair(X,R) is
called amodal spaceif X is a Stone space andR ⊆ X × X is a point-closed and
clopen relation.3

Therefore, for every modal space, the algebra(Clp(X), 〈R〉) is a modal algebra. More-
over, every modal algebra can be represented in this way.

Theorem 3.2. (see, e.g., [8, Theorem 5.43]) For every modal algebra(B,♦B) there
exists a modal space(X,R) such that(B,♦B) is isomorphic to(Clp(X), 〈R〉).

The modal space(X,R) is called the dual of(B,♦B). Modal spaces can also be seen
as coalgebras for the Vietoris functorK. In particular, every modal space can be rep-
resented as a Stone spaceX together with a continuous mapR : X → K(X). The
fact thatR is well defined corresponds toR[x] being closed, andR being continuous is
equivalent toR being a clopen relation. For the details we refer to [22].

Distributive modal algebras Lacking complements, one needs to represent both♦

and�. A distributive modal algebra(see e.g., [11]) is a triple(D,♦D,�D) such that
♦D : D → D and�D : D → D are unary operations satisfying for everya, b ∈ D the
equations of Definition 2.12.

3 Some authors also call modal spacesdescriptive frames; see e.g., [8].



Definition 3.3. A triple (X,R,Q) is called amodal Priestley spaceif X = (X,R) is a
Priestley space andQ ⊆ X × X is a relation such that

1. Q[x] is closed and convex for everyx ∈ X; i.e., Q[x] ∈ Conv(X).
2. 〈Q〉U ∈ ClpUp(X) and[Q]U ∈ ClpUp(X) for everyU ∈ ClpUp(X).

Theorem 3.4. (see [11]) For every distributive modal algebra(D,♦,�) there exists
a modal Priestley space(X,R,Q) such that(D,♦,�) is isomorphic to(ClpUp(X),
〈R〉, [R]).

We mention here that the modal Priestley spaces can be seen ascoalgebras for a functor
Conv on Priestley spaces. In particular, every modal Priestley space can be represented
as a Priestley spaceX together with an order-preserving and continuous mapQ : X →
Conv(X). ThatQ[x] is closed and convex guarantees thatQ is well defined.Q being
order-preserving and continuous is equivalent to〈R〉 and[R] being well-defined maps
onClpUp(X). For the details we refer to [27].

We close this section by mentioning the connection between modal algebras and
modal logic: a (positive) modal formulaϕ is a theorem of the basic modal logicK iff ϕ
is valid in every (distributive) modal algebra.

4 Main construction

As observed by Abramsky [2] and Ghilardi [18] the category ofmodal algebras is iso-
morphic to the categoryAlg(V ) of algebras for the functorV and, therefore, the free
modal algebras can be obtained by a standard construction incategory theory, the initial
algebra sequence. Indeed, under fairly general circumstances [4], for a functorL on a
categoryC, theL-algebraLω free overC ∈ C is the colimit of the sequence(Ln)n<ω

L0

e0
// L1

e1
// L2

. . . Lω (1)

whereL0 = 0 is the initial object ofC andLn+1 = (C + L)(Ln) anden+1 = (C +
L)(en). Due toLω being a colimit, there is a canonical morphism(C +L)(Lω) → Lω,
the components of which provide the insertion of generatorsC → Lω and theL-algebra
structureL(Lω) → L. The same result can also be obtained from a slightly different
sequence, the one used by [18], which is more convenient for our purposes

L0 = C, Ln+1 = (C + L)(Ln), e0 : C → C + L(C), en+1 = (C + L)(en) (2)

In this paper we are interested in the case whereC is a variety4 V and L encodes
a signature that extends the signatureΣV of V by additional operationsΣ′ and the
equationsEV of V by additional equationsE′. The terms inE′ may use the operations
built from the combined signatureΣ + Σ′. We say that an equation inE′ is of rank
1 if every variable is under the scope of exactly one occurrence of an operation inΣ′.
For example,♦p → �p is of rank 1, butp → ♦p and♦♦p → ♦p are not. The precise

4 For us, a variety is given by operations offinitearity and equations.



relationship betweenL-algebras and algebras for an extended signature is studiedin
[23]. Roughly speaking, there is a one-to-one correspondence between functorsL :
V → V and extensions ofV by operationsΣ′ and equations of rank 1E′; under this
correspondence,Alg(L) is isomorphic to the variety defined by operationsΣV + Σ′

and equationsEV + E′. In other words, a variety is isomorphic toAlg(L) iff it is
axiomatized by equations of rank 1.

The basic constructionwe will describe is a variation of the sequence (2) which is
both more special and more general. More special, because wetakeC to be a variety
V, more general because we consider sequences whose step-wise construction is not
necessarily given by a functor as in (2), ie, for the time being, additional equations not
of rank 1 are allowed.

Let V be a variety of algebras, letVf be a variety obtained fromV by expanding
the signature ofV by an operatorf and let AX be a set of axioms involving terms built
from the operations ofV andf . In other words, the algebras inVf are the pairs(A, f),
whereA ∈ V andf : A → A is a map satisfying the axioms in AX.5 Further, we let
Eq(V) andEq(Vf ) be the equational theories ofV andVf , respectively. For every
n ∈ ω we will construct then-generated freeVf -algebra as a colimit ofn-generated
V-algebrasA0 i0 // A1 i1 // ... . A0 is then-generated freeV-algebra, and each
Ak+1 is obtained fromAk by freely adjoining to it the operatorf . In other words, for
eachk ∈ ω the algebraAk will be the algebra of all the non-Eq(Vf )-equivalent terms
of degree≤ k. Moreover, for eachk ∈ ω, there are two mapsik andfk betweenAk

andAk+1. SinceAk is the algebra of all terms of degree≤ k andAk+1 is the algebra
of all terms of degree≤ k + 1, there is an embedding ofAk into Ak+1. The mapik
will be this embedding. Each term of degreem, for m ≤ k can be turned into a term
of degreem + 1 ≤ k + 1, by adjoining to it the operatorf . The mapfk is exactly the
map that adjoinsf to each element ofAk. The operatorfω : Aω → Aω is obtained by
lifting the mapsfk : Ak → Ak+1 to Aω.

The technical details are as follows. We fix a set P= {p1, . . . , pn} of variables (or
atomic propositions) in the language ofV. All the terms that we consider are build from
P using the operations ofV andf . For eachk ∈ ω, let Sk be the set of all terms in the
language ofVf of degree≤ k, that is, of all terms that do not contain nestings of ‘f ’
deeper thank. We say that an equations = t, wheres andt are terms, is deduced inV
(resp.Vf ) from Γ and writeΓ ⊢V s = t (resp.Γ ⊢Vf

s = t) if s = t is deduced from
Γ in the equational theory ofV (resp.Vf ). Let ≡Vf

be the relation onSk defined by
s ≡Vf

t iff ⊢Vf
s = t. Using the notation above we make the following

Definition 4.1. The sequence(Tk)k<ω is the sequence(Lk)k<ω, see (2), whereC is the
freeV-algebra overP andL : V → V mapsA to the free algebra over{fa | a ∈ A}.
The sequence(Ak)k<ω is the quotient of(Tk)k<ω by≡Vf

.

The algebraAk is the algebra of (equivalence classes of) terms of degree≤ k, Ak+1 is
the algebra of terms of degree≤ k + 1 and theik : Ak → Ak+1 obtained from quoti-
enting theek of (2) are the obvious embeddings. Moreover, we definefk : Ak → Ak+1

5 It is straightforward to replacef by a set of operations of finite arity. Here we consider only
one unary operator to keep notation simple.



to be the quotients of the mapsTk → L(Tk) → T0 + L(Tk) (insertion of generators
followed by injection into a coproduct). Because ofik+1 ◦ fk = fk+1 ◦ ik, thefk give
rise, in the underlying category of sets, to a cocone over(Ak)k<ω, equippingAω with
aVf -algebra structurefω : Aω → Aω. More concretely,fk maps a termt of degreek
to the termf(t) of degreek + 1; and, since eacha ∈ Aω comes from someAk, we can
write fω(a) = fk(a) for somek.

Theorem 4.2. The colimit of(Ak)k<ω is the freen-generatedVf -algebra.

Note that ifV is locally finite (ie the finitely generated algebras are finite), then each
Ak is finite. Thus, ifV is locally finite we can approximate every finitely generatedfree
Vf algebra by finiten-generatedV algebras. This is the case in our examples, whereV

is either the varietyBA of Boolean algebras or the varietyDL of distributive lattices.

The role of rank 1 axioms The equational reasoning needed to determine whether
two terms are identified inAk may involve terms of degree larger thank. We therefore
defines ≡k

AX t if, in the equational logic for the signature ofVf , the equations = t has
a proof from the axioms AX that only uses terms of degree≤ k.

Definition 4.3. The sequence(A′

k)k<ω is the quotient of(Tk)k<ω by (≡k
AX)k<ω.

Theorem 4.4. The colimit of(A′

k)k<ω is the freen-generatedVf -algebra.

Note that theAk are determined by the equational theoryEq(Vf ) whereas the(A′

k) de-
pend on the particular axiomatisation AX. Moreover, in contrast to theik : Ak → Ak+1,
thei′k : A′

k → A′

k+1
need not be injective. But if they are, one often can deduce desir-

able properties like decidability, normal forms, and others as shown by Ghilardi [18].
The following gives a sufficient condition. For a detailed definition of L below see [21,
Section 4.1.3].

Theorem 4.5. LetL be the functor onV whereL(A) is the freeV-algebra generated
by {fa|a ∈ A} modulo the axiomsAX. If AX is of rank 1, the sequences(Ak)k<ω,
(A′

k)k<ω and(Lk)k<ω (see (2)) coincide.

In particular, we will exploit that for rank 1 axioms, the morphismsi′k : A′

k → A′

k+1

are injective.

5 Free modal and distributive modal algebras

We now combine Sections 2 - 4. For modal (distributive) algebras, the axioms AX of
Section 4 are of rank 1 (see Definitions 2.4 and 2.12) and Theorem 4.5 applies.

Free modal algebrasLet B0 be then-generated free Boolean algebra, that is,B0 is
isomorphic to the powerset of a2n-element set (eg [19, 4.9]). LetX0 be the dual ofB0.
According to the construction discussed in the previous section we letL = B0 + V in
(1), that is,

Bk+1 = B0 + V (Bk).

The mapsik,♦k : Bk → Bk+1 are as in Section 4. From Theorem 4.2 we obtain



Corollary 5.1. The algebra(Bω,♦ω) obtained from the colimit of(Bk)k<ω is the free
modal algebra overB0.

Now we will look at the dual of(Bω,♦ω). Let X0 be a2n element set (the dual ofB0)
and (because of the duality ofP andV (Theorem 2.6) and of× and+)

Xk+1 = X0 × P(Xk).

Theorem 5.2. The sequence(Xk)k<ω with mapsπk : X0 × P(Xk) → Xk defined by

πk(x,A) = (x, πk−1[A])

is dual to the sequence(Bk)k<ω with mapsik : Bk → Bk+1. In particular, theπk are
surjective. Moreover, the relationRk ⊆ (X0 × P(Xk)) × Xk defined by

(x,A)Rky iff y ∈ A

is dual to♦k : Bk → Bk+1 (see Theorem 2.3).

Remark 5.3.An elementx = (l, S) ∈ Xk+1 can be understood as a tree with the root
labelled by an elementl ∈ X0 and the children being the elements ofS ∈ P(Xk).
These trees have a rich history and have been studied, for example, by [3, 2, 6, 18, 5,
31].

Corollary 5.4. The modal space(Xω, Rω), whereXω is the limit inStoneof the family
{Xk}k∈ω with the mapsπk+1 : Xk+1 → Xk, andRω is defined by(xi)i∈ωRω(yi)i∈ω

if xk+1Rkyk for eachk ∈ ω is (isomorphic to) to the dual of(Bω,♦ω).

Remark 5.5.Note that(Xω, Rω) is isomorphic to the canonical model of the basic
modal logicK ; see [8, Section 5]. Therefore, a formula of modal logic is a theorem of
K iff it is satisfiable in(Xω, Rω). Moreover,(Xω, Rω) is also theK-coalgebra cofree
overX0.

Free distributive modal algebrasLet D0 be the freen-generated distributive lattice
andX0 be its dual poset, that is,X = (P(n),⊆), wheren = {0, . . . , n − 1} is an
n-element set (eg [19, 4.8]). According to the construction discussed in the previous
section we letDk+1 = D0 + V (Dk). whereV is the Vietoris functor for distributive
lattices. The mapsik,♦k : Dk → Dk+1 are as in Section 4. From Theorem 4.2 we
obtain

Corollary 5.6. The algebra(Dω,♦ω) obtained from the colimit of(Dk)k<ω is the free
modal distributive algebra overD0.

For the dual of(Dω,♦ω), Theorem 2.13 leads us to defineXk+1 = X0 × Conv(Xk).

Theorem 5.7. The sequence(Xk)k<ω with πk : X0 × Conv(Xk) → Xk defined by
πk(x,A) = (x, πk−1[A]) is dual to the sequence(Dk)k<ω with mapsik : Dk → Dk+1.
In particular, theπk are surjective. Moreover, the relationQk ⊆ (X0×Conv(Xk))×Xk.
defined by(x,U)Qky iff y ∈ U is dual to♦k : Dk → Dk+1 (see Theorem 2.11).



Corollary 5.8. The modal Priestley space(Xω, Qω), whereXω is the inverse limit in
Priest of the family{Xk}k∈ω with the mapsπk+1 : Xk+1 → Xk and Qω is defined
by (xi)i∈ωQω(yi)i∈ω if xk+1Qkyk for eachk ∈ ω is (isomorphic to) to the dual of
(Dω,♦ω).

Similar to the modal case the space(Xω, Qω) is isomorphic to the canonical model of
the basic positive modal logic and it is the final coalgebra for the functorX0 ×Conv on
Priestley spaces.

6 Applications

Our first three applications are based on approximating the free algebras (and their du-
als) by the initial sequence of an appropriate functor as in (2). The last section, indicates
how to go beyond rank 1 in a systematic way using Sahlqvist theory, but the details have
to be left for future work.

6.1 Normal forms

In this section we discuss normal forms for the elements of finitely generated free modal
and distributive modal algebras. In logical terms this is equivalent to a normal form
representation for the formulas of the corresponding language.

Definition 6.1. LetV be a variety andA(n) ann-generated free algebra ofV. We say
that V admits a normal form representation if for everya ∈ A(n) there exists a term
t(a), effectively computable froma, such that for everya, b ∈ A(n) we have⊢V a = b
iff t(a) = t(b).

We writeAt(−) for the set of atoms of a Boolean algebra and, forT ⊆ B0 andS ⊆
At(Bk), let

αS,T :=
∧

p∈T

p ∧
∧

p/∈T

¬p ∧
∧

ϕ∈S

♦ϕ ∧ �
∨

ϕ∈S

ϕ

Lemma 6.2. a ∈ Bk+1 is an atom iffa = αS,T for someT ⊆ Bk andS ⊆ At(Bk).

Similarly, for setsT ⊆ D0 and S ⊆ J(Dk), whereJ(Dk) is the set of all join-
irreducible elements ofDk we let

βS,T :=
∧

p∈T

p ∧
∧

ϕ∈S

♦ϕ ∧ �
∨

ϕ∈S

ϕ

Lemma 6.3. a ∈ Dk+1 is join-irreducible iffa = βS,T for someT ⊆ Dk andS ⊆
J(Dk).

Corollary 6.4. Basic modal logic and basic positive modal logic admit normal form
representations.



Proof. The result follows from above lemmas and the fact that every formulaϕ in n-
variables can be seen as an element of then-generated free algebra of the correspond-
ing variety. As we showed above, for every element of then-generated free modal or
distributive modal algebra, there existsk ∈ ω such thatϕ belongs toBk or Dk, re-
spectively. Every element of a finite Boolean algebra (resp.finite distributive lattice) is
a join of atoms (join-irreducible elements) that are below this element. Therefore, we
obtain thatϕ =

∨
αS,T (resp.ϕ =

∨
βS,T ).

Remark 6.5.The formulasαS,T are the so-called Fine’s canonical formulas [16, 25].
Abramsky [2] and Ghilardi [18] derive these formulas in a waysimilar to ours.

6.2 Free modal algebras as temporal algebras

In this section we will give another corollary of our representations of free modal and
distributive modal algebras. We will show that these algebras are reducts of temporal
algebras. In case of modal logics this was first observed by Ghilardi [18].

Definition 6.6. A modal algebra(B,♦) is a reduct of a temporal algebra if there exist
�P : B → B such that for everya, b ∈ B we have♦a ≤ b iff a ≤ �P b.

A distributive modal algebra(D,�,♦) is a reduct of a temporal algebra if there
exist�P ,♦P : D → D such that for everya, b ∈ B we have♦a ≤ b iff a ≤ �P b and
♦P a ≤ b iff a ≤ �b.

Theorem 6.7. Let V be a variety of modal or distributive modal algebras axiomatised
by the formulas of rank1. Then every finitely generated freeV-algebra is a reduct of a
temporal algebra.

Proof. (Sketch) We only look at the modal case. Let(Bω,♦ω) be the freeV-algebra.
Then since eachBk is finite, the map♦k : Bk → Bk+1 has a right adjoint�k

P :
Bk+1 → Bk, for everyk ∈ ω. Therefore, all we need to show is that the maps�k

P can
be extended to the whole ofBω. For this it is sufficient to prove thatik−1�

k−1

P = �k
P ik.

This equation holds if and only if for everyx ∈ Xk, the equationπ−1

k−1
Rk−1[x] =

Rkπ−1

k [x] holds. Checking that the latter equation is satisfied is easyand is based on
the fact that for everyk ∈ ω the mapsπk are surjective. We skip the details.

6.3 Pelczynski compactification

In this section we characterise the spaceXω. We show thatXω is homeomorphic to the
so-called Pelczynski space.

Definition 6.8. (see [28] and [26]) A spaceP is called thePelczynski spaceif P =
Xiso ∪ Xlim, whereXiso is a countable set of isolated points ofP, Xlim is the set of
limit points ofP, the spaceXlim is homeomorphic to the Cantor spaceC andXiso =
P.

Theorem 6.9. The underlying Stone spaceXω of the canonical model(Xw, Rw) is
homeomorphic to the Pelczynski spaceP.



Proof. (Sketch) The proof uses a result of Barr [6] that the setXiso of isolated points
of Xω is dense inXω. We proceed by observing that the setXiso is countable and that
the setXlim of the limit points ofXω is uncountable and contains no isolated points
in the topology induced fromXω. Thus [15, 6.2.A.(c)],Xlim is homeomorphic to the
Cantor spaceC and thereforeXω is homeomorphic to the Pelczynski spaceP.

Remark 6.10.In fact it is not a coincidence that the final coalgebra for theVietoris
functor is based on the Pelczynski space. We can prove that for every polynomial func-
tor T on Stone spaces, the final coalgebra forT is finite or is homeomorphic to the
Cantor spaceC, the Alexandroff compactification of a countable discrete space or to
the Pelczynski spaceP.

6.4 Modal logics not axiomatised by rank 1 axioms

In this section we indicate that our method can be extended tologics that are not ax-
iomatised by axioms of rank 1. As a simple example we considerthe logicT obtained
from the basic modal logicK by adding to it the reflexivity axiomp → ♦p (see also
Ghilardi [18, Section 5]). The Kripke frames for this logic are characterised by their
accessibility relation being reflexive. LetVT be the variety of modal algebras corre-
sponding toT. Since the reflexivity axiom is not of rank 1, in order to construct finitely
generated freeVT-algebra, we need to take quotients of the algebrasBk (Section 5).
For everyk ∈ ω we will quotientBk by the relation≡k

AX , AX = {p → ♦p}, as in
Definition 4.3. In other words, we define the sequence(B′

k)k<ω by lettingB′

0 = B0

andB′

k+1
= B′

0 + V (B′

k) moduloika → ♦ka, for a ∈ B′

k.
In dual terms, for everyk ∈ ω we select a subsetYk of Xk such that for every

U ⊆ Yk, we haveπ−1

k (U) ⊆ 〈Rk〉U . This is equivalent toπ−1

k (y) ⊆ 〈R〉{y} for every
y ∈ Yk. (The fact that we can move from sets to singletons is not a coincidence, it is
a consequence of a more general fact thatϕ → ♦ϕ is a Sahlqvist formula [8, Section
3.6]). The latter condition is equivalent toπk(x,A) ∈ A, for every(x,A) ∈ Yk+1 and
k ∈ ω. Therefore,Y0 = X0 and for everyk ∈ ω, Yk+1 = {(x,A) : x ∈ Y0, A ⊆
Yk, πk(x,A) ∈ A}. By induction onk we can also show that the restriction ofπk to Yk

is a surjection for everyk ∈ ω, which means that the quotients ofik ’s are embeddings.
Let Sk = Rk ↾ Yk andξk = πk ↾ Yk, for eachk ∈ ω. We arrive at the following
theorem.

Theorem 6.11. The modal space(Yω, Sω), whereYω is the inverse limit inStone
of the family{Yk}k<ω with the mapsξk+1 : Yk+1 → Yk and Sω is defined by
(xi)i<ωSω(yi)i<ω if xk+1Skyk for eachk < ω is (isomorphic to) to the canonical
model for the modal logicT.

This example suggests that a similar technique can be applied to other logics axioma-
tised by Sahlqvist formulas. Studying these questions in detail is one of the directions
of future work.

7 Conclusions and future work

In this paper we presented a uniform method for constructingfree algebras for algebras
with operators axiomatised by equations of rank 1. We applied this general method to



construct free modal algebras and free distributive modal algebras. We also recalled
normal forms for modal logic and derived normal forms for positive modal logic. We
list directions of further research.

One is to apply this construction to other non-classical logics for example intuition-
istic logic, many-valued logics etc. More generally, one might be able to obtain results
for varieties, in particular for locally-finite ones, that do arise from logic.

In the context of modal logic most of the important systems can not be axiomatised
by the formulas of rank 1. Therefore, for describing free algebras for those systems, we
need to adjust this method as indicated in Section 6.4. As adding axioms means to take
quotients of the algebrasAk, it corresponds to taking subsets of theXk on the dual side.
To do this in a uniform way, one should look at Sahlqvist formulas.

Another interesting direction for further research is to spell out in detail the con-
nection of this approach with the one of Moss [25]. It seems that Moss’ filtration type
technique has a direct representation in our construction.For various modal logics Moss
constructs canonical models of formulas of finite modal degree. These models can be
obtained from the modelsXk by lifting in an appropriate way relationsRk between
Xk+1 andXk to Xk+1.

The procedure to obtain normal forms should generalise to all logics of rank 1 (as
long as the axioms are effectively given). This should be related to recent work of
Schr̈oder and Pattinson [29] on the complexity of rank 1 logics. Marx and Mikuĺas [24]
also obtain complexity bounds for bi-modal logics by looking into algebras of terms of
degree≤ k. Obtaining normal forms for logics that are not axiomatisedby formulas of
rank 1 is another interesting question.

We showed that the canonical model of the basic modal logic isbased on the Pel-
czynski space. For other logics, however, such a characterisation does not exists. So a
natural question is what are the underlying Stone spaces of canonical models of other
modal logics. As we saw above the canonical model of the basicmodal logic is a fi-
nal coalgebra for the Vietoris functor. So an interesting question is whether the final
coalgebra for every finite-set preserving functor is also based on the Pelczynski space.

All these questions hold also for positive modal logic and their variations considered
in domain theory. But moreover, the recent work of Bruun and Gehrke [10], which
connects ontologies with free distributive algebras with operators, adds another smack
to this investigations: The axioms that [10] consider in their paper are of rank one.
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