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Abstract. In this paper we discuss a uniform method for constructing free modal
and distributive modal algebras. This method draws on works by (Asks
2005) and (Ghilardi 1995). We revisit the theory of normal formafimdal logic

and derive a normal form representation for positive modal logicalse show
that every finitely generated free modal and distributive modal alg@kmana-
tised by equations of rankis a reduct of a temporal algebra.

1 Introduction

Modal logics play an important role in many areas of compse&nce. In recent years,
the connection of modal logic and coalgebra received a |atttation, see eg [30].
In particular, it has been recognised that modal logic isdal@ebras what equational
logic is to algebras. The precise relationship betweenabies and the coalgebras can
be formulated using Stone duality [9]. From this perspegtalgebras are the logical
forms of coalgebras [1]; and the algebras that appear invthis give rise to modal
logics.

In this paper we take the opposite view and ask how coalgelrad categorical
methods can elucidate traditional topics in modal logigefraic methods and tech-
niques proved to be very useful in investigations of modgids, see eg [8, 30]. Here
we apply a mix of algebraic and coalgebraic (and categQrieahniques to shed some
light on the construction of canonical models of modal Isgio principle, almost all
properties of a given modal logic are enshrined in its freeahalgebras or, dually and
equivalently, in its canonical models [8]. Therefore, anlenstanding of the structure
of the canonical model of a given modal logic can be the keyfoterstanding the
properties of this logic.

The general idea that we will discuss in this paper has apgdaefore in differ-
ent contexts. Fine [16] used his canonical formulas for deisg canonical models of
modal logics and for deriving completeness results forghegics. Moss [25] revisited
Fine’s formulas to give a filtration type finite-model progyeproofs for various modal
logics. Abramsky [2] constructed the canonical model okebbformulas of the basic
modal logic as the final coalgebra for the Vietoris functod &hilardi [18, 17] gave
a similar description of canonical models of modal and tiduistic logics to derive a
normal form representation for these logics. For positieelat logic similar techniques
were developed by Davey and Goldberg [13].
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The aim of this paper is to unify all these approaches ancptescoherent method
for constructing free modal and distributive modal algebiodal algebras are alge-
braic models of (classical) modal logic and distributivedalalgebras are algebraic
models of positive (negation-free) modal logic. We will shisow to construct free al-
gebras for a variety equipped with an operatdf. In case of modal algebrasis the
variety of Boolean algebras and in case of distributive rhatipebrasv is the variety
of distributive lattices. The main idea of the constructi®the following: We start with
the freeV-algebra and step by step add freely to it the operftdys a result we obtain
a countable sequence of algebras whose direct limit is thieedkfree algebra.

We apply this general method to modal and distributive medigébras. For dis-
tributive modal algebras these results appear to be nevada of modal algebras this
approach gives simple and coherent proofs of known resiMtsuse the Stone dual-
ity for Boolean algebras and the Priestley duality for disttive lattices to describe
the dual spaces of the finite approximants of the free algefiiae key for dualising
these constructions lies in the coalgebraic representafimodal spaces as coalgebras
for the Vietoris functor [22] and in the coalgebraic reprgagon of modal Priestley
spaces as coalgebras for the convex set functor [20, 274.allows us to represent the
canonical models of modal and positive modal logic as a lohfinite sets and posets,
respectively. We also observe that the underlying Stoneesp&the canonical model
of the basic modal logic is homeomorphic to the so-calledBgiski space. This space
appears to be one of the nine fixed points of the Vietoris famah compact Hausdorff
spaces with a countable basis [28, 26].

As we will see below, this method directly applies to modadl @ositive modal
logics that are axiomatised by the formulas of rdnkVe also indicate how to adjust
our techniques to modal logics that are not axiomatised hydéas of rank 1. As an
example we consider the ‘reflexive’ modal logic, that is, thedal logic axiomatised
by the additional reflexivity axiomp — (¢, which is not of rank 1. This example
also highlights how the Sahlqgvist correspondence—an impbtechnique of modal
logic—can be applied to our method in order to describe caabmiodels of modal
logics that are not axiomatised by formulas of rank 1.

In the end of the paper we revisit Fine’s normal forms for nidoigic in a manner
similar to Abramsky [2] and Ghilardi [18] and derive normatrins for positive modal
logic. We also generalise Ghilardi’s result that every fresdlal algebra is a reduct of a
temporal algebra to all varieties of modal and distributivedal algebras axiomatised
by formulas of rank 1.

Other Related Work Canonical models of modal logics have been investigatet qui
thoroughly. However, these investigations mostly coneget on transitive modal log-
ics; that is, modal logics with transitive Kripke framesrfan overview of these results
we refer to [12, Section 8.6 and 8.7] (see also [7, Chapteot3$imilar results in the
case of intuitionistic logic). The method of constructiramonical models for transitive
modal logics is based on building the canonical model of amiogic layer by layer,
that is, inductively on the depth of the canonical modelhaiigh very useful, this
method does not go through for non-transitive modal lodtos.building free algebras
for non-transitive modal logics one needs to use a diffeapptoach.
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2 Dualities for Boolean algebras and distributive lattices

In this section we briefly recall the Stone duality for Boaledgebras and the Priestley
duality for distributive lattices.

2.1 Stone duality for Boolean algebras

A Stone space is @dimensional (a topological space with a basis of clopeas)gact
Hausdorff space. For every Stone spacéet Clp(X) denote the set of clopens (closed
and open subsets) &f . We also letP(X) denote the powerset &f . The next theorem
states the celebrated Stone representation theorem.

Theorem 2.1. (eg[19, 4.4],[14,11.4]) For every Boolean algebiathere is a Stone
spaceX g such thatB is isomorphic to Clp(X ), U, N, —, 0). If Bis finite thenX g is
finite andClp(Xp) = P(Xp).

Proof. (Sketch) LetB be a Boolean algebra. Léfg := the set of all maximal filters
of B.Fora € Bleta = {z € Xp:a € z}. We declarda : a € B} to be a basis for a
topology onX 5. ThenX g becomes a Stone space adds isomorphic toClp(Xp).

Let BA denote the category doolean algebras and Boolean homomorphishet
alsoStone denote the category &tone spaces and continuous mafise Stone rep-
resentation theorem can be extended to correspondingocigeg

Theorem 2.2. (see eg [19, 4.4]) BA ~ Stone”.

Proof. (Sketch) By Theorem 2.1 one only needs to deal with morphitetsf : X —
Y be a continuous map. Thefit! : Clp(Y) — Clp(X) is a Boolean homomorphism.
Conversely, ifi : A — B is a Boolean homomorphism, then the ntapg : Xp — X4

is continuous. It is also easy to check that this correspoceles one to one.

Next we will discuss the duality between join preserving siaptween Boolean alge
bras and special relations on corresponding Stone spagek.andY be Stone spaces.
ArelationR C X x Y is calledpoint closedf R[z] = {y € Y : xRy} is a closed set
for everyz € X. We say thatR is aclopen relationif for every clopenU C Y the set
(R)YU ={xz € X : R[z]nU # 0} is a clopen subset of .

Theorem 2.3. (see e.g., [8]) Thereis a one-to-one correspondence betjoaepre-
serving maps between Boolean algebras and point-closedlapén relations on their
dual Stone spaces. Moreover, on finite Stone spaces allastaare point-closed and
clopen.



Proof. (Sketch) (1) Leth : A — B be a join preserving map, that is, for allb € A
we haveh(0) = 0 andh(a VvV b) = h(a) V h(b). Let X4 and X be the Stone spaces
dual toA and B, respectively. We defin®, C Xg x X4 by

xRyy iff y C h~i(z)

or, equivalentlyxz Ry, iff (a € y implies ha € x).X Conversely, ifR C Xp x X4 is
a point-closed and clopen relation, th@®) is the desired ma@lp(X 4) — Clp(Xp).

Vietoris spacesand their duals, defined below, are central to our investigat

Definition 2.4 (Functor V). Let B be a Boolean algebra. L&t (B) be the free Boolean
algebra over the seft0a : a« € B} modulo the equations, for all, b € B,

(1) ¢0=0 (2) O(avbd)=20aVOb
Thus,V is a functor on Boolean algebras. Now we define the dull ¢m Stone spaces.

Definition 2.5 (Functor K). For every Stone spac¥ we let K(X) be the set of all
closed subsets of equipped with a topology a subbasis of which is given by tte se

OU)={F e K(X): FCU} QU)={F e K(X): FnU # 0}
whereU ranges over clopen subsets¥f
The next theorem shows that the two definitions are dual tb etuer.

Theorem 2.6. [19, Proposition 4.6] LetB a Boolean algebra and( its dual Stone
space. Then the algebiid(B) is dual to K (X). If B is finite,V(B) is dual toP(X).

It follows from the definition ofV(B) that a map® : B — V(B) mapping each
elementu € B to Qa is join-preserving. The next proposition characterisesrétation

on X x K(X) which is dual to¢. We just need to observe th&Y, defined as in the
proof of Theorem 2.3 ig.

Proposition 2.7. Let R, C K(X4) x X4 be the relation corresponding to the join-
preserving mag) : B — V(B). Then for eveny/ € K(X) andx € X4 we have
URpxiff z € U.

2.2 Priestley duality for distributive lattices

We briefly review the duality between distributive latticasd Priestley spaces (Stone
spaces with special partial orders). Recall that a suliset an ordered setX, R) is
called anupsetif for every z,y € X we havex € U andzRy imply y € U. The
complement of an upset is calledlawnsetA relation R on a Stone spac¥ is said to
satisfythe Priestley separation axioih

—(zRy) implies there exists a clopen upgésuch thatt € U andy ¢ U.

! Readinge € z asz satisfies:, we see thab acts here as a modéal



Definition 2.8. A pair X = (X, R) is called a Priestley space KX is a Stone space
and R a partial order satisfying the Priestley separation axiom.

For every Priestley spacdé = (X, R) we let ClpUp(X) denote the set of all clopen
upsets ofX. We also denote byp(X) the set of all upsets Af.

Theorem 2.9. (see, e.g, [14, 11.23]) For every distributive lattifethere is a Priest-
ley spaceXp, such thatD is isomorphic ta ClpUp(Xp), U, N, §). If D is finite, therX p
is finite andClpUp(Xp) = Up(Xp).

Let DL be the category of distributive lattices and lattice homgshsms. Let also
Priest denote the category of Priestley spaces and continuous-pregerving maps.
We have the following analogue of Theorem 2.2.

Theorem 2.10. (see, e.g, [14, 11.30JPL ~ Priest”.

Next we will briefly discuss the connection of meet and joiegarving maps with
Priestley relations. For a relatioR C X x Y andU C Y we let[R]U = {z € X :
R[z] CU}. LetX = (X, R) andY = (Y, .S) be Priestley spaces. ArelatiGhC X xY
is calledclopen increasingresp. clopen decreasingf for everyz € X the setQ[z] is
a closed upset of (resp. a closed downset &) and for every clopen upsét of Y the
set[Q]U is a clopen upset of (resp.(Q)U is a clopen upset of).

Theorem 2.11.(eg [11]) There is a one-to-one correspondence betweengmn
serving (resp. meet preserving) maps between distriblaitiees and clopen increas-
ing (resp. clopen decreasing) relations on their dual Piteys spaces. Moreover, on
finite Priestley spaces a relatiaf) is clopen increasing (clopen decreasing)iffz] is
an upset (resp. a downset) af@] (resp.(Q)) maps upsets to upsets.

Vietoris construction for Priestley spaces and distributive lattices

Definition 2.12. For every distributive latticeD let V(D) denote the free distributive
lattice over the sef0a : « € D} U {0Oa : a € D} modulo the equations

1. 00 = 0, 01 =1,
2. 0(aVb)=90aVOb, O(a A b) =Oa A Ob,
30(@Vvd) <OavOob, OaAdb< O(anbd).

Next we describe the dual construction of the Vietoris sgac®riestley spaces [27].
Let X = (X, R) be a Priestley space. A sét C X is calledconvexif for every
z,y,z € X if x,y € F andzRz andzRy, thenz € F. For every Priestley space
X = (X, R) let Conv(X) denote the set of all closed convex subsetX oiVe define a
topology onConv(X) a basis of which is given by the Boolean closure of the sets

O(U) = {F € Conv(X) : F C U} SU) ={F € Conv(X): FNU # 0}

whereU ranges over clopen upsets Xf> Moreover, for everyY, Z € Conv(X) we
define the so-called Egli-Milner ordét®™ by

2 We note that this definition of topology on the set of closed and convexeibsa Priestley
space together with Theorem 2.13 below solves the problem raised iBd2%ion 7.1] on how
to define an analogue of the Vietoris topology on the set of closed aneégxaubsets of a
Priestley space.



YRFMZiff Y C (R)Z andZ C (R)Y .

where R is the converse of?. Then (Conv(X), RFM) is a Priestley space. The next
theorem, which is the Priestley space version of a theoredolofistone [20] (see also
Palmigiano [27]), shows that the convex set constructioRestley spaces is the dual
toV.

Theorem 2.13. Let D be a distributive lattice an& = (X, R) be its dual Priestley
space. TheriConv(X), R¥M) is the Priestley space dual 16(D).

As in the case of modal algebras, we have join-preservingreeet-preserving mags
and from D to V (D), mapping every elemente D to {a andla, respectively.

Proposition 2.14. Let Ry, R C Conv(X,) x X, be the relations corresponding to
0 :D — V(D)andOd : D — V(D), respectively. Thef®, = Rp and for every
U € Conv(X) andz € X we havel Ry iff x € U.

3 Modal algebras and distributive modal algebras

In this section we recall the definitions of modal and disttile modal algebras. We
also look at the dual order-topological spaces of thesebedge

Modal algebras A modal algebra(see e.g.[8, 5.2]) is a paiiB, ¢ ) such thatB
is a Boolean algebra anflz : B — B is a unary operator calledraodal operator
satisfying the equations of Definition 2.4. We also use atthodga = —0p — a,
for everya € B. Next we recall the representation theorem for modal aklgebr

Definition 3.1. (see e.g., [8, Definition 5.65 and Proposition 5.83]) A pék, R) is
called amodal spacef X is a Stone space an C X x X is a point-closed and
clopen relation?3

Therefore, for every modal space, the algeltip(X), (R)) is a modal algebra. More-
over, every modal algebra can be represented in this way.

Theorem 3.2. (see, e.g., [8, Theorem 5.43]) For every modal algefBa O ;) there
exists a modal spadeX, R) such that(B, ¢ ) is isomorphic taClp(X), (R)).

The modal spacéX, R) is called the dual of B,  5). Modal spaces can also be seen
as coalgebras for the Vietoris functéf. In particular, every modal space can be rep-
resented as a Stone spaketogether with a continuous map : X — K(X). The
fact thatR is well defined corresponds #®[x] being closed, an& being continuous is
equivalent taR being a clopen relation. For the details we refer to [22].

Distributive modal algebras Lacking complements, one needs to represent Both
and(. A distributive modal algebrdsee e.g., [11]) is a tripléD, ¢ p,0p) such that
Op: D — Danddp : D — D are unary operations satisfying for every € D the
equations of Definition 2.12.

3 Some authors also call modal spadescriptive framgssee e.g., [8].



Definition 3.3. Atriple (X, R, Q) is called amodal Priestley spadéX = (X, R) is a
Priestley space an@ C X x X is a relation such that

1. Q[z]is closed and convex for everye X;i.e., Q[x] € Conv(X).
2. (@)U € ClpUp(X) and[Q]U € ClpUp(X) for everyU € ClpUp(X).

Theorem 3.4. (see [11]) For every distributive modal algebfd, ¢, ) there exists
a modal Priestley spaceX, R, (Q)) such that(D, ¢, 0) is isomorphic to(ClpUp(X),
(R), [R])-

We mention here that the modal Priestley spaces can be seealgsbras for a functor
Conv on Priestley spaces. In particular, every modal Priesti@gs can be represented
as a Priestley spac&together with an order-preserving and continuous BapX —
Conv(X). ThatQ][z] is closed and convex guarantees t@ais well defined.Q being
order-preserving and continuous is equivalent® and|R] being well-defined maps
on ClpUp(X). For the details we refer to [27].

We close this section by mentioning the connection betweedamalgebras and
modal logic: a (positive) modal formulais a theorem of the basic modal lod{ciff ¢
is valid in every (distributive) modal algebra.

4 Main construction

As observed by Abramsky [2] and Ghilardi [18] the categorymufdal algebras is iso-
morphic to the categorylig(V') of algebras for the functov” and, therefore, the free
modal algebras can be obtained by a standard constructtatégory theory, the initial
algebra sequence. Indeed, under fairly general circurossajd], for a functor on a
categonyC, the L-algebral,, free overC' € C is the colimit of the sequendd.,,) <.

Lo—2> L, > L, L., 1)

whereL, = 0 is the initial object ofC andL,,1 = (C + L)(L,) ande, 11 = (C +
L)(e,). Due toL,, being a colimit, there is a canonical morphis@\+ L)(L,) — L.,
the components of which provide the insertion of generators L, and thel-algebra
structureL(L,) — L. The same result can also be obtained from a slightly differe
sequence, the one used by [18], which is more convenienufopurposes

Lo=C, Lyys1=(C+L)(Lyn), eo:C —C+L(C), ent1 =(C+L)(en) (2)

In this paper we are interested in the case witeis a variety V and L encodes
a signature that extends the signatife of V by additional operations&’ and the
equationsty, of V by additional equationg’. The terms inE’ may use the operations
built from the combined signatur® + X’. We say that an equation iR’ is of rank

1 if every variable is under the scope of exactly one occueai@n operation irt”.
For exampledp — Op is of rank 1, butp — Op andQOp — Op are not. The precise

4 For us, a variety is given by operationsfisfite arity and equations.



relationship betweeii-algebras and algebras for an extended signature is studied
[23]. Roughly speaking, there is a one-to-one corresparel®etween functorg :

V — V and extensions oV by operations®’ and equations of rank £’; under this
correspondencedlg(L) is isomorphic to the variety defined by operatiotig + X"
and equationg?y + E’. In other words, a variety is isomorphic tbig(L) iff it is
axiomatized by equations of rank 1.

The basic constructionwe will describe is a variation of the sequence (2) which is
both more special and more general. More special, becauseke€ to be a variety
V, more general because we consider sequences whose stepaniruction is not
necessarily given by a functor as in (2), ie, for the time peadditional equations not
of rank 1 are allowed.

Let V be a variety of algebras, 18f; be a variety obtained frorW by expanding
the signature oV by an operatoy and let Ax be a set of axioms involving terms built
from the operations oV andf. In other words, the algebras ¥ are the pairgA4, f),
whered € Vandf : A — Ais a map satisfying the axioms inx® Further, we let
Eq(V) and Eq(Vy) be the equational theories & and V, respectively. For every
n € w we will construct then-generated fre&/;-algebra as a colimit ofi-generated
V-algebras Ag —io> A; —ii> --- . Ag is then-generated fre&/-algebra, and each
Ag41 is obtained fromAy, by freely adjoining to it the operatgf. In other words, for
eachk € w the algebrad,, will be the algebra of all the nofi¢(Vy)-equivalent terms
of degree< k. Moreover, for eaclt € w, there are two mapg; and f;, betweenAy
and Ay 1. SinceAy, is the algebra of all terms of degreek and A, is the algebra
of all terms of degree< & + 1, there is an embedding of;, into A;,1. The mapiy
will be this embedding. Each term of degreg for m < k can be turned into a term
of degreem + 1 < k + 1, by adjoining to it the operataf. The mapf; is exactly the
map that adjoing’ to each element ofi;. The operatoy,, : A, — A, is obtained by
lifting the mapsfy, : Ax — Axi1 10 Ag.

The technical details are as follows. We fix a setRpy, ..., p, } of variables (or
atomic propositions) in the languageVdf All the terms that we consider are build from
P using the operations &f and f. For eachk € w, let Sy be the set of all terms in the
language ofV; of degree< k, that is, of all terms that do not contain nestings f *
deeper thart. We say that an equation= ¢, wheres andt are terms, is deduced W
(resp.Vy) from I and writel” -y s =t (resp.I” Fy, s = t) if s =t is deduced from
I' in the equational theory oV (resp.V;). Let =y, be the relation orb}, defined by
s =y, t iff vy, s =t. Using the notation above we make the following

Definition 4.1. The sequenc@},)i<., is the sequence ) k<., see (2), wher€’ is the
freeV-algebra overP and L : V — V mapsA to the free algebra oveffa | a € A}.
The sequenceAy)x <. is the quotient of 7} ) <., by =v;, .

The algebrad, is the algebra of (equivalence classes of) terms of degréeA.. 1 is
the algebra of terms of degreek + 1 and thei;, : Ay, — A, obtained from quoti-
enting thee;, of (2) are the obvious embeddings. Moreover, we defineA;, — Ag41

5t is straightforward to replacé by a set of operations of finite arity. Here we consider only
one unary operator to keep notation simple.



to be the quotients of the mafiy — L(Tx) — Ty + L(T}) (insertion of generators
followed by injection into a coproduct). Becauseipf, o fi = fr+1 o ik, the fi give
rise, in the underlying category of sets, to a cocone ¢¥en;.,, equipping4,, with
a'Vy-algebra structurg,, : A, — A,,. More concretelyf;, maps a ternt of degreek
to the termf(¢) of degreek + 1; and, since each € A,, comes from somel;, we can
write f,,(a) = fx(a) for somek.

Theorem 4.2. The colimit of( A ) k<., is the freen-generatedV-algebra.

Note that ifV is locally finite (ie the finitely generated algebras are é)ithen each
Ay is finite. Thus, ifV is locally finite we can approximate every finitely generdtee
V; algebra by finitex-generated/ algebras. This is the case in our examples, wheére
is either the varietyBA of Boolean algebras or the varidbL of distributive lattices.

The role of rank 1 axioms The equational reasoning needed to determine whether
two terms are identified ial;, may involve terms of degree larger thanWe therefore
defines =k t if, in the equational logic for the signature ¥, the equations = ¢ has

a proof from the axioms A that only uses terms of degreek.

Definition 4.3. The sequencgA} )y<., is the quotient of 7. ) <., by (=5, )k<w-
Theorem 4.4. The colimit of(A} ), <., is the freen-generatedV-algebra.

Note that thed,, are determined by the equational thedly(V;) whereas théA} ) de-
pend on the particular axiomatisatiorx AMoreover, in contrasttothig : A — Agy1,
thed;, : Aj — A}, need not be injective. But if they are, one often can dedus&-de
able properties like decidability, normal forms, and othas shown by Ghilardi [18].
The following gives a sufficient condition. For a detailedidiéion of L below see [21,
Section 4.1.3].

Theorem 4.5. Let L be the functor ofV whereL(A) is the freeV-algebra generated
by {fala € A} modulo the axiom#x. If Ax is of rank 1, the sequencesly). <.,
(A} )k<w and (Ly) k<. (se€ (2)) coincide.

In pgr_ticullar, we will exploit that for rank 1 axioms, the npbismsij, : A}, — A},
are injective.

5 Free modal and distributive modal algebras

We now combine Sections 2 - 4. For modal (distributive) atgebthe axioms A of
Section 4 are of rank 1 (see Definitions 2.4 and 2.12) and Ened:5 applies.

Free modal algebrasLet B, be then-generated free Boolean algebra, thatRg, is
isomorphic to the powerset of2&-element set (eg [19, 4.9]). Léf, be the dual ofB,.
According to the construction discussed in the previoutiareve letL = By + V' in
(1), that is,

Bj+1 = By + V(Bk).

The mapsy, Oy, : Br — By41 are as in Section 4. From Theorem 4.2 we obtain



Corollary 5.1. The algebra B, {.,) obtained from the colimit of B )x<., is the free
modal algebra oveB.

Now we will look at the dual of B,,, ¢,,). Let X, be a2” element set (the dual d3;)
and (because of the duality #fandV (Theorem 2.6) and ok and+)

X1 = Xo x P(Xy).
Theorem 5.2. The sequenceXy ) k<., With mapsry, : Xo x P(X) — X defined by
mx(x, A) = (x, mp—1[A])

is dual to the sequend&3y, ) <., With mapsiy : By — By.1. In particular, ther;, are
surjective. Moreover, the relatioR;, C (X x P(X)) x X}, defined by

(x, A)Ryy iff yc A
is dual to{y, : By, — By+1 (see Theorem 2.3).

Remark 5.3.An elementr = (I, S) € Xy11 can be understood as a tree with the root
labelled by an elemert € X, and the children being the elements$fc P(Xy).
These trees have a rich history and have been studied, farpeaby [3, 2,6, 18,5,
31].

Corollary 5.4. The modal spac€X,, R.,), whereX,, is the limitinStoneof the family
{ Xk }kew With the mapsr, 11 : Xk11 — Xk, andR,, is defined by(x;);cw R (Vi) icw
if 2,11 Rryy for eachk € w is (isomorphic to) to the dual dfB,,, O.,).

Remark 5.5.Note that(X,,, R,) is isomorphic to the canonical model of the basic
modal logicK; see [8, Section 5]. Therefore, a formula of modal logic ikeotem of

K iff it is satisfiable in(X,,, R.,). Moreover,(X,,, R,) is also theK'-coalgebra cofree
over Xj.

Free distributive modal algebrasLet D, be the freen-generated distributive lattice
andX, be its dual poset, that i = (P(n),C), wheren = {0,...,n — 1} is an
n-element set (eg [19, 4.8]). According to the constructi@tassed in the previous
section we letDy 1 = Dy + V(Dy). whereV is the Vietoris functor for distributive
lattices. The mapsy, Or : Dr — Dyy1 are as in Section 4. From Theorem 4.2 we
obtain

Corollary 5.6. The algebra D, ¢,,) obtained from the colimit dfDy,)x <., is the free
modal distributive algebra oveb,.

For the dual of D, 0,), Theorem 2.13 leads us to defiig; = X, x Conv(Xy).

Theorem 5.7. The sequencéXy )i« With 7, : Xy x Conv(Xy) — Xj defined by
7 (z, A) = (x, mx—1[A]) is dual to the sequend®y, ) <., With mapsiy, : Dy, — Djy;.
In particular, ther;, are surjective. Moreover, the relatiapy, C (Xox Conv(Xy)) xX.
defined by(z, U)Qry iff y € Uis dual toQy : Dy, — Dy1 (See Theorem 2.11).



Corollary 5.8. The modal Priestley spad&,,, Q.. ), whereX,, is the inverse limit in
Priest of the family{X}, }rc., with the mapsriy; : Xpp1 — X and @, is defined
by (2:)icwQuw(¥i)icw If x+1Qryx for eachk € w is (isomorphic to) to the dual of
(Dw, Ouw)-

Similar to the modal case the spacg,, @Q.,) is isomorphic to the canonical model of
the basic positive modal logic and it is the final coalgebratie functorX, x Conv on
Priestley spaces.

6 Applications

Our first three applications are based on approximatingréfedligebras (and their du-
als) by the initial sequence of an appropriate functor ag)inThe last section, indicates
how to go beyond rank 1 in a systematic way using Sahlqvistrthéut the details have
to be left for future work.

6.1 Normal forms

In this section we discuss normal forms for the elements @éfingenerated free modal
and distributive modal algebras. In logical terms this isieglent to a normal form
representation for the formulas of the corresponding laggu

Definition 6.1. Let'V be a variety and4(n) ann-generated free algebra &f. We say
that V admits a normal form representation if for everye A(n) there exists a term
t(a), effectively computable from such that for every,b € A(n) we have-vy a = b
iff t(a) = t(b).

We write At(—) for the set of atoms of a Boolean algebra and,fo£ B, andS C
At(Bk), let

asr=Npn \ oA )\ 0ernD\ ¢
peT p¢T peS peSs

Lemma 6.2. a € By44 is an atom iffa = ag r for someT’ C By, and S C At(By,).

Similarly, for setsT" C Dy andS C J(Dy), where J(Dy,) is the set of all join-
irreducible elements ab;, we let

Bsr= N\Non \ Oend\ ¢

peT peS peSs

Lemma 6.3. a € Dy, is join-irreducible iffa = B for someT C Dy andS C
J(Dy,).

Corollary 6.4. Basic modal logic and basic positive modal logic admit nolrfioam
representations.



Proof. The result follows from above lemmas and the fact that everniilap in n-
variables can be seen as an element of:fynerated free algebra of the correspond-
ing variety. As we showed above, for every element ofrthgenerated free modal or
distributive modal algebra, there exigtse w such thatp belongs toBy or Dy, re-
spectively. Every element of a finite Boolean algebra (résjte distributive lattice) is

a join of atoms (join-irreducible elements) that are belbig element. Therefore, we

obtain thaty = \/ as 7 (resp.p =\ Bs.7).

Remark 6.5.The formulasas r are the so-called Fine’s canonical formulas [16, 25].
Abramsky [2] and Ghilardi [18] derive these formulas in a veayilar to ours.

6.2 Free modal algebras as temporal algebras

In this section we will give another corollary of our repretsions of free modal and
distributive modal algebras. We will show that these algstare reducts of temporal
algebras. In case of modal logics this was first observed hia@h[18].

Definition 6.6. A modal algebrg B, ¢) is a reduct of a temporal algebra if there exist
Op : B — B such that for every, b € B we haveQa < biff a < Opb.

A distributive modal algebrdD,, O) is a reduct of a temporal algebra if there
existOp, Op : D — D such that for every, b € B we haveda < b iff a < Opb and
Opa < biff a < Ob.

Theorem 6.7. LetV be a variety of modal or distributive modal algebras axioised
by the formulas of rank. Then every finitely generated fr&&algebra is a reduct of a
temporal algebra.

Proof. (Sketch) We only look at the modal case. (&, O,,) be the freeV-algebra.
Then since eaclBy, is finite, the mapd;, : Br — Bi41 has a right adjoin‘r]’]% :
By4+1 — By, for everyk € w. Therefore, all we need to show is that the mﬁﬁgcan
be extended to the whole &,. For this it is sufficient to prove tha;_, 0% 1 = D’Igik.
This equation holds if and only if for every € X, the equationr, ", Ry _1[z] =
Rm,;l[x] holds. Checking that the latter equation is satisfied is easlyis based on
the fact that for every € w the mapsr;, are surjective. We skip the details.

6.3 Pelczynski compactification

In this section we characterise the spage We show thatX,, is homeomorphic to the
so-called Pelczynski space.

Definition 6.8. (see [28] and [26]) A spacé&3 is called thePelczynski spacé 3 =
Xiso U X1im, WhereX;,, is a countable set of isolated pointsBf X;,,, is the set of
limit points of'3, the spaceX;;,,, is homeomorphic to the Cantor spaéeand X;,, =

L.

Theorem 6.9. The underlying Stone spacg, of the canonical modelX,,, R,,) is
homeomorphic to the Pelczynski spgge




Proof. (Sketch) The proof uses a result of Barr [6] that thesgt, of isolated points

of X, is dense inX,,. We proceed by observing that the 3&t,, is countable and that
the setX;,, of the limit points of X, is uncountable and contains no isolated points
in the topology induced fronX,,. Thus [15, 6.2.A.(c)]. X is homeomorphic to the
Cantor space€ and thereforeX,, is homeomorphic to the Pelczynski sp&ge

Remark 6.10.n fact it is not a coincidence that the final coalgebra for Wietoris
functor is based on the Pelczynski space. We can prove thavéoy polynomial func-
tor T' on Stone spaces, the final coalgebraois finite or is homeomorphic to the
Cantor spacé&, the Alexandroff compactification of a countable discrgiace or to
the Pelczynski spacB.

6.4 Modal logics not axiomatised by rank 1 axioms

In this section we indicate that our method can be extendéalgios that are not ax-
iomatised by axioms of rank 1. As a simple example we conghdelogicT obtained
from the basic modal logiK by adding to it the reflexivity axiomp — Op (see also
Ghilardi [18, Section 5]). The Kripke frames for this logiceacharacterised by their
accessibility relation being reflexive. L&tt be the variety of modal algebras corre-
sponding tdT'. Since the reflexivity axiom is not of rank 1, in order to caust finitely
generated fre&/ r-algebra, we need to take quotients of the algelitagSection 5).
For everyk € w we will quotient By, by the relation=k,, AX = {p — Op}, asin
Definition 4.3. In other words, we define the seque(Bg);., by letting By = By
andB),_, = By + V(By,) moduloiya — Ora, fora € By

In dual terms, for every: € w we select a subséf, of X; such that for every
U C Yy, we haver, ' (U) C (Ry)U. This is equivalent tar, ' (y) C (R){y} for every
y € Y. (The fact that we can move from sets to singletons is not acadence, it is
a consequence of a more general fact that> (¢ is a Sahlqvist formula [8, Section
3.6]). The latter condition is equivalent tq.(z, A) € A, for every(z, A) € Yi+1 and
k € w. ThereforeYy = X, and for everyk € w, Y11 = {(z,4) : 2 € Y,A C
Yy, mi(x, A) € A}. By induction onk we can also show that the restrictionmfto Y
is a surjection for every € w, which means that the quotientsigfs are embeddings.
Let Sy, = Ry | Yy and&, = m | Yy, for eachk € w. We arrive at the following
theorem.

Theorem 6.11. The modal spacg¢Y,,, S, ), whereY,, is the inverse limit inStone
of the family{Y}x<. with the maps¢;11 : Yiy1 — Yy and S, is defined by
(%) icwSw(Yi)icw If x+1Skyr for eachk < w is (isomorphic to) to the canonical
model for the modal logi.

This example suggests that a similar technique can be dppliether logics axioma-
tised by Sahlgvist formulas. Studying these questions failde one of the directions
of future work.

7 Conclusions and future work

In this paper we presented a uniform method for construdtaeyalgebras for algebras
with operators axiomatised by equations of rank 1. We agjlies general method to



construct free modal algebras and free distributive motigaas. We also recalled
normal forms for modal logic and derived normal forms forifies modal logic. We
list directions of further research.

One is to apply this construction to other non-classicakt®fpr example intuition-
istic logic, many-valued logics etc. More generally, ong/mibe able to obtain results
for varieties, in particular for locally-finite ones, thai drise from logic.

In the context of modal logic most of the important systemsmat be axiomatised
by the formulas of rank 1. Therefore, for describing freeshlgs for those systems, we
need to adjust this method as indicated in Section 6.4. Amgackioms means to take
quotients of the algebras, it corresponds to taking subsets of tkig on the dual side.
To do this in a uniform way, one should look at Sahlqvist folasu

Another interesting direction for further research is telsput in detail the con-
nection of this approach with the one of Moss [25]. It seenas koss’ filtration type
technique has a direct representation in our construdti@nvarious modal logics Moss
constructs canonical models of formulas of finite modal degiThese models can be
obtained from the modelX;, by lifting in an appropriate way relation8;, between
Xk+1 and X}, to Xk+1.

The procedure to obtain normal forms should generalisel fogits of rank 1 (as
long as the axioms are effectively given). This should batesl to recent work of
Schibder and Pattinson [29] on the complexity of rank 1 logicsriviand Mikulas [24]
also obtain complexity bounds for bi-modal logics by loakinto algebras of terms of
degree< k. Obtaining normal forms for logics that are not axiomatibgdormulas of
rank 1 is another interesting question.

We showed that the canonical model of the basic modal lodia$ed on the Pel-
czynski space. For other logics, however, such a charaatem does not exists. So a
natural question is what are the underlying Stone spacearafiical models of other
modal logics. As we saw above the canonical model of the brasidal logic is a fi-
nal coalgebra for the Vietoris functor. So an interestingsiion is whether the final
coalgebra for every finite-set preserving functor is alsgeldeon the Pelczynski space.

All these questions hold also for positive modal logic aredrtiiariations considered
in domain theory. But moreover, the recent work of Bruun arehi®e [10], which
connects ontologies with free distributive algebras wipemators, adds another smack
to this investigations: The axioms that [10] consider irithaper are of rank one.
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