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Chapter 1

Introduction

Modal logics are extensions of classical logic, obtained by the addition of two
unary operators1, □ and ♢, which we call modal operators. These modal opera-
tors are used to express modalities such as necessity and possibility, provability,
knowledge, moral and legal obligation, temporal properties and many more. In
this manner, modal logics are more expressive than classical logic, while still
being decidable. For a thorough exposition on modal logic, we refer to [10, 13]

While the most popular semantics for modal logics are the relational Kripke
semantics, it also admits two, by now classical, topological semantics. One is
given by interpreting the modal diamond ♢ as the closure operator, and the other
by interpreting ♢ as the derived set operator2. We refer to [5] for a thorough
overview of these semantics. A celebrated result for the closure semantics is
the McKinsey and Tarski theorem stating that the modal logic S4 is sound and
complete with respect to any dense-in-itself metrizable space, in particular, any
Euclidean space [18].

In this thesis we will concentrate on the provability logic GL and derived set
semantics. GL, the logic axiomatized by the formula □(□p→ p) → □p, is known
as the provability logic, as it describes provability for Peano theories when □φ
is interpreted as ‘φ is provable in a Peano theory’. We only work with GL as a
formal modal logic, for more background on GL as a provability logic we refer to
[12] and [3]. A landmark result for the derived set semantics is the Abashidze-
Blass theorem stating that GL is sound and complete with respect to any ordinal
α ≥ ωω with the standard interval topology [1, 11] (See also: [9]). Earlier Esakia
[14] and Simmons [19] showed that GL is sound and complete with respect to the
class of scattered spaces. Recall that a topological space is scattered if its every
non-empty subset contains a point isolated in that subset. It is easy to verify
that each ordinal is a scattered space with respect to the order topology.

In modal logic, general Kripke frames constitute an important generalization
of Kripke semantics. A general Kripke frame consists of a relational Kripke
frame for modal logic together with a restricted class of sets one can evaluate

1In principle, modal logics can have multiple (even infinitely many) modal operators of any
arity. We only consider modal languages with unary □ and ♢.

2Recall that the derived set d(U) of U consists of all points x such that every open neigh-
bourhood of x intersects U\{x}.
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formulas in, which we call the set of admissible sets. It is well known that, unlike
Kripke semantics, every normal modal logic is sound and complete with respect
to its general Kripke frames [13].

Similarly to Kripke frames one can consider general topological spaces for
both the closure and derived set semantics. A general (topological) c-space is
a pair (X,P ), where X is a topological space and P is a set of admissible sets
closed under the closure operator. G. Bezhanishvili et al. [8] show that the
McKinsey and Tarski theorem can be extended to all connected extensions of
S4 by considering general c-spaces. In particular, they showed that for every
extension L ⊇ S4 such that L is the logic of a connected S4-algebra, there exists
a general c-space (R, P ) over the real line R such that L is sound and complete
for (R, P ). In this manner, it allows one to study logics above S4 while staying
in the realm of Euclidean spaces, which are well-understood.

General topological spaces for the derived set semantics have been considered
in [16] for provability logics with countably many modal operators and more
recently in [21] where it was shown that the bimodal provability logic GLB is
sound and complete with respect to general bi-topological spaces. This was
recently generalized in [4], where it was shown that the logic GLP, the provability
logic with countably many modal operators, is complete with respect to general
spaces over the ordinal ϵ0.

In this thesis we combine these two approaches. We will consider general
topological spaces for the derived set semantics over ordinal spaces and we will
prove a generalization of the Abashidze-Blass theorem for these spaces, in the
same way [8] proved a generalized version of the McKinsey and Tarski theorem
for general spaces over the real line. Later on in this thesis, we discuss the classes
of logics that can be captured by this semantics and we study completeness re-
sults for larger classes of topological spaces.

Outline. Chapter 2 discusses preliminaries required for the rest of the the-
sis. It discusses the basics of modal logics and Kripke semantics. It also reviews
the derived set semantics and provides a proof of the Abashidze-Blass theorem
as given in [9].

In chapter 3 we introduce general derived set semantics. Before we generalize
the Abashidze-Blass theorem in later chapters, we first note that any topological
space X can be equipped with a least general space, that is, a general space that
is contained in all other general spaces over X. This can be thought of as the
general space where the admissible sets are generated by ∅. We first set out to
describe the structure of least general spaces over scattered spaces and then give
a full description of their logics: We introduce the logic GL.3, an extension of GL
complete with respect to linear GL-frames, and show that the logic of any least
general space is an extension of GL.3. Moreover, we prove that every normal
extension of GL.3 is complete for the least general space over some ordinal.

Chapter 4 aims to prove our first generalization of the Abashidze-Blass the-
orem. We first introduce a tool that we will use often in this thesis, a notion
of morphisms that allows us to pull back any logic from one topological space
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to another. With this tool, we will prove that any logic above GL enjoying the
finite model property is also the logic of a general frame over an ordinal α ≤ ωω.
We prove this by combining our newly introduced tool with the proof in [9] of
the Abashidze-Blass theorem, which allows us to pull back structures from finite
frames to finite trees, and from finite trees to ordinal numbers.

Chapter 5 contains our second generalization of the Abashidze-Blass theorem.
We first introduce a new class of logics which contains the Kripke complete
logics, the so-called GL-semicomplete logics, and show that any such logic can
be obtained via a general frame over some countable ordinal. The steps of this
proof mirror those in the previous chapter, though many additional steps have
to be taken as we do not work with finite frames any more. First, we introduce a
new class of trees, namely the trees with the finite chain property (FCP-trees, for
short). We then show that these trees can be constructed recursively, allowing
us to work with proofs by induction on subtrees. We show that we need to only
consider countable trees, an approach mirroring work done on S4 in [8, Theorem
4.2]. We then show that we can relate any GL-frame to these trees and show
that we may directly link these trees to ordinal spaces.

The results of the previous chapters generate a natural question of how far
the aforementioned completeness results can be generalized. Namely, is every
GL-logic complete for general spaces over scattered spaces? In chapter 6, we
give a negative answer to this question. This chapter first discusses our newly
introduced class of logics and a new form of canonicity, and it then shows that
there exists a logic above GL that is not complete with respect to general spaces
over scattered spaces. Much of this chapter is based on work done in [20] by
Vooijs, as it mirrors his proof that GL is not quasicanonical.

In chapter 7 we complement the result from the previous chapter by showing
that every GL-logic is complete with respect to general topological semantics if
we drop the condition that these topologies are scattered. Moreover, we show
that this approach works for any wK4-logic. This is done by showing that any
general Kripke wK4-frame can be turned into a general topological space that
has the same logic as the original general Kripke frame.
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Chapter 2

Preliminaries

2.1 Modal logic

In this chapter, we will closely follow [10].

Definition 2.1. The basic modal language is defined using the propositional
letters Prop with elements usually denoted by p, q, r, etc., the classical logical
symbols and two unary modal operators □ and ♢. The well-formed formulas of
the basic modal language are given by the rule

φ ::= p | ⊥ | φ ∨ φ | ¬φ | □φ

Here, p ranges over the elements of Prop. We also make use of the classical
abbreviations ⊤ := ¬⊥, φ ∧ ψ := ¬(¬φ ∧ ¬ψ), φ → ψ := ¬φ ∨ ψ, φ ↔ ψ :=
(φ→ ψ) ∧ (ψ → φ), and use ♢φ as an abbreviation for ¬□¬φ.

From this syntax we can define modal logic. Note that in general we do not
speak of a singular modal logic, instead, we speak of many different modal logics.

Definition 2.2. Any collection L of well-formed modal formulas is called a
normal modal logic if it contains every propositional tautology (i.e., p → p,
p→ (q → p), p↔ ¬¬p, etc.) and the following axiom:

• The distribution axiom: □(p→ q) → (□p→ □q).

Furthermore, L must be closed under the following provability rules:

• Modus Ponens: Given φ and φ→ ψ, conclude ψ.

• Necessitation: Given φ, conclude □φ.

• Replacement: Given φ, conclude ψ, where ψ is obtained by uniformly
replacing propositional letters in φ by arbitrary formulas.

Finally, we require that L is consistent, meaning that ⊥ /∈ L.
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Note that there is no ‘assumptions based rule’: We cannot prove from ne-
cessitation that p→ □p ∈ L, we can only prove that, given φ ∈ L, we also have
□φ ∈ L.

From now on, we use the abbreviation NML when talking about a normal
modal logic. Note that the arbitrary intersection of NMLs is itself a NML. Thus,
for any set of modal formulas Γ, either there is some smallest NML containing
Γ or there does not exist a NML containing Γ.

Definition 2.3. Given normal modal logic L, we write L ⊕ φ for the smallest
normal extension of L containing φ. In case that adding the axiom φ to L yields
an inconsistent logic we set L ⊕ φ as the inconsistent logic. We define K to be
the intersection of all normal modal logics. Equivalently, K is the smallest NML.
It is often called the basic normal modal logic. The following is a table of major
NMLs we use in this thesis and their axioms:

Name of logic Axiomatization

K No additional axioms

K4 K⊕ (□p→ □□p)
wK4 K⊕ (□p ∧ p→ □□p)
S4 K4⊕ (□p→ p)

GL K⊕ (□(□p→ p) → □p)

To examine such logics, various types of models are used. We will look at
so-called Kripke semantics and topological semantics.

2.2 Kripke semantics for modal logic

Kripke semantics is the most standard semantics for modal logics.

Definition 2.4. A Kripke frame is a pair F = (W,R), where W is some
nonempty set of points and R is some binary relation on W . An element of
W is called a point or a world, and if xRy we often say that x ‘sees’ y.

1. A valuation v on a Kripke frame F is a function from Prop to P(W ).

2. A pair (F, v) where v is a valuation on F is called a model on F .

We interpret formulas on these models as follows:

Definition 2.5. Given model M = (F, v), and point x of F , we inductively
define the notion of a formula being true in point x of model M as follows:

M, x ⊨ ⊥ ⇐⇒ never

M, x ⊨ p ⇐⇒ x ∈ v(p)

M, x ⊨ ¬φ ⇐⇒ not M, x ⊨ φ

M, x ⊨ φ ∨ ψ ⇐⇒ M, x ⊨ φ or M, x ⊨ ψ

M, x ⊨ □φ ⇐⇒ ∀y(xRy → M, y ⊨ φ)
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Of course, this definition easily extends to ⊤,∧,→ and ♢. In that final case, we
find

M, x ⊨ ♢φ ⇐⇒ ∃y(xRy ∧M, y ⊨ φ).

If M, x ⊨ φ, we say that φ holds in the point x in the model M.

Definition 2.6. Given a Kripke frame F = (W,R) and a valuation v on F , we
say that φ holds on the model (F, v) if (F, v), x ⊨ φ for each point x of F . We
denote this as (F, v) ⊨ φ.

We say that φ holds on the frame F , denoted by F ⊨ φ, if φ holds on all
models of F . We call the set of modal formulas φ such that F ⊨ φ the logic of F ,
which we denote by L(F ). If C is some class of frames, then L(C) =

⋂
F∈C L(F ).

This is also the set of formulas that hold on all frames of C.
If Ω is some set of formulas and M a model, then we write M ⊨ Ω iff M ⊨ φ

for every formula φ ∈ Ω. This notation also extends to frames and classes of
frames. Finally, if Ω is some set of formulas, we say that a Kripke frame F is a
frame of Ω if F ⊨ Ω.

Note that we can also define F ⊨ φ in a non-pointwise manner. Any valuation
v on F can inductively be extended to all modal formulas as follows:

v(⊥) = ∅
v(p) is already given for all propositional letters

v(¬φ) = v(φ)c

v(φ ∨ ψ) = v(φ) ∪ v(ψ)
v(□φ) = □R(v(φ)) := {x ∈W | ∀y[xRy → y ∈ v(φ)]}

Of course, any well-formed modal formula can be rewritten as to consist only
of propositional letters, negation, disjunction and □. We see that for ♢:

v(♢φ) = ♢R(v(φ)) := {x ∈W | ∃y[xRy ∧ y ∈ v(φ)]}

Lemma 2.7. Let F be a Kripke frame, v a valuation and x a point. Then
x ∈ v(φ) iff (F, v), x ⊨ φ. It follows that L(F ) is also the set of formulas φ such
that v(φ) =W for all valuations v on F = (W,R).

Proof. This follows easily from the definitions.

One easily sees that L(F ) is a NML for all frames F . As stated before, the
intersection of a class of NMLs is also a NML. We deduce that L(C) is a NML
for any class of frames C. It also turns out that K, the smallest normal modal
logic, is the logic of the class of all Kripke frames.

It is possible to study modal logics by looking at their corresponding frames.
For example, the frames respecting the axiom □p → p turn out to be exactly
the reflexive frames. The converse also holds: The logic of all reflexive frames is
the smallest logic containing □p→ p.
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Generally, one can study what kind of frames correspond to some logic, but
one can also study whether there is some logic corresponding to some class of
frames. It turns out, for example, that there is no logic that characterizes all
irreflexive frames: For any NML L, either there exists a frame F containing a
reflexive point such that F ⊨ L, or there exists some irreflexive frame F ′ such
that F ′ ̸⊨ L.

Definition 2.8. We say that a normal modal logic L is Kripke complete if it
is the logic of some class of Kripke frames, i.e. there exists a class C of Kripke
frames with L = L(C).

Theorem 2.9. Each of the logics in 2.3 is Kripke complete. Furthermore, for
each logic L in 2.3, the following table gives the class C of frames such that
F ∈ C ⇐⇒ F ⊨ L.

Name of logic Class of Kripke Frames

K All Kripke Frames

K4 Transitive frames: ∀x,y,z xRy ∧ yRz → xRz

wK4 Weakly transitive frames: ∀x,y,z xRy ∧ yRz → xRz ∨ x = z

S4 Transitive and reflexive frames: ∀x xRx
GL Transitive, conversely well-founded∗ frames.

(∗: A frame (W,R) is conversely well-founded if there is no infinite sequence
{an}n∈ω ⊆ W such that anRan+1 for all n. We will dive more into this in the
section on GL.)

Proof. See [13, Corollaries 5.18 and 5.47 ] for all logics except wK4. For wK4,
note that the axiom ♢♢p → p ∨ ♢p is equivalent to the wK4 axiom and is
a Sahlqvist formula, so that wK4 is Kripke complete, see [10, Definition 3.41,
Theorem 4.41].

Definition 2.10. We say that L enjoys the finite model property, or that L
enjoys the FMP, if there exists some class C of finite Kripke frames such that
L = L(C). As with Kripke completeness, a logic enjoys the FMP exactly if it is
the logic of some class of finite Kripke frames.

Theorem 2.11.

1. All logics in 2.3 enjoy the FMP.

2. There are Kripke complete logics that do not enjoy the FMP.

3. There are Kripke incomplete NMLs.

Proof. For the first statement, see e.g. [13, page 143, Corollary 5.32, Theorem
5.46] and [7, Theorem 3]. For the second, see [13, Theorem 6.2]. For the third,
see [13, Theorem 6.16]

As seen in the previous theorem, not all NMLs are Kripke complete. But by
restricting the range of valuations, a semantics can be developed that does fully
encapsulate all modal logics, namely so-called general (Kripke) semantics.

8



Definition 2.12. A general Kripke frame is a pair (F, P ) such that F = (W,R)
is a Kripke frame and P is a subset of P(W ) that contains ∅ and is closed under
taking complements, finite intersections and ♢R. We call P the set of admissible
sets.

In algebraic terms we abbreviate this by saying that (P,♢R) is a (modal)
subalgebra of (P(W ),♢R).

A valuation v on a general frame (F, P ) is a function from Prop to P . These
can again be extended to include all modal formulas in their domain.

Note that for any modal formula φ, we obtain that v(φ) ∈ P . We again
say that φ ∈ L(F, P ) iff v(φ) = W for all valuations v on (F, P ). Note that
L(F ) ⊆ L(F, P ) for all general frames P on F . Just as in the ’normal’ Kripke
semantics, given a class C of general frames, we denote L(C) to be the set of
formulas that hold over all general frames of C. It again turns out that L(C) is
a NML for all classes of general frames C.

A Kripke frame can be seen as a general frame with P = P(W ), so that
general frame semantics are an extension of regular Kripke semantics. We have
the following strong result for general frame semantics:

Theorem 2.13. Let L be an NML. Then there exists a class C of general frames
such that L = L(C).

Proof. See e.g. [13, Theorem 8.4].

We note that the actual frame behind a general frame need not necessarily
respect the same axioms as the general frame. For example, there are GL-general
frames (F,A), where F itself is not a GL frame, as we will see in 6.3.

2.3 Descriptive and rooted frames

The following is a well-known, useful subclass of general frames. See [10, Defi-
nition 5.65 and onwards] and [13, Section 8.4] for more details.

Definition 2.14. We say that a general frame (F, P ) is differentiated if

(∀A∈P [x ∈ A↔ y ∈ A]) =⇒ x = y.

We say it is tight if

(∀A∈P [y ∈ A→ x ∈ ♢RA]) =⇒ xRy.

We say it is compact if, for all {Ai}i∈I ⊆ P such that {Ai}i∈I has the finite
intersection property (that is, for all finite J ⊆ I:

⋂
i∈J Ai ̸= ∅)⋂

i∈I
Ai ̸= ∅.

We say it is refined if it is both differentiated and tight, and we say it is descriptive
if it is both refined and compact.
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The class of descriptive frames are generally well-behaved. We have the
following result for descriptive frames.

Theorem 2.15. Let L be a NML. Then there exists a class C of descriptive
frames such that L = L(C).

Proof. See e.g. [13, Theorem 8.36]

Descriptive frames can also be used to classify well-behaving modal logics:

Definition 2.16. We say that a NML L is canonical if for each descriptive frame
(F, P ):

(F, P ) ⊨ L =⇒ F ⊨ L

Remark. This is not the usual definition of canonicity. This requirement is called
d-persistence and is not currently known to be equivalent to canonicity, though
it is known that d-persistance implies canonicity. In the case that a NML is
finitely axiomatizable, these notions are equivalent ([10, Proposition 5.58]). We
call this property ’canonicity’ for clarity as we otherwise overload d later on in
this thesis.

The main logic of this thesis, GL, is a well-known example of a non-canonical
logic. We will later on show a proof of this well-known statement and discuss
why this forms an issue for generalizing the Abashidze-Blass theorem.

Definition 2.17. We say that a frame F = (W,R) is rooted with root x ∈W if
xR∗y or x = y for each y ∈ W , where R∗ is the transitive closure of R. Given
frame F = (W,R) and point a ∈W , we define the rooted subframe Fa = (Wa, Ra)
of F with root a as:

Wa = {x ∈W | aR∗x}
Ra = R ∩ (Wa ×Wa)

Note that, given frame F , for each a the subframe Fa is rooted with root a. We
note the following result, which can easily be checked.

Theorem 2.18. Let F = (W,R) be a Kripke frame. Then

1. L(F ) ⊆ L(Fa) for each a ∈W

2. For each φ /∈ L(F ) there is an a ∈W such that φ /∈ L(Fa).

Corollary 2.18.1. All Kripke complete logic are complete with respect to their
rooted Kripke frames.

Proof. Assume L to be Kripke complete, say L = L(C) with C some class of
Kripke frames. Let C ′ be the class of rooted subframes of C. By the first
statement of theorem 2.18, we find L(C) ⊆ L(C ′) and by the second we find
L(C)c ⊆ L(C ′)c, so that indeed L(C) = L(C ′).

We also have the following strengthening of this statement:

10



Corollary 2.18.2. Every normal modal logic is sound and complete with respect
to its rooted refined frames.

Proof. Take any refined frame (F, P ) with F = (W,R). Consider any a ∈ W .
We define:

Pa = {A ∩Wa | A ∈ P}

We will prove that (Fa, Pa) is again a refined frame.
First, indeed (Fa, Pa) is a general frame: We see that Pa is closed under

♢R as ♢R(A ∩Wa) = (♢RA) ∩Wa. Likewise, Pa is closed under ∧ and ¬. As
∅ ∩Wa = ∅, we see that ∅ ∈ Pa. We conclude that (Fa, Pa) is a general frame.

Assume x, y ∈Wa such that x ̸= y. As P is differentiated, there exists some
A ∈ P such that x ∈ A and y /∈ A. We see that x ∈ A ∩Wa and y /∈ A ∩Wa, so
that there is an element of Pa containing x but not y. Indeed, Pa is differentiated.

Assume x, y ∈Wa such that ¬(xRy). As P is tight, there exists some A such
that y ∈ A but x /∈ ♢RA. We deduce that y ∈ A ∩Wa but x /∈ (♢RA) ∩Wa =
♢R(A ∩ Wa). Thus, there exists an element A′ of Pa containing y with the
property that x /∈ ♢R(A

′). We conclude that Pa is tight.
We see that (Fa, Pa) is tight and differentiated, so that it is refined. We

now note that just like before, L(F, P ) =
⋂

a∈W L(Fa, Pa). From this, we may
conclude that the logic of any refined frame is the logic of some class of rooted
refined frames. As noted before, any logic is the logic of some class of descriptive
frames, in particular of some class of refined frames. In turn, any logic of some
class of refined frames is the logic of some class of rooted refined frames, thereby
proving the theorem.

2.4 GL logics and frames

In this section we address logics with the GL-axiom, as defined in 2.9.

Definition 2.19. GL-logics are NMLs containing the GL-axiom:

□(□p→ p) → □p

By contraposition, this axiom is equivalent to ♢p→ ♢(p ∧ ¬♢p).

Note that this logic is well-known as the Gödel-Löb logic, which is the prov-
ability logic of Peano arithmetic. For an in-depth explanation behind this logic
we refer to [12] and [3]. In this thesis, we consider GL and its extensions only as
a formal modal logic.

As stated in theorem 2.9, GL-frames correspond exactly to the transitive,
conversely well-founded frames, where a frame is conversely well-founded iff it
contains no infinite ascending chain: There exists no infinite sequence {xn}n∈N
such that xnRxn+1 for all n. This sequence does not need to be strictly increas-
ing. In particular, no GL-frames may contain reflexive points. We see that GL
can be thought of as the logic of all frames that are strict partial orders without
infinite ascending sequences. We will sometimes write x < y instead of xRy for
GL-frames.
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Definition 2.20. We say that a Kripke frame T = (W,<) is a tree if the
following hold:

1. < is a strict partial order on W , that is, an irreflexive, transitive relation.

2. T is rooted as in definition 2.17.

3. For each x ∈ W , the principal downset of x is linearly ordered by <, that
is, {y | y ≤ x} is linearly ordered by <. Here, y ≤ x is an abbreviation of
y < x ∨ y = x.

The depth of a tree T is the largest number n such that there exists a linear
subset of T consisting of n+ 1 points. Note that by this convention, the depth
of the one-point tree is 0. We say that a tree with chains of any finite length has
infinite depth.

Note that GL has the FMP by theorem 2.11. We have the following well-
known strengthening of that statement.

Theorem 2.21. GL is the logic of the finite, irreflexive and transitive trees.

Proof. See [13, Corollary 5.47.ii]. It uses a notion called ’unraveling’, which we
use later in this thesis in theorem 4.3.

We note the following observation: For each finite, transitive, irreflexive tree,
each point either has no successors or has a successor that has no successors.
From this, we can conclude □⊥ ∨ ♢□⊥ ∈ GL, equivalently, ¬♢⊤ ∨ ¬□♢⊤ ∈ GL.
This is exactly Gödel’s second incompleteness theorem: Any theory capable of
providing Peano arithmetic is either inconsistent or is incapable of proving its
own consistency.

Within this thesis, we not only use Kripke semantics to study GL, we also use
topological semantics. In fact, this is the main semantics studied in this thesis.

2.5 Topological semantics and scattered spaces

The notion of topological semantics is older than the notion of Kripke semantics.
We omit the definition of the more well-known closure-semantics and define only
d-semantics, as it is much more relevant for this thesis. For details on closure-
semantics, see [5].

Definition 2.22. On a topological space (X, τ), the derived set operator d :
P(X) → P(X) is defined as the operator that sends any subset to the set of its
limit points. Formally, given A ⊆ X:

x ∈ d(A) ⇐⇒ (x ∈ U → ∃y∈A∩U y ̸= x) for every open set U.

12



We inductively define dn(A) for n ∈ ω as follows1:

d0(A) = A

dn+1(A) = d(dn(A))

Definition 2.23. A topological frame is a topological space (X, τ). A valuation
on a topological frame is a function v from Prop to P(X).

The valuation v extends to all formulas in the usual manner for ∧,∨,¬, etc.
For the operators □ and ♢, our interpretation depends on the specific type of
topological semantics.

d-semantics is the topological semantics in which ♢ is interpreted as the
derived set operator d. The logic of a topological space (X, τ) according to d-
semantics is the set of formulas φ such that v(φ) = X for all valuations v. This
is denoted by Ld(X, τ) or by Ld(X).

For all topological spaces X and all A ⊆ X, we have that d(d(A)) ⊆ A∪d(A),
so that d-semantics makes sense to consider for logics above wK4. As GL is a logic
above K4, it is certainly a logic above wK4 and can be studied with d-semantics.
It turns out that we need to restrict our view to a subclass of the topological
spaces for GL.

Definition 2.24. A topological space (X, τ) is scattered if all its nonempty
subsets contain isolated points, i.e. A\d(A) ̸= ∅ for all nonempty A ⊆ X.

The following was proven independantly by Simmons [19] and Esakia [14].

Theorem 2.25 (Simmons, Esakia). Let X be a topological space. Then X is
scattered if and only if d(A) ⊆ d(A\d(A)) for all A ⊆ X.

From this we see that Ld(C) is a GL-logic if and only if C is a class of scattered
spaces. Furthermore, as we will soon see, Ld(C) = GL when we take C to be the
class of all scattered spaces.

We now give a useful theorem that allows us to directly link the scattered
spaces to GL Kripke frames.

Theorem 2.26. Let (W,R) be a GL-frame. Then there exists a scattered space
(W, τ) also on W such that dτ (A) = ♢R(A) for all A ⊆W .

Proof. As stated before, any Kripke GL-frame F = (W,R) is a strict partial
order without infinite ascending chains. We can equip F with the upset-topology,
defined as A ⊆ W is open if xRy → y ∈ A for each x ∈ A and each y ∈ W . We
will prove that

♢RA = ♢τA for all A ⊆W.

where ♢RA = {x | ∃y∈AxRy} and ♢τA = d(A) with the upset topology. Consider
any A ⊆W . We first note

x ∈ d(A) ⇐⇒ ∀U∈τ [x ∈ U → ∃y∈U∩Ay ̸= x]

1It is also possible to define dα(A) for any ordinal α. In fact, this was the original reason
for Cantor to introduce the ordinals.
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Take U to be the set {z | x ≤ z}. Then U is an upset so that it is open. As
x ∈ d(A), we find that there is some y ∈ U ∩A with x ̸= y. Thus, there is some
y ∈ A with x < y, so that xRy. We conclude that x ∈ ♢RA.

Conversely, take x ∈ ♢RA, so that there is some y ∈ A with xRy. Note that
K is irreflexive so that x ̸= y. As x < y, any upset containing x must necessarily
contain y, so that x ∈ dτ (A). We indeed see that dτ (A) = ♢RA.

Theorem 2.27. Let L be a Kripke complete GL-logic. Then L is complete with
respect to scattered spaces.

Proof. Let L be a Kripke complete GL-logic with class of Kripke frames C. Note
that by the previous theorem, L(C) = Ld(C) so that Ld(C) = L(C) = L.

We see that d-semantics extends the regular Kripke semantics for GL-frames.
Of course, as stated before, GL itself is Kripke complete, so by the previous
result, it is sound and complete with respect to scattered spaces.

Definition 2.28. Given topological spaces X and Y , we say that f : X → Y
is a d-morphism or d-map if it is continuous, open and pointwise discrete, i.e.
for any y ∈ Y , f−1(y) is a discrete subset of X. Note that a subset A of X is
discrete if d(A) ∩A = ∅

We have the following result for d-maps by [6], which also holds for non-
scattered spaces:

Theorem 2.29. Let f : X → Y be a d-morphism and let A ⊆ Y be an open set.
Then

f−1(dY (A)) = dX(f−1(A))

Furthermore, if f is onto, Ld(X) ⊆ Ld(Y ). In other words, for any formula φ
we have that X ⊨ φ implies Y ⊨ φ.

We see that we have a useful way of relating the logics of scattered spaces by
using these morphisms. We will use this to prove that GL is sound and complete
with respect to the ordinals.

2.6 Ordinal numbers as topological spaces

We assume familiarity with the ordinals and ordinal arithmetic. For an overview
of the properties of ordinal numbers, see [17]. In this thesis, we will use ordinals
in two different ways. The first is as an index set. The second is as a topological
space, with the so-called ’order topology’.

Definition 2.30. The order topology on a totally ordered set X is the topology
generated by the basis of the form:

(a, b) = {x ∈ X | a < x < b}
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As any ordinal is a totally ordered set, we can equip all ordinals with this
topology. We note the following, which fully characterizes the order topology on
ordinals:

Theorem 2.31. Let α be an ordinal equipped with the order-topology. For any
β ∈ α, if β is a successor ordinal then {β} is an open subset of α. If β is a limit
ordinal, then any open set containing β contains (γ, β] for some γ < β.

Proof. Consider any such α and any β ∈ α. If β is a successor ordinal, say,
β = γ + 1, then {β} = (γ, γ + 2). If β is a limit ordinal, the result is trivial.

Definition 2.32. Given a set of ordinals A, we say that α is cofinal in A if
sup(A ∩ α) = α. Note that we must have that α is a limit ordinal in this case,
as for successor ordinals α = S(β):

sup(α) = ∪(S(β)) = β ̸= α

Lemma 2.33. Let α be an ordinal and let A be a subset of α. Then for all
β ∈ α:

β ∈ d(A) ⇐⇒ β is cofinal in A

Proof. Consider any such α and A. By definition:

β ∈ d(A) ⇐⇒ ∀U∈τ (β ∈ U → ∃γ∈A∩Uγ ̸= β)

If β is a successor ordinal, take U = {β}. We find that there is a γ ∈ {β} with
β ̸= γ, which can of course never hold. Likewise, by definition, if β is a successor
ordinal it can never be cofinal in A. Thus, we may assume that β is a limit
ordinal. In this case:

∀U∈τ (β ∈ U → ∃γ∈A∩Uγ ̸= β) ⇐⇒ ∀ζ<β∃γ∈A∩(ζ,β]γ ̸= β

⇐⇒ ∀ζ<β∃γ∈Aζ < γ < β

But this means that for each ζ < β, there is some γ ∈ A such that ζ < γ.
Equivalently:

sup(A ∩ β) = sup(A ∩ [0, β)) = β

We conclude that β ∈ d(A) ⇐⇒ β is cofinal in A.

Theorem 2.34. Let α be an ordinal equipped with the order topology. Then α
is a scattered space.

Proof. Consider any ordinal α and any nonempty A ⊆ α. Take β to be the
smallest element of A. As β is the smallest element of A, we find A ∩ β = ∅ so
that β is not cofinal in A, so that β /∈ d(A). We see that β ∈ A\d(A) so that
A\d(A) ̸= ∅.

We conclude that A ∩ d(A) is nonempty for every nonempty A ⊆ α, so that
α is a scattered space.
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2.7 The Abashidze-Blass theorem

Abashidze [1] and Blass [11] independently proved that GL = Ld(α) for any
ordinal α greater than ωω. In this section, we will discuss a proof of this theorem
by G. Bezhanishvili and P.J. Morandi [9]. It uses the fact that GL is sound and
complete w.r.t. the class of finite trees. We give the entire argument as later on
in this thesis we will apply similar methods to generalize the Abashidze-Blass
theorem. Recall as in definition 2.20 that the depth of a rooted tree T is one
less than the length of the largest linear subset of T .

Lemma 2.35. Let T be a finite, transitive, irreflexive rooted tree of depth n > 0.
Then there exists an onto d-morphism f : ωn + 1 → T . For n = 0, there exists
an onto d-morphism f : 1 → T

Proof. We will prove this by induction. For n = 0, the result is trivial.
Now assume n > 0, and the result holds for all k < n. We let r be the root

of T . Then r has immediate successors t1, ..., tm, from which ’sprout’ subtrees
T1, ..., Tm. We view T as the trees T1, ..., Tm, all glued together by the point r.
We denote the depth of tree Ti by ni. As a topological space, we can view T as
the union

⊎
Ti ∪ {r}, where any open U either contains the root and is equal

to T , or does not contain the root and U ∩ Ti is open in each Ti. Likewise, we
can split ωn +1 as

⊎
i∈ωXi ∪{ωn}, where each Xi is isomorphic to ωni mod m +1

if ni mod m > 0, and Xi is a singleton if ni mod m = 0. As there is at least
one ni that equals n − 1, we see that

∑
i∈ω |Xi| = ωn, so that this splitting is

indeed well-defined. By the induction hypothesis, for each i there exists an onto
d-morphism gi : Xi → Ti mod m. We now define f : ωn + 1 → T as follows:

f(ωn) = r

f(x) = gi(x) for each x ∈ Xi

Of course, f is onto. We claim it is also a d-morphism:
Consider any open U ⊆ T . If r ∈ U , then U = T and f−1(U) = ωn+1 which

is of course open. If r /∈ U , then U ∩ Ti is open for all i, and:

f−1(U) =
⋃
i∈ω

g−1
i (Ti mod m)

As each gi is a continuous map from Xi to Ti mod m and as each Xi is clopen in
ωn+1, we deduce that f−1(U) is the union of open sets so that it is an open set
itself. We conclude that f is continuous.

f is also open: Consider any open U ⊆ ωn + 1. If ωn /∈ U , then U ∩ Xi is
open for all i, so that f(U) =

⋃
i gi(U ∩Xi), which is open as the union of open

sets. If ωn ∈ U , we see that U must contain an co-finite amount of Xi in its
entirety, so that f(U) = T . We conclude that f is open.

Finally, we prove that f is pointwise discrete. Of course, f−1(r) = {ωn}
which is discrete. Now, for any t ∈ Ti:

f−1(t) =
⋃

k: k mod m=i

g−1
k (t)
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Each such g−1
k (t) is a discrete subspace of Xk, and each Xk is closed. Thus,

f−1(t) is discrete as the union of discrete subspaces of disjoint closed sets, so
that f is indeed poinwise discrete. We conclude that f is a d-morphism, which
proves the lemma.

Lemma 2.36. Let α be an ordinal. We consider α as a topological space. Then

dn(α) = {ωnγ | ωnγ ∈ α}

With dn defined as in definition 2.22.

Proof. Take any ordinal α. We note that the result is trivial for n = 0. For the
induction step, by lemma 2.33 we need to only find the set of cofinal points of
{ωnγ | ωnγ ∈ α} that are also points of α. These are of course exactly the sets
that can be written as ωn+1γ.

Definition 2.37. We define GLn to be the logic GL⊕□n⊥.

We can now finally state and prove the Abashidze-Blass theorem:

Theorem 2.38 (Abashidze-Blass). Let α be an ordinal number.

1. If 1 ≤ α ≤ ω, then Ld(α) = GL1.

2. If ωn + 1 ≤ α ≤ ωn+1, then Ld(α) = GLn+1.

3. If α ≥ ωω, then Ld(α) = GL.

Proof. Consider any ordinal number α. If 1 ≤ α ≤ ω, then d(α) = ∅, so that
we trivially see that Ld(α) = GL1.

Now assume that ωn + 1 ≤ α ≤ ωn+1. As α is a scattered space we see that
GL ⊆ Ld(α). We know

dn+1(α) = {ωn+1γ | ωn+1γ ∈ α}.

From this, we see that dn+1α = ∅. We conclude ¬♢n+1⊤ ∈ Ld(α), so that
GLn+1 ⊆ Ld(α).

Now, suppose φ /∈ GLn+1. As GLn+1 is sound and complete w.r.t. the trees
of depth at most n, there exists a tree T of depth m ≤ n such that φ /∈ Ld(T ).
By lemma 2.35, there is an onto d-morphism f : ωm + 1 → T . By theorem 2.29,
we find that Ld(ω

m+1) ⊆ Ld(T ), so that φ /∈ Ld(ω
m+1). As ωm+1 is a clopen

subset of α, we finally deduce that φ /∈ Ld(α). Thus, Ld(α) ⊆ GLn+1, so that
Ld(α) = GLn+1.

Finally, assume α ≥ ωω. Again, we see immediately that GL ⊆ Ld(α). Con-
versely, GL is complete w.r.t. the finite trees, so that we can use the same
argument as before and show that any formula φ not in GL must also not lie in
Ld(α). We conclude that indeed Ld(α) = GL.

We see that the Abashidze-Blass theorem proves that GL is the logic of ordinal
spaces by noting that Kripke frames can be related to finite trees, and that finite
trees can be related to ordinal spaces in a recursive manner. Our results build
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upon this approach, showing that logics above GL correspond to general spaces
over specific classes of trees, which in turn correspond to general spaces over
ordinals.
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Chapter 3

General semantics for GL, least
general spaces and GL.3

In order to generalize the Abashidze-Blass theorem, we first introduce general
semantics for d-semantics. In this chapter we start with a particular d-semantics.
We show that for every topological space there must exist a smallest general
space over that topological space. We continue with a discription of all logics
that may be obtained in such a manner and give a concrete construction of
topological spaces for each logic that can be obtained in this way.

3.1 General topological d-semantics

As stated before, we will study general semantics for scattered spaces. Note that
these have already been introduced in [16] for the d-semantics and studied more
recently in [21] and in [4] for multimodal logics.

Definition 3.1. A general d-space is a pair (X,P ) with X a topological space
and P ⊆ P(X) a subalgebra of (P(X), d), i.e.:

∅ ∈ P (3.1)

A ∈ P =⇒ X\A ∈ P (3.2)

A ∈ P,B ∈ P =⇒ A ∩B ∈ P (3.3)

A ∈ P =⇒ d(A) ∈ P (3.4)

Note that such P are also closed under finite unions. This allows to restrict any
valuation to sets only in P .

Definition 3.2. A valuation v on a general d-space (X,P ) is a function from
Prop to P . As before, v naturally extends to include all basic modal formulas in
its domain. We again say that φ ∈ Ld(X,P ) iff v(φ) = X for all valuations v.
We call Ld(X,P ) the logic of the general d-space (X,P ).

Just as with Kripke semantics, one obtains our original concept of d-semantics
by taking P = P(X).
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Theorem 3.3. Let X be any topological space and let C be a set such that (X,P )
is a general space for all P ∈ C. Then (X,

⋂
C) is a general space.

Proof. This proof is a routine verification.

Corollary 3.3.1. Let X be a topological space. Then there exists a general space
over X that is contained in all general spaces over X.

Proof. By the previous theorem the intersection of all general spaces over X is
a general space over X, and this general space is automatically a subset of every
other general space over X.

3.2 The structure of least general spaces

Definition 3.4. The least d-space of a topological space X is the intersection of
all P such that (X,P ) is a general d-space. We often denote this by (X,Pleast),
(X,Xleast) or just by Pleast or Xleast. By definition, (Pleast, d) is the smallest
subalgebra of (P(X), d). In algebraic terms: The least space is the zero-generated
subalgebra of (P(X), d).

In this section, we will give a classification for all logics of classes of least
scattered d-spaces, i.e., the least d-spaces of scattered spaces. We will start by
describing the structure of least spaces.

Lemma 3.5. Let X be a scattered space and let i, j be any two natural numbers.
Then

i ≥ j =⇒ di(X) ⊆ dj(X)

Proof. We know trivially that d(X) ⊆ X. If A ⊆ B, we know that d(A) ⊆ d(B).
We see that di+1(X) ⊆ di(X) for all i. The result follows immediately.

Theorem 3.6. Let X be a scattered space and let i and j be two different natural
numbers. Then

(di(X)\di+1(X)) ∩ (dj(X)\dj+1(X)) = ∅

Proof. Assume without the loss of generality that i < j. Then i + 1 ≤ j, so by
3.5, we obtain that dj(X) ⊆ di+1(X).

We immediately obtain that (di(X)\di+1(X)) ∩ dj(X) = ∅, so that indeed

(di(X)\di+1(X)) ∩ (dj(X)\dj+1(X)) = ∅.

Definition 3.7. Let X be a scattered space. We call the set

{di(X)\di+1(X) | i ∈ ω}

the set of atoms of X, and we call
⋂

i∈ω d
i(X) the core of X.

20



Note that each atom is pairwise disjoint by the previous corollary and the
core is pairwise disjoint with each atom. Furthermore, the union of all atoms
and the core is exactly X. Of course, it may be that the core is empty and that
there are only finitely many nonempty atoms.

Lemma 3.8. Let X be a scattered space with corresponding least general space
Pleast. Then Pleast contains exactly the finite unions of the atoms of X together
with the cofinite unions of the atoms of X with its core. Equivalently:

A ∈ Pleast ⇐⇒ ∃I⊆ω,I finite[A =
⋃
i∈I

di(X)\di+1(X)]∨

∃J⊆ω,J cofinite[A =
⋂
i∈ω

di(X) ∪
⋃
j∈J

dj(X)\dj+1(X)]

Let P denote the set above, so we will prove that P = Pleast. We will prove
both inclusions:

Lemma 3.9. Let X be a scattered space and let P be as defined above. Then
each element of P lies in Pleast.

Proof. As ∅ ∈ Pleast and Pleast is closed under complement, we deduce that
X ∈ Pleast. As Pleast is closed under d, we deduce that di(X) ∈ Pleast for all
i ∈ ω. As Pleast is closed under negation and intersection, we conclude that for
all i and all j:

di(X)\dj(X) ∈ Pleast

In particular, all atoms are elements of Pleast. As Pleast is closed under union,
all finite unions of atoms are indeed elements of Pleast.

Now take any element A of P , such that A is the cofinite union of atoms
together with the core. In this case, X\A is the finite union of atoms, so that
X\A ∈ Pleast. We conclude that A ∈ Pleast. As any element of P is either a
finite union of atoms of X or a cofinite union of atoms of X together with the
core, we see that P ⊆ Pleast.

For the converse proof, we need another short lemma.

Lemma 3.10. Let X be a scattered space and let P be as defined above. For
any nonempty A ∈ P , let i be the smallest number such that

di(X)\di+1(X) ⊆ A.

Then d(A) = di+1(X).

Proof. First note that this lemma is indeed well-posed: If A ∈ P is nonempty it
must contain at least one atom of X.

Note that for such A, we must have that A ⊆ di(X), so that d(A) ⊆ di+1(X).
But as X is a scattered space, we know that

d(A) ⊆ di+1(X) = d(di(X)\di+1(X)) ⊆ d(A).
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We conclude that d(A) = di+1(X).

From this, we can prove the converse of lemma 3.9.

Lemma 3.11. Let X be a scattered space and let P be as defined above. Then
P itself is a general space, so that Pleast ⊆ P .

Proof. We will directly work with definition 3.1.
Of course, ∅ ∈ P , as ∅ is the empty union of the atoms of X. The comple-

ment of a finite union of atoms is a cofinite union of atoms together with the
core and vice versa, so that P is closed under taking complements.

We will prove that P is closed under taking intersections. As P is closed
under complements, this is equivalent to proving that it is closed under taking
unions. Consider any A,B ∈ P . If A and B are both finite unions of atoms,
A ∪ B is again a finite union of atoms. If at least one of A and B is a cofinite
union of atoms together with the core, A∪B is a cofinite union of atoms together
with the core. We conclude that P is closed under unions.

Finally, consider any A ∈ P . If A = ∅, then d(A) = ∅ ∈ P . If A is
nonempty, it must contain some atom. By lemma 3.10, we deduce that there
exists some i such that d(A) = di+1(X). We note:

di+1(X) =
⋂
j∈ω

dj(X) ∪ (
⋃
k>i

dk(X)\dk+1(X))

We see that d(A) is a cofinite union of atoms together with the core, so that
d(A) ∈ P . We conclude that P is closed under d.

We see that ∅ ∈ P , and that P is closed under taking complements, inter-
sections and d. We conclude that P is a general space so that Pleast ⊆ P .

Theorem 3.8 now immediately follows from lemmas 3.9 and 3.11.

3.3 The logic of least general d-spaces

From our full description of the structure of least d-spaces, we can now study
the logics of such spaces.

Definition 3.12. We introduce the axiom .3 :

♢p ∧ ♢q → ♢(p ∧ q) ∨ ♢(p ∧ ♢q) ∨ ♢(q ∧ ♢p)

We call this axiom the linearity axiom. We denote by GL.3 the logic obtained
by adding the .3 axiom to GL.

As the name implies, we have the following well-known result for .3:

Theorem 3.13. All rooted .3-frames are linear.
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Proof. Let F = (W,R) be any Kripke frame. It is enough to show that for any
x, y, z ∈ W , if xRy and yRz then either x = z, yRz or zRy. But this is easily
shown: Take the valuation v on F that sends p to the singleton {y} and q to the
singleton {z}. We see that x ∈ v(♢p ∧ ♢q), so that

x ∈ v(♢(p ∧ q) ∨ ♢(p ∧ ♢q) ∨ ♢(q ∧ ♢p)).

Indeed, either y = z, yRz or zRy. Now, as F is rooted we find it must be
linear.

The .3-axiom is also one of the finite-width axioms, under the name bw1.
The axiom bwn roughly states for transitive frames that the width of the frame
is at most n. We say that a logic is of finite width if it contains at least one
finite width axiom. We have the following known result.

Theorem 3.14. Every finite width logic is Kripke complete.

Proof. See [13, Theorem 10.42].

From this, we can immediately classify the logics above GL.3. Recall that the
logics GLn denote the logics of GL with the added axiom □n⊥. We denote by
GLn.3 the GL logic with both the .3-axiom and the axiom □n⊥. We call logics
containing an axiom of the form □n⊥ a finite depth logic, and note the following
theorem:

Theorem 3.15. Let L be a finite depth logic. Then L has the FMP.

Proof. See [13, Theorem 8.85].

We define Cn to be the finite irreflexive chain of depth n. Note that Cn

contains n + 1 points. We denote the highest point of Cn by 0, the second
highest point of Cn by 1, etc. Thus, (Cn, R) are the natural numbers up to n
with R being the reverse order: 0 > 1 > 2 > ... > n. The following is already
well-known.

Theorem 3.16. GL.3 has the FMP.

Proof. See [13, Theorem 11.20] and note that GL.3 is a subframe logic, as dis-
cussed in [13, Section 11.3] and [13, Table 9.6].

Note that the only rooted finite GL.3-frames are {Cn | n ∈ ω}. We see that
GL.3 = L({Cn | n ∈ ω}). We also note that GLn+1.3 has the FMP for each n ∈ ω
(GL0.3 is the inconsistent logic and is not considered).

Theorem 3.17. Let L be a finite depth GL.3-logic. Then L = GLn+1.3 for some
n ∈ ω.

Proof. Note that GLn+1.3 is a finite depth GL.3-logic for each n by definition.
Let L be a finite-depth GL.3-logic. Take n such that □n+1⊥ ∈ L. As L is a
finite-depth logic, it has the FMP. We deduce that L is sound and complete
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with respect to its finite rooted frames. The only finite rooted GL.3-frames are
{Cn | n ∈ ω}, so that L = L(C) with C some subset of {Cn | n ∈ ω}. As
□n+1⊥ ∈ L we see that Ci /∈ C for i ≥ n+ 1. We deduce that C ⊆ {Ci | i ≤ n}.
Take k to be the largest number such that Ck ∈ C. Note that L(Ck) ⊆ L(Ci)
for i ≤ k. We conclude that C = {Ci | i ≤ k}. But note that in that case
L(C) = GLk+1.3. As the finite rooted frames of L are exactly C and as L has
the FMP, we conclude that L = GLk+1.3.

Theorem 3.18. Let L be an infinite-depth GL.3-logic. Then L = GL.3.

Proof. Let L be an infinite-depth GL.3-logic. As L is a GL.3-logic it is Kripke
complete by theorem 3.14. We note that for any n ∈ ω, there must exist a rooted
L-frame of depth at least n. If not, L must be a finite-depth logic as it is Kripke
complete. We note that for any rooted GL.3-frame F , if F contains at least n+1
points then Cn is an L-frame. Indeed, as F is a linear GL-frame, it has a final
point if it contains at least one point, it has a final and a second-to-last point if
it contains at least two points, and so forth. As L has rooted frames of depth
at least n for each n, we deduce that Cn is an L-frame for each n. But then
GL.3 =

⋂
n∈ω L(Cn) ⊆ L ⊆ GL.3, so that L = GL.3.

Theorem 3.19. Let L be a normal extension of GL.3. Then exactly one of the
following must hold:

1. L = GL.3

2. There exists n > 0 such that L = GLn+1.3

Proof. This follows immediately from the previous two theorems.

We can now formulate and prove the main theorem of this section.

Theorem 3.20.

1. Let X be a scattered space. Then the logic of its least space Ld(X,Pleast)
is an extension of GL.3.

2. Let L be a normal extension of GL.3. Then there exists an ordinal α such
that Ld(α, αleast) = L.

We will prove this by directly relating least spaces to linear Kripke frames.
For this, we first introduce modal algebras and isomorphisms for modal algebras.

Definition 3.21. We say that (A,♢) is a modal algebra if A is a Boolean algebra
and ♢ is a unimodal operator on A such that the following hold for all a, b ∈ A:

1. ♢(a ∨ b) = ♢a ∨ ♢b

2. ♢0 = 0

Definition 3.22. Let (A,♢A) and (B,♢B) be two modal algebras. Then we say
that a function f : A→ B is a morphisms of algebras if for each a, b ∈ A:
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1. f(0A) = 0B.

2. f(¬a) = ¬f(a).

3. f(a ∨ b) = f(a) ∨ f(b).

4. f(♢Aa) = ♢Bf(a).

Furthermore, if f is a bijection we call it an isomorphism of modal algebras.

Note that for a general space (X,P ), the structure (P, dX) is a modal algebra
when 0P is interpreted as the empty set, ♢P is interpreted as dX , ¬ is interpreted
as the complement and ∨ as the union.

Lemma 3.23. Let (X,PX) and (Y, PY ) be two general spaces such that (PX , dX)
is isomorphic to (Py, dY ) as a modal algebra. Then, L(X,PX) = L(Y, PY ).

Proof. This is a routine verification.
We define the frames Cn as before, and also define C∞ to be the chain of

all natural numbers in reverse order. We take PC∞ ⊆ P(C∞) to be the general
space over C∞ of all finite and cofinite subsets.

Lemma 3.24. Let X be a scattered space.

1. If dn+1(X) = ∅ but dn(X) is nonempty, then (Pleast, d) is isomorphic to
(P(Cn), d) as a modal algebra.

2. If no such n exists, (Pleast, d) is isomorphic to (PC∞ , d).

Proof. Here, we use that Kripke semantics is contained in d-semantics for GL-
frames by theorem 2.26. Note that all Cn and C∞ do not have any infinite
ascending chains so that they are indeed GL-frames.

Assume dn+1(X) = ∅ and dn(X) is nonempty. We define f : P(Cn) → Pleast

as follows:

f(A) =
⋃
i∈A

di(X)\di+1(X)

Note that first of all, f is well-defined: For all A ∈ P(Cn), A is some finite
set of integers, so that f(A) is some finite union of atoms. We conclude that
f(A) ∈ Pleast.

We will prove that f is a bijection. First we will prove that it is one-to-one:
Consider A,B ⊆ Cn such that A ̸= B. Without the loss of generality, we may
assume that there exists an i ≤ n such that i ∈ A and i /∈ B. As i ≤ n, we see
that di(X)\di+1(X) ̸= ∅. We recall that all atoms are disjoint by corollary 3.6,
such that indeed

di(X)\di+1(X) ⊆ f(A) but di(X)\di+1(X) ̸⊆ f(B).

We conclude: f(A) ̸= f(B).
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It is also onto: Consider any A ∈ Pleast. Then A =
⋃

i∈I d
i(X)\di+1(X) for

some I ⊆ N. But di(X) = ∅ for i > n, so that there exists some I ⊆ Cn such
that f(I) = A. We see that f is onto.

Now finally, we will show that f is indeed a morphism of modal algebras.
The following is easy to verify, as f is a bijection.

1. f(∅) = ∅.

2. f(Cn\A) = X\f(A) for all A ⊆ Cn.

3. For all A,B ⊆ Cn : f(A) ∩ f(B) = f(A ∩B).

Now, we only need to check that f(d(A)) = d(f(A)) for all A ⊆ Cn. For
empty A, this is trivial. Now consider any nonempty A ⊆ Cn, and let i be
the smallest element of A. Now, d(A) consists of all elements pointing to some
element of A. This is exactly the set {k | k ≥ i + 1 ∧ k ≤ n}. Note that this
set may be empty. We see that f(d(A)) = di+1(X). But d(f(A)) = di+1(X) by
lemma 3.5, so that indeed d(f(X)) = f(d(X)).

We have now proven that f is indeed an isomorphism between modal alge-
bras. In the case that dn(X) is nonempty for all n, we again take f : C∞ → X
to be

f(A) =
⋃
i∈A

di(X)\di+1(X).

The only step to note is that again we have that two sets in Pleast are different
if they differ on at least one atom. The proof from here on out is similar so it is
left out.

Corollary 3.24.1. Let X be a scattered space.

1. If dn+1(X) = ∅ but dn(X) is nonempty, then Ld(X,Pleast) = GLn+1.3.

2. If no such n exists, then Ld(X,Pleast) = GL.3.

Proof. Via the previous lemma, if dn+1(X) = ∅ but dn(X) is nonempty, we
deduce that Ld(X,Pleast) = Ld(Cn) = GLn+1.3. If dn(X) ̸= ∅ for all n, we
deduce that Ld(X,Pleast) = Ld(C∞, PC∞). We note that Ld(C∞, PC∞) is an
infinite-depth GL.3-logic, so that Ld(X,Pleast) = GL.3 by theorem 3.19.

Note that for ωn+1 ≤ α ≤ ωn+1, we have that dn+1(α) = ∅ but dn(α) ̸= ∅,
and that for α ≥ ωω we have that for all n, dn(α) ̸= ∅.

Thus, theorem 3.20 now immediately follows from the previous corollary:
The logic of a class of least spaces is a logic above GL.3, and there are concrete
examples of least spaces for each logic above GL.3. Namely, for GLn+1.3 we have
(ωn + 1)least and for GL.3 we have (ωω)least.

Note that GL.3 can be thought of as a sort of maximal infinite-depth exten-
sion of GL. In this chapter we have proven that this logic can be obtained by
restricting the set of valuations as much as possible, so that as many formulae
will hold on a frame as possible. GL.3 has also been studied recently in [2], where
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a different approach was used. Instead of restricting the set of valuations, differ-
ent topologies on ordinals were considered. The authors connected topological
completeness of GL.3 to the existence of sufficiently large cardinal numbers.
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Chapter 4

Completeness for logics
enjoying the FMP

In this chapter we will generalize the Abashidze-Blass theorem to encompass
all logics above GL enjoying the finite model property, or FMP. Recall that the
Abashidze-Blass theorem states that GL = Ld(α) for any ordinal α ≥ ωω, and
a logic L enjoys the FMP if there exists a class of finite Kripke frames C such
that L = L(C). We will prove that for any logic L above GL enjoying the FMP
there exists a general space over an ordinal α ≤ ωω giving us the same logic.

4.1 Preservation properties of surjective d-morphisms

Definition 4.1. Given a normal modal logic L, we define the class of Normal
FMP-extensions of L, or NExtFMP (L), as the class of logics that extend L and
enjoy the FMP.

As a GL Kripke frame is a (strict) partial order without infinite ascending
chains, a logic in NExtFMP (GL) is the logic of a class of finite strict partial orders.
As seen in section 2.7, we can easily relate trees to ordinal numbers. We will
show that we can relate finite strict partial orders to trees, but we first introduce
a tool we will often use in this thesis.

Theorem 4.2. Let X be a scattered space, let (X ′, P ′) be a general d-space and
let f : X → X ′ be an onto d-morphism as in definition 2.28. Then the set
P = {f−1(A) | A ∈ P ′} is a general space over X, and (P, d) is isomorphic to
(P ′, d) as a modal algebra.

Proof. We take P as above, and we will prove that it is indeed a general space
over X. Note that we often use that P ′ is a general space.
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∅ ∈ P ′ ⇒ f−1(∅) ∈ P

⇒ ∅ ∈ P

∀A : A ∈ P ⇒ ∃A′∈P ′A = f−1(A′)

⇒ X\A = {x ∈ X | x /∈ f−1(A)}

Note that f is onto. Thus, for every A ∈ P with A = f−1(A′):

{x ∈ X | x /∈ f−1(A)} = {x ∈ X | x ∈ f−1(X ′\A′)}
⇒ X\A = f−1(X ′\A′)

⇒ X\A ∈ P

We see that P indeed contains ∅ and is closed under taking complements.
As f−1(A∪B) = f−1(A)∪f−1(B) we deduce that P is closed under union (and,
by extension, P is also closed under intersection). Finally, as f is a d-morphism,
theorem 2.29 gives us that P is closed under d. We conclude that P is indeed a
general space.

Note that the proof that (P, d) is isomorphic to (P ′, d) is already done: The
above proof gives us that f−1 as seen as a function from P ′ to P is an isomor-
phism of algebras. As f is a surjective map from X to X ′, we also obtain that
f−1 is a bijection from P ′ to P : By definition of P , f−1 is onto. In order to
prove that it is one-to-one, take any A,B ∈ P ′ with A ̸= B. Without the loss
of generality, we may assume that there exists some a ∈ A with a /∈ B. As f is
onto, there exists some x ∈ X with f(x) = a. We deduce that x ∈ f−1(A) but
x /∈ f−1(B), so that f−1(A) ̸= f−1(B).

Corollary 4.2.1. Let X be a scattered space, let (X ′, P ′) be a general d-space
and let f : X → X ′ be an onto d-morphism. Then there exists a general space
P over X such that Ld(X,P ) = Ld(X

′, P ′).

Proof. Take P as in the above theorem. Then as (P, d) is isomorphic to (P ′, d)
as a modal algebra, we deduce that indeed Ld(X,P ) = Ld(X

′, P ′).

4.2 Finite trees and ordinals

From this section onward, we will freely move from the Kripke setting to the
setting of scattered spaces as argued in theorem 2.26. We think of trees as
Kripke frames, so that in the topological setting they are equipped with the
upset topology. The following theorem relates finite partial orders to trees.
Note that this specific construction of ‘unraveling’ transitive frames into trees is
already quite well-established, see [13, Theorem 3.20]. Also recall that a GL-tree
when viewed as a topological space is a scattered space, by theorem 2.25.

Theorem 4.3. Let F be a finite, rooted GL-frame. Then there exist a finite
GL-tree T and an onto d-morphism f : T → F.
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Proof. Consider any finite rooted GL-frame F = (W,R). We denote the root of
F by r. We will define a tree T and an onto d-morphism f : T → F. For the
points W ′ of T , we take the finite sequences {an} of W , such that a0 = r and
such that an+1 is a direct successor of an for all n ∈ ω. For a sequence (ai)i≤n

and a sequence (bj)j≤m, we say that (ai)R
′(bj) if (ai) is a strict initial part of

the sequence (bj), i.e.:

(a0, ..., an)R
′(b0, ..., bm) ⇐⇒ (n < m) ∧ ∀k≤n[ak = bk]

We now take T = (W ′, R′). We see that R′ is irreflexive as no sequence can be
its own strict initial part. Likewise, it is easy to reason that R′ is transitive.
Note that W ′ is finite as W is finite. As T is a finite, irreflexive and transitive
structure, it is certainly a GL-frame. Now, note that (r) ∈ W ′, and, as r is
the root of F, we notice that T is indeed rooted with root (r). Finally, for any
(a0, a1, ..., an) ∈ W ′, we see that the set {y ∈ W ′ | y < x} is equal to the set
{(a0, ..., ak) | k < n}, which is of course linearly ordered by R′. By definition
2.20, we conclude that T is indeed a finite GL-tree.

Now, define f : T → F as f((a0, ..., an)) = an. As T is rooted, it is easy
to see that for any point x in W there exists a finite path of direct successors
beginning at r and ending at x, so that f is onto. We will prove that it is a
d-morphism.

Consider any open subset A of T , i.e., an upset of T . We will prove that
f(A) is open. Consider any x ∈ f(A). By the definition of f , there exists some
sequence (a0..., an, x) ∈ W ′. Pick any y ∈ W with xRy. As xRy, there exists
some finite sequence of direct successors beginning at x and ending in y, say
(x, b0, ..., bm, y). Now note:

(a0, ..., an, x, b0, ..., bm, y) ∈W ′

and
(a0..., an, x)R

′(a0, ..., an, x, b0, ..., bm, y).

As A is open, it is an upset. We see that (a0, ..., an, x, b0, ..., bm, y) ∈ A, so that
y ∈ f(A). We deduce that f(A) is an upset, so that f(A) is indeed open. We
conclude that f is an open function.

Now, consider any open subset A of F, i.e. an upset. We will prove that
f−1(A) is open. Consider any (a0, ..., an) ∈ f−1(A) and any (b0, ..., bm) ∈ W ′

with (a0, ..., an)R
′(b0, ..., bm). We deduce that the second sequence must be in

the form of (a0, ..., an, bn+1, ..., bm). We obtain that anRbm. As A is an upset,
bm ∈ A so that indeed

(a0, ..., an, bn+1, ..., bm) ∈ f−1(A).

We see that f−1(A) is an upset so that it is indeed open. We conclude that f is
continuous.

Now, we prove pointwise discreteness. Consider any b ∈W . We wish to prove
that d(f−1(b)) ∩ f−1(b) = ∅. From theorem 2.26, we know that a sequence lies
in d(f−1(b)) if and only if its final entry is a predecessor of b. Also note that
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f−1(b) consists of those sequences ending in b. As b is not a predecessor of itself,
this intersection indeed is empty. We deduce that f is pointwise discrete.

We conclude that f is an open, continuous and pointwise discrete map from
T to F, and therefore is an onto d-morphism.

As in definition 2.20, we say that a rooted GL-frame has depth n if the length
of its largest linear subset is exactly n+ 1.

Corollary 4.3.1. Let F be a finite rooted GL-frame of depth n > 0. Then there
exists a general frame P over ωn + 1 such that L(F) = Ld(ω

n + 1, P )

Proof. Consider a finite rooted GL-frame F of depth n. By the previous theorem,
there exists a finite GL-tree T and an onto d-morphism f : T → F. Note that
T itself has depth n. By Corollary 4.2.1, there exists a general space P ′ over
T such that L(T, P ′) = L(F). Now, by Lemma 2.35, there exists an onto d-
morphism g : ωn + 1 → T . Again, by 4.2.1, there exists a general space P such
that Ld(ω

n + 1, P ) = L(T, P ′) = L(F).

4.3 Gluing and a first generalization of Abashidze-
Blass

In the previous section we have related finite trees to ordinals. We now wish to
‘glue’ such ordinal spaces onto one another. We use the following result.

Theorem 4.4. Let X be a scattered space and P be a general space over X such
that X can be written as a disjoint union X =

⊔
a∈AXa of scattered spaces Xa.

Then there exist general spaces {Pa}a∈A such that Pa = {B ∩Xa | B ∈ P} and
we have that Ld(X,P ) = Ld(C) for the class C = {(Xa, Pa) | a ∈ A}.

Proof. Consider any such pair (X,P ). Note that X =
⊔

a∈AXa if and only if
each Xa is pairwise disjoint, their union covers X, and each Xa is clopen in X.
We now define Pa = {B ∩ Xa | B ∈ P}. We claim that Pa is a general space
over Xa for each a ∈ X.

As P is a general space we deduce that each Pa contains ∅ and is closed
under taking complements and intersections. To prove that it is closed under
d, one needs to recall that all Xa are clopen in X. From this we see that
d(B ∩Xa) = d(B) ∩Xa, so that indeed Pa is closed under d.

We now take C to be the set of general spaces {(Xa, Pa) | a ∈ K}. We will
prove that L(C) = L(X,P ). Assume φ /∈ L(X,P ). Thus, there exists some
valuation v on P such that v(φ) ̸= X. As X is the disjoint union of all Xa, we
notice that there exists some a such that v(φ) ∩ Xa ̸= Xa. We now define the
valuation va on Xa for each propositional letter p as follows:

va(p) = v(p) ∩Xa

The valuation va extends to all logical formulas in the usual manner. We
now claim that va(ψ) = v(ψ) ∩Xa for all logical formulas ψ. We will prove this
by induction on the complexity of formulas.
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By definition, the statement holds for all propositional letters. Now, assume
that the statement holds for ψ1 and ψ2. Then

va(¬ψ1) = Xa\va(ψ1)

= Xa\(v(ψ1) ∩Xa)

= (X\v(ψ1)) ∩Xa

= v(¬ψ1) ∩Xa.

va(ψ1 ∧ ψ2) = va(ψ1) ∩ va(ψ2)

= (v(ψ1) ∩Xa) ∩ (v(ψ2) ∩Xa)

= (v(ψ1) ∩ v(ψ2)) ∩Xa

= v(ψ1 ∧ ψ2) ∩Xa.

va(♢ψ1) = d(va(ψ1))

= d(v(ψ1) ∩Xa)

= d(v(ψ1)) ∩Xa

= v(♢ψ1) ∩Xa.

Here, we used the remark we made earlier, that d(B ∩Xa) = d(B) ∩Xa for all
B ⊆ X. We indeed obtain by induction that va(ψ) = v(ψ) ∩Xa for all formulas
ψ. We see that va(φ) = v(φ)∩Xa ̸= Xa, implying that φ /∈ L(Xa, Pa). It follows
that φ /∈ L(C), so that L(C) ⊆ L(X,P ).

Conversely, assume φ /∈ Ld(C). This implies that there exists some a ∈ A
such that φ /∈ Ld(Xa, Pa). We must have that there exists some valuation va
on Pa such that va(φ) ̸= Xa. We now define a valuation v on X for each
propositional letter p as follows:

v(p) = va(p)

Again, v can be extended to all logical formulas. Just as before, we can prove that
v(ψ)∩Xa = va(ψ) for all logical modal formulas ψ. As va(φ) ̸= Xa, we must have
that v(φ) ̸= X, so that φ /∈ Ld(X,P ). We conclude that Ld(X,P ) = Ld(C).

Note that the previous theorem is not trivial, as the general spaces over the
disjoint parts may be dependant on one another. The theorem states that we
may look at them independently. We now have all the tools necessary to prove
the main statement of this chapter.

Theorem 4.5 (Generalized Abashidze-Blass Theorem for logics enjoying the
FMP). Let L be any logic in NExtFMP (GL). Then there exists an ordinal α ≤ ωω

and a general space P over α such that L = Ld(α, P ).

Proof. Consider any logic L ∈ NExtFMP (GL). Note that there exists a class C
of finite Kripke frames with L(C) = L. By corollary 2.18.1, we may assume that
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C contains only rooted Kripke frames. Note that we can also assume that C is
countable: For each formula φ /∈ L there exists at least one F ∈ C such that
φ /∈ F. As there are countably many modal formulas, we can select a frame in
C for each formula not in L by using the Axiom of Choice. We now index the
frames of C by {Fn}n∈O, where either O = ω or some natural number.

By corrollary 4.3.1, for each n there exists a pair (ωkn + 1, Pn) such that
L(Fn) = Ld(ω

kn + 1, Pn). We take α =
∑

n∈O(ω
kn + 1). Note that α ≤ ωω.

As in the proof of theorem 2.38, α can be split into
⋃

n∈OXn where each Xn

is isomorphic to ωkn + 1. As each Xn is pairwise disjoint, clopen in α and the
union of all Xn covers α we may conclude that α is the disjoint union of all Xn.

As Xn is isomorphic to ωkn +1 for each n, we may lift Pn to a general space
P ′
n over Xn so that P ′

n is isomorphic to Pn. We then define a general space P
over α as follows:

A ∈ P ⇐⇒ ∀n A ∩Xn ∈ Pn

As α is the disjoint union of all Xn this is indeed a general space, and by theorem
4.4, we see that Ld(α, P ) =

⋂
n∈O Ld(Xn, P

′
n) = L.

We first note that theorem 4.5 is indeed a generalization of the Abashidze-
Blass theorem. We note that GL has the FMP, so that theorem 4.5 states that
there exists a general space over ωω such that its logic is GL. It follows that GL
itself is an extension of the logic of ωω. As ωω is a scattered space, it follows from
theorem 2.25 that GL = Ld(ω

ω). In the following chapter, we will generalize the
Abashidze-Blass theorem further to encompass all Kripke complete logics (and
possibly more), though we will need to introduce some new tools first to be able
to work with non-finite Kripke frames.
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Chapter 5

Completeness for
GL-semicomplete logics

In the previous chapter we managed to generalize the Abashidze-Blass theo-
rem to logics enjoying the FMP. In this chapter we will further generalize the
Abashidze-Blass theorem. A natural class would be the class of Kripke complete
logics, but we jump ahead to a new class of logics containing the Kripke complete
logics, which we call the GL-semicomplete logics. We will also introduce a new
class of trees as tools for such logics.

5.1 Semicompleteness and FCP-trees

Definition 5.1. Let L be a normal modal logic. We say that a normal modal
logic L′ is L-semicomplete if there exists some class C of general Kripke frames
(F, P ) such that each such F is an L-frame and L′ is the logic of the class C. In
formal terms:

L′ = L(C) ∧ ∀(K,P )∈CL ⊆ L(K)

We denote the class of L-semicomplete logics by NExtsemi(L). We say that L is
quasicanonical if all normal extensions of L are L-semicomplete, i.e.

NExt(L) = NExtsemi(L).

Here, NExt(L) denotes the class of all normal modal logics extending L.

We make the following observations. First of all, all L-semicomplete logics
are L-logics, as an L-semicomplete logic is the logic of general frames over L-
frames. Second of all, all Kripke-complete extensions of L are L-semicomplete,
so that NExtsemi(L) contains all Kripke-complete extensions of L. Furthermore,
though any logic is sound and complete with respect to its general frames, there
may exist non-L-semicomplete extensions of L. We will dive deeper into these
notions in a later chapter, where we will show that GL is not quasicanonical.

We will prove that for every GL-semicomplete logic L there exists some gen-
eral space P over a countable ordinal α such that L = Ld(α, P ). From this result
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we will generalize the Abashidze-Blass theorem to all GL-semicomplete logics, in
particular to all Kripke complete GL-logics.

As in the previous section, we will show that all Kripke GL-frames correspond
to some class of general frames on trees, which in turn correspond to general
frames over ordinal numbers. First, we will introduce a new class of Kripke
frames useful for this thesis.

Definition 5.2. We say that a strictly partially ordered structure (W,<) enjoys
the finite chain property, or enjoys the FCP, if there does not exist an infinite
subset of W linearly ordered by <.

Note that all strictly partially ordered Kripke frames enjoying the FCP are
GL-frames. Notably, a Kripke frame (W,R) enjoys the FCP if and only if both
(W,R) and (W,R−1) are GL-frames. We will restrict our attention to the trees
enjoying FCP, which we will often call FCP-trees. For the definition of a tree, see
definition 2.20. We will prove that classes of general spaces over such trees turn
out to be a suitable semantics for GL-semicomplete logics. Even stronger, we
will prove that one only needs to consider countable FCP-trees, and that these
in turn correspond to general spaces over countable ordinals. First, we will make
the link between Kripke spaces and FCP-trees. The following theorem extends
theorem 4.3 and is proven in a similar manner.

Theorem 5.3. Let K be a Kripke GL-frame. Then there exist a disjoint union
of FCP-trees T and an onto d-morphism f : T → K.

Proof. Consider any Kripke GL-frame K = (W,<K). We take the points of
T = (W ′, <T ) to be the finite non-empty strictly increasing sequences in K.
Note that these need not be sequences of direct successors. Formally:

x ∈W ′ ⇐⇒ n ≥ 0 ∧ x = (a0, a1, ..., an) ∈Wn ∧ ∀0≤i<n[ai <K ai+1]

For a sequence (ai)i<n and a sequence (bj)j<m, we now define (ai) <T (bj) if and
only if (ai) is a strict inital part of the sequence (bj). Formally:

(a1, ..., an) <T (b1, ..., bm) ⇐⇒ n < m ∧ ∀i≤n[ai = bi]

We first prove that T enjoys the FCP. In the same manner as in the proof of
theorem 4.3 we conclude that <T is irreflexive and transitive. Now, consider any
linear subset A of T . Assume that A is infinite. All elements of A must be se-
quences of unequal length. If not, there are sequences (a1, ..., an) and (b1, ..., bm)
in A with n = m but (a1, ..., an) < (b1, ..., bm) or (b1, ..., bm) < (a1, ..., an),
which is of course impossible. As A is infinite and each element of A is a se-
quence of a different length, there must be a sequence of sequences (xn)n∈ω,
with each xn ∈ A a sequence, so that if n < m, the length of xn is smaller
than the length of xm. Note that we must have for each n that xn has length
at least n. Now, look at the sequence {yn}n∈ω ⊆ K defined as yn = (xn)n,
which is the sequence with at its n’th position the n’th element of the n’th se-
quence. This is an infinite sequence, and as xn <T xn+1, we must have that
yn = (xn)n = (xn+1)n <K (xn+1)n+1 = yn+1. Thus, we have found an infinite
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increasing sequence in K. But then K is not a GL-frame, in contradiction to our
assumptions. We deduce that any linear subset of T is finite, so that T indeed
enjoys the FCP.

Now we will prove that T is a disjoint union of trees. Indeed, we find that
all the disjoint parts of T are rooted with root (a) for some a ∈ K. Also, for
any element (a0, ..., an) ∈ K, we see that the downset of (a0, ..., an) is exactly
the collection of sets of the form (a0, ..., ai) with i ≤ n, which is a linear set. We
conclude that T is the disjoint union of FCP trees.

We will now show that there exists an onto d-morphism f : T → K. We
define f as follows:

f((a1, ..., an)) = an

Of course, f is onto, as f((a)) = a for any a ∈W . We will now prove that it
is open. This proof is very similar to the proof of theorem 4.3:

Let A ⊆ W ′ be such that A is open. We wish to prove that f(A) is open,
i.e. that it is an upset. Consider any x ∈ f(A). This directly implies that there
exists some sequence (a0, ..., an, x) ∈ A. Take any y ∈W with x <K y. Then

(a0, ..., an, x, y) ∈ T,

and
(a0, ..., an, x) <T (a0, ..., an, x, y).

As A is open, it is an upset. From this we deduce that (a0, ..., an, x, y) ∈ A. As
f((a0, ..., an, x, y)) = y we see that y ∈ f(A). We conclude that f(A) is an upset
so that it is open. Indeed, f is an open function.

We will prove that f is continuous. Let A ⊆ K be an open set. We wish to
prove that f−1(A) is open, i.e. an upset. Consider any (x0, ..., xn) ∈ f−1(A),
and any (a1, ..., am) with (x0, ..., xn) <T (a0, ..., am). By definition of <T , we
deduce that (a0, ..., am) is of the form (x0, ..., xn, an+1, ..., am). By definition of
<T we must of course have that xn <K am. As xn ∈ A, we deduce that am ∈ A,
so that indeed (x1, ..., xn, an+1, ..., am) ∈ f−1(A). We see that f−1(A) is open,
so that f is continuous.

We will finally prove that f is pointwise discrete. Consider any b ∈ W . We
wish to prove that d(f−1(b)) ∩ f−1(b) = ∅. From theorem 2.26, we know that
a sequence lies in d(f−1(b)) if and only if its final entry is a predecessor of b.
Also note that f−1(b) consists of those sequences ending in b. As b is not a
predecessor of itself, this intersection indeed is empty. We conclude that f is
pointwise discrete.

All in all, f : T → K is onto, open, continuous and pointwise discrete, so
that it is an onto d-morphism.

Corollary 5.3.1. Let (K,P ) be a general frame such that K is a GL Kripke
frame. Then there exists a class C of general frames over FCP trees such that
L(K,P ) = L(C).

Proof. Consider any such pair (K,P ). Via theorem 5.3, there exists a disjoint
union of FCP trees T and an onto d-morphism f : T → K. Via corollary 4.2.1,
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there exists a general space PT such that L(K,P ) = L(T, PT ). As in theorem
2.26, we recall that L(T, PT ) = Ld(T, PT ) where we view T as a scattered space.
By theorem 4.4, we now see that Ld(T, PT ) = Ld(C), where C is the class of the
disjoint trees in T with corresponding general spaces. We again note that we can
freely jump back to Kripke semantics, so that Ld(C) = L(C). Our observations
together give that L(K,P ) = L(C), exactly as required.

5.2 The tree hierarchy

In the previous section we managed to relate Kripke frames to FCP trees. In
this section we provide a recursive construction for FCP trees, which we will use
later for induction-based proofs.

Definition 5.4. The tree hierarchy is the class {Hα}Od(α) indexed by the ordi-
nals such that each Hα is a set of trees, defined as follows:

1. H0 is the empty set.

2. We take T ∈ Hα+1 by taking a root with at most α successors and replacing
each successor with a tree in Hα+1. Formally, T ∈ Hα+1 if and only if there
exists a function f : β → Hα with β ≤ α so that T is the tree obtained by
taking the tree with root r and direct successors {γ | γ < β} and replacing
each point γ < β with the tree f(γ).

3. For a limit ordinal α, we take Hα =
⋃

β<αHβ.

... ... ... ... ... ...

f(0) f(1) f(2) ... f(β)

r

Figure 5.1: Construction of a tree in a successor stage of the tree hierarchy

Note that we allow f to be the empty function in the successor step, thereby
obtaining that the one-point tree is in Hα for all α ≥ 1 as a root with no
successors.

We say that a tree T has tree order α if α is the smallest ordinal such that
there exists a tree T ′ ∈ Hα+1 isomorphic to T .

Note that Hα is a set and not a proper class for each ordinal α. Furthermore,
if α ≤ β we see that Hα ⊆ Hβ. Also note that any tree in the tree hierarchy has
a tree order: Any tree is obtained first in some successor stage, as every tree in
a limit stage is already obtained in some strictly earlier stage.

Theorem 5.5. Let T be a tree. Assuming the Axiom of Choice, T enjoys the
FCP if and only if it has a tree order.
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Proof. First, from ‘right to left’, we wish to prove that T enjoys the FCP for
each α and each T ∈ Hα. We will prove this via transfinite induction:

First off, for α = 0 the statement is trivial as H0 is empty. Now assume that
α > 0 and for all β < α the statement holds. We will prove it holds for α. If α
is a limit ordinal the statement is trivial, as for any T ∈ Hα there exists some
β < α such that T ∈ Hβ.

Now assume α to be a successor ordinal, say α = β + 1. Consider any
T ∈ Hβ+1. We will prove that all linear subsets of T are finite. As T ∈ Hβ+1, we
know that T has root r and successors {Tγ}γ≤δ with δ ≤ β and Tγ ∈ Hβ for each
γ. Consider any linear subset A ⊆ T . Note that A may contain r, but A\{r}
is in its entirety contained within one of the Tγ . But as Tγ enjoys the FCP we
know that A∩ Tγ must be finite, so that A is finite. We conclude that T has no
infinite linear subsets, so that T enjoys the FCP. Via ordinal induction, we have
indeed shown that all trees with a tree order enjoys the FCP.

Now, from ‘left to right’, we will prove that trees without tree order do not
enjoy FCP. Assume that T has no tree order but does enjoy FCP. We denote
by r the root of T . As T enjoys the FCP, for each x ∈ T with x > r the set
{y | r < y ≤ x} is a non-empty finite set, so that it has a smallest element. We
conclude that there exists a set A consisting of only direct successors of r, such
that each element of T unequal to r either lies in A or lies above some point in
A.

We see that ‘chopping off’ the root r of T gives us disjoint subtrees Ta for
each a ∈ A. We claim that there exists an a ∈ A such that Ta also has no tree
order:

Assume not, so that each Ta has a tree order. Say that tree Ta has order αa.
Then {αa}a∈A is a set of ordinals, so that it has a supremum, say α. We see that
Hα+1 contains a tree isomorphic to Ta for each a. Take β to be the ordinal such
that there is a bijection f : β → A. Via the Axiom of Choice, such a β must
exist. We can then construct the function g : β → Hα such that g(γ) = Tf(γ).

Now, take γ = max(α + 1, β). Then for each a there exists a tree in Hγ

isomorphic to Ta, and g is a function from β ≤ γ to Hγ with g(ζ) = Tf(ζ) for all
ζ. We see that Hγ+1 contains a tree isomorphic to T . But we assumed that T
has no tree order. We conclude that there exists a direct successor a from the
root r of T such that the subtree Ta as sprouted from a has no tree order.

But now, we know that if a tree has no tree order, the root has some successor
a so that the subtree Ta has no tree order. Via the Axiom of Countable Choice
we can infinitely repeat this process, obtaining a sequence {xn}n∈ω so that for
each n, xn+1 is a direct successor of xn and the subtree with root xn has no tree
order. But then {xn}n∈ω is an infinite strictly increasing sequence, so that T
has an infinite chain. We deduce that T does not enjoy FCP. We conclude that
any tree without tree order does not enjoy FCP. Via contraposition, we obtain
our theorem.

From this theorem we have much more structure to prove statements over
the trees enjoying FCP. This will help us prove later on that all FCP-trees
are surjective images of ordinal numbers, but first we prove a theorem for the
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countable FCP-trees.

Theorem 5.6. Hℵ1 is the set of all countable FCP trees, so that an FCP tree
is countable if and only if its tree order is countable.

Proof. First, we prove that Hℵ1 contains only countable FCP trees. We will
prove this via transfinite induction. Note that Hℵ1 is the union of all Hα with
α a countable ordinal.

Assume that we have some countable ordinal α, and that Hα contains only
countable trees. Then any tree T in Hα+1 is a root with as successors at most
α many trees in Hα. The trees in Hα are all countable and α is countable, so
that T is countable as the countable union of countable sets. We deduce that
Hα+1 is countable. For limit ordinals: Assume α to be a countable limit ordinal
such that Hβ contains only countable trees for all β < α. As Hα =

⋃
β<αHβ, we

deduce that Hα itself only contains countable trees. By induction we conclude
that Hℵ1 contains only countable trees.

Conversely, we will prove that each countable tree is an element of Hα for
some countable α. Assume not. Then there exists a countable tree with un-
countable tree order. Take α to be the least ordinal number such that Hα+1

contains a countable tree with uncountable order, and let T be any such tree in
Hα+1. By definition, there exists an ordinal β and a function f : β → Hα such
that T is isomorphic to the tree with root r and successor trees f(γ) for γ ∈ β.
As T is countable, β must be countable. Note that each f(γ) has lower order
than T , so that they all have countable order, say {αγ}γ∈β. But take α′ to be the
supremum of all αγ . Then α′ is countable as the supremum of countably many
countable ordinal numbers, and Hα′+1 contains all f(γ). If we now take α′′ to
be the supremum of α′ and β, we find that T ∈ Hα′′ and α′′ is countable. Thus,
T has countable tree order. This was in contradiction with our assumption, so
that all countable FCP trees are elements of Hℵ1 .

5.3 Countable FCP-trees and the second generaliza-
tion of Abashidze-Blass

In this section we prove that we need only consider these countable FCP-trees to
describe GL-semicomplete logics and use this fact to prove our second generaliza-
tion of the Abashidze-Blass theorem. The following theorem and its proof mirror
[8, Theorem 4.2], where a comparable theorem was proven for logics above S4.

Theorem 5.7. Let L be a normal modal logic, let T be an FCP tree and let P
be a general frame over T such that L ⊆ L(T, P ). Let φ be a formula not in
L(T, P ). Then there exists a countable FCP tree T ′ and a general space P ′ over
T ′ such that L ⊆ L(T ′, P ′) and φ /∈ L(T ′, P ′).

Proof. Consider any such L, (T, P ) and φ. As φ /∈ L(T, P ) there exists a valua-
tion v on P and a w ∈W such that w /∈ v(φ). We inductively define a sequence
{Vn}n∈ω of subsets of W . We define V0 = {w}, and given Vn define Vn+1 as
follows:
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For each normal modal formula ψ and each u ∈ Vn, if u ∈ v(♢ψ), there exists
by definition some u′ ∈W with u < u′ and u′ ∈ v(ψ). For each such pair (ψ, u)
we select one such u′ and let Vn+1 be the set of the u′ selected in this manner.

We take T ′ = (W ′, R′), where W ′ =
⋃

n∈ω Vn and R′ is the order of T
restricted on W ′. We claim that T ′ is a countable FCP tree.

First of, note that there exist only countably many normal modal formulas.
Thus, Vn is at most countable for each n, so that indeedW ′ is at most countable
as the countable union of countable sets. We prove that T ′ is indeed a tree. We
see that w is the root of T ′, and, as T was a tree and R′ is the restriction of R on
W ′, we find that the set {b ∈W ′ | b < a} is linear for each a ∈ T ′. We conclude
that T ′ is also a tree. Finally, consider any linear A ⊆ W ′. As A is also some
linear subset in T and T enjoys the FCP, A must be finite. We deduce that all
linear subsets in T ′ are finite so that T ′ enjoys the FCP.

We now define a valuation µ on T ′ as µ(p) = v(p) ∩W ′ for all propositional
letters p, where v was as chosen before. We will prove that µ(ψ) = v(ψ) ∩W ′

for all modal formulas ψ. We prove this by induction on the complexity for
formulas. The only nontrivial step is for formulas of the form ♢ψ, assuming the
statement holds for ψ:

Consider any x ∈W ′ with x ∈ µ(♢ψ). By definition there exists some y ∈W ′

so that y ∈ µ(ψ) and xRy. Thus, by assumption, y ∈ ν(ψ) ∩W ′ and xRy. But
then x ∈ v(♢ψ) as xRy, and, as x ∈W ′, we conclude that µ(♢ψ) ⊆ v(♢ψ)∩W ′.

Conversely, consider any x ∈ v(♢ψ) ∩W ′. As x ∈ W ′, there exists some n
such that x ∈ Vn. As x ∈ Vn and x ∈ v(♢ψ), there exists by construction some
y ∈ Vn+1 so that y ∈ v(ψ) and xRy. But then y ∈W ′, so that y ∈ ν(ψ)∩W ′ and
xRy. By assumption, we see that y ∈ µ(ψ) and xRy, so that x ∈ µ(♢ψ). Indeed,
we deduce that v(♢ψ)∩W ′ ⊆ µ(♢ψ). All in all, we see that µ(♢ψ) = v(♢ψ)∩W ′.

By induction, we have shown that µ(ψ) = v(ψ) ∩W ′ for all modal formulas
ψ. We obtain that w /∈ µ(φ). We now define a general space P ′ on T ′ as
P ′ = {µ(ψ) | ψ ∈ Σ}. Here, Σ denotes the set of all modal formulas. Note that
P ′ is trivially a general space on T ′. Also note that µ is by definition a valuation
over P ′, so that φ /∈ Ld(T

′, P ′) as w /∈ µ(φ).
We will now prove that L ⊆ L(T ′, P ′). Consider any valuation λ on P ′

and any logical formula χ(p1, ..., pn) ∈ L. We will prove that λ(χ) = W ′.
As each λ(pi) is an element of P ′, there exist logical formulas ψi such that
λ(pi) = µ(ψi) for all i. Note now that λ(χ(p1, ..., pn)) = µ(χ(ψ1, ..., ψn)). As
χ(p1, ..., pn) ∈ L, we deduce via the substitution rule that χ(ψ1, ..., ψn) ∈ L.
Thus, ν(χ(ψ1, ..., ψn)) =W , so that

µ(χ(ψ1, ..., ψn)) = ν(χ(ψ1, ..., ψn)) ∩W ′ =W ′.

We see that λ(χ(p1, ..., pn)) =W ′. We deduce that each theorem of T is valid on
(T ′, P ′) for all valuations on P ′. We conclude that L ⊆ L(T ′, P ′), and, as stated
before, φ /∈ L(T ′, P ′). This finishes the proof.

We are now almost ready to prove the main theorem of the thesis. We only
need to show that we can relate any countable FCP-tree to an ordinal.
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Lemma 5.8. Let T be a countable FCP tree. Then there exists a countable limit
ordinal α and an onto d-morphism f : α+ 1 → T .

Proof. The proof will mirror the proof of theorem 2.35, except that we prove by
transfinite induction on the tree order. Consider any countable β and assume
that the statement holds for all trees inHγ for γ < β. Now, consider any T ∈ Hβ.
As T is countable, r has at most countably many direct successors.

In the case that r has infinitely many direct successors, we know that r has
exactly ω direct successors. We label them by {ai}i∈ω. We denote the subtree of
T with root ai by Ti, and note that by assumption there exist ordinals {αi}i∈ω
and onto morphisms {fi}i∈ω such that fi is an onto d-morphism from αi to Ti
for each i. Now, we take {pi}i∈ω to be the sequence of prime numbers of ω, so
that p0 = 2, p1 = 3, etc. We define h : ω → ω as follows:

h(0) = h(1) = 0

h(n) = µi[pi | n] for all n ≥ 2

With h(n) = µi[pi | n] we mean that h(n) equals the least i such that pi divides
n. Note that h−1(i) is an infinite subset of ω for all i, as h(pni ) = i for all n ∈ ω.

Now take α =
∑

i∈ω(αh(i) + 1), which is a limit ordinal. Note that it is
countable as the countable sum of countable ordinal numbers. We claim that
there exists an onto d-morphism f : α+ 1 → T .

Just as in lemma 2.35, we can view T as the union {r} ∪
⋃

i∈ω Ti, where
U ⊆ T is open if and if only U = T , or U does not contain r and U ∩ Ti is open
in Ti for all i. Likewise, by construction we may split α+1 into (

⋃
i∈ωXi)∪{α},

where each Xi is isomorphic to αh(i)+1. Note that each Xi is clopen in α+1. As
there exist onto d-morphisms αh(i)+1 to Th(i), there also exist onto d-morphisms
gi : Xi → Th(i). Now, define f : α+ 1 → T as follows:

f(α) = r,

f(x) = gi(x) for each x ∈ Xi.

As each gi is onto and f(α) = r, we see that f is indeed onto. We will prove
that it is a d-morphism:

Consider any open U ⊆ T . If r ∈ U , then U = T so that f−1(U) = α+ 1 is
of course open in α+ 1. If r /∈ U , then U =

⋃
i∈ω(U ∩ Th(i)) and each U ∩ Th(i)

is open in Th(i). As Xi is clopen in α + 1, each g−1
i (U ∩ Th(i)) is open in α + 1,

so that f−1(U) =
⋃
g−1
i (U ∩Th(i)) is open as the union of open sets. We deduce

that f is continuous.
Now, consider any open U ⊆ α+ 1. If α /∈ U , then U =

⋃
i∈ω(U ∩Xi). Note

that each U ∩Xi is open in Xi, so that gi(U ∩Xi) is open in Th(i). We then see
that f(U) =

⋃
i∈ω gi(U ∩Xi), which is open in T as the union of open sets.

If α ∈ U , then there exists some β < α such that [β, α] ⊆ U . Thus, it must
contain some cofinite amount of Xi in their entirety. As h−1(i) is an infinite
subset of ω for each i, we deduce that f(U) = T , which is of course open in T .
We conclude that f is open.
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We will prove that f is pointwise discrete. Of course, f−1(r) = {α} which
is discrete. Now consider any t ̸= r, so that t ∈ Ti for some i. We see that
f−1(t) =

⋃
h(k)=i g

−1
k (t). By assumption, g−1

k (t) is a discrete subset of Xk for

each k, and each Xk is disjoint and clopen in α + 1. We deduce that f−1(t) is
itself discrete, so that f is pointwise discrete.

We see that f is continuous, open and pointwise discrete, so that f is an onto
d-morphism.

In the case that r has only finitely many successors, the proof is almost
exactly the same as in lemma 2.35, except that we apply some small changes
exactly as in the proof for when r has infinitely many successors. Thus, we omit
this part of the proof.

We finally have all the pieces of the puzzle. The following theorem generalizes
theorem 4.5.

Theorem 5.9 (Generalized Abashidze-Blass theorem). Let L be a GL-semi-
complete logic. Then there exist a countable ordinal α and a general space P
over α such that Ld(α, P ) = L. In particular, every Kripke complete GL-logic is
complete with respect to some general space over a countable ordinal.

Proof. Consider any GL-semicomplete logic L. As there are countably many
modal formulas, we may enumerate the formulas not in L by {φi}i∈ω.

Take any i ∈ ω. As φi /∈ L and L is GL-semicomplete, there exists a general
Kripke frame (K,PK) such that K is a GL-frame, L ⊆ L(K,PK) and φi is not a
theorem of L(K,PK). By theorem 5.3 and corollary 4.2.1 there exist a disjoint
union of FCP trees T and a general space PT such that L(T, PT ) = L(K,PK).
As φi /∈ L(T, PT ), theorem 4.4 gives us that there exists some FCP tree Ti with
general space Pi such that φi /∈ L(Ti, Pi) and L ⊆ L(Ti, Pi). Now, theorem 5.7
gives us that there exists a countable tree T ′

i and a general space P ′
i such that

L ⊆ L(T ′
i , P

′
i ) and φ /∈ L(T ′

i , P
′
i ).

For each i, pick exactly one such pair (T ′
i , P

′
i ). As L ⊆ L(T ′

i , P
′
i ) for all ψ ∈ L,

we find that L ⊆
⋂

i∈ω L(T
′
i , P

′
i ). But for each ψ /∈ L, there exists by construction

some i such that ψ /∈ L(T ′
i , P

′
i ). We deduce that L =

⋂
i∈ω L(T

′
i , P

′
i ). Lemma

5.8 together with corollary 4.2.1 gives us that there exists a sequence {(αi,Pi)}
such that each αi is countable and so that Ld(αi + 1,Pi) = L(T ′

i , P
′
i ) for all i.

We conclude that L =
⋂

i∈ω Ld(αi + 1,Pi).
Now, define α =

∑
i∈ω(αi + 1). As each αi is countable, α is countable as

the sum of countably many countable ordinal numbers. We write α =
⋃

i∈ωXi,
where each Xi is isomorphic to αi +1. Note that each Xi is clopen in α, so that
α is topologically the disjoint union of all Xi. Note that the general spaces Pi

over αi can be lifted to general spaces P ′
i over Xi.

We define a general space P over α as follows:

A ∈ P ⇐⇒ ∀i∈ωA ∩Xi ∈ P ′
i

As each Xi is pairwise disjoint and each P ′
i, we indeed find that P is a general

space over α. Now, by theorem 4.4, we finally see that
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Ld(α,P) =
⋂
i∈ω

Ld(Xi,P ′
i) =

⋂
i∈ω

Ld(αi + 1,Pi) = L.

Finally we note that the same construction works for any Kripke complete
GL-logic, as all Kripke complete GL-logics are GL-semicomplete.

Note that the previous theorem is not actually a full generalization of the
Abashidze-Blass theorem: For GL, we obtain that there exists a general space
over some countable ordinal for which GL is complete. One deduces that there
exists some countable ordinal for which GL is complete, but we do not obtain
that this works for ωω and onwards. If we combine this result with theorem 4.5,
we do have a strict generalization.

We have seen that we can extend the Abashidze-Blass theorem to all GL-
semicanonical logics. We may now question if much more is possible. In the
next chapter we will show that it is impossible to find a general space over an
ordinal to obtain any specific GL-logic in general.

43



Chapter 6

Quasicanonicity & limits of
scattered spaces

It is natural to ask if theorem 5.9 classifies all possible GL-logics. If we were
working over S4 we could conclude this fact, as S4 is canonical so that it is
certainly quasicanonical, as we will show in this chapter. It turns out to be
impossible to find similar results for GL. In this chapter we first discuss further
the notion of quasticanonicity and then prove that there exists a GL-logic that
cannot be developed by any class of general scattered spaces, generalizing a
theorem proven by Vooijs [20, Theorem 5.17].

6.1 Quasicanonicity

We recall the definition of semicompleteness and quasicanonicity as in definition
5.1. We will discuss the notion of quasicanonicity in relation to GL. First, some
basic results.

Theorem 6.1. Let L be a canonical logic. Then L is quasicanonical.

Proof. Consider a canonical logic L and let L′ be a normal extension of L. By
theorem 2.15, L′ = L(C) where C is the class of descriptive frames of L′. Note
that any descriptive frame of L′ is also a descriptive frame of L. As L is canonical,
we deduce that C consists of general frames (F, P ) where F are themselves frames
of L. As L′ = L(C), we deduce that L′ is L-semicomplete. We have proven that
any extension of L is L-semicanonical, so that L is quasicanonical.

Theorem 6.2. Let L be a quasicanonical logic. Then L is Kripke complete.

Proof. Consider a quasicanonical logic L. We wish to prove that for each φ /∈ L,
there exists a Kripke frame F of L such that F ̸⊨ φ. Thus, take any φ /∈ L.
As L is an extension of L, we see that there exists a general frame (F, P ) with
(F, P ) ̸⊨ φ and F ⊨ L. But then we have in particular that F ̸⊨ φ and F ⊨ L. We
conclude that L is Kripke complete.
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We will show that the notion of canonicity and quasicanonicity differ. We
first note the following well-known fact. We recall the definition of a canonical
logic in definition 2.16.

Theorem 6.3. Both GL and GL.3 are not canonical.

Proof. Consider the frame F = (ω + 1, R), where aRb if and only if a = ω or
a > b. Note that ω+1 = {0, 1, 2, ..., ω}. We see that this is ω+1 with the strict
reverse order, except that ωRω.

0 1 2 3 ... ω

Figure 6.1: The frame F. Note that all arrows are transitive.

As F contains a reflexive point it is not a GL-frame. We take the general
frame P over F as the finite subsets of ω together with the cofinite subsets also
containing ω. Note that (F, P ) is a GL.3 frame, as it is isomorphic as a modal
algebra to the least general frame over C∞ as defined below theorem 3.20.

We claim that (F, P ) is descriptive. We first prove that it is differentiated.
Consider any x and y with x ̸= y. We see that at least one of x or y is unequal
to ω. Without the loss of generality, we assume that x < ω. We take A = {x}.
Then A ∈ P , x ∈ A and y /∈ A. We conclude that our frame is differentiated.

Now, consider any x and y such that ¬(xRy). By construction of our frame,
we must have that yRx and x < ω. We take A to be {z | zRx} ∪ {x}. As x ∈ ω
we see that A is a cofinite set containing ω so that A ∈ P . Of course, y ∈ P . We
conclude that ♢A = {z | zRx}, and as x ∈ ω we find that ¬xRx so that x /∈ ♢A.
We deduce that (F, P ) is tight.

Finally, consider any {Ai}i∈I ⊆ P with the finite intersection property. If
all Ai are cofinite, then they all contain ω so that

⋂
i∈I Ai ̸= ∅. Now, assume

at least one Ai is finite. We denote this specific index by j. We now see that⋂
i∈I Ai ̸= ∅. If not, for each k ∈ Aj , there exists an Aik with k /∈ Aik . But

then Aj ∩
⋂

k∈Aj
Aik = ∅. As this is the intersection of finitely many sets in

{Ai}i∈I , we find that that set does not have the finite intersection property. By
contraposition, we conclude that (F, P ) is compact.

We see that (F, P ) is a differentiated, tight and compact GL.3-frame (and,
by extension, a GL-frame), but F is not a GL-frame, let alone a GL.3 frame. We
conclude that both GL and GL.3 are not canonical.

One can consider the possibility that GL is quasicanonical. Then indeed, for
any GL-logic we could guarantee there to be a general space over some ordinal
yielding the same logic. After an informal presentation of this thesis to fellow
Master’s students in March 2024 at the Radboud University, another Master’s
student working in modal logic managed to disprove this claim:

Theorem 6.4 ([20, Theorem 5.17]). GL is not quasicanonical.
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For the proof of this statement, we refer to [20, Theorem 5.17], as it uses
techniques specific to his work and is out of the scope of this thesis.

A naturally arising question is if quasicanonicity is even different from canon-
icity itself. It turns out that quasicanonicity is a strictly weaker property. The
following is also attributed to Vooijs.

Theorem 6.5 ([20, Proposition 5.5]). GL.3 is quasicanonical.

Proof. As GL.3 is a finite width logic, it is Kripke complete, as are all its exten-
sions by theorem 3.14. As GL.3 and all its extensions are Kripke complete, they
are most certainly GL.3-semicomplete. We conclude that GL.3 is quasicanoni-
cal.

We see that GL.3 is an example of a logic that is quasicanonical but not
canonical, so that the notion of quasicanonicity and canonicity differ. Note
that GL.3 has the property that it is Kripke complete and all its extensions are
Kripke complete. This is certainly a weaker property than being quasicanonical.
We leave it open that these notions actually differ: It may the case that all
quasicanonical logics are exactly those logics that are Kripke complete and have
only Kripke complete extensions.

Going back to GL itself, we may ask ourselves: Are there non-Kripke complete
GL-semicomplete logics? This statement is quite nontrivial, and we leave it as
an open problem. We note the following equivalence:

Theorem 6.6. There exist non-Kripke complete GL-semicomplete logics if and
only if there exists a GL-frame F and a general frame P over F such that
L(F, P ) ̸= L(C) for all classes C of Kripke frames.

Proof. From ‘right to left’: If such a pair (F, P ) exists, then L(F, P ) is a GL-
semicomplete logic that is not Kripke complete.

From ‘left to right’: We prove this via contraposition. Assume that for all
GL-frames F and all general frames P over F there exists a class C(F,P ) of Kripke
frames such that L(F, P ) = L(C(F,P )). Consider any GL-semicomplete logic L.
We see that there exists a class C ′ of general frames such that L = L(C ′). We
define C ′′ to be the union of all classes C(F,P ) with (F, P ) ∈ C ′. Indeed:

L(C ′′) =
⋂

(F,P )∈C′

L(C(F,P ))

=
⋂

(F,P )∈C′

L(F, P )

= L(C ′)

= L

We see that L is Kripke complete with respect to the class C ′′ and conclude that
all GL-semicomplete logics are Kripke complete in this case.
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Corollary 6.6.1. All GL-semicomplete logics are Kripke complete if and only if
for each GL-frame F and each general frame P over F , there exists a class C of
Kripke frames such that L(F, P ) = L(C)

Proof. This is exactly the contraposition of the previous theorem.

Now, we know that GL is not quasicanonical, so that theorem 5.9 does not
classify all GL-logics. Do note, however, that the story need not end there.
We noted that all GL Kripke-frames can be viewed as scattered spaces, but the
converse need not hold. In general, a scattered space is not isomorphic to a
Kripke frame with the upset topology, in fact, any ordinal number greater than
ω is not of such form. As we will show later, we cannot extend theorem 5.9,
but we could imagine there to be non-GL-semicomplete logics that are complete
with respect to general scattered spaces. It may also be possible that any logic
sound and complete with respect to a class of general scattered spaces is itself
GL-semicomplete. This question, we also leave open.

6.2 A logic incomplete for general scattered spaces

We will now show that it is not possible to classify all possible GL-logics with the
general scattered semantics. The following proof will often refer to [20, Chapter
5.4], as it is a ‘topologification’ of the proof that GL is not quasicanonical. In
this proof, we use notation mirroring that of [20].

Theorem 6.7 (Takapui and Vooijs, 2024). There exists a GL-logic Λ such that
there exists no class C of general scattered spaces such that Λ = Ld(C).

Proof. We take the logic Λ to be the logic of f′1 as defined in [20, Lemma 5.4],
which is a consistent NML extending GL. We take φ0 as in [20, page 55], and we
will prove that ¬φ0 is true for every model over a scattered space for Λ. Note
that ¬φ0 /∈ Λ, so that this indeed proves our theorem.

Let X be a scattered space and G be a general space over X such that
Λ ⊆ Ld(X,P ). Assume that ¬φ0 /∈ Ld(X,P ), so that there exists a valuation v
on (X,P ) so that v(φ0) is nonempty. Now note as in the proof of [20, Lemma
5.16] that we have the following:

{φn → ♢φn+1, φn →
∧

{¬♢φi | i < n} | n ∈ ω} ⊆ Λ

Here, ♢ψ is an abbreviation of ♢ψ ∨ ψ. We may apply [20, Lemma 5.15], and
we find:

{φn → ♢φn+1, φn →
∧

{¬♢φi | i < n} | n ∈ ω} ⊆ Λ

From this, we conclude in particular that φn → ♢φn+1 ∈ Λ for each n. As v(φ0)
is nonempty we see that v(♢φ1) is nonempty, so that v(φ1) is also nonempty.
With induction, we find for each n ∈ ω:

v(φn) ̸= ∅
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Furthermore, we see that v(φn) ⊆ d(v(φn+1)) for each n. We take An = v(φn)
for each n, and now note that each An is nonempty and An ⊆ d(An+1) for all n.
Now take A =

⋃
n∈ω An. Note that A is nonempty. We then see:

A =
⋃
n∈ω

An

⊆
⋃
n∈ω

d(An+1)

⊆ d(
⋃
n∈ω

An+1)

⊆ d(
⋃
n∈ω

An)

= d(A)

We deduce that A is a nonempty set with A ⊆ d(A). But then A\d(A) is empty
so that X is not a scattered space. We have found a contradiction and conclude
that v(φ0) = ∅. We had made no assumptions on v, so that (X,P ) ⊨ ¬φ0.
We conclude that there exists no class C of general scattered spaces such that
Λ ⊆ Ld(C) and ¬φ0 /∈ Ld(C), so that indeed there is no class of general scattered
spaces yielding the same logic as Λ.

Even though scattered spaces are a natural class of topological spaces, we
have shown that only restricting ourselves to general spaces over scattered spaces
leaves us unable to obtain all possible GL-logics. It turns out that these problems
fade when we consider all possible topological spaces, which we will discuss in
the following chapter.
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Chapter 7

Moving beyond scattered
spaces

We have shown that there are limits to what is expressible with general d-
semantics on scattered spaces. In this chapter, we show that by considering
all topological spaces we can classify many more logics.

7.1 Capturing all GL-logics

We define a notion of topology that makes sense on all possible Kripke frames.

Definition 7.1. The R-topology or the (generalized) upset topology τR on a
Kripke frame F = (W,R) is the topology of the R-‘upsets’, so that a set A ⊆W
is open if for each x ∈ A, if xRy then also y ∈ A.

One easily checks that indeed this defines a topology for any Kripke frame.
We now slightly restrict our scope and focus on weakly transitive frames. As in
theorem 2.9 we say that a frame K is weakly transitive if for all a, b and c:

aRb ∧ bRc→ a = c ∨ aRc

As stated before, the weakly transitive frames are exactly the frames enjoying
the wK4 axiom (□p ∧ p) → □□p.

Lemma 7.2. Let F = (W,R) be a wK4 Kripke frame and let A be a subset of
W . Then dτR(A) consists of those points x such that there exists y ∈ A with
xRy and x ̸= y. In particular, R is irreflexive if and only if dτR(A) = ♢R(A)
for all A ⊆W .

Proof. Let F be any wK4-frame. Consider any A ⊆ W and any x ∈ W . We
will prove that x ∈ dτR(A) if and only if there exists some y ∈ A with xRy and
y ̸= x.

From ‘left to right’: Assume x ∈ dτR(A). Let B be the set {z | xRz}∪{x}. As
F is a wK4-frame, this is indeed an R-upset so that B is an open set containing
x. As x ∈ dτR(A) there exists some y ∈ A ∩ B with x ̸= y. Note that in that
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case xRy, so that we indeed obtain that there exists some y ∈ A with xRy and
y ̸= x.

From ‘right to left’: Assume there exists some y ∈ A with xRy and x ̸= y.
Now consider any U ∈ τR with x ∈ U . As U is an R-upset, we know that y ∈ U .
As y ∈ A and y ̸= x, we indeed see that x ∈ dτR(A).

We have the following:

x ∈ dτR(A) ⇐⇒ ∃y∈AxRy ∧ x ̸= y

x ∈ ♢R(A) ⇐⇒ ∃y∈AxRy

The first line is exactly the first part of the theorem. Furthermore, we see that
♢R(A) = dτR(A) for all A if R is irreflexive, and we see that R is irreflexive if
♢R({x}) = dτR({x}) for all x ∈W .

Theorem 7.3. Let F = (W,R) be a wK4 Kripke frame, and let F ′ = (W,R′) be
the irreflexive interior of F , that is:

xR′y ⇐⇒ xRy ∧ x ̸= y

Then Ld(F, τR) = L(F ′).

Proof. Note that, by the previous lemma: Ld(F, τR) = Ld(F, τR′) and Ld(F, τR′) =
Ld(F

′).

The following is a well-known property of wK4. The standard argument uses
the fact that wK4 is a Sahlqvist logic, see [10, Definition 3.51 and Theorem 5.91].
However, we give a direct argument.

Theorem 7.4. wK4 is canonical.

Proof. We will prove by contradiction. Let (F, P ) be a descriptive wK4 frame.
In particular, (F, P ) is refined. Assume F is not a wK4-frame, so that there exist
x, y, z with xRy, yRz, x ̸= z and ¬(xRz).

As x ̸= z and as P is differentiated, we know that there exists some A ∈ P
with x /∈ A and z ∈ A. Furthermore, as ¬(xRz) and as P is tight, there
exists some B ∈ P with z ∈ B and x /∈ ♢RB. It follows immediately that
x /∈ ♢R(A∩B). Furthermore, as x /∈ A, we see that x /∈ A∩B. We deduce that

x /∈ ♢R(A ∩B) ∪ (A ∩B).

Now note that z ∈ A ∩B. As xRy and yRz, we see that x ∈ ♢R♢R(A ∩B).
We see that x ∈ ♢R♢R(A ∩B) but x /∈ ♢R(A ∩B) ∪ (A ∩B). We deduce that

♢R♢R(A ∩B) ̸⊆ ♢R(A ∩B) ∪ (A ∩B),

so that wK4 does not hold over (P, F ). Via contradiction, we see that F is a
wK4-frame. We conclude that wK4 is canonical.

Recall from theorem 2.15 that every NML is sound and complete with respect
to its descriptive frames.
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Lemma 7.5. Let (F, P ) be a general GL-frame. Then dτR(A) = ♢RA for all
A ∈ P .

Proof. Take any such frame (F, P ). Note that GL is a K4 logic, so that it is
certainly a wK4 logic. As (F, P ) is descriptive, we know by the previous theorem
that F is wK4. By lemma 7.2, we see that

dτR(A) = {x | ∃y∈AxRy ∧ x ̸= y}

and
♢RA = {x | ∃y∈AxRy}

We see that dτR(A) ⊆ ♢RA for all A ∈ P . We will prove that the converse also
holds.

Consider any x ∈ ♢RA. Thus, there exists some y ∈ A with xRy. Assume
x /∈ dτR(A). Then, we see that {y ∈ A | xRy} = {x}. We note that x ∈ ♢RA so
that there is no point z ∈ A\♢RA with xRz. But then x /∈ ♢R(A\♢RA), while
x ∈ ♢RA. We see that ♢RA ̸⊆ ♢R(A\♢RA). But this is impossible as (F, P )
is a GL-frame and as A ∈ P . We conclude that x ∈ dτR(A), so that indeed
♢RA = dτR(A).

Do note that F need not be a GL-frame, as GL is not canonical. We see that
these topological spaces are not necessarily scattered.

Theorem 7.6. Let L be any normal modal logic extending GL. Then there exists
a class C of general topological spaces such that L = Ld(C).

Proof. Consider any such logic L. As stated before, L is sound and complete with
respect to its descriptive frames. We denote the class of descriptive L-frames by
C. Given frame (F, P ) ∈ C with F = (W,R), we can take the corresponding
topological space F ′ = (W, τR). By the previous lemma, dτR(A) = ♢RA for
any A ∈ P . We see that P is also a topological general space over F ′, and we
deduce that L(F, P ) = Ld(F

′, P ). By now taking C ′ = {(F ′, P ) | (F, P ) ∈ C},
we conclude that Ld(C

′) = L(C) = L.

Indeed, we see that all GL-logics may be obtained via general d-semantics.
It turns out that this result generalizes for all logics above wK4.

7.2 Capturing all wK4-logics.

Definition 7.7. Given Kripke frame F = (W,R), we define the irreflexified
copy F ′ = (W ′, R′) of F together with the identification function π : W ′ → W
as follows:

1. Split W up into two disjoint sets of points Wr and Wi, with Wr containing
all reflexive points according to R and Wi all irreflexive points.

2. Define W ′ =Wi ⊔ (Wr × {0, 1}), with ⊔ denoting the disjoint union.
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3. We define π : W ′ → W as π(x) = x if x ∈ Wi and π(x, n) = x if x ∈ Wr

and n ∈ {0, 1}.

4. We define R′ on W ′ as xR′y if π(x) ̸= π(y) and π(x)Rπ(y). For each
x ∈Wr, we in addition take (x, 0)R′(x, 1) and (x, 1)R′(x, 0).

Intuitively, F ′ is the frame in which each reflexive point of F is replaced with
two irreflexive points that see each other, and π identifies each point in F ′ with
its corresponding point in F .

Note that an equivalent construction has been considered in [15] (See also: [7]
for a more accessible paper in English) to prove that wK4 is sound and complete
with respect to d-semantics. We show some properties of these irreflexified copies.

Theorem 7.8. Let F = (W,R) be a Kripke frame, let F ′ = (W ′, R′) be its
irreflexified copy and let π be its identification function. Then

1. F ′ is an irreflexive Kripke frame.

2. π is surjective, and π(x)Rπ(y) for all x, y ∈W ′ with xR′y.

Proof. For the first: Assume that F ′ contains a reflexive point. We split this in
the case where this point is in Wr and the case where this point is in Wi. First,
assume that there exists some x ∈ Wr such that (x, 0)R′(x, 0) or (x, 1)R′(x, 1).
But this is of course impossible: π(x, 0) = π(x, 1) = x, so we must have that
x ̸= x. Likewise, cannot have that x ∈ Wi, as then xR

′x only if x ̸= x. Indeed,
F ′ is irreflexive.

For the second: Surjectivity is trivial. Now, assume xR′y. If π(x) ̸= π(y),
we indeed automatically obtain that π(x)Rπ(y). Now, assume π(x) = π(y).
Then there exists some z such that x = (z, 0) and y = (z, 1), or x = (z, 1) and
y = (z, 0). But then z must be a reflexive point in F . As z = π(x) = π(y) we
conclude that indeed π(x)Rπ(y).

Note that the following is already known and can be found in [7] and [15].

Lemma 7.9. Let F be a wK4 frame. Then its irreflexified copy is also a wK4
frame.

Proof. Let F = (W,R) be a wK4 frame and let F ′ = (W ′, R′) be its irreflexified
copy. Assume xR′yR′z. By theorem 7.8, we see that π(x)Rπ(y)Rπ(z). As F is
weakly transitive, we deduce that π(x)Rπ(z) or π(x) = π(z).

If π(x) = π(z), we see that there exists some a ∈W such that x = (a, i) and
z = (a, j) with i ∈ {0, 1} and j ∈ {0, 1}. In any case, immediately it follows that
x = z or xR′z.

Now assume π(x) ̸= π(z). We must have that π(x)Rπ(z) and π(x) ̸= π(z),
so that xR′z. Indeed, F ′ is wK4.

Theorem 7.10. Let F be a wK4 frame and let P be a general frame over F .
Then there exists a general frame P ′ over the irreflexified copy F ′ of F such that
L(F, P ) = L(F ′, P ′).
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Proof. Consider any such general frame (F, P ). We define P ′ as follows:

P ′ = {π−1(A) | A ∈ P}

We will first prove that π−1(♢RA) = ♢R′π−1(A) for each A ∈ P .
Consider any x ∈ π−1(♢RA), so that π(x) ∈ ♢RA. We see that there exists

some y ∈ A with π(x)Ry. Note that, as π is surjective, there are either one or
two elements of π−1(A) with y as their image.

First, assume π(x) ̸= y. Now take any element z such that π(z) = y. We see
that xR′z and z ∈ π−1(A), so that indeed x ∈ ♢R′π−1(A).

Now assume π(x) = y. We see that yRy, so that x = (y, i) with i ∈ {0, 1}.
Now note that π(y, 1 − i) = y ∈ A, and that xR′(y, 1 − i). We deduce that
x ∈ ♢R′π−1(A). We conclude π−1(♢RA) ⊆ ♢R′π−1(A).

Conversely, assume x ∈ ♢R′π−1(A). Thus, there exists some y ∈ π−1(A)
such that xR′y. Now note that π(y) ∈ A. By theorem 7.8 we also see that
π(x)Rπ(y), so that indeed π(x) ∈ ♢RA. We conclude that x ∈ π−1(♢RA), and
conclude that π−1(♢RA) = ♢R′π−1(A).

As π is surjective, we also see that

π−1(W\A) =W ′\π−1(A)

and
π−1(A ∪B) = π−1(A) ∪ π−1(B).

Furthermore, π is a surjection from P ′ to P . This, together with the fact that
π−1(♢RA) = ♢R′π−1(A) instantly gives us that P ′ is a general space over F ′,
isomorphic to P as a modal algebra. As a result, we may immediately conclude
that L(F, P ) = L(F ′, P ′)

Remark. In the theorem above, it is essential that (F ′, P ′) is general frame, i.e.,
there is no guarantee that the logics of F and F ′ coincide.

Lemma 7.11. Let L be a wK4 logic. Then there exists some class C of general
Kripke frames such that L = L(C) and F is irreflexive for each (F, P ) ∈ C.

Proof. Consider any wK4 logic L. As wK4 is canonical there exists some class C
of general frames over wK4 frames such that L = L(C). Now, take C ′ to be the
class of general frames (F ′, P ′) for each (F, P ) ∈ C, with F ′ the irreflexive copy
of F and P ′ as defined in theorem 7.10. By the same theorem, we conclude that
L(C ′) = L(C) = L.

Theorem 7.12. Let L be a wK4-logic. Then there exists some class C of general
topological spaces so that Ld(C) = L.

Proof. Consider any wK4 logic L. As wK4 is canonical there exists a class C of
general frames over wK4-frames such that L = L(C). By the previous lemma
there exists a class C ′ of general frames so that F is irreflexive for each (F, P ) ∈ C
and L(C ′) = L(C) = L.

Note that we can view F as a topological space with the upset topology for
any (F, P ) ∈ C ′. Note that each such F is an irreflexive wK4 frame, so that (F, P )
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is also a general topological frame by lemma 7.2. Futhermore, that theorem gives
us that L(F, P ) = Ld(F, P ). We conclude that Ld(C

′) = L(C ′) = L.

We have shown that general d-semantics allows us to describe not only all
GL-logics, but all wK4-logics as long as we do not restrict ourselves to scattered
spaces. Note that this is, in a certain sense, a maximal result: We have for all
topological spaces X and all A ⊆ X that d(d(A)) ⊆ d(A) ∪ A, so that we can
only obtain extensions of wK4 by considering (general) d-semantics.

7.3 Characterizing topological Kripke frames

All tools we have discussed so far mainly deal with the fact that we may view
Kripke frames as topological spaces. It is now natural to wonder if the reverse is
possible. It may be that any logic complete with respect to topological spaces is
complete with respect to Kripke frames. This section aims to provide a necessary
and sufficient condition for when we can view a topological space as a Kripke
frame, to understand better the structures topological spaces enjoy that Kripke
frames lack.

Definition 7.13. We say that a topological space (X, τ) satisfies the infinite
distribution law if, for all {Ai}i∈I ⊆ X:

d(
⋃
i∈I

Ai) =
⋃
i∈I

d(Ai)

We say that a topological space (X, τ) is inherited from a Kripke frame if there
exists a relation R on X so that τ = τR.

Note that d(A∪B) = d(A)∪d(B) for all topological spaces, so that d already
distributes over all finite unions.

Theorem 7.14. Let (X, τ) be a topological space that is inherited from a Kripke
frame. Then X satisfies the infinite distribution law.

Proof. Consider a topological space (X, τ) that is inherited from a Kripke frame,
and let R be the relation on X such that τ = τR. Take R′ to be the irreflexive
interior of the transitive closure of R. Note that τR′ = τR = τ . By lemma 7.2,
we deduce that d = dτR′ = ♢R′ . Consider any {Ai}i∈I ⊆ X. We now see:

d(
⋃
i∈I

Ai) = ♢R′
⋃
i∈I

Ai

= {x ∈ X | ∃i∃y∈AixR
′y}

=
⋃
i∈I

{x ∈ X | ∃y∈AixR
′y}

=
⋃
i∈I

♢R′Ai

=
⋃
i∈I

d(Ai)
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Indeed, (X, τ) satisfies the infinite distribution law.

It turns out that this ‘infinite distribution law’ exactly characterizes the
spaces that are inherited from a Kripke frame.

Theorem 7.15. Let (X, τ) be a topological space with the infinite distribution
law. Then (X, τ) is inherited from a Kripke frame.

Proof. Consider a topological space (X, τ) with the infinite distribution law. We
define a relation R on X as follows:

xRy ⇐⇒ x ∈ d({y})

We claim that τR = τ . We will first prove that ♢R = dτ . Consider any A ⊆ X.
We find:

x ∈ dτ (A) ⇐⇒ x ∈ dτ (
⋃
y∈A

{y})

⇐⇒ x ∈
⋃
y∈A

dτ ({y})

⇐⇒ ∃y∈Ax ∈ dτ ({y})
⇐⇒ ∃y∈AxRy
⇐⇒ x ∈ ♢RA

Now, we claim that R is irreflexive and weakly transitive. Consider any x, y ∈ X.
We note the following:

x ∈ d({y}) ⇐⇒ ∀U∈τ [x ∈ U → ∃z∈U∩{y}[z ̸= x]]

⇐⇒ x ̸= y ∧ ∀U∈τx ∈ U → y ∈ U

In particular, we cannot have that x ∈ d({x}) for any x ∈ X, so that R is
irreflexive. We prove that it is weakly transitive:

Consider any x, y, z ∈ X with xRy and yRz. We will prove that x = z or
xRz. Assume that x ̸= z.Take any open U with x ∈ U . As xRy, we see that
y ∈ U , and as yRz, we find that z ∈ U . Thus, for each open U , we deduce that
x ∈ U implies z ∈ U . Of course, it follows that either x = z or xRz. Indeed, R
is weakly transitive.

By lemma 7.2 we now see that dτR = ♢R = dτ , so that dτR = dτ . Now note
that clτ ′(A) = A ∩ dτ ′(A) for any topology τ ′ on any topological space X ′ and
for all A ⊆ X ′, where clτ ′ denotes the closure operator. As dτR = dτ , we see that
clτR = clτ . We deduce that (X, τR) has the same closed sets as (X, τ), so that
they must have the same open sets. We conclude that τR = τ , so that indeed
(X, τ) is inherited from a Kripke frame.

This shows us that many topological spaces cannot be inherited from Kripke
frames, but it may still be possible that many topological spaces are the surjective
image of Kripke frames. It turns out that we can also give a condition for when
a space is the surjective image of some Kripke frame.
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Theorem 7.16. Let X be a topological space X with the infinite distribution
law, let Y be any topological space and let f : X → Y be an onto d-morphism.
Then Y satisfies the infinite distribution law.

Proof. Consider any such X,Y and f and consider any {Ai}i∈I ⊆ Y . Then by
theorem 2.29:

f−1(dY (
⋃
i∈I

Ai)) = dX(f−1(
⋃
i∈I

Ai))

= dX(
⋃
i∈I

f−1(Ai))

=
⋃
i∈I

dX(f−1(Ai))

=
⋃
i∈I

f−1(dY (Ai))

= f−1(
⋃
i∈I

dY (Ai))

We see that f−1(dY (
⋃

i∈I Ai)) = f−1(
⋃

i∈I dY (Ai)). As f is onto, we must
have that dY (

⋃
i∈I Ai) =

⋃
i∈I dY (Ai). We conclude that Y satisfies the infinite

distribution law.

Corollary 7.16.1. Let α ≥ ω+1 be an ordinal equipped with the interval topol-
ogy. Then there does not exist a Kripke frame F = (W,R) with an onto d-
morphism f :W → α.

Proof. All we have to do is note that α does not satisfy the infinite distribution
law, as d({n}) = ∅ for each n ∈ ω, but d(

⋃
n∈ω{n}) = d(ω) = {ω}.

We have shown that there exist topological spaces that are not the surjective
image of Kripke frames. We see that it may be possible for a logic to be sound
and complete with respect to (general) scattered spaces but not with respect to
(general frames over) GL-frames. We leave this as an open question.
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Chapter 8

Conclusion and future work

In this thesis we defined the concept of a general topological frame for d-semantics,
which is a topological frame with a restricted set of admissible sets akin to general
Kripke semantics. We started by defining the least general space over a topo-
logical space. This allowed us to show that the logics of these least spaces are
normal extensions of GL.3, and gave for each normal extension of GL.3 an ordinal
whose least space is that logic. We then gave completeness results for general
topological semantics for ordinal numbers, thereby extending the Abashidze-
Blass theorem. We first showed that each logic enjoying the FMP is the logic
of a general space over an ordinal α ≤ ωω. We then introduced the class of GL-
semicomplete logic, a class extending the Kripke complete logics, and showed
that each such logic is the logic of a general space over some countable ordi-
nal. We finally showed that there exists a GL-logic that can not be obtained by
only considering scattered spaces, and we showed that it is possible to obtain all
wK4-logics if one considers general spaces over all topological spaces.

In the future, our aim is to better understand GL-semicomplete logics and
the notion of quasicanonicity, with the main question being whether there exists
a GL-logic complete with respect to general scattered spaces that is not GL-
semicomplete. The existance of such a logic would show that scattered space
semantics is strictly more general than Kripke semantics. Another aim is to
consider these general semantics for polymodal logics and see which polymodal
GL-logics can be encapsulated by general polytopological spaces, e.g., extensions
of GLB or GLP.

Another direction for future research would be a deeper dive into least general
spaces. We have seen that GL.3 is the logic of the least general spaces for GL.
This mirrors the fact that GL.3 is the logic of the zero-generated universal Kripke
frame of GL, see [13, page 275]. A natural question would be whether the logic of
all least spaces coincides with the logic of the zero-generated universal frame for
wK4. Will this logic be finitely axiomatizable? If so, what is its axiomatization?
In general, one could study the spectrum of logics that are complete for least
topological spaces. Can such logics be fully characterized? Note that these logics
will all extend wK4. Of course, the notion of least spaces for polymodal logics
would also be interesting to discuss, as these in general have much more structure
and in turn have a much larger and more complicated set of admissible sets.
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