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Abstract. The longstanding research line investigating free algebra con-
structions in modal logic from an algebraic and coalgebraic point of view
recently lead to the notion of a one-step frame [14], [8]. A one-step frame
is a two-sorted structure which admits interpretations of modal formulae
without nested modal operators. In this paper, we exploit the potential
of one-step frames for investigating proof-theoretic aspects. This includes
developing a method which detects when a specific rule-based calculus
Ax axiomatizing a given logic L has the so-called bounded proof prop-
erty. This property is a kind of an analytic subformula property limiting
the proof search space. We define conservative one-step frames and prove
that every finite conservative one-step frame for Ax is a p-morphic image
of a finite Kripke frame for L iff Ax has the bounded proof property and
L has the finite model property. This result, combined with a ‘one-step
version’ of the classical correspondence theory, turns out to be quite pow-
erful in applications. For simple logics such as K, T, K4, S4, etc, estab-
lishing basic metatheoretical properties becomes a completely automatic
task (the related proof obligations can be instantaneously discharged by
current first-order provers). For more complicated logics, some ingenu-
ity is needed, however we successfully applied our uniform method to
Avron’s cut-free system for GL and to Goré’s cut-free system for S4.3.

1 Introduction

The method of describing free algebras of modal logics by approximating them
with finite partial algebras is longstanding. The key points of this method are
that every free algebra is approximated by partial algebras of formulas of modal
complexity n, for n ∈ ω, and that dual spaces of these approximants can be
described explicitly [1], [16]. The basic idea of this construction can be traced
back to [15]. In recent years there has been a renewed interest in this method
e.g., [6], [8], [9], [14], [17]. In this paper we apply the ideas originating from
this line of research to investigate proof-theoretic aspects of modal logics. In
particular, we will concentrate on the bounded proof property. An axiomatic
system Ax has the bounded proof property (the bpp, for short) if every formula
φ of modal complexity at most n derived in Ax from some set Γ containing only
formulae of modal complexity at most n, can be derived from Γ in Ax by only
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using formulae of modal complexity at most n. The bounded proof property is
a kind of an analytic subformula property limiting the proof search space. This
property holds for proof systems enjoying the subformula property (the latter is a
property that usually follows from cut elimination). The bounded proof property
depends on an axiomatization of a logical system. That is, one axiomatization of
a logic may have the bpp and the other not. Examples of such axiomatizations
will be given in Section 5 of the paper.

The main tools of our method are the one-step frames introduced in [14]
and [8]. A one-step frame is a two-sorted structure which admits interpretations
of modal formulae without nested modal operators. We show that an axiomatic
system Ax axiomatizing a logic L has the bpp and the finite model property
(the fmp) iff every one step-frame validating Ax is a p-morphic image of a finite
standard (aka Kripke) frame for L. This gives a purely semantic characterization
of the bpp. The main advantage of this criterion is that it is relatively easy
to verify. In the next subsection we give an example explaining the details of
our machinery step-by-step. Here we just list the main ingredients. Given an
axiom of a modal logic, we rewrite it into a one-step rule, that is, a rule of
modal complexity 1. One-step rules can be interpreted on one-step frames. We
use an analogue of the classical correspondence theory, to obtain a first-order
condition (or a condition of first-order logic enriched with fixed-point operators)
for a one-step frame corresponding to the one-step rule. Finally, we need to
find a standard frame p-morphically mapped onto any finite one-step frame
satisfying this first-order condition. This part is not automatic, but we have
some standard templates. For example, we define a procedure modifying the
relation of a one-step frame so that the obtained frame is standard. In easy
cases, e.g., for modal logics such as K, T, K4, S4, this frame is a frame of the
logic and is p-morphically mapped onto the one-step frame. The bpp and fmp for
these logics follow by our criterion. For more complicated systems such as S4.3
and GL, we show using our method that Avron’s cut-free system for GL [2] and
Goré’s cut-free system for S4.3 [19] provide axiomatic systems with the bpp.

A worked out example. In order to explain the basic idea of our technique,
we proceed by giving a rather simple (but still significant) example. Consider
the modal logic obtained by adding to the basic normal modal system K the
‘density’ axiom:

��x→ �x. (1)

First Step: we replace (1) by equivalent derived rules having modal complex-
ity 1. The obvious solution is to replace the modalized subformulae occurring
inside the modal operator by an extra propositional variable. Thus the first can-
didate is the rule y ↔ �x/�y → �x. A better solution (suggested by the proof
of Proposition 1) is to take advantage of the monotonicity and to use instead
the rule

y → �x
�y → �x

(2)

Often, the method suggested by the proof of Proposition 1 gives ‘good’ rules, but
for more complicated logics one needs some ingenuity to find the right system



of derived rules replacing the axioms (this is substantially the kind of ingenuity
needed to find rules leading to cut eliminating systems).

Second Step: this step may or may not succeed, but it is entirely algorith-
mic. It relies on a light modification of the well-known modal correspondence
machinery. We first observe that inference rules having modal complexity 1 can
be interpreted in the so-called one-step frames. A one-step frame is a quadru-
ple S = (W1,W0, f, R), where W0,W1 are sets, f : W1 → W0 is a map and
R ⊆ W1 ×W0 is a relation between W1 and W0. In the applications, we need
two further requirements (called conservativity requirements) on such a one-step
frame S: for the purpose of the present discussion, we may ignore the second
requirement and keep only the first one, which is just the surjectivity of f .
Formulae of modal complexity 1 (i.e., without nested modal operators) can be
interpreted in one-step frames as follows: propositional variables are interpreted
as subsets of W0; when we apply modal operators to subsets of W0, we produce
subsets of W1 using the modal operator �R canonically induced by R. In par-
ticular, for y ⊆W0 the operator �R is defined as �Ry = {w ∈W1 | R(w) ⊆ y},
where R(w) = {v ∈ W0 | (w, v) ∈ R}. Whenever we need to compare, say y
and �Rx, we apply the inverse image f (denoted by f∗) to y in order to obtain
a subset of W1. Thus, a one-step frame S = (W1,W0, f, R) validates (2) iff we
have

∀x, y ⊆W0 (f∗(y) ⊆ �Rx⇒ �Ry ⊆ �Rx).

The standard correspondence machinery for Sahlqvist formulae shows that in
the two-sorted language of one-step frames this condition has the following first-
order equivalent:

∀w∀v (wRv ⇒ ∃k (wRf(k) & kRv)). (3)

In relational composition notation this becomes R ⊆ R ◦ fo ◦R, where fo is the
binary relation such that wfov iff f(w) = v. We may call (3) the step-density
condition. In fact, notice that for standard frames, where we have W1 = W0 and
f = id, step-density condition becomes the customary density condition, see (6)
below.

Third Step: our main result states that both the finite model property and
bounded proof property (for the global consequence relation) are guaranteed
provided we are able to show that any finite conservative one-step frame vali-
dating our inference rules is a p-morphic image of a standard finite frame for our
original logic. The formal definition of a p-morphic image for one-step frames
will be given in Definition 5. Here we content ourselves to observing that, in our
case, in order to apply the above result and obtain the fmp and bpp, we need
to prove that, given a conservative finite step-dense frame S = (W1,W0, f, R),
there are a finite dense frame F = (V, S) and a surjective map µ : V −→ W1

such that R ◦ µ = f ◦ µ ◦ S. In concrete examples, the idea is to take V := W1

and µ := idW1 . So the whole task reduces to that of finding S ⊆ W1 ×W1 such
that R = f ◦ S. That is, S should satisfy

∀w∀v (wRv ⇔ ∃w′ (wSw′ & f(w′) = v)). (4)



Some ingenuity is needed in the general case to find the appropriate S (indeed
our problem looks quite similar to the problem of finding appropriate filtrations
case-by-case). As in the case of filtrations, there are standard templates that
often work for the cases of arbitrary relations, transitive relations, etc. The basic
template for the case of an arbitrary relation is that of taking S to be fo ◦ R,
namely

∀w∀w′ (wSw′ ⇔ ∃v (wRv & f(w′) = v)). (5)

Notice that what we need to prove in the end is that, assuming (3), the so-defined
S satisfies (4) and

∀w∀v (wSv ⇒ ∃k (kSv & wSk)). (6)

Thus, taking into consideration that f is also surjective, i.e.,

∀v ∃w f(w) = v, (7)

(because S is conservative), we need the validity of the implication

(7) & (3) & (5) ⇒ (4) & (6).

The latter is a deduction problem in first-order logic that can be solved affir-
matively along the lines indicated in Section 5. The problem can be efficiently
discharged by provers like SPASS, E, Vampire.3

In summary, the above is a purely algorithmic procedure, that may or may
not succeed (in case it does not succeed, one may try to invent better solutions
for the derived rules of Step 1 and/or for defining the relation S in Step 3). In
case the procedure succeeds, we really obtain quite a lot of information about our
logic, because we get altogether: (i) completeness via the finite model property;
(ii) decidability; (iii) the bounded proof property; (iv) first-order definability;
(v) canonicity (as a consequence of (i)+(iv), via known results in modal logic).
Further applications concern the step-by-step descriptions of finitely generated
free algebras (following the lines of [14] and [8]). But we will not deal with free
algebras in this paper.

The large amount of information that one can obtain from successful runs
of the method might suggest that the event of success is quite rare. This is true
in essence, but we shall see in the paper that (besides simple systems such as
K,T,K4,S4) the procedure can be successfully applied to more interesting case
studies such as the linear system S4.3 and the Gödel-Löb system GL. In the
latter case we have definability not in first-order logic, but in first-order logic
enriched with fixed-point operators. However, for finite one-step frames (as for
finite standard GL-frames), this condition boils down to a first-order condition.

The paper is organized as follows. In Section 2 we recall the basic definitions
of logics and decision problems. In Section 3 we introduce one-step frames and
state our main results. In Section 4 we discuss the correspondence theory for
one-step frames. In Section 5 we supply illustrative examples and case studies.

3 SPASS http://www.spass-prover.org/ (in the default configuration) took
less than half a second to solve the above problem with a 47-line proof.

http://www.spass-prover.org/


Section 6 provides concluding remarks and discusses future work. For space
reasons, we can only limit ourselves to giving the definitions, main results and
important examples. For all the other details (especially the proofs), the reader
is referred to the accompanying online Technical Report [7].

2 Logics and Decision Problems

Modal formulae are built from propositional variables x, y, . . . by using the
Booleans (¬,∧,∨, 0, 1) and a modal operator ♦ (further connectives such as
→,� are defined in the standard way). Underlined letters stand for tuples of
unspecified length formed by distinct elements. Thus, we may use x for a tuple
x1, . . . , xn. When we write φ(x) we want to stress that φ contains at most the
variables x. The same convention applies to sets of formulae: if Γ is a set of
formulae and we write Γ (x), we mean that all formulae in Γ are of the kind
φ(x). The modal complexity of a formula φ counts the maximum number of
nested modal operators in φ (the precise definition is by an obvious induction).
The polarity (positive/negative) of an occurrence of a subformula in a formula
φ is defined inductively: φ is positive in φ, the polarity is preserved through all
connectives, except ¬ that reverses it. When we say that a propositional variable
is positive (negative) in φ we mean that all its occurrences are such.

A logic is a set of modal formulae containing tautologies, Aristotle’s principle
(namely �(x → y) → (�x → �y)) and closed under uniform substitution,
modus ponens and necessitation (namely φ/�φ).

We are interested in the global consequence relation decision problem for
modal logics [20, Ch. 3.1]. This can be formulated as follows: given a logic L,
a finite set Γ = {φ1, . . . , φn} of formulae and a formula ψ, decide whether
Γ `L ψ. Here the notation Γ `L ψ means that there is a proof of ψ using
tautologies, Aristotle’s principle and the formulae in Γ , as well as necessitation,
modus ponens and substitution instances of formulae from a set of axioms for L
(notice that uniform substitutions cannot be applied to formulae in Γ ).

In proof theory, logics are specified via axiomatic systems consisting of infer-
ence rules (axioms are viewed as 0-premises rules). Formally, an inference rule
is an n+ 1-tuple of formulae, written in the form

φ1(x), . . . , φn(x)
ψ(x).

(8)

An axiomatic system Ax is a set of inference rules. We write `Ax φ to mean
that φ has a proof using tautologies and Aristotle’s principle as well as modus
ponens, necessitation and inferences from Ax. When we say that a proof uses
an inference rule such as (8), we mean that the proof can introduce at any step
i a formula of the kind ψσ provided it already introduced in the previous steps
j1, . . . , jn < i the formulae φ1σ, . . . , φnσ, respectively. Here σ is a substitution
and notation ψσ denotes the application of the substitution σ to ψ.

Given a finite set Γ = {φ1, . . . , φn}, an inference system Ax and a formula
ψ, we write Γ `Ax ψ to mean that ψ has a proof using tautologies, Aristotle’s



principle and elements from Γ as well as modus ponens, necessitation and in-
ferences from Ax (again notice that uniform substitution cannot be applied to
members of Γ ). We need some care when replacing a logic L with an inference
system Ax, because we want global consequence relation to be preserved, in the
sense of Proposition 1(ii) below. To this aim, we need to use derivable rules: the
rule (8) is derivable in a logic L iff {φ1, . . . , φn} `L ψ. We say that the inference
rule (8) is reduced iff (i) the formulae φ1, . . . , φn, ψ have modal complexity at
most 1; (ii) every propositional variable occuring in (8) occurs within a modal
operator4 An axiomatic system is reduced iff all inference rules in it are reduced.

Definition 1 An axiomatic system Ax is adequate for a logic L (or Ax is an
axiomatic system for L) iff (i) it is reduced; (ii) all rules in Ax are derivable in
L; (iii) `Ax φ for all φ ∈ L.

Proposition 1 (i) For any modal logic L, there always exists an axiomatic
system Ax, which is adequate for L.

(ii) If Ax is an axiomatic system for L, then Γ `Ax ψ iff Γ `L ψ for all Γ, ψ.

Proof. We just indicate how to prove (i) by sketching an algorithm replacing
every rule (8) by one or more reduced rules. Applying exhaustively this algorithm
to the formulae in L (or just to a set of axioms for L) viewed as zero-premises
rules, we obtain the desired axiomatic system for L. Notice that the algorithm has
a large degree of non determinism, so proof-theoretic properties of the outcome
may be influenced by the way we run it.

Take a formula α having modal complexity at least one and take an occur-
rence of it located inside a modal operator in (8). We can obtain an equivalent
rule by replacing this occurrence by a new propositional variable y and by adding
as a further premise α→ y (resp. y → α) if the occurrence of α is positive within
ψ or negative within one of the φi’s (resp. if the occurrence of α is negative within
ψ or positive within one of the φi’s). Continuing in this way, in the end, only
formulae of modal complexity at most 1 will occur in the rule. If a variable x
does does not occur inside a modal operator in (8), one can add �(x∨¬x) as a
further premise (alternatively, one can show that x is eliminable from (8)). a

Thus by Proposition 1(ii), the global consequence relation Γ `Ax φ does not
depend on an axiomatic system Ax chosen for a given logic L. However, deciding
Γ `Ax φ is easier for ‘nicer’ axiomatic systems. In particular, the bounded proof
property below may hold only for ‘nice’ axiomatic systems for a logic L.

When we write Γ `n
Ax φ we mean that φ can be proved from Ax, Γ (in the

above sense) by using a proof in which only formulae of modal complexity at
most n occur.

Definition 2 We say that Ax has the bounded proof property (the bpp, for
short) iff for every formula φ of modal complexity at most n and for every Γ
containing only formulae of modal complexity at most n, we have

Γ `Ax φ ⇒ Γ `n
Ax φ.

4 Requirement (ii) is just to avoid possible misunderstanding in Definition 4.



It should be clear that the bpp for a finite axiom system Ax which is adequate
for L implies the decidability of the global consequence relation problem for L.
This is because we have a bounded search space for possible proofs: in fact, there
are only finitely many non-provably equivalent formulae containing a given finite
set of variables and having the modal complexity bounded by a given n. Notice
that in a proof witnessing Γ (x) `n

Ax φ(x) we can freely suppose that only the
variables x occur, because extra variables can be uniformly replaced by, say, a
tautology.

3 Step frames

The aim of this section is to supply a semantic framework for investigating
proofs and formulae of modal complexity at most 1. We first recall the definition
of one-step frames from [14] and [8], and define conservative one-step frames.

Definition 3 A one-step frame is a quadruple S = (W1,W0, f, R), where W0,W1

are sets, f : W1 →W0 is a map and R ⊆W1×W0 is a relation between W1 and
W0. We say that S is conservative iff f is surjective and the following condition
is satisfied for all w1, w2 ∈W1 :

f(w1) = f(w2) & R(w1) = R(w2) ⇒ w1 = w2. (9)

We shall use the notation S∗ to indicate the so-called complex algebra (one-
step modal algebra in the terminology of [7, 8]) formed by the 4-tuple

S∗ = (℘(W0), ℘(W1), f∗,♦R),

where f∗ is the Boolean algebra homomorphism given by inverse image along f
and ♦R is the semilattice morphism associated with R. The latter is defined as
follows: for A ⊆W0, we have ♦R(A) = {w ∈W1 | R(w) ∩A 6= ∅}.

Notice that a one-step frame S = (W1,W0, f, R), where W0 = W1 and f = id
is just an ordinary Kripke frame. For clarity, we shall sometimes call Kripke
frames standard frames.

We spell out what it means for a one-step frame to validate a reduced ax-
iomatic system Ax. Notice that only formulae of modal complexity at most 1
are involved.

An S-valuation v on a one-step frame S = (W1,W0, f, R) is a map associating
with each variable x an element v(x) ∈ ℘(W0). For every formula φ of complexity
0, we define φv0 ∈ ℘(W0) inductively as follows:

xv0 = v(x) (for every variable x);
(φ ∧ ψ)v0 = φv0 ∩ ψv0; (φ ∨ ψ)v0 = φv0 ∪ ψv0; (¬φ)v0 = W0 \ (φv0).

For each formula φ of complexity 0, we define φv1 ∈ ℘(W1) as f∗(φv0). For φ of
complexity 1, φv1 ∈ ℘(W1) is defined inductively as follows:

(♦φ)v1 = ♦R(φv0); (φ∧ψ)v1 = φv1∩ψv1; (φ∨ψ)v1 = φv1∪ψv1; (¬φ)v1 = W1\(φv1).



Definition 4 We say that S validates the inference rule (8) iff for every S-
valuation v,we have that

φv11 = W1, . . . , φ
v1
n = W1, imply ψ

v1 = W1.

We say that S validates an axiomatic system Ax (written S |= Ax) iff S validates
all inferences from Ax.

Notice that it might well be that Ax1,Ax2 are both adequate for the same
logic L, but that only one of them is validated by a given S (see Section 5).

We can specialize the notion of a valuation to standard frames F = (W,R)
and obtain well-known definitions from the literature. In particular, given a
valuation v, for any formula φ (of any modal complexity) we can define φv by

xv = v(x) (for every variable x);
(♦φ)v = ♦R(φv); (φ ∧ ψ)v = φv ∩ ψv;
(φ ∨ ψ)v = φv ∪ ψv; (¬φ)v = W \ (φv).

We say that F is a frame for L [10, 20] iff φv = W for all v and all φ ∈ L.
We now introduce morphisms of one-step frames. In the definition below, we

use ◦ to denote relational composition: for R1 ⊆ X×Y and R2 ⊆ Y ×Z, we have
R2 ◦ R1 := {(x, z) ∈ X × Z | ∃y ∈ Y ((x, y) ∈ R1 & (y, z) ∈ R2)}. Notice that
the relational composition applies also when one or both of R1, R2 are functions.

Definition 5 A p-morphism between step frames F ′ = (W ′1,W
′
0, f
′, R′) and

F = (W1,W0, f, R) is a pair of surjective maps µ : W ′1 −→W1, ν : W ′0 −→W0

such that
f ◦ µ = ν ◦ f ′ and R ◦ µ = ν ◦R′. (10)

Notice that, when F ′ is standard (i.e., W ′1 = W ′0 and f ′ = id), ν must be
f ◦ µ and (10) reduces to

R ◦ µ = f ◦ µ ◦R′. (11)

In the next section we formulate a semantic criterion for an axiomatic system
to enjoy the bounded proof property in terms of one-step frames. For this we
need to recall extensions of one step-frames [8].

Definition 6 A one-step extension of a one-step frame S0 = (W1,W0, f0, R0)
is a one-step frame S1 = (W2,W1, f1, R1) satisfying R0 ◦ f1 = f0 ◦ R1. A class
K of one-step frames has the extension property iff every conservative one-step
frame S0 = (W1,W0, f0, R0) in K has an extension S1 = (W2,W1, f1, R1) such
that f1 is surjective and S1 is also in K.

Theorem 1 An axiomatic system Ax has the bpp iff the class of finite one-step
frames validating Ax has the extension property.

We point out again that the proofs of this and other results of this paper
can be found in [7]. The characterization of the bpp obtained in Theorem 1 may
not be easy to handle, because in concrete examples one would like to avoid
managing one-step extensions and would prefer to work with standard frames
instead. This is possible, if we combine the bpp with the finite model property.



Definition 7 A logic L has the (global) finite model property, the fmp for short,
if for every finite set of formulae Γ and for every formula φ we have Γ 6`L φ
iff there exist a finite frame F = (W,R) for L and a valuation v on F such that
(
∧
Γ )v = W and φv 6= W .

We are ready to state our main result.

Theorem 2 Let L be a logic and Ax an axiomatic system adequate for L. The
following two conditions are equivalent:

(i) Ax has the bpp and L has the fmp;
(ii) Every finite conservative one-step frame validating Ax is a p-morphic image

of some finite frame for L.

4 One-Step Correspondence

In this section we develop the correspondence theory for one-step frames based
on the classical correspondence theory for standard frames.

We will start by reformulating Definition 4. Notice that a one-step frame S =
(W1,W0, f, R) is a two-sorted structure for the language Lf having a unary func-
tion and a binary relation symbol. The complex algebra S∗ = (℘(W0), ℘(W1),
f∗,♦R) is also a two-sorted structure for the first-order language La having two
sorts, Boolean operations for each of them, and two-sorted unary function sym-
bols that we call i and ♦ (they are interpreted in S∗ as f∗ and ♦R, respectively).
As a first step, we reformulate the validity of inference in terms of truth of a
formula in the language La. We need to turn modal formulae φ of complexity at
most 1 into La-terms. This is easily done as follows: just replace every occurrence
of a variable x which is not located inside a modal connective in φ by i(x). Let
us call φ̃ the result of such replacement. The following fact is then clear.

Proposition 2 A step frame S validates a reduced inference rule of the kind (8)
iff considering S∗ as a two-sorted La-structure, we have

S∗ |= ∀x (φ̃1 = 1 & · · ·& φ̃n = 1→ ψ̃ = 1). (12)

If we rewrite (12) in terms of the Lf -structure S, we realize that this is
a truth relation regarding a second order formula, because the quantifiers ∀x
range over tuples of subsets. The idea (borrowed from correspondence theory)
is to perform symbolic manipulations on (12) and to convert it into a first-order
Lf -condition. This procedure works for many concrete examples, although there
are cases where it fails. We follow a long line of research, e.g., [3–5,12,13,18,22]
(see also [10, 20]). Similarly to these papers, our basic method is to perform
symbolic manipulations on the algebraic language La.

We start by enriching La. The enrichment comes from the following obser-
vations. Let F = (W0,W1, f, R) be a one-step frame. First of all, the morphism
i := f∗ : ℘(W0) → ℘(W1) has a left i∗ and a right adjoint i!. In fact i∗ is the



direct image along f and i! is ¬i∗¬. The operator ♦ : ℘(W0)→ ℘(W1) (we skip
the index R) also has a right adjoint, which is the Box operator � induced by
the converse relation Ro of R. We shall make use also of the related Diamond �
defined as ¬�¬. Thus we enrich La with extra unary function symbols i∗, i!,�,�
of appropriate sorts. In addition, we shall make use of the letters w0

i , w
1
i to de-

note nominals, namely quantified variables ranging over atoms (i.e., singleton
subsets) of ℘(W0), ℘(W1), respectively. For simplicity and for readability, we
shall avoid the superscript (−)1, (−)0 indicating the sort of nominals. However,
we shall adopt the convention of using preferably the variables w,w0, w

′, . . . for
nominals of sort 1, the variables v, v0, v′, . . . for nominals of sort 0 and the letters
u, u0, u

′, . . . for nominals of unspecified sort (i.e., for nominals that might be of
both sorts, which are useful in preventing, e.g., rule duplications). We call L+

a

the enriched language.
The idea is the following. We want to analyze validity of the inference rule (8)

in a one-step frame F . We initialize our procedure to:

∀x (1 ≤ φ̃1 & · · ·& 1 ≤ φ̃n → 1 ≤ ψ̃). (13)

Here and below, we use abbreviations such as α ≤ β to mean α → β = 1.
Usually, we omit external quantifiers ∀x and use sequent notation, so that (13)
is written as

1 ≤ φ̃1, . . . , 1 ≤ φ̃n ⇒ 1 ≤ ψ̃. (14)

We then try to find a sequence of applications of the rules below ending with
a formula where only quantifiers for nominals occur (that is, the variables x
have been eliminated). If we succeed, the standard translation can easily and
automatically convert the final formula into a first-order formula in the language
Lf . It is possible to characterize syntactic classes (e.g., Sahlqvist-like classes and
beyond) where the procedure succeeds, but for the purposes of this paper we
are not interested in the details of such characterizations. They can be obtained
in a straightforward way by extending the well-known characterizations, see
e.g., [3, 13,18]). The rules we use are divided into three groups:

(a) Any set of invertible rules in classical first-order sequent calculus. We refer
the reader to proof-theory textbooks such as [21] for more details on this;

(b) Rules for managing nominal quantifiers (see Table 1);
(c) Adjunction rules (see Table 2);
(d) Ackermann rules (see Table 3).

Rules (a)-(b)-(c) are local, in the sense that they can be applied simply by
replacing the formula above the line by the formula below the line (or vice versa).

Rules (d) to the contrary require checking global monotonicity conditions at
the whole sequent level. Ackermann rules eliminate the quantified variables x
one by one in successful runs.

When we start from a logic L, we first need to convert the axioms into reduced
inference rules. The method indicated in the proof of Proposition 1 has the big
advantage of introducing new quantified variables that can be easily eliminated
via the adjunction and the Ackermann rules, as is shown in the example below.



φ̃ ≤ ψ̃
∀u (u≤φ̃ → u≤ψ̃)

u ≤ ψ̃1∧ψ̃2

u≤ψ̃1 & u≤ψ̃2

u ≤ ψ̃1∨ψ̃2

u≤ψ̃1 or u≤ψ̃2

u ≤ ¬ψ̃
u 6≤ψ̃

u6≤ψ̃
ψ̃≤¬u

w ≤ ♦ψ̃
∃v (w≤♦v & v≤ψ̃)

v ≤ �ψ̃
∃w (v≤�w & w≤ψ̃)

u ≤ 1
>

u ≤ 0
⊥

v ≤ i∗(ψ̃)
∃w (v≤i∗(w) & w≤ψ̃)

Table 1. Nominals Rules

φ̃ ≤ �ψ̃
�φ̃ ≤ ψ̃

φ̃ ≤ �ψ̃
♦φ̃ ≤ ψ̃

φ̃ ≤ i(ψ̃)
i∗(φ̃) ≤ ψ̃

φ̃ ≤ i!(ψ̃)
i(φ̃) ≤ ψ̃

Table 2. Adjunction Rules

Γ, x≤φ̃⇒ ∆

Γ (φ̃/x)⇒ ∆(φ̃/x)
(x is not in φ, is positive in all Γ , negative in all ∆)

Γ, φ̃≤x⇒ ∆

Γ (φ̃/x)⇒ ∆(φ̃/x)
(x is not in φ, is negative in all Γ , positive in all ∆)

Table 3. Ackermann Rules



Example 1 Let us consider the system K4 that is axiomatized by the axiom
�x→ ��x. Since this axiom does not have modal complexity 1, we turn it into
the inference rule

�x ≤ y
�x ≤ �y

(15)

following the algorithm in the proof of Proposition 1. We then initialize our
procedure to �x ≤ i(y)⇒ �x ≤ �y. By adjunction rules, we obtain

i∗(�x) ≤ y ⇒ �x ≤ �y.

We can immediately eliminate y via the Ackermann rules and get �x ≤ �i∗(�x).
We now use nominals rules together with rules (a) (i.e., invertible rules in classi-
cal sequent calculus) and get w ≤ �x⇒ w ≤ �i∗(�x) (notice that the nominal
variable w is implicitly universally quantified here). By adjointness we obtain a
sequent �w ≤ x⇒ w ≤ �i∗(�x) to which the Ackermann rules apply yielding:

w ≤ �i∗(��w).

This is a condition involving only (one) quantified variable for nominals. Thus,
in the language Lf for one-step frames it is first-order definable (to do the
unfolding, it is sufficient to notice that the nominal w stands in fact for the set
{w′ ∈W1 | w′ = w}). After appropriate simplifications, we obtain

∀w ∀v (R(w, v)→ ∃w1 (f(w1) = v & R(w1) ⊆ R(w))). (16)

5 Examples and Case Studies

In this section we show how to apply Theorem 2 first to basic, and later to more
elaborate examples. The methodology is the following. We have three steps, as
pointed out in Section 1:

– starting from a logic L, we produce an equivalent axiomatic system AxL

with reduced rules (there is a default procedure for that, see the proof of
Proposition 1);

– we apply the correspondence machinery of Section 4 and try to obtain a
first-order formula αL in the two-sorted language Lf of one-step frames
characterizing the one-step frames validating AxL;

– we apply Theorem 2 and try to prove that conservative finite one-step frames
satisfying αL are p-mophic images of standard frames for L.

If we succeed, we obtain both the fmp and bpp for L. In examples, given a finite
conservative one-step frame F = (X,Y, f,R) satisfying αL, the finite frame
required by Theorem 2 is often based on X and the p-morphism is the identity.
Thus one must simply define a relation S on X in such a way that (11) holds
(with R′ = S). Condition (11), taking into consideration that µ is the identity,
reduces to (4). There are standard templates for S. We give some examples below
where the procedure succeeds, supplying also the relevant hints for the definition
of the right S.



– L = K : this is the basic normal modal logic. To obtain the appropriate S,
we take S := fo ◦R, i.e., we put wSw′ iff f(w′) ∈ R(w).

– L = T : this is the logic axiomatized by �x → x. The one-step correspon-
dence gives f ⊆ R as the semantic condition equivalent to being a one-step
frame for L. To obtain the appropriate S we again take S := fo ◦R.

– L = K4 : this is the logic axiomatized by �x → ��x. As we know, this
axiom can be turned into the equivalent rule (15) and the one-step corre-
spondence gives (16) as the semantic condition equivalent to being a one-
step frame for K4. We take S to be (fo ◦ R)∩ ≥R (where w ≥R w′ is
defined as R(w) ⊇ R(w′)); this is the same as saying that wSw′ holds iff
R(w) ⊇ {f(w′)} ∪R(w′).

– L = S4 Here one can combine the previous two cases. However, the defini-
tion of S as (fo ◦R)∩ ≥R simplifies to ≥R by reflexivity.

The details required to justify the claims are straightforward but sometimes a
bit involved (they considerably simplify by using a relational formalism), see [7,
Sec. 8] for the details. All the claims we need are easy for current provers (the
SPASS prover for instance solves each of the above problems in less than half a
second on a common laptop).

Remark 1 Notice that the definition of a conservative finite one-step frame
(Definition 3) has two conditions. However, only the first one (namely surjec-
tivity of f) is used in the computations above. In fact, it is not clear whether
Theorem 2 holds if we drop the second condition (9) in the definition of a one-
step conservative frame.

A case study: S4.3. As a more elaborated example we take S4.3, which is
S4 plus the axiom

�(�x→ y) ∨�(�y → x).

Applying the algorithm from the proof of Proposition 1, we obtain a rule which
is ‘bad’ (the bpp fails for the related axiomatic system, see [7, Sec. 9] for details).

Instead of a rule obtained by the procedure of Proposition 1, we axiomatize
S4.3 by using the reflexivity axiom for T and the following infinitely many rules
proposed by R. Goré [19]:

· · ·�y → xj ∨
∨

j 6=i �xi · · ·
�y →

∨n
i=1 �xi

(17)

The rules are indexed by n and the n-th rule has n premises, according to the
values j = 1, . . . , n. If we collectively do the correspondence theory on these
rules, we obtain the following condition on finite one-step frames:

∀w ∀S ⊆ R(w) ∃v ∈ S ∃w′ (f(w′) = v & S ⊆ R(w′) ⊆ R(w)). (18)

This condition is sufficient to prove that a finite one-step frame (X,Y, f,R)
satisfying (18) can be extended to a finite frame (X ′, R′) which is a frame for
S4.3. In the proof, we do not take X ′ to be X, but we define X ′ via a specific
construction (see [7, Thm. 3]). Summing everything up, we obtain:



Theorem 3 S4.3 axiomatized by Goré’s rules (17) has the bpp and fmp.

A case study: GL. The Gödel-Löb modal logic GL can be axiomatized by
the axiom �(�x → x) → �x. This system is known to have the fmp and to
be complete with respect to the class of finite irreflexive transitive frames. From
the proof-theoretic side, the following rule

x ∧�x ∧�y → y

�x→ �y
(19)

has been proposed by Avron in [2], and shown to lead to a cut-eliminating
system. We now analyze the axiomatic system for GL consisting of the only
rule (19). If we analyze the validity of rule (19) in a finite one-step frame, we
obtain the following condition

∀w (R(w) ⊆ {f(w′) | R(w′) ⊂ R(w)}). (20)

Notice that condition (20) implies the one-step transitivity condition (16). Using
Theorem 2 and a specific construction of the p-morphic extension (see [7, Thm.
4] for details), we obtain:

Theorem 4 GL axiomatized by Avron’s rule (19) has the bpp and fmp.

We conclude by mentioning that it is possible to apply our results for show-
ing that the axiomatic system for GL obtained by adding to the transitivity
rule (15) the well-known Löb rule �x → x/x is indeed unsatisfactory from a
proof-theoretic point of view, because the bpp fails for it [7, Ex. 3].

6 Conclusions and Future Work

We have developed a uniform semantic method for analyzing proof systems
of modal logics. The method relies on p-morphic extensions of finite one-step
frames. In simple cases, by a one-step version of the classical correspondence
theory, the application of our methodology is completely algorithmic. This is a
concrete step towards mechanizing the metatheory of propositional modal logic.

We also analyzed our approach in two nontrivial cases, namely for the cut-
free axiomatizations of S4.3 and GL known from the literature. We succeeded
in both cases in proving the fmp and bpp by our methods. The proofs are not
entirely mechanical, but from the details given in [7] it emerges that they are
still based on a common feature: an induction on the cardinality of accessible
worlds in finite one-step frames.

For future, it will be important to see whether this method can fruitfully
apply to complicated logics arising in computer science applications (such as dy-
namic logic, linear or branching time temporal logics, the modal µ-calculus, etc.).
Another important series of questions concerns the clarification of the relation-
ship between our techniques and standard techniques employed in filtrations and
analytic tableaux. Finally, a comparison with the algebraic approach (in a non-
distributive context) to cut elimination via MacNeille completions for the full
Lambek calculus FL developed in [11] might bring further fruitful consequences.
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