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KRULL DIMENSION IN MODAL LOGIC

G. BEZHANISHVILI, N. BEZHANISHVILI, J. LUCERO-BRYAN, AND J. VAN MILL

Abstract. We develop the theory of Krull dimension for S4-algebras and Heyting

algebras. This leads to the concept of modal Krull dimension for topological spaces. We

compare modal Krull dimension to other well-known dimension functions, and show that it

can detect differences between topological spaces that Krull dimension is unable to detect.

We prove that for a T1-space to have a finite modal Krull dimension can be described

by an appropriate generalization of the well-known concept of a nodec space. This, in

turn, can be described by modal formulas zemn which generalize the well-known Zeman

formula zem. We show that the modal logic S4.Zn := S4 + zemn is the basic modal logic

of T1-spaces of modal Krull dimension ≤ n, and we construct a countable dense-in-itself

ω-resolvable Tychonoff space Zn of modal Krull dimension n such that S4.Zn is complete

with respect to Zn. This yields a version of the McKinsey-Tarski theorem for S4.Zn. We

also show that no logic in the interval [S4n+1,S4.Zn) is complete with respect to any

class of T1-spaces.

§1. Introduction. Topological semantics of modal logic was pioneered by
Tsao-Chen [45], McKinsey [36], and McKinsey and Tarski [37]. The celebrated
McKinsey-Tarski theorem states that if we interpret modal diamond as closure
and hence modal box as interior, then S4 is the modal logic of any dense-in-itself
separable metric space. Rasiowa and Sikorski [42] showed that separability can
be dropped from the assumptions of the theorem. However, dropping the dense-
in-itself assumption may result in logics strictly stronger than S4. A complete
description of when a modal logic is the logic of a metric space was given in [5],
where it was shown that such logics form the chain:

S4 ⊂ S4.1 ⊂ S4.Grz ⊂ · · · ⊂ S4.Grzn ⊂ · · · ⊂ S4.Grz1.

Here S4.1 = S4+23p→ 32p is the McKinsey logic, S4.Grz = S4+2(2(p→
2p)→ p)→ p is the Grzegorczyk logic, and S4.Grzn = S4.Grz + bdn, where

bd1 = 32p1 → p1,

bdn+1 = 3(2pn+1 ∧ ¬bdn)→ pn+1.

An important generalization of the class of metric spaces is the class of Ty-
chonoff spaces. It is a classic result of Tychonoff that these are exactly the spaces
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that up to homeomorphism are subspaces of compact Hausdorff spaces (see, e.g.,
[19, Thm. 3.2.6]). Because of this important feature, the class of Tychonoff spaces
is one of the most studied classes of spaces in topology. For a Tychonoff space X,
it is desirable to know the modal logic of X. This is a challenging open problem,
and in this paper we obtain some results in this direction.

In determining the modal logic of a Kripke frame F, the depth of F plays an
important role. It is well known (see, e.g., [10, Prop. 3.44 and Thm. 5.17]) that
the depth of an S4-frame F is ≤ n iff F validates bdn, and that S4n := S4+bdn
is the logic of the class of all S4-frames of depth ≤ n. By Segerberg’s Theorem
(see, e.g., [10, Thm. 8.85]), S4n and all its extensions are Kripke complete and
have the finite model property.

In this paper we present a topological analogue of the depth of an S4-frame.
This leads to a new concept of dimension in topology, which is closely related
to the concept of Krull dimension in algebra and geometry (see, for example,
[18, Ch. 8]). We recall that the Krull dimension of a commutative ring R is
defined as the supremum of the lengths of finite chains of prime ideals of R. Since
the spectrum Spec(R) of prime ideals of R topologized with the Zariski topology
is a spectral space, where the inclusion on prime ideals is the specialization order
of the Zariski topology, we can define the Krull dimension of a spectral space
X as the supremum of the lengths of finite chains in the specialization order
of X. By Stone duality [44], spectral spaces are dual to distributive lattices,
which paves the way to defining the Krull dimension of a distributive lattice L
as the supremum of the lengths of finite chains in (Spec(L),⊆), where Spec(L)
is the Stone dual of L. For different characterizations of the Krull dimension of
distributive lattices see [8, 22, 23, 11, 12] and the references therein.

If we define the Krull dimension of an arbitrary topological space X by means
of the specialization order of X, then to quote Isbell [29], the result is “spectac-
ularly wrong for the most popular spaces, vanishing for all non-empty Hausdorff
spaces; but it seems to be the only dimension of interest for the Zariski spaces
of algebraic geometry.” Isbell remedied this by proposing the definition of grad-
uated dimension. In this article we propose a different approach, which has its
roots in modal logic. This leads to the concept of modal Krull dimension. As we
will see, this notion is more refined. For example, every nonempty Stone space
has Krull dimension and graduated dimension 0. On the other hand, for each n
(including ∞), there is a Stone space X such that the modal Krull dimension of
X is n. Thus, modal Krull dimension provides a more refined classification of
Stone spaces, and this extends to spectral spaces and beyond.

We start by developing the Krull dimension for S4-algebras (also known as
closure algebras [37], topological Boolean algebras [42], and interior algebras [7]).
An S4-algebra A has Krull dimension < n if the spectrum of ultrafilters of A
has depth ≤ n (see Definition 2.4). Since the spectrum of ultrafilters of A has
depth ≤ n iff A validates bdn and S4n has the finite model property, it follows
that S4n is the logic of the class of all S4-algebras of Krull dimension < n.

We introduce the modal Krull dimension of a topological space X as the Krull
dimension of the S4-algebra of the powerset of X. We generalize the well-known
concept of a nodec space to that of an n-nodec space, and prove that if X is
a T1-space, then the modal Krull dimension of X is ≤ n iff X is n-nodec. As
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was shown in [3], the modal logic of the class of nodec spaces is the well-known
Zeman logic S4.Z. For each n ≥ 0, we generalize the Zeman logic S4.Z to the n-
Zeman logic S4.Zn, and show that S4.Zn is a proper extension of S4n+1. From
this we derive that S4n+1 and indeed any logic in the interval [S4n+1,S4.Zn) is
topologically incomplete for any class of T1-spaces. Therefore, there are infinitely
many modal logics that are topologically incomplete with respect to Tychonoff
spaces. Of course, all these logics are Kripke complete by Segerberg’s Theorem,
and hence also topologically complete with respect to classes of topological spaces
that are not T1 (indeed do not satisfy any separation axioms).

Consequently, S4.Zn, and not S4n+1, is the basic logic of Tychonoff spaces
of modal Krull dimension ≤ n. Moreover, it turns out that a version of the
McKinsey-Tarski theorem holds for S4.Zn. Namely, for n ≥ 1, we prove that
S4.Zn is the logic of a countable dense-in-itself ω-resolvable Tychonoff space Zn
of modal Krull dimension n (the case of n = 0 is trivial since S4.Z0 is the logic
of any discrete space.)

This is technically the most challenging result of the paper. It is proved by
identifying a single S4-frame Qn+1 whose logic is S4.Zn, and constructing Zn
so that Qn+1 is an interior image of Zn. Since the depth of Qn+1 is n+ 1, this
forces the modal Krull dimension of Zn to be n; and since there is no bound on
the cluster size of Qn+1, this forces Zn to be ω-resolvable. As Zn is countable, we
obtain that S4.Zn has the countable model property with respect to Tychonoff
spaces, and this is the best we can do since finite Tychonoff spaces are discrete,
and hence S4.Zn cannot have the finite model property with respect to Tychonoff
spaces. A complete description of extensions of S4.Zn that are complete with
respect to Tychonoff spaces remains an open problem.

At the end of the paper, we utilize a close connection between S4-algebras
and Heyting algebras to develop the Krull dimension for Heyting algebras, and
conclude with a brief comparison of modal Krull dimension to other well-known
topological dimension functions.

§2. Krull dimension of S4-algebras. We start by recalling that Lewis’
well-known modal system S4 is the least set of formulas in the basic modal
language containing the classical tautologies, the formulas

• 2p→ p,
• 2p→ 22p,
• 2(p→ q)→ (2p→ 2q),

and closed under modus ponens ϕ, ϕ→ψ
ψ , substitution ϕ(p1,...,pn)

ϕ(ψ1,...,ψn) , and necessita-

tion ϕ
2ϕ .

Algebraic models of S4 are pairs A = (A,2), where A is a Boolean algebra
and 2 : A→ A is a unary function satisfying:

• 2a ≤ a,
• 2a ≤ 22a,
• 2(a ∧ b) = 2a ∧2b,
• 21 = 1.

As usual, the dual of 2 is defined as 3a = −2−a for each a ∈ A.
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These algebras were introduced by McKinsey and Tarski [37], in the 3 sig-
nature, under the name of closure algebras. The name is motivated by the fact
that 3 generalizes the definition of closure in a topological space. They are also
known under the name of topological Boolean algebras [42] and interior algebras
[7]. Nowadays it is common to call them S4-algebras.

The modal language is interpreted in an S4-algebra A by assigning to each
propositional letter an element of A, interpreting the classical connectives as the
corresponding operations of the Boolean reduct of A, and the modal box as the
unary function 2. A modal formula ϕ is valid in A, written A � ϕ, provided ϕ
is 1 under all assignments of the letters, and ϕ is satisfiable in A provided ¬ϕ is
not valid in A. We say that ϕ is valid whenever ϕ is valid in every S4-algebra.
It is well known that ϕ is a theorem of S4 iff ϕ is valid.

Typical examples of S4-algebras come from topological and relational seman-
tics for S4. For a topological space X, let IX and CX be interior and closure in
X, respectively. When it is clear from the context, we drop the subscripts. It is
easy to see that the powerset algebra AX = (℘(X), IX) is an S4-algebra, where
℘(X) is the powerset of X. By the McKinsey-Tarski representation theorem
[37], every S4-algebra is represented as a subalgebra of AX for some topological
space X.

We recall that a Kripke frame is a pair F = (W,R), where W is a set and R
is a binary relation on W . If R is reflexive and transitive, then F is called an
S4-frame. It is well known that S4-frames provide relational semantics for S4,
hence the name. Given an S4-frame F = (W,R), w ∈W , and A ⊆W , let

• R[w] = {v ∈W | wRv},
• 2RA = {w ∈W | R[w] ⊆ A},
• 3RA = {w ∈W | R[w] ∩A 6= ∅}.

Then the powerset algebra AF = (℘(W ),2R) is an S4-algebra, and every S4-
algebra is represented as a subalgebra of AF for some S4-frame F (see [31, 34,
20]).

Every S4-frame F = (W,R) can be thought of as a special topological space
as follows. Call U ⊆ W an R-upset if w ∈ U implies R[w] ⊆ U (R-downsets
are defined dually). Let τR be the collection of all R-upsets of F. Then τR is
a topology on W in which closure is 3R and every w ∈ W has the least open
neighborhood R[w]. Such topological spaces are called Alexandroff spaces, and
can alternatively be described as the topological spaces in which intersections of
arbitrary families of opens are open. Conversely, every topological space X has
its specialization order R defined by setting xRy iff x ∈ CX({y}). It is easy to
see that R is reflexive and transitive, and so (X,R) is an S4-frame. Moreover, if
X is Alexandroff, then opens in X are exactly the R-upsets, and hence S4-frames
are in one-to-one correspondence with Alexandroff spaces (see, e.g., [1, p. 238]).

In [20], Esakia put together Stone duality for Boolean algebras with relational
representation of S4-algebras to obtain a full duality for S4-algebras. By Esakia
duality, the categories of S4-algebras and Esakia spaces are dually equivalent.1

1An alternative duality for S4-algebras can be developed by means of descriptive S4-frames
(see [27], [10, Ch. 8]).
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Definition 2.1. A Stone space is a zero-dimensional compact Hausdorff space,
and an Esakia space is an S4-frame F = (W,R) such that W is equipped with a
Stone topology satisfying

• R[w] is closed;
• U clopen implies 2RU is clopen.

The dual Esakia space of an S4-algebra A is the pair A∗ = (W,R), where W
is the Stone space of A and

wRv iff (∀a ∈ A)(2a ∈ w ⇒ a ∈ v).

The dual S4-algebra of an Esakia space F = (W,R) is the S4-algebra F∗ =
(Clop(W ),2R), where Clop(W ) is the Boolean algebra of clopen subsets of W .
Then β : A→ A∗

∗ and ε : F→ F∗∗ are isomorphisms, where

β(a) = {w ∈W | a ∈ w} and ε(w) = {U ∈ Clop(W ) | w ∈ U}.
In the finite case, the topology on an Esakia space becomes discrete, and we
identify finite Esakia spaces with finite S4-frames.

The modal language is interpreted in an Esakia space F by interpreting the
modal formulas in the dual S4-algebra F∗. A modal formula ϕ is defined to be
valid (resp. satisfiable) in F exactly when ϕ is valid (resp. satisfiable) in F∗. If
ϕ is valid in F, then we write F � ϕ.

Let A be an S4-algebra and A∗ be the Esakia space of A. As is customary, we
adopt topological terminology and call a ∈ A closed if a = 3a, open if a = 2a,
dense if 3a = 1, and nowhere dense if 23a = 0. The following is well known
(and easy to see):

• a is closed iff β(a) is a clopen R-downset in A∗;
• a is open iff β(a) is a clopen R-upset in A∗;
• a is dense iff 3Rβ(a) = W ;
• a is nowhere dense iff 2R3Rβ(a) = ∅.

The relativization of A to a ∈ A is the S4-algebra Aa whose underlying set
is the interval [0, a], the meet and join in Aa coincide with those in A, the
complement of b ∈ Aa is given by a− b, the interior by 2ab = a∧2(a→ b), and
the closure by 3ab = a∧3b. If A = AX is the powerset algebra of a topological
space X and Y ⊆ X, then the relativization of A to Y is the powerset algebra
AY of the subspace Y of X.2 The relativization Aa is realized dually as the
restriction of R to the clopen subspace β(a) of A∗. In order to describe dually
a connection between nowhere dense elements and relativizations, we recall the
notion of an R-maximal point.

Definition 2.2. Let F = (W,R) be an S4-frame, U ⊆ W , and w ∈ U . Then
w is an R-maximal point of U provided wRu and u ∈ U imply uRw. We denote
the set of R-maximal points of U by maxR(U). If U = W , then we write
maxR(F).

It is well known (see, e.g., [21, Sec. III.2]) that in an Esakia space F = (W,R),
the set maxR(F) is a closed R-upset, and for each w ∈ W there is v ∈ maxR(F)
such that wRv.

2Despite subscript being used to denote both a relativization of an S4-algebra A and the
powerset algebra of a space X, there is no ambiguity when A = AX because (AX)Y = AY .
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Lemma 2.3. Let A be an S4-algebra and A∗ be its Esakia space. Suppose
a ∈ A and d ∈ Aa. Then d is nowhere dense in Aa iff β(d) ∩ maxQβ(a) = ∅,
where Q is the restriction of R to β(a).

Proof. Since A∗ is an Esakia space and β(a) is clopen in A∗, it is well
known (see, e.g., [21, Sec. III.2]) that F = (β(a), Q) is also an Esakia space.
As maxQβ(a) is a Q-upset of β(a), the condition β(d)∩maxQβ(a) = ∅ is equiv-
alent to 3Q[β(d)]∩maxQβ(a) = ∅, which in turn is equivalent to 2Q3Q[β(d)]∩
maxQβ(a) = ∅. Since 2Q3Q[β(d)] is a Q-upset of β(a), the last condition is
equivalent to 2Q3Q[β(d)] = ∅. Therefore, β(d)∩maxQβ(a) = ∅ iff β(2a3ad) =
∅, which is equivalent to d being nowhere dense in Aa. a

For an S4-frame F = (W,R), we write w~Rv provided wRv and ¬(vRw). We

call a finite sequence {wi ∈W | 0 ≤ i < n} an R-chain provided wi ~Rwi+1 for all
i, and define the length of the R-chain {wi ∈ W | 0 ≤ i < n} to be n− 1. Note
that we allow the empty R-chain which has length −1.

Definition 2.4. Let A be an S4-algebra. Define the Krull dimension kdim(A)
of A as the supremum of the lengths of R-chains in A∗. If the supremum is not
finite, then we write kdim(A) =∞.

The definition of the length of an R-chain that we have adopted has its roots
in algebra. Modal logicians have used a similar concept of depth of a frame
F = (W,R). But in modal logic the length of an R-chain {wi ∈ W | 0 ≤ i < n}
is typically defined to be n. This notion of length is always one more than the
notion of length in algebra. The difference is whether we count the number of
R-links in the R-chain (as algebraists do) or the number of points in the R-chain
(as modal logicians do). Therefore, the Krull dimension of A is one less than the
depth of A∗ (provided the Krull dimension of A is finite). Thus, kdim(A) = n
iff depth(A∗) = n+ 1 for n ∈ ω.

The following well-known lemma (see, e.g., [10, Prop. 3.44]) measures the
bound on the depth of A∗, and hence the bound on the Krull dimension of A,
by means of the modal formulas bdn.

Lemma 2.5. Let A be a nontrivial S4-algebra and n ≥ 1. Then depth(A∗) ≤ n
iff A � bdn.

It is relatively easy to describe when kdim(A) ≤ 0. Recall that A is trivial
if 0 = 1, it is discrete if 2 is the identity function, and it is an S5-algebra (or
monadic algebra) if a ≤ 23a for all a ∈ A. It is well known that A is trivial iff
A∗ = ∅, that A is discrete iff R is the identity, and that A is an S5-algebra iff
R is an equivalence relation.

Lemma 2.6. Let A be an S4-algebra.

1. kdim(A) = −1 iff A is the trivial algebra.
2. kdim(A) ≤ 0 iff A is an S5-algebra.
3. kdim(A) = 0 iff A is a nontrivial S5-algebra.
4. If A is discrete, then kdim(A) ≤ 0.

Proof. (1) Suppose A is trivial. Then A∗ = ∅, so the only R-chain in A∗ is
the empty chain whose length is −1. Therefore, kdim(A) = −1. Conversely, if
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kdim(A) = −1, then every R-chain in A∗ has length −1, and hence is the empty
chain. Thus, A∗ = ∅, and so A is the trivial algebra.

(2) Suppose A is an S5-algebra. Then R is an equivalence relation, so there

are no w, v ∈ A∗ with w~Rv. Therefore, every R-chain in A∗ has length ≤ 0.
Thus, kdim(A) ≤ 0. Conversely, suppose kdim(A) ≤ 0. Then every R-chain in
A∗ has length ≤ 0. Therefore, if xRy, then it cannot be the case that ¬(yRx).
Thus, R is symmetric, and so A is an S5-algebra.

(3) This follows from (1) and (2).
(4) This follows from (2) since every discrete algebra is an S5-algebra. a
Remark 2.7.
1. Since not every S5-algebra is discrete, the converse of Lemma 2.6(4) does

not hold.
2. Suppose A is a subalgebra of AX for some topological space X. If A consists

of clopen subsets of X, then A is discrete, and hence kdim(A) ≤ 0.

By Lemma 2.6, whether the Krull dimension of A is ≤ 0 can be determined
internally in A, without accessing A∗. The goal of the remainder of this section
is to develop a pointfree description of the Krull dimension of A that does not
require the Esakia space of A. In fact, we will prove that kdim(A) can be defined
recursively as follows.

Definition 2.8. The Krull dimension kdim(A) of an S4-algebra A can be
defined as follows:

kdim(A) = −1 if A is the trivial algebra,
kdim(A) ≤ n if kdim(Ad) ≤ n− 1 for every nowhere dense d ∈ A,
kdim(A) = n if kdim(A) ≤ n and kdim(A) 6≤ n− 1,
kdim(A) =∞ if kdim(A) 6≤ n for any n = −1, 0, 1, 2, . . . .

To show that Definitions 2.4 and 2.8 are equivalent requires some prepara-
tion. For now we refer to Definition 2.4 as the external Krull dimension and to
Definition 2.8 as the internal Krull dimension of A.

Lemma 2.9. Let A be an S4-algebra, a ∈ A, and d ∈ Aa. If d is nowhere
dense in Aa, then d is nowhere dense in A.

Proof. Set u = 23d. Then

d ∧ u = d ∧23d ≤ a ∧23d ≤ a ∧2(a→ 3d)

= a ∧2(a→ (a ∧3d)) = 2a3ad = 0.

Therefore, d ≤ −u. Since u is open, −u is closed, so 3d ≤ −u, giving u∧3d = 0.
Thus, u = 0, and hence d is nowhere dense in A. a

Definition 2.10. Let n ≥ 0 and a1, . . . , an+1 ∈ A. Define d0, . . . , dn+1 and
e0, . . . , en recursively as follows, where 0 ≤ i ≤ n:

d0 = 1,

ei = 3(2ai+1 ∧ di),
di+1 = ei − ai+1.

Let n ≥ 1. It is straightforward to see that if we interpret pi as ai for 1 ≤ i ≤ n,
then the formula ¬bdn is interpreted as dn, and the antecedent of bdn as en−1.
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Lemma 2.11. Let n ≥ 0, A be an S4-algebra, a1, . . . , an+1 ∈ A, and d0, . . . , dn+1

and e0, . . . , en be defined as in Definition 2.10.

1. e1 is nowhere dense in A.
2. ei+1 is nowhere dense in Aei for 1 ≤ i < n.

Proof. (1) Since e0 = 32a1 is closed, we have

23d1 = 23(e0 − a1) ≤ 2(e0 −2a1) = 2e0 −32a1 ≤ e0 − e0 = 0.

Therefore, d1 is nowhere dense in A. This yields that 2a2 ∧ d1 is nowhere dense
in A. Thus, e1 = 3(2a2 ∧ d1) is nowhere dense in A.

(2) For 1 ≤ i < n, we have ei+1 ≤ 3di+1 ≤ 3ei = ei, and so ei+1 ∈ Aei .
Since ei+1 = 3(2ai+2 ∧ di+1), it is sufficient to show 2ai+2 ∧ di+1 is nowhere
dense in Aei . Because ei is closed in A, we have 3eia = 3a for all a ≤ ei.
To see that 2ai+2 ∧ di+1 is nowhere dense in Aei , let u be open in Aei with
u ≤ 3(2ai+2 ∧ di+1). We set u′ = u ∧ 2ai+1. Then u′ is open in Aei and
u′ ≤ ai+1, so

u′ ∧2ai+2 ∧ di+1 = u′ ∧2ai+2 ∧ (ei − ai+1)

≤ u′ ∧ (ei − ai+1) = u′ − ai+1 = 0.

Therefore, u′∧3(2ai+2∧di+1) = 0. This together with u′ ≤ u ≤ 3(2ai+2∧di+1)
yields that u′ = 0. Thus, u∧2ai+1 = 0, and so u∧2ai+1∧di = 0. But 2ai+1∧di
is dense in Aei , giving that u = 0. Consequently, 2ai+2 ∧ di+1 is nowhere dense
in Aei . a

The next lemma concerns the internal Krull dimension of an S4-algebra.

Lemma 2.12. Let A be an S4-algebra.

1. For a ∈ A, we have kdim(Aa) ≤ kdim(A).
2. kdim(A) ≤ n iff kdim(Ad) ≤ n− 1 for every closed nowhere dense d ∈ A.

Proof. (1) If kdim(A) =∞, then there is nothing to prove. Suppose kdim(A) =
n. Let d ∈ Aa be nowhere dense in Aa. By Lemma 2.9, d is nowhere dense in
A. Since kdim(A) = n, we see that kdim(Ad) ≤ n− 1. Because (Aa)d = Ad, we
conclude that kdim(Aa) ≤ n. Thus, kdim(Aa) ≤ kdim(A).

(2) One implication is trivial. For the other, let d be nowhere dense in A.
Then 3d is closed and nowhere dense in A. Therefore, kdim(A3d) ≤ n − 1.
Thus, (1) yields kdim(Ad) = kdim((A3d)d) ≤ kdim(A3d) ≤ n−1. Consequently,
kdim(A) ≤ n. a

We next recall the notion of an Esakia morphism between Esakia spaces.

Definition 2.13. Suppose F = (W,R) and G = (V,Q) are Esakia spaces.

1. A map f : W → V is a p-morphism provided R[f(w)] = f(R[w]) for all
w ∈W .

2. An Esakia morphism is a continuous p-morphism f : W → V .

It is well known (see, e.g., [21, Sec. IV.3]) that Esakia morphisms correspond
dually to S4-algebra homomorphisms; that is, h : A → B is an S4-algebra
homomorphism iff h∗ : B∗ → A∗ is an Esakia morphism, where h∗(w) = h−1(w).
Moreover, h is 1-1 (resp. onto) iff h∗ is onto (resp. 1-1).
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We call an S4-frame F = (W,R) rooted if there is r ∈ W with W = R[r].
We refer to r as a root of F. In general, r is not unique. Let F = (W,R) be a
finite rooted S4-frame. It is well known [30, 24] that with F we can associate
the Jankov-Fine formula χF, which satisfies the following property:

χF is satisfiable in an Esakia space G iff there is an Esakia space E

and Esakia morphisms F
f←− E

g−→ G such that f is onto and g is 1-1.

Let Fn = (Wn, R) be the n-element chain, where Wn = {w0, . . . , wn−1} and
wiRwj iff j ≤ i; see Figure 1.

wn−1•
wn−2•

w0•
w1•

...

Figure 1. The n-element chain.

We are ready to characterize the internal Krull dimension of an S4-algebra.

Theorem 2.14. Let A be a nontrivial S4-algebra and n ≥ 1. The following
are equivalent:

1. kdim(A) ≤ n− 1.
2. There does not exist a sequence c0, . . . , cn of nonzero closed elements of A

such that c0 = 1 and ci+1 is nowhere dense in Aci for each i ∈ {0, . . . , n−1}.
3. A � bdn.
4. depth(A∗) ≤ n.
5. A � ¬χFn+1

.
6. F∗n+1 is not isomorphic to a subalgebra of a homomorphic image of A.

7. There do not exist an Esakia space G and Esakia morphisms Fn+1
f←− G

g−→
A∗ such that f is onto and g is 1-1.

8. F∗n+1 is not isomorphic to a subalgebra of A.
9. Fn+1 is not an image of A∗ under an onto Esakia morphism.

Proof. (1)⇒(2): Induction on n. Let n = 1. Since A is nontrivial, kdim(A) ≤
0 yields kdim(A) = 0. Therefore, for any nowhere dense d in A, we have
kdim(Ad) = −1, so Ad is trivial, and hence d = 0. Thus, A has no nonzero
closed nowhere dense elements, as required. Next let n > 1 and kdim(A) ≤ n−1.
Suppose there is a sequence c0, . . . , cn of nonzero closed elements of A such that
c0 = 1 and ci+1 is nowhere dense in Aci for each i ∈ {0, . . . , n − 1}. Then
c1, . . . , cn is a sequence of nonzero closed elements of Ac1 such that ci+1 is
nowhere dense in Aci for each i ∈ {1, . . . , n − 1}. By the induction hypothe-
sis, applied to Ac1 , we have kdim(Ac1) > n− 1. Since c1 is nowhere dense in A
with kdim(Ac1) > n− 1, we conclude that kdim(A) > n. This contradicts (1).

(2)⇒(3): If A 6� bdn, then there exist a1, . . . , an ∈ A such that dn 6= 0, where
dn is defined as in Definition 2.10. Put an+1 = 1 and let e0, . . . , en be defined as
in Definition 2.10. Observe that

en = 3(2an+1 ∧ dn) = 3(21 ∧ dn) = 3dn ≥ dn 6= 0.
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Set c0 = 1 and ci = ei for 1 ≤ i ≤ n. Then c0, . . . , cn is a sequence of nonzero
closed elements in A such that c0 = 1 and, by Lemma 2.11, ci+1 is nowhere dense
in Aci for each i ∈ {0, . . . , n− 1}.

(3)⇒(1): Suppose that kdim(A) > n − 1. We define a decreasing sequence
b0, . . . , bn of closed elements in A such that bi+1 is nowhere dense in Abi and
kdim(Abi+1

) > (n − 1) − (i + 1). Set b0 = 1. If bi is already defined with
kdim(Abi) > (n − 1) − i, then by Lemma 2.12, there is a closed nowhere dense
bi+1 of Abi such that kdim(Abi+1) > (n− 1)− (i+ 1). Noting that kdim(Abn) >
(n− 1)− n = −1, it follows that Abn is not trivial, and hence bn 6= 0.

Let ai = −bi for 1 ≤ i ≤ n. Let d0, . . . , dn be defined from a1, . . . , an as
in Definition 2.10. We show that bi = di for each 0 ≤ i ≤ n. If i = 0, then
b0 = 1 = d0. Next suppose that bi = di for 0 ≤ i < n, and show that bi+1 = di+1.
Since ai+1 is open in A, bi+1 is nowhere dense in Abi , and bi is closed in A, we
have

bi+1 = bi ∧ bi+1 = 3(bi − bi+1) ∧ bi+1 = 3(bi − bi+1)− (−bi+1)

= 3(ai+1 ∧ bi)− ai+1 = 3(2ai+1 ∧ di)− ai+1 = di+1.

Thus, dn = bn 6= 0. Since ¬bdn is interpreted in A as dn, we conclude that A
refutes bdn.

(3)⇔(4)⇔(8): This is well known; see Lemma 2.5 and [35, Lem. 2].
(5)⇔(7): This is the Jankov-Fine Theorem.
(6)⇔(7): This follows from Esakia duality.
(6)⇒(8): This is obvious.
(8)⇔(9): This follows from Esakia duality.
(4)⇒(7): This is obvious since onto Esakia morphisms do not increase the

depth. a

Remark 2.15. Theorem 2.14 can be extended to include the trivial algebra
by letting bd0 = ⊥.

As an immediate consequence, we obtain:

Corollary 2.16. The internal and external Krull dimensions of an S4-algebra
coincide, and so Definitions 2.4 and 2.8 are equivalent.

§3. Modal Krull dimension of topological spaces. As we pointed out in
the introduction, it is inadequate to define the Krull dimension of a topological
space X as the supremum of the lengths of finite chains in the specialization
order of X. Section 2 suggests that a more adequate definition would result by
working with the Krull dimension of AX .

Definition 3.1. Define the modal Krull dimension mdim(X) of a topological
space X as the Krull dimension of AX ; that is, mdim(X) = kdim(AX).

Remark 3.2. It is immediate from Corollary 2.16 that the modal Krull di-
mension of a topological space X can be defined recursively as follows:
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mdim(X) = −1 if X = ∅,
mdim(X) ≤ n if mdim(D) ≤ n− 1 for every nowhere dense subset D of X,
mdim(X) = n if mdim(X) ≤ n and mdim(X) 6≤ n− 1,
mdim(X) =∞ if mdim(X) 6≤ n for any n = −1, 0, 1, 2, . . . .

Lemma 3.3. If Y is a subspace of X, then mdim(Y ) ≤ mdim(X).

Proof. By Lemma 2.12(1), mdim(Y ) = kdim(AY ) ≤ kdim(AX) = mdim(X).
a

Lemma 3.4. Let X be a topological space. Then mdim(X) ≤ n iff for every
closed nowhere dense subset D of X we have mdim(D) ≤ n− 1.

Proof. Apply Lemma 2.12(2). a
To obtain an analogue of Theorem 2.14 for modal Krull dimension, we require

an analogue of the Jankov-Fine theorem for topological spaces. Let F = (W,R)
be a finite rooted S4-frame and choose any enumeration of W = {wi | i < n}
in which w0 is a root of F. We recall [24] that the Jankov-Fine formula χF

associated with F is the conjunction of the following formulas:

1. p0,
2. 2(p0 ∨ · · · ∨ pn−1),
3. 2(pi → ¬pj) for distinct i, j < n,
4. 2(pi → 3pj) whenever wiRwj , and
5. 2(pi → ¬3pj) whenever ¬(wiRwj).

The modal language is interpreted in a topological space X by interpreting it
in the powerset algebra AX . A modal formula ϕ is defined to be valid (resp. sat-
isfiable) in X exactly when ϕ is valid (resp. satisfiable) in AX . If ϕ is valid in
X, then we write X � ϕ. For a given valuation v and x ∈ X, we write x �v ϕ,
or x � ϕ for short, if ϕ is true at x under v.

An interior map between topological spaces X,Y is a continuous open map
f : X → Y . It is well known (see, e.g., [42, Sec. III.3]) that the following are
equivalent:

• f : X → Y is interior,
• f−1(IYA) = IXf

−1(A) for all A ⊆ Y ,
• f−1(CYA) = CXf

−1(A) for all A ⊆ Y .

We call Y an interior image of X if there is an onto interior map f : X → Y .
The next lemma generalizes [24, Lem. 1] to topological spaces.

Lemma 3.5. Let X be a topological space. Then χF is satisfiable in X iff F is
an interior image of an open subspace of X.

Proof. First suppose that F is an interior image of an open subspace U of
X, say via f : U → F. Let pi be interpreted as Ai := f−1(wi) when i < n
and as Ai := ∅ when i ≥ n. Since A0 = f−1(w0) 6= ∅, there is x ∈ U with
x � p0. We show that x � χF. As A0 ∪ · · · ∪ An−1 = U and x ∈ U , we
see that x � 2(p0 ∨ · · · ∨ pn−1). Suppose i 6= j. Because Ai ∩ Aj = ∅, we
see that x � 2(pi → ¬pj). Suppose wiRwj . Then wi ∈ 3R{wj}, so since
f is interior, Ai = f−1(wi) ⊆ f−13R{wj} = CUf

−1(wj) = CAj , where C
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denotes closure in X and CU denotes closure in the subspace U . Therefore,
x � 2(pi → 3pj). Finally, suppose ¬(wiRwj). Then {wi} ∩3R{wj} = ∅. As f
is interior, this yields f−1(wi)∩CUf

−1(wj) = ∅. Thus, Ai ∩CUAj = ∅, which
gives x � 2(pi → ¬3pj). Consequently, χF is satisfiable at x in X.

Conversely suppose that χF is satisfied at some x ∈ X by interpreting pi as
Ai ⊆ X. Set

U = I

(⋃
i<n

Ai

)
∩

⋂
0≤i6=j<n

I ((X \Ai) ∪ (X \Aj))

∩
⋂

wiRwj

I ((X \Ai) ∪CAj) ∩
⋂

¬(wiRwj)

I ((X \Ai) ∪ (X \CAj))

Then U is open and nonempty since x ∈ A0 ∩ U . Define f : U → F by setting
f(y) = wi provided y ∈ Ai (for i < n). To see that f is well defined, let
y ∈ Ai ∩ Aj . Then y /∈ X \C(Ai ∩ Aj) = I((X \ Ai) ∪ (X \ Aj)). Therefore, it
follows from the definition of U that i = j, and so f is well defined.

To see that f is onto, since w0 is a root of F, we have w0Rwj , and so U ⊆
(X \ A0) ∪CAj for all j < n. Recalling that x ∈ A0 ∩ U , we get x ∈ CAj for
each j < n. As U is open and contains x, we have U ∩ Aj 6= ∅ for each j < n.
Thus, f is onto.

Finally, to see that f is interior, it is sufficient to show that f−1(3R{wj}) =
CUf

−1(wj) for each j < n. Suppose y ∈ f−1(3R{wj}). Then f(y)Rwj . As-
suming f(y) = wi, we have y ∈ Ai and y ∈ (X \ Ai) ∪ CAj , giving y ∈ CAj .
So y ∈ CUAj = CUf

−1(wj). Conversely, suppose y /∈ f−1(3R{wj}). Then
¬(f(y)Rwj). Assuming f(y) = wi, we have y ∈ Ai and y ∈ (X \Ai)∪(X \CAj),
yielding y ∈ X \ CAj . Thus, y 6∈ CAj , and hence y /∈ CUAj = CUf

−1(wj).
Consequently, f is interior, and hence F is an interior image of an open subspace
of X. a

The next theorem is an analogue of Theorem 2.14 for modal Krull dimension,
and is the main result of this section.

Theorem 3.6. Let X 6= ∅, n ≥ 1, and Fn+1 be the (n + 1)-element chain.
The following are equivalent:

1. mdim(X) ≤ n− 1.
2. There does not exist a sequence F0, . . . , Fn of nonempty closed subsets of
X such that F0 = X and Fi+1 is nowhere dense in Fi for each 0 ≤ i < n.

3. X � bdn.
4. X � ¬χFn+1

.
5. Fn+1 is not an interior image of any open subspace of X.
6. Fn+1 is not an interior image of X.

Proof. (1)⇔(2)⇔(3)⇔(4): This follows from the equivalence of Items (1),
(2), (3), and (5) of Theorem 2.14, Definition 3.1, the correspondence between
relativizations and subspaces, and the fact that X and AX validate exactly the
same modal formulas.

(4)⇔(5): We have X � ¬χFn+1
iff χFn+1

is not satisfiable in X. This, by
Lemma 3.5, is equivalent to Fn+1 not being an interior image of any open sub-
space of X.
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(5)⇒(6): This is obvious.
(6)⇒(2): Suppose there is a sequence F0, . . . , Fn of nonempty closed subsets of

X such that F0 = X and Fi+1 is nowhere dense in Fi for each i ∈ {0, . . . , n− 1}.
We show that Fn+1 is an interior image of X. Let Fn+1 = ∅. Define f : X →
Wn+1 by f(x) = wi if x ∈ Fi \Fi+1 for i ≤ n. Clearly f is well-defined and onto
since {Fi \ Fi+1 | i ≤ n} is a partition of X. Moreover, C(Fi \ Fi+1) = Fi since
Fi is closed in X and Fi+1 is nowhere dense in Fi for i ≤ n. Thus,

f−1(3R{wi}) = f−1 ({wi, . . . , wn}) =
⋃n

j=i
(Fj \ Fj+1)

= Fi = C(Fi \ Fi+1) = Cf−1(wi).

Consequently, f is an onto interior map, and hence Fn+1 is an interior image of
X. a

Section 7 contains a comparison of modal Krull dimension with other well-
known topological dimension functions. We next calculate the modal Krull di-
mension of some well-known spaces.

Example 3.7.
1. It follows from the celebrated McKinsey-Tarski theorem [37, 42] that every

finite rooted S4-frame is an interior image of any dense-in-itself metric
space. Let R, C, and Q denote the real line, the Cantor discontinuum, and
the rational line, respectively. It follows from Theorem 3.6 that each of
R, C,Q has infinite modal Krull dimension.

2. We view ordinals as topological spaces equipped with the interval topology
induced by the well order. Let n ≥ 1. It is well known that the n-element
chain is an interior image of the ordinal ωn, and that the (n + 1)-element
chain is not an interior image of ωn. By Theorem 3.6, mdim(ωn) = n− 1.

3. A reasoning similar to (2) yields that mdim(ωn+1) = n and mdim(ωω+1) =
∞. Since these ordinals are compact, and hence Stone spaces, we obtain
the examples alluded to in the introduction.

4. Let X be a nonempty Alexandroff space and let n ≥ 1. By Theorem 3.6,
mdim(X) ≤ n−1 iff X � bdn. This together with the finite model property
of S4n yields that S4n is the logic of the class of all nonempty Alexandroff
spaces of modal Krull dimension ≤ n−1. Since every finite space is Alexan-
droff, S4n is also the logic of the class of all nonempty finite spaces of modal
Krull dimension ≤ n− 1.

For T1-spaces there is an alternate description of modal Krull dimension, which
is based on an appropriate generalization of the concept of a nodec space. This
will be discussed in the next section.

§4. n-discrete algebras, n-nodec spaces, and n-Zeman formulas. In
this section we generalize the notion of a discrete S4-algebra to that of an n-
discrete S4-algebra. The topological counterpart of this generalization yields
a generalization of the concept of a nodec space. As was shown in [3], nodec
spaces are modally definable by the Zeman formula. We introduce n-Zeman
formulas and show that they define n-discrete S4-algebras and n-nodec spaces.
We prove that a T1-space X is n-nodec iff mdim(X) ≤ n. From this we derive
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that there are infinitely many modal logics incomplete with respect to any class
of T1-spaces.

Definition 4.1. Let A be a nontrivial S4-algebra.

1. Call A 0-discrete if A is discrete.
2. For n ≥ 1, call A n-discrete if Aa is (n− 1)-discrete for each nowhere dense
a ∈ A.

Remark 4.2. This definition can be extended to all S4-algebras by letting
the trivial S4-algebra to be (−1)-discrete.

In order to axiomatize n-discrete S4-algebras, we generalize the Zeman formula

zem = 232p→ (p→ 2p)

as follows.

Definition 4.3. Set bd0 = ⊥, and for n ≥ 0, define

zemn = pn+1 → 2(bdn ∨ pn+1).

We call zemn the n-Zeman formula, and we call

S4.Zn := S4 + zemn

the n-Zeman logic.

Remark 4.4.
1. An easy induction shows that bdn and zemn are Sahlqvist formulas (see,

e.g., [2, Def. 3.1]). Therefore, S4n and S4.Zn are Sahlqvist logics. Thus,
S4n and S4.Zn are canonical, and hence Kripke complete (see, e.g., [10,
Sec. 10.3] or [6, Sec. 3.6 and 5.6]).

2. It is easy to see that zem0 is equivalent to p→ 2p, and hence S4.Z0 is the
logic of (nontrivial) discrete S4-algebras. We will see shortly that zem1 is
equivalent to zem, and hence S4.Z1 is the Zeman logic S4.Z := S4 + zem.

Theorem 4.5. Let A be a nontrivial S4-algebra and n ≥ 0. The following are
equivalent:

1. A is n-discrete.
2. A � zemn.
3. There is no chain wn+1Rwn ~Rwn−1

~R . . . ~Rw1
~Rw0 in A∗ satisfying wn+1 6=

wn.

Proof. (1)⇒(3): Suppose that A is n-discrete. If there is a chain

wn+1Rwn ~Rwn−1
~R . . . ~Rw1

~Rw0

in A∗ satisfying wn+1 6= wn, then we build inductively a decreasing sequence
of clopen R-downsets A0, . . . , An of A∗ such that wi /∈ Ai+1, wi+1 ∈ Ai+1,
and Ai+1 ∩ maxR(Ai) = ∅ for 0 ≤ i ≤ n − 1. Let A0 = W . Suppose Ai
is already built. Since wi+1

~Rwi, we have wi+1 /∈ R[maxR(Ai) ∪ {wi}]. Now
maxR(Ai) ∪ {wi} is closed, and it follows that R[maxR(Ai) ∪ {wi}] is closed
as well. So W \ R[maxR(Ai) ∪ {wi}] is open and contains wi+1. Therefore,
there is a clopen R-downset Ai+1 such that Ai+1 ⊆ Ai, wi+1 ∈ Ai+1, and
Ai+1 ∩R[maxR(Ai)∪{wi}] = ∅. Let a0, . . . , an ∈ A be such that β(ai) = Ai for
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i ≤ n. Since Ai+1∩maxR(Ai) = ∅, Lemma 2.3 yields that ai+1 is nowhere dense
in Aai for i < n. Because A is n-discrete, Aai is (n− i)-discrete for each i ≤ n.
So Aan is 0-discrete, and hence discrete. We show this is a contradiction. Since
wn 6= wn+1, there is clopen An+1 of A∗ such that wn /∈ An+1 and wn+1 ∈ An+1.
Set B = An \ An+1. Then wn+1Rwn ∈ B, so wn+1 ∈ 3RB \ B. Let b ∈ A be
such that β(b) = B. Then b ∈ Aan , and since 3RB 6= B, we have 3b 6= b in
Aan , contradicting that Aan is discrete.

(3)⇒(1): Suppose that A is not n-discrete. Then there is a sequence of closed
elements a0, . . . , an ∈ A such that a0 = 1, ai+1 is nowhere dense in Aai for
i < n, and Aan is not discrete. Let Ai := β(ai) for i ≤ n. Clearly each Ai
is a clopen R-downset, and Lemma 2.3 gives Ai+1 ∩ maxR(Ai) = ∅ for i < n.
As Aan is not discrete, there is a ∈ Aan such that a 6= 3a. Therefore, there is
w ∈ 3Rβ(a) \ β(a). Thus, there is v ∈ β(a) such that wRv. Clearly w, v are
distinct. We build w0, . . . , wn+1 as follows. Set wn+1 := w and wn := v. As
a ≤ an, we see that wn ∈ An. Suppose wi has already been chosen in Ai for
1 ≤ i ≤ n. Since Ai ⊆ Ai−1, there is wi−1 ∈ maxR(Ai−1) such that wiRwi−1. As

ai is nowhere dense in Aai−1
, we have wi /∈ maxR(Ai−1), so wi ~Rwi−1. Therefore,

wn+1Rwn ~Rwn−1
~R · · · ~Rw1

~Rw0

is a chain in A∗ satisfying wn+1 6= wn.
(2)⇔(3): This follows directly from standard Sahlqvist theory (see, e.g., [6,

Sec. 3.6 and 5.6]). a

Theorem 4.6.
1. S4n+1 ⊂ S4.Zn for n ≥ 0.
2. S4.Zn ⊂ S4n for n ≥ 1.
3. S4 =

⋂
n≥1 S4n =

⋂
n≥0 S4.Zn.

4. S4.Zn is canonical for n ≥ 0.
5. S4.Zn has the finite model property for n ≥ 0.
6. S4.Z1 = S4.Z.

Proof. (1) Suppose A � S4.Zn. It follows from Theorem 4.5 that depth(A∗) ≤
n + 1. Therefore, by Theorem 2.14, A � S4n+1. Thus, S4n+1 ⊆ S4.Zn. To see
that the inclusion is proper, consider the finite S4-frame Fn2 depicted in Figure 2.
Since depth(Fn2 ) = n+ 1, we see that Fn2 � S4n+1. On the other hand, as

r2Rr1
~Rwn−1

~R . . . ~Rw1
~Rw0

and r2 6= r1, Theorem 4.5 implies Fn2 6� S4.Zn.

•
•

�� �
•

• •. . .

...

w0

w1

wn−1

r1 rm

Figure 2. The S4n+1-frame Fnm.



16 G. BEZHANISHVILI, N. BEZHANISHVILI, J. LUCERO-BRYAN, AND J. VAN MILL

(2) Suppose A � S4n. Then depth(A∗) ≤ n by Theorem 2.14. Therefore,

there is no chain wn ~Rwn−1
~R . . . ~Rw1

~Rw0 in A∗. Thus, Theorem 4.5 yields that
A � S4.Zn, and hence S4.Zn ⊆ S4n. To see the inclusion is proper, consider Fn1
depicted in Figure 2. Since depth(Fn1 ) = n + 1, we see that Fn1 6� S4n. On the
other hand, it follows from Theorem 4.5 that Fn1 � S4.Zn.

(3) Since S4 has the finite model property, it follows that S4 =
⋂
n≥1 S4n.

Thus, by (2),

S4 =
⋂

n≥1
S4n ⊇

⋂
n≥1

S4.Zn =
⋂

n≥0
S4.Zn ⊇ S4.

(4) Since S4.Zn is a Sahlqvist logic, it is canonical (see, e.g., [6, 10]).
(5) Follows from (1) since every normal extension of S4n+1 (for n ≥ 0) has

the finite model property.
(6) By (5) and Theorem 4.5, S4.Z1 is the logic of finite S4-frames in which

there is no chain w2Rw1
~Rw0 satisfying w2 6= w1. By [43, Thm. 29], the same is

true of S4.Z. Thus, S4.Z1 = S4.Z. a
As we just saw, S4.Z1 = S4.Z. By [3, Thm. 4.6], S4.Z is the logic of nodec

spaces, where we recall that a space is nodec if every nowhere dense set is closed.
Since a space is nodec iff every nowhere dense set is closed and discrete (see, e.g.,
[14]), the next definition generalizes the notion of a nodec space.

Definition 4.7. We call a nonempty topological space X n-nodec provided
AX is n-discrete.

Remark 4.8. Suppose X is nonempty.

1. X is 0-nodec iff X is discrete.
2. X is 1-nodec iff X is nodec.
3. For n ≥ 1, X is n-nodec iff every nowhere dense subset of X is (n−1)-nodec.
4. X is n-nodec iff X � zemn.

Theorem 4.9. Let X be a nonempty T1-space and n ∈ ω. Then mdim(X) ≤ n
iff X is n-nodec.

Proof. By induction on n. First suppose n = 0. If X is discrete, then the
only nowhere dense subset of X is ∅. Therefore, mdim(X) ≤ 0. Conversely, if
X is not discrete, then there is x ∈ X such that {x} is not open, so I{x} = ∅.
Since X is T1, we see that IC{x} = I{x} = ∅, so {x} is nowhere dense. Thus,
mdim(X) > 0.

Next suppose that for every T1-space Y , we have Y is n-nodec iff mdim(Y ) ≤ n.
We show that X is (n+1)-nodec iff mdim(X) ≤ n+1. We have mdim(X) ≤ n+1
iff mdim(Y ) ≤ n for every nowhere dense subspace Y of X. Since a subspace
of a T1-space is a T1-space, by inductive hypothesis, this is equivalent to every
nowhere dense subspace Y of X being n-nodec. But this is equivalent to X being
(n+ 1)-nodec. a

Corollary 4.10. For n ≥ 0, the interval [S4n+1,S4.Zn) is infinite and no
logic in [S4n+1,S4.Zn) is the logic of any class of T1-spaces.

Proof. To see that [S4n+1,S4.Zn) is infinite, form ≥ 2, let Lm be the logic of
Fnm depicted in Figure 2. Since Fnm is a p-morphic image of Fnm+1 and Fnm+1 is not
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a p-morphic image of a generated subframe of Fnm, we have ¬χFn
m+1
∈ Lm\Lm+1,

and hence

S4n+1 ⊂ · · · ⊂ Lm+1 ∩ S4.Zn ⊂ Lm ∩ S4.Zn ⊂ · · · ⊂ L2 ∩ S4.Zn ⊂ S4.Zn.

Next suppose L ∈ [S4n+1,S4.Zn) and K is a class of T1-spaces. If L is the logic
of K, then for each X ∈ K, we have X � L. Therefore, since S4n+1 ⊆ L, we
have X � bdn+1. By Theorem 3.6, mdim(X) ≤ n. As X is T1, by Theorem 4.9,
X is n-nodec. By Remark 4.8, X � zemn. Thus, S4.Zn ⊆ L, a contradiction.
Consequently, L is not the logic of any class of T1-spaces. a

Remark 4.11. By Segerberg’s Theorem, each L ∈ [S4n+1,S4.Zn) is Kripke
complete, hence topologically complete. However, the completeness is with re-
spect to spaces that are not T1.

§5. Topological completeness of S4.Zn. The McKinsey–Tarski theorem
not only shows that S4 is the basic modal logic associated with topological
spaces, but also that S4 is the logic of ‘nice’ spaces; i.e. any dense-in-itself metric
space. Analogously, S4n+1 is the basic logic of topological spaces of modal Krull
dimension n ≥ 0. However, Corollary 4.10 shows that it cannot be the logic of
‘nice’ spaces. In fact, it follows from Theorem 4.9 that S4.Zn is the basic logic
of T1-spaces of modal Krull dimension n. Thus, it is natural to seek a version of
the McKinsey-Tarski theorem for S4.Zn where n ≥ 0.

Since S4.Z0 ` p → 2p, it is clear that S4.Z0 is the logic of any nonempty
discrete space. On the other hand, it follows from the result of [5] mentioned in
the introduction that S4.Zn is not the logic of any metric space for n ≥ 1. In
fact, if the logic L of a metric space is contained in the logic M of the two-element
cluster, then since S4.1 6⊆M , we must have L = S4.

The goal of this section is to construct for each n ≥ 1 a countable dense-in-itself
ω-resolvable Tychonoff space Zn of modal Krull dimension n such that S4.Zn
is the logic of Zn. This construction is technically the most challenging part of
the paper. Since finite Tychonoff spaces are discrete, S4.Zn does not have the
finite model property with respect to Tychonoff spaces for n ≥ 1. On the other
hand, because Zn is countable, we obtain that S4.Zn has the countable model
property with respect to Tychonoff spaces. Since countable Tychonoff spaces are
Lindelöf and hence normal (see, e.g., [19, Thm. 3.8.2]), we obtain that S4.Zn
has the countable model property with respect to normal spaces.

Our technique is to identify a single frame Qn+1 whose logic is S4.Zn and
utilize Qn+1 to guide the construction of Zn as follows. The depth of Qn+1

indicates the necessary modal Krull dimension of Zn. Thus, since Zn is Tychonoff
and hence T1, Theorem 4.9 yields that S4.Zn is sound with respect to Zn. In
addition, we construct Zn so that Qn+1 is an interior image of Zn. Consequently,
S4.Zn is complete with respect to Zn. Since there is no restriction on the cluster
size ofQn+1 (except at the root), for such an interior map to exist, Zn needs to be
ω-resolvable. Also, since there is no restriction on the branching in Qn+1 (except
at the maximal points), we build Zn step-by-step, utilizing the construction of
adjunction spaces (for the simplest case see Figure 4).

The basic building block for the construction is a countable dense-in-itself
ω-resolvable Tychonoff nodec space Y such that the remainder Y ∗ = βY \ Y
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contains a subspace homeomorphic to βω which consists entirely of remote points
of Y . In Section 5.1 we explain why such a building block Y exists, in Section 5.2
we build the spaces Zn from Y , and in Section 5.3 we prove that S4.Zn is the
logic of Zn.

5.1. The basic building block. Let X be a topological space. We recall
(see Juhász [32, 33]) that a π-base of X is a collection B of nonempty open
subsets of X such that every nonempty open subset of X contains a member of
B. The π-weight π(X) of X is the smallest cardinality of such a family. We will
be interested in Tychonoff spaces of countable π-weight.

For a compact Hausdorff space X, let EX be the Gleason cover of X [26, 41].
It is well known that EX is constructed as the Stone space of the Boolean alge-
bra of regular open subsets of X, and hence EX is an extremally disconnected
compact Hausdorff space, where we recall that a space is extremally disconnected
if the closure of each open set is open.

If ∇ ∈ EX, then
⋂
{CX(U) | U ∈ ∇} is a singleton of X, which we denote

by pX(∇). This defines a map pX : EX → X. It is well known that pX is an
irreducible map; that is, pX is an onto continuous map such that for every proper
closed subset F of EX, the image pX(F ) is a proper closed subset of X. Since
pX is evidently closed, this yields that F ⊆ EX is nowhere dense iff pX(F ) ⊆ X
is nowhere dense, and that π(X) = π(EX).

Let Z be a subspace of X. A point x ∈ X \ Z is remote from Z provided
x 6∈ CX(D) for every nowhere dense subset D of Z. Observe that if x is remote
from Z, then x is remote from every subspace of Z. The following simple lemma
was used in [39, 16] for constructing various examples.

Lemma 5.1. For a T1-space X, if every x ∈ X is remote from X \ {x}, then
X is nodec.

Proof. Let D be a nowhere dense subset of X and x /∈ D. Since X is a
T1-space, D is a nowhere dense subset of X \{x}. Therefore, as x is remote from
X \ {x}, we see that x 6∈ C(D). Thus, X is nodec. a

Suppose X is a Tychonoff space. A remote point of X is a point p ∈ βX \X
that is remote from X. In the context of Čech-Stone compactifications, remote
points are very well studied in the literature. In particular, we have:

Theorem 5.2. [9, 13] If X is a nonpseudocompact Tychonoff space with count-
able π-weight, then the remainder X∗ := βX \X contains a point that is remote
from X.

Here we recall that a Tychonoff space X is pseudocompact if every continuous
real-valued function on X is bounded. This result was generalized to products
of such spaces in [15].

Let I be the closed unit interval and let EI be the Gleason cover of I. For t ∈ I,
let X = EI \ p−1

I ({t}). Since X is a dense subspace of EI, it is C∗-embedded
in EI (see, e.g., [46, Prop. 10.47]), meaning that every bounded continuous real-
valued function on X extends to EI. Therefore, by [46, Thm. 1.46], βX = EI.
It is also clear that X is a nonpseudocompact Tychonoff space with countable
π-weight. Thus, by Theorem 5.2, there is a point xt ∈ p−1

I ({t}) that is remote
from X.
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Let D be any countable dense subset of I (e.g., D = I ∩Q). We set

Y := {xt | t ∈ D}.
Lemma 5.3. [39, 16] Y is a countable dense-in-itself extremally disconnected

ω-resolvable nodec space that is of countable π-weight.

Here we recall (see, e.g., [17]) that a partition P of a space X is dense if each
D ∈ P is dense in X, and that X is κ-resolvable if it has a dense partition of
size κ. We now isolate the crucial property of Y that makes our construction in
Section 5.2 work.

Proposition 5.4. Y has a compact set of remote points that is homeomorphic
to βω.

Proof. Since Y is countable, we can pick a nonempty closed Gδ-subset S of
βY such that Y ∩ S = ∅. Put T = βY \ S. By [46, Thm. 1.49], βT = βY
and T ∗ = S. By [13, Thm. 11.1], we can choose a countably infinite discrete set
D consisting entirely of remote points of T every limit point of which is also a
remote point of T . Observe that every point from D is remote from Y since Y is
a subspace of T . We show that D is C∗-embedded in βY by utilizing a technique
of [40]. Since D ⊆ T ∗ = S and S is closed, CD ⊆ S. Because Y ⊆ βY \S, we see
that C(D) ∩ Y ⊆ C(D) \ S = ∅. Therefore, D is closed in the subspace D ∪ Y ,
which is normal since it is countable. By the Tietze Extension Theorem (see,
e.g., [19, Thm. 2.1.8]), D is C∗-embedded in D ∪ Y , and so D is C∗-embedded
in βY . This, by [46, Thm. 1.46], yields that C(D) = βD, and hence Y has a
compact set of remote points that is homeomorphic to βω. a

5.2. The spaces Zn. Let F = (W,R) be a rooted S4-frame. We call F a
tree if R is a partial order and (∀w, u, v ∈ W )(uRw and vRw ⇒ uRv or vRu).
We will always denote the root of a tree F by r, the R-maximal points of F by

max(F), and call v a child of w provided w~Rv and from wRuRv it follows that
w = u or u = v. For n ≥ 1, let Tn denote the tree of depth n in which all
non-R-maximal points have ω children.

Define an equivalence relation on an S4-frame F = (W,R) by setting

w ∼ v iff wRv and vRw.

As is customary, we call equivalence classes of ∼ clusters. The skeleton of F is
the partially ordered S4-frame obtained by modding out the clusters of F. We
call a cluster in F trivial if it is a singleton, and proper otherwise. We call F a
quasi-tree if the skeleton of F is a tree. A cluster of a quasi-tree F is maximal if
all its points are R-maximal, and it is the root cluster if it contains a root of F.

Let P be a partition of a space X. We call P clopen provided each A ∈ P is
clopen in X. For a cardinal κ, we consider the κ-fork depicted in Figure 3.

Lemma 5.5. The κ-fork is an interior image of a space X iff there are a closed
nowhere dense subset N of X and a clopen partition P = {Aλ | λ < κ} of the
subspace X \N such that CA = A ∪N for each A ∈ P.

Proof. Let F = (W,R) be the κ-fork. First suppose that f : X → W is an
onto interior map. Let N = f−1(r) and Aλ = f−1(wλ). Then

CN = Cf−1(r) = f−13R{r} = f−1(r) = N
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κ-fork

•
w0

•
w1
· · · •

wλ, λ < κ

· · ·

• rS
S
SS

C
C
CC

�
�
��

Figure 3. The κ-fork.

and

ICN = IN = If−1(r) = f−12R{r} = f−1(∅) = ∅.
Therefore, N is closed and nowhere dense in X. Clearly P = {Aλ | λ < κ} is a
partition of X \N . Moreover, since each {wλ} is simultaneously an R-upset and
an R-downset in the subframe W \ {r}, each Aλ is clopen in X \N . Finally,

CAλ = Cf−1(wλ) = f−1(3R{wλ}) = f−1({wλ, r}) = Aλ ∪N.
Next suppose that there are a closed nowhere dense subset N of X and a

clopen partition P = {Aλ | λ < κ} of the subspace X \N such that CA = A∪N
for each A ∈ P. Define f : X →W by setting

f(x) =

{
r if x ∈ N
wλ if x ∈ Aλ

It is clear that f is a well-defined onto map. Moreover,

f−1(3R{r}) = f−1(r) = N = CN = Cf−1(r)

and

f−1(3R{wλ}) = f−1({wλ, r}) = Aλ ∪N = CAλ = Cf−1(wλ).

Thus, f is interior. a
We assume the reader is familiar with the construction of attaching spaces

or adjunction space (see, e.g., [28, pp. 12–14] or [47, pp. 65–66]). Given an
indexed family of spaces Xi and subspaces Yi ⊆ Xi, along with continuous
maps fi : Yi → Z, one can form an adjunction space which is a quotient of the
topological sum

⊕
i∈I Xi in which the only nontrivial equivalence classes are

{(yi, yj) | i, j ∈ I, yi ∈ Yi, yj ∈ Yj , fi(yi) = fj(yj)}.
When Z is a singleton, the adjunction space is often referred to as the wedge
sum.

Given an equivalence relation ≡ on a set X, let [x] be the equivalence class of
x ∈ X. We call U ⊆ X saturated provided that x ∈ U implies [x] ⊆ U . Recall
that open (resp. closed) sets in a quotient space X/≡ correspond to saturated
open (resp. closed) sets in X.

Using Y we recursively build the family of spaces {Zn | n ≥ 1} such that each
Zn is a subspace of Zn+1 and there is an onto interior mapping αn : Zn → Tn+1.

Base case (n = 1): Let {Yn | n ∈ ω} be a pairwise disjoint family of spaces
such that there is a homeomorphism hn : Y → Yn for each n ∈ ω. Fix y ∈ Y and
set yn = hn(y). Let Z1 be the wedge sum of {(Yn, yn) | n ∈ ω}. We identify each
Yn \ {yn} with its image in Z1 and refer to the point {yn | n ∈ ω} in Z1 using
the symbol y; see Figure 4. Since T2 is the ω-fork and {y} is a closed nowhere
dense subset of Z1 such that {Yn \ {yn} | n ∈ ω} is a clopen partition of Z1 \ {y}
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satisfying y ∈ CZ1
(Yn \ {yn}), it follows from Lemma 5.5 that there is an onto

interior mapping α1 : Z1 → T2 such that α−1
1 (r) = {y}.
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. . .
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��

•
y

Z1

• • •
y0 y1 y2

Y0 Y1 Y2

. . . -

Figure 4. Realizing Z1 as a wedge sum of the Yi.

Recursive step (n ≥ 1): Suppose Zn with the above properties is al-
ready built. Identify Tn+1 with the subframe Tn+2 \ max(Tn+2). Enumerate
max(Tn+1) as {wi | i ∈ ω}. Label points in max(Tn+2) as wi,j where wi,j
is the jth child of wi. Let αn : Zn → Tn+1 be an onto interior map such
that (αn)−1(r) = {y} where y is the point in the base case defining Z1. Set
Xi = (αn)−1(3R{wi}); see Figure 5.

max(Tn+2). . .w0,j w1,j w2,j

max(Tn+1)
• • •�
�

�
�
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�
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A
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�
�
�
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S
S
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�
��
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X0 X1 X2
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�
�
��

Zn Tn+1
-αn

Xi = α−1
n (3R{wi})

Figure 5. Mapping Zn onto Tn+1 viewed as a subframe of Tn+2.

Since Xi is countable, there is a continuous bijection f : ω → Xi which
extends to a continuous onto map g : βω → βXi. Up to homeomorphism, βω is
a subspace of βY such that each point in βω is a remote point of Y . Consider
the quotient space Qi of βY obtained by the equivalence relation whose only
nontrivial equivalence classes are the fibers of g, namely g−1(x) for each x ∈ βXi.
By [19, Thm. 2.4.13] the quotient mapping of βY onto Qi is closed. Intuitively,
Qi is obtained from βY by replacing the copy of βω that ‘is remote from Y ’
by βXi. We identify Y , βXi, and Xi with their respective images in Qi, see
Figure 6. For a nowhere dense subset N of Y , we have CβY (N) ∩ βω = ∅, so
CβY (N) is saturated, and hence CQi

(N) ∩ βXi = ∅.
Viewing Y ∪Xi as a subspace of Qi, the subsets Y and Xi are complements

of each other, Y is dense, and Xi is closed and nowhere dense. Let Ai be
the adjunction space of ω copies of Y ∪ Xi glued through the identity map on
the copies of Xi. That is, up to homeomorphism, Ai is the quotient of the
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••••

-
g

-
f

ω Xi
ω∗

Y Y

Y ∗

βω βXi

βY Qi

Figure 6. Identifying Y , βXi, and Xi in the quotient Qi of βY .

topological sum
⊕

m∈ω(Y ∪ Xi) × {m} under the equivalence relation whose
nontrivial equivalence classes are {(x,m) | m ∈ ω} for each x ∈ Xi; see Figure 7.

Y Y

. . . -

Ai

Yi,j ’s
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Figure 7. The adjunction space Ai obtained by gluing ω copies
of Y ∪Xi through Xi.

To facilitate defining αn+1 : Zn+1 → Tn+2 we denote the ω copies of Y in Ai
by Yi,j where j ∈ ω. We also identify Xi with its homeomorphic copy in Ai.
The quotient mapping from

⊕
j∈ω(Yi,j ∪Xi) onto Ai is closed. Thus, in Ai we

have that
⋃
j∈ω Yi,j and Xi are complements of each other,

⋃
j∈ω Yi,j is dense,

and Xi is closed and nowhere dense.
We define Zn+1 as the adjunction space of the Ai for i ∈ ω through the

following gluing. For each Ai consider the inclusion mapping Ii : Xi → Zn.
Glue through the equivalence relation whose nontrivial equivalence classes are
{(xi, xj) | xi ∈ Xi, xj ∈ Xj , Ii(xi) = Ij(xj)}. Intuitively the gluing is through
identifying points in Xi and Xj that are equal in Zn; see Figure 8. Identify the
Yi,j , Xi, and Zn with their images in Zn+1. Observe that Yi,j is open in Yi,j ∪Xi

and saturated in
⊕

j∈ω(Yi,j ∪Xi), hence open in Ai. Similarly, Yi,j is saturated

in
⊕

i∈ω Ai, and so open in Zn+1. Thus, in Zn+1 we have that
⋃
i,j∈ω Yi,j and Zn

are complements of each other,
⋃
i,j∈ω Yi,j is dense and open, and Zn is closed

and nowhere dense.
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Figure 8. Attaching the Ai to obtain Zn+1.

We now extend αn : Zn → Tn+1 to αn+1 : Zn+1 → Tn+2 by setting αn+1(z) =
wi,j for each z ∈ Yi,j . Let w ∈ Tn+2. If w = wi,j ∈ max(Tn+2), then

α−1
n+1(3R{wi,j}) = α−1

n+1 ({wi,j} ∪3R{wi}) = α−1
n+1(wi,j) ∪ α−1

n (3R{wi})
= Yi,j ∪Xi = CZn+1(Yi,j) = CZn+1α

−1
n+1(wi,j).

Otherwise w ∈ Tn+1, so since αn is interior and Zn is closed in Zn+1, we have

α−1
n+1(3R{w}) = α−1

n (3R{w}) = CZn
α−1
n (w) = CZn+1

α−1
n+1(w).

Thus, αn+1 is interior and α−1
n+1(r) = {y}.

Lemma 5.6. Let X =
⊕

i∈ω Yi. For n ∈ ω, if 0 ≤ mdim(Yi) ≤ n for each i,
then mdim(X) ≤ n.

Proof. Induction on n. Base case (n = 0): mdim(Yi) = 0. Let N be
nowhere dense in X. Then Ni = N ∩ Yi is nowhere dense in Yi. Therefore,
mdim(Ni) = −1, and so Ni = ∅. Thus, N = ∅. From this it follows that
mdim(N) = −1, and hence mdim(X) = 0.

Inductive step (n ≥ 0): Suppose for any family of spaces {Y ′i | i ∈ ω},
if 0 ≤ mdim(Y ′i ) ≤ n for each i, then mdim(

⊕
i∈ω Y

′
i ) ≤ n. Assume 0 ≤

mdim(Yi) ≤ n + 1 for each i ∈ ω. Let N be nowhere dense in X. Then
Y ′i = N ∩Yi is nowhere dense in Yi. Therefore, mdim(Y ′i ) ≤ n. By the inductive
hypothesis, mdim(N) ≤ n. Thus, mdim(X) ≤ n+ 1. a

Lemma 5.7. For n ≥ 1, mdim(Zn) = n.

Proof. Since Tn+1 is an interior image of Zn, the (n + 1)-element chain
is an interior image of Zn. By Theorem 3.6, mdim(Zn) ≥ n. We show that
mdim(Zn) ≤ n by induction on n ≥ 1.
Base case (n = 1): Let N be nowhere dense in Z1. Set Ni = N ∩ Yi for

each i ∈ ω. Then Ni is nowhere dense in Z1. Noting Yi is a closed subspace of
Z1 homeomorphic to Y (which is a dense-in-itself T1-space), it follows that Ni
is nowhere dense in Yi. Because Y is nodec, Yi is nodec, and so Ni is closed
in Yi. Let N ′ be the union of the Ni in the topological sum of the Yi which is
the preimage of the adjunction space Z1. Then N ′ is closed in the sum. Since
N ′ is the preimage of N , we see that N is closed in Z1. Therefore, Z1 is nodec.
Because Z1 is a T1-space, it follows from Theorem 4.9 that mdim(Z1) ≤ 1.
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Inductive step (n ≥ 1): Assume mdim(Zn) = n. Since Zn+1 was constructed
in three stages, our proof is also in three stages. First we show that mdim(Y ∪
Xi) ≤ n+ 1, next that mdim(Ai) ≤ n+ 1, and finally that mdim(Zn+1) ≤ n+ 1.
Stage 1: Since mdim(Zn) = n and each Xi ⊆ Zn, by Lemma 3.3, mdim(Xi) ≤

n. Also, the (n + 1)-element chain is an interior image of Xi, giving that
mdim(Xi) ≥ n. Thus, mdim(Xi) = n.

Let N be nowhere dense in Y ∪Xi, and set M = N ∩ Y . Then M is nowhere
dense in Y ∪ Xi. Let U be an open subset of Y contained in CYM . Since
Y is open in Y ∪ Xi, we have that U is open in Y ∪ Xi and is contained in
CYM ⊆ CM . Because M is nowhere dense in Y ∪Xi, we obtain U = ∅, and
so M is nowhere dense in Y . Since Y is nodec, M is closed and discrete in
Y . By the construction of Y ∪ Xi, each x ∈ Xi is the image of a set of points
each remote from Y , and hence CM ∩ Xi = ∅. Thus, CM ⊆ Y , from which
it follows that CYM = CM . Therefore, since M is closed in Y , it is closed in
Y ∪Xi. Consequently, M is closed in N . In fact, M is clopen in N since Y is
open and M = N ∩ Y . Therefore, N is the disjoint union of M and N ∩ Xi.
As M is discrete, mdim(M) ≤ 0. Also, since N ∩ Xi is a subspace of Xi, we
have mdim(N ∩ Xi) ≤ mdim(Xi) = n. By Lemma 5.6, mdim(N) ≤ n. Thus,
mdim(Y ∪Xi) ≤ n+ 1.

Stage 2: Let N be nowhere dense in Ai. Set Nj = N ∩ Yi,j . Recalling
that Yi,j ∪ Xi is homeomorphic to Y ∪ Xi, by replacing M by Nj and Y ∪ Xi

by Yi,j ∪ Xi in the proof of Stage 1, we see that Nj is closed in Yi,j ∪ Xi and
Nj ∩Xi = ∅ for all j ∈ ω. Therefore,

⋃
j∈ω Nj is closed in the topological sum⊕

j∈ω(Yi,j ∪Xi). Since
⋃
j∈ω Nj is also saturated in

⊕
j∈ω(Yi,j ∪Xi), it is closed

in Ai, and hence closed in N . Also,
⋃
j∈ω Nj = N ∩

⋃
j∈ω Yi,j is open in N since⋃

j∈ω Yi,j is open in Ai. Therefore, N is the disjoint union of N∩Xi and
⋃
j∈ω Nj .

By Lemma 5.6, mdim
(⋃

j∈ω Nj

)
≤ 1 ≤ n since mdim(Nj) ≤ mdim(Yi,j) ≤ 1.

Also mdim(N ∩ Xi) ≤ mdim(Xi) = n, so utilizing Lemma 5.6 again yields
mdim(N) ≤ n. Thus, mdim(Ai) ≤ n+ 1.
Stage 3: Let N be nowhere dense in Zn+1. Set Ni = (N ∩ Ai) \ Xi. By

recognizing that Ni is realized within the discussion of Stage 2 as
⋃
j∈ω Nj , we see

that each Ni is closed in Ai, and hence
⋃
i∈ω Ni is closed in

⊕
i∈ω Ai. Moreover,⋃

i∈ω Ni is saturated, and so
⋃
i∈ω Ni is closed in Zn+1. Therefore,

⋃
i∈ω Ni is

also closed in N . But
⋃
i∈ω Ni = N∩(Zn+1\Zn), so

⋃
i∈ω Ni is open in N . Thus,

N is the disjoint union of N ∩ Zn and
⋃
i∈ω Ni. Since mdim(Ni) ≤ mdim(Ai \

Xi) = mdim
(⊕

j∈ω Yi,j

)
≤ 1, Lemma 5.6 yields that mdim

(⋃
i∈ω Ni

)
≤ 1 ≤

n. Also mdim(N ∩ Zn) ≤ mdim(Zn) = n, so by Lemma 5.6, mdim(N) ≤ n.
Consequently, mdim(Zn+1) ≤ n+ 1. a

5.3. Completeness. Since S4.Zn has the finite model property, S4.Zn is
the logic of finite uniquely rooted S4-frames F of depth ≤ n + 1. Since each
such F can be unraveled into a uniquely rooted finite quasi-tree T whose depth
is ≤ n+ 1, we see that S4.Zn is the logic of uniquely rooted finite quasi-trees T
of depth ≤ n+ 1.

Let Qn be the quasi-tree whose skeleton is Tn and in which the root cluster
is the only trivial cluster and all other clusters are countably infinite. Clearly
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identifying the clusters yields an onto p-morphism pn : Qn → Tn. Because every
uniquely rooted finite quasi-tree of depth ≤ n+ 1 is an interior image of Qn+1,
we see that S4.Zn is the logic of Qn+1. Since we will utilize this fact, we state
it as a lemma.

Lemma 5.8. S4.Zn is the logic of Qn+1.

Since mdim(Zn) = n and Zn is T1, we see that Zn � S4.Zn. Therefore, to
show that S4.Zn is the logic of Zn, in view of Lemma 5.8, it is sufficient to prove
that Qn+1 is an interior image of Zn. The idea of the proof is to ‘fatten’ the
mapping αn : Zn → Tn+1 to a mapping Zn → Qn+1. Let Cκ be the κ-cluster as
depicted in Figure 9.

Cκ

�
�

�
�•

w0
· · · •

wλ, λ < κ

· · ·

Figure 9. The κ-cluster.

Lemma 5.9. A space X is κ-resolvable iff Cκ is an interior image of X.

Proof. First suppose that X is κ-resolvable. Then there is a dense partition
{Dλ : λ < κ} of X. Define f : X → Cκ by f(x) = wλ if x ∈ Dλ. Clearly f is a
well-defined onto map. Moreover, for each λ < κ, we have

Cf−1(wλ) = C(Dλ) = X = f−1({wλ : λ < κ}) = f−1(3R{wλ}).

Thus, f is an interior map.
Conversely, let f : X → Cκ be an onto interior map. Then {f−1(wλ) : λ < κ}

is a partition of X such that

Cf−1(wλ) = f−1(3R{wλ}) = f−1({wλ : λ < κ}) = X.

Thus, {f−1(wλ) : λ < κ} is a dense partition of X, and hence X is κ-resolvable.
a

Theorem 5.10. For each n ≥ 1, S4.Zn is the logic of Zn.

Proof. As we already pointed out, in view of Lemma 5.8, it is sufficient to
show that Qn+1 is an interior image of Zn. The proof is by induction on n.

Let n = 1. Let Ci be the maximal cluster in Q2 whose p2-image is wi ∈
max(T2) (here we are using the enumeration of max(T2) as it appears in the
recursive step of defining the Zn). So Ci = p−1

2 (wi). Since each Yi \ {yi} is an
open subspace of Yi, Yi is homeomorphic to Y , and Y is ω-resolvable, we see
that each Yi \ {yi} is ω-resolvable. As Yi \ {yi} is homeomorphic to the subspace
Yi \ {y} of Z1, by Lemma 5.9, there is an onto interior map fi : Yi \ {y} → Ci.
Define f : Z1 → Q2 by

f(z) =

{
fi(z) if z ∈ Yi \ {y}
r if z = y
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Since {Yi \ {y} | i ∈ ω} ∪ {y} is a partition of Z1 and each fi is onto, f is a
well-defined onto map. Let w ∈ Q2. Suppose w ∈ Ci for some i ∈ ω. Then

f−1(3R{w}) = f−1(Ci ∪ {r}) = f−1
i (Ci) ∪ {y}

= (Yi \ {y}) ∪ {y} = CZ1(Yi \ {y}) = CZ1f
−1(w).

Otherwise w is the root, and so

f−1(3R{w}) = f−1(w) = {y} = CZ1{y} = CZ1f
−1(w).

Thus, f : Z1 → Q2 is an onto interior map.
Let n ≥ 1. Suppose g : Zn → Qn+1 is an onto interior map. Identify Qn+1

with the subframe Qn+2 \maxR(Qn+2). Let wi,j ∈ max(Tn+2) be the jth child
of wi ∈ max(Tn+1) (as in the recursive step of building the Zn). Let Ci,j be the

maximal cluster in Qn+2 whose pn+2-image is wi,j . So Ci,j = p−1
n+2(wi,j). Also,

let Ci be the maximal cluster in Qn+1 whose pn+2-image is wi ∈ max(Tn+1).
So Ci = p−1

n+2(wi). Since each subspace Yi,j of Zn+1 is homeomorphic to Y ,
we see that Yi,j is ω-resolvable. By Lemma 5.9, there is an onto interior map
fi,j : Yi,j → Ci,j . Define f : Zn+1 → Qn+2 by

f(z) =

{
fi,j(z) if z ∈ Yi,j
g(z) if z ∈ Zn

Since {Yi,j | i, j ∈ ω} ∪ {Zn} is a partition of Zn+1 and the fi,j and g are
onto, f is a well-defined onto map. Let w ∈ Qn+2. Suppose w ∈ Ci,j for some
i, j ∈ ω. Because Zn is closed in Zn+1, both g and fi,j are interior maps, and
g−1(3RCi) = Xi, we have

f−1(3R{w}) = f−1(Ci,j ∪3RCi) = f−1
i,j (Ci,j) ∪ g−1(3RCi) = Yi,j ∪Xi

= CZn+1
Yi,j = CZn+1

(CYi,j
f−1
i,j (w)) = CZn+1

f−1(w).

Otherwise w ∈ Qn+1, and so

f−1(3R{w}) = g−1(3R{w}) = CZn
g−1(w) = CZn+1

f−1(w).

Thus, f : Zn+1 → Qn+2 is an onto interior map. a
As an immediate consequence, we obtain:

Corollary 5.11. For each n ≥ 1, S4.Zn is the logic of a countable dense-in-
itself ω-resolvable Tychonoff space of modal Krull dimension n.

Moreover, since S4.Z = S4.Z1, we obtain the following topological complete-
ness for the Zeman logic:

Corollary 5.12. S4.Z is the logic of a countable dense-in-itself ω-resolvable
Tychonoff nodec space.

That S4.Z is the logic of nodec spaces was shown in [3, Thm. 4.6], but the proof
required the use of Alexandroff nodec spaces. The above corollary strengthens
this result considerably by providing a topologically “nice” nodec space whose
logic is S4.Z.
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§6. Krull dimension of Heyting algebras. In this section we turn to
Heyting algebras, which are closely related to S4-algebras [38, 42]. We utilize
this connection and our results about the Krull dimension of S4-algebras to
define the Krull dimension of a Heyting algebra both externally and internally,
and show that these definitions are equivalent. We also show how to give an
equivalent definition of the modal Krull dimension of a topological space in
terms of the Heyting algebra of open sets.

Definition 6.1. A Heyting algebra is a bounded implicative lattice; that is,
a bounded distributive lattice such that ∧ has a residual → satisfying

x ≤ a→ b iff a ∧ x ≤ b.

As usual, we let ¬a denote a→ 0.

If A is an S4-algebra, then H(A) := {2a | a ∈ A} is a Heyting algebra in
which a → b = 2(−a ∨ b). Conversely, if H is a Heyting algebra, then the free
Boolean extension B(H) of H can be equipped with 2 so that A(H) := (B(H),2)
is an S4-algebra, H is isomorphic to H(A(H)), and A(H(A)) is isomorphic to a
subalgebra of A (see, e.g., [42, Sec. IV.1 and IV.3] or [21, Sec. II.2 and II.5]).

As with S4-algebras, there are two typical examples of Heyting algebras.
Firstly, the collection HX of all open sets of a topological space X is a Heyting
algebra, where U → V = I((X \ U) ∪ V ). By the Stone representation theo-
rem [44], every Heyting algebra is represented as a subalgebra of HX for some
topological space X (see [38, 42]). Secondly, the R-upsets of an S4-frame form a
Heyting algebra, but since R-upsets do not distinguish between points that are
R-related to each other, we may restrict ourselves to those S4-frames that are in
addition antisymmetric. More precisely, the Heyting algebras of R-upsets of F
and the skeleton of F are isomorphic, and every Heyting algebra is represented
as a subalgebra of the Heyting algebra of R-upsets of some partially ordered
S4-frame (see, e.g., [25, 21]).

The dual H∗ of a Heyting algebra H is the spectrum of prime filters of H. If A
is an S4-algebra and A∗ is the dual of A, then the dual H(A)∗ of H(A) is obtained
by taking the skeleton of A∗. Conversely, if H is a Heyting algebra, then the dual
A(H)∗ of A(H) is isomorphic to the dual H∗ of H (see, e.g., [21, Sec. III.4]).

Let H be a Heyting algebra and a ∈ H. The relativization of H with respect
to a is the Heyting algebra Ha whose underlying set is the interval [a, 1] and ∧,
∨, and → in Ha coincide with those in H. If H = HX is the Heyting algebra
of all opens of a topological space X and U is an open subset of X, then the
relativization of H with respect to U is isomorphic to the Heyting algebra of all
opens of the subspace X \ U .

We are ready to define Krull dimension of Heyting algebras. As with S4-
algebras, we first define Krull dimension of Heyting algebras externally and then
provide an equivalent internal definition of it. We also show that Krull dimen-
sions of an S4-algebra A and the associated Heyting algebra H(A) coincide.

Definition 6.2. Let H be a Heyting algebra. Define the Krull dimension
kdim(H) of H as the supremum of the lengths of finite R-chains in H∗. If the
supremum is not finite, then we write kdim(H) =∞.
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Lemma 6.3.
1. If A is an S4-algebra, then kdim(A) = kdim(H(A)).
2. If H is a Heyting algebra, then kdim(H) = kdim(A(H)).

Proof. (1) Since H(A)∗ is the skeleton of A∗, we see that the corresponding
R-chains in A∗ and H(A)∗ have the same length. Thus, kdim(A) = kdim(H(A)).

(2) This is obvious since H∗ is isomorphic to (A(H))∗. a
As with S4-algebras, the concept of Krull dimension of a Heyting algebra H is

closely related to that of the depth of H. It is well known that whether the depth
of H is ≤ n is described by the following formulas in the language of intuitionistic
logic.

Definition 6.4. For n ≥ 1, consider the formulas:

ibd1 = p1 ∨ ¬p1,

ibdn+1 = pn+1 ∨ (pn+1 → ibdn) .

The intuitionistic language is interpreted in a Heyting algebra H by assigning
to propositional letters elements of H and by interpreting conjunction, disjunc-
tion, implication, and negation as the corresponding operations of H. The next
lemma is well known (see, e.g., [10, Prop. 2.38]).

Lemma 6.5. Let H be a nontrivial Heyting algebra and n ≥ 1. Then H � ibdn
iff depth(H∗) ≤ n.

To characterize the Krull dimension of a Heyting algebra internally, we require
some preparation. We call an element a of a Heyting algebra H dense if ¬a = 0.

Lemma 6.6. Let H be a Heyting algebra, a ∈ H, and b ∈ Ha. If b is dense in
Ha, then b is dense in H.

Proof. Since b is dense in Ha and a is the bottom of Ha, we have b→ a = a.
Therefore, ¬b = b→ 0 ≤ b→ a = a. On the other hand, a ≤ b implies ¬b ≤ ¬a.
Thus, ¬b ≤ a ∧ ¬a = 0, and hence b is dense in H. a

Lemma 6.7. Let A be an S4-algebra and let a, b ∈ H(A) with b ≤ a. Then a
is dense in H(A)b iff −a is nowhere dense in A−b.

Proof. Since a, b are open, −a,−b are closed. Therefore, since −a ≤ −b, we
have −a = 3−a = −b ∧3−a = 3−b−a. Thus,

a is dense in H(A)b iff ¬a = 0 in H(A)b

iff a→ b = b in H(A)

iff 2(−a ∨ b) = b in A

iff 2(−b→ −a) = b in A

iff −b ∧2(−b→ −a) = 0 in A

iff 2−b−a = 0 in A−b

iff 2−b3−b−a = 0 in A−b

iff −a is nowhere dense in A−b.

a
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Remark 6.8. When b = 0, we obtain that a is dense in H(A) iff −a is nowhere
dense in A.

We are ready to give an internal recursive definition of the Krull dimension of
a Heyting algebra.

Definition 6.9. The Krull dimension kdim(H) of a Heyting algebra H can
be defined as follows:

kdim(H) = −1 if H is the trivial algebra,
kdim(H) ≤ n if kdim(Hb) ≤ n− 1 for every dense b ∈ H,
kdim(H) = n if kdim(H) ≤ n and kdim(H) 6≤ n− 1,
kdim(H) =∞ if kdim(H) 6≤ n for any n = −1, 0, 1, 2, . . . .

The next two results concern the internal definition of the Krull dimension.

Lemma 6.10. Let H be a Heyting algebra and let a ∈ H. Then kdim(Ha) ≤
kdim(H).

Proof. If kdim(H) =∞, then there is nothing to prove. Suppose kdim(H) =
n. Let b ∈ Ha be dense in Ha. By Lemma 6.6, b is dense in H. Since kdim(H) =
n, we see that kdim(Hb) ≤ n − 1. Because (Ha)b = Hb, we conclude that
kdim(Ha) ≤ n. Thus, kdim(Ha) ≤ kdim(H). a

Theorem 6.11.
1. If A is an S4-algebra, then kdim(A) = kdim(H(A)).
2. If H is a Heyting algebra, then kdim(H) = kdim(A(H)).

Proof. (1) By Theorem 2.14, kdim(A) ≥ n iff there is a sequence c0, . . . , cn
of nonzero closed elements of A such that c0 = 1 and ci+1 is nowhere dense in
Aci for each i ∈ {0, . . . , n− 1}. By [4, Thm. 6.9], kdim(H(A)) ≥ n iff there is a
sequence 1 = b0 > b1 > · · · > bn > 0 in H(A) such that bi−1 is dense in H(A)bi
for each i ∈ {1, . . . , n}. The two conditions are equivalent by Lemma 6.7. The
result follows.

(2) Since H is isomorphic to H(A(H)), we have kdim(H) = kdim(H(A(H)). By
(1), kdim(H(A(H))) = kdim(A(H)). Thus, kdim(H) = kdim(A(H)). a

As a consequence we obtain:

Corollary 6.12. The external and internal definitions of the Krull dimen-
sion of a Heyting algebra coincide, so Definitions 6.2 and 6.9 are equivalent.

Proof. Apply Corollary 2.16, Lemma 6.3, and Theorem 6.11. a

Corollary 6.13. For a topological space X, we have mdim(X) = kdim(HX).

Proof. Since HX is the Heyting algebra of opens of AX , by Lemma 6.3 (or
Theorem 6.11), mdim(X) = kdim(AX) = kdim(HX). a

Let Ln be the (n+1)-element linear Heyting algebra. Then (Ln)∗ is isomorphic
to the n-element chain Fn shown in Figure 1. Let χ(Ln) be the Jankov-Fine
formula of Ln. Another immediate consequence of our results is the following:

Corollary 6.14. Let H be a nontrivial Heyting algebra and n ≥ 1. The
following are equivalent:

1. kdim(H) ≤ n− 1.
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2. There does not exist a sequence 1 = b0 > b1 > · · · > bn > 0 in H such that
bi−1 is dense in Hbi for each i ∈ {1, . . . , n}.

3. H � ibdn.
4. depth(H∗) ≤ n.
5. H � ¬χ(Ln+1).
6. Ln+1 is not isomorphic to a subalgebra of a homomorphic image of H.
7. Ln+1 is not isomorphic to a subalgebra of H.

§7. Comparison to other dimension functions. We conclude the paper
with a comparison of modal Krull dimension to other well-known topological
dimension functions. We recall that if X is a regular space, then the Menger-
Urysohn dimension of X is denoted by ind(X), if X is a Tychonoff space, then
the Čech-Lebesgue dimension of X is denoted by dim(X), and if X is a normal
space, then the Brouwer-Čech dimension of X is denoted by Ind(X) (see, e.g.,
[19, Ch. 7] for a detailed account of these three dimension functions). Also, for
a spectral space X, let kdim(X) denote the Krull dimension of X, and for a
T0-space X, let gdim(X) denote Isbell’s graduated dimension of X [29].

Proposition 7.1. Let X be a topological space.

1. If X is a spectral space, then kdim(X) ≤ mdim(X).
2. If X is a T0-space, then gdim(X) ≤ mdim(X).
3. If X is a regular space, then ind(X) ≤ mdim(X).
4. If X is a normal space, then Ind(X) ≤ mdim(X) and dim(X) ≤ mdim(X).

Proof. (1) The Krull dimension of a spectral space X can be defined as the
supremum of the lengths of finite chains in the specialization order R of X.
Define ε : X → (AX)∗ by ε(x) = {A ∈ AX | x ∈ A}. It is well known and easy
to check that xRy in X iff ε(x)Rε(y) in (AX)∗. Therefore, the supremum of the
lengths of finite chains in the specialization order of X can be no larger than the
supremum of the lengths of finite chains in (AX)∗. The result follows.

(2) Recall that Isbell’s graduated dimension of a T0-space X is the least n
such that some lattice basis of HX is a directed union of finite topologies of
Krull dimension n. Suppose the Isbell dimension of X is n. The lattice of all
opens HX is a directed union of finite topologies τi since the variety of distributive
lattices is locally finite. Because the Krull dimension of each τi is ≥ n, we see
that mdim(X) ≥ n, as desired.

(3) Induction on n ≥ −1. The base case is clear since ind(X) = −1 iff
X = ∅, which happens iff mdim(X) = −1. For the inductive step, suppose
mdim(X) = n. If Y is closed and nowhere dense in X, then mdim(Y ) ≤ n− 1.
By the inductive hypothesis, ind(Y ) ≤ n− 1. Because the boundary of an open
set is (closed and) nowhere dense in X, it follows that the boundary B of any
open subset of X has ind(B) ≤ n− 1. Thus, ind(X) ≤ n.

(4) Let X be normal. Replacing each occurrence of ind in the proof of (3)
by Ind yields Ind(X) ≤ mdim(X). By [19, Thm. 7.2.8], dim(X) ≤ Ind(X) ≤
mdim(X). a

Remark 7.2.
• It remains open whether dim(X) ≤ mdim(X) for any Tychonoff space X.
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• For appropriately chosen spaces, the inequalities in Proposition 7.1 are
strict. For example, if X = ωn + 1, then kdim(X) = gdim(X) = ind(X) =
Ind(X) = dim(X) = 0, but mdim(X) = n by Example 3.7(3).
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