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Varieties of two-dimensional cylindric algebras II

Nick Bezhanishvili

Abstract. In [2] we investigated the lattice Λ(Df 2) of all subvarieties of the variety Df2

of two-dimensional diagonal free cylindric algebras. In the present paper we investigate the
lattice Λ(CA2) of all subvarieties of the variety CA2 of two-dimensional cylindric algebras.
We prove that the cardinality of Λ(CA2) is that of the continuum, give a criterion for a
subvariety of CA2 to be locally finite, and describe the only pre locally finite subvariety
of CA2. We also characterize finitely generated subvarieties of CA2 by describing all
fifteen pre finitely generated subvarieties of CA2. Finally, we give a rough picture of
Λ(CA2), and investigate algebraic properties preserved and reflected by the reduct functors
F : CA2 → Df2 and Φ: Λ(CA2) → Λ(Df2).

1. Introduction

This paper is a sequel to [2] and in it we investigate the lattice Λ(CA2) of
all subvarieties of the variety CA2 of two-dimensional cylindric algebras. The
variety CA2 is widely studied in the literature. One of the main references is the
fundamental work by Henkin, Monk, and Tarski [8]. Among many other things it
is well known that

• Unlike the variety Df2 of two-dimensional diagonal free cylindric algebras, not
every member of CA2 is representable;

• The representable members of CA2 form a proper subvariety of CA2, usually
denoted by RCA2;

• Both CA2 and RCA2 are finitely axiomatizable and their equational theories
are decidable;

• Both CA2 and RCA2 are finitely approximable, that is, generated by their
finite members. However, neither of them is locally finite.

To these results we add a criterion for a variety of two-dimensional cylindric
algebras to be locally finite, a characterization of finitely generated and pre finitely
generated varieties of two-dimensional cylindric algebras, and a rough description
of the lattice Λ(CA2).
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The paper is organized as follows. Section 2 has a preliminary purpose and it
contains all the information about Df2 and CA2 needed in subsequent sections.
In Section 3 we characterize representable two-dimensional cylindric algebras. In
Section 4 we show that there exists a continuum of subvarieties of RCA2, and that
there exists a continuum of varieties in between RCA2 and CA2. In Section 5
we describe the only pre locally finite subvariety of CA2, and characterize locally
finite varieties of two-dimensional cylindric algebras. In Section 6 we characterize
finitely generated subvarieties of CA2 by describing all fifteen pre finitely generated
subvarieties of CA2. Finally, in Section 7 we give a rough picture of the lattice
structure of Λ(CA2), define the reduct functors F : CA2 → Df2 and Φ: Λ(CA2) →
Λ(Df2), and investigate algebraic properties preserved and reflected by F and Φ.

Acknowledgements. Special thanks go to my brother Guram. I would also like
to thank Leo Esakia, Revaz Grigolia, and Yde Venema for helpful discussions, as
well as the referee for valuable suggestions including many pointers to [8].

2. Preliminaries

2.1. Df2. In this subsection we review the results about two-dimensional diagonal
free cylindric algebras which will be used subsequently.

Definition 2.1 ([7, p.40]). Suppose (B,∧,∨,−, 0, 1) is a Boolean algebra. A unary
operation ∃ : B → B is called a monadic operator on B if the following three
conditions are satisfied for all a, b ∈ B:

• ∃0 = 0;
• a ≤ ∃a;
• ∃(∃a ∧ b) = ∃a ∧ ∃b.

Definition 2.2 ([8, Definition 1.1.2]). A triple B = (B, ∃1, ∃2) is called a two-
dimensional diagonal-free cylindric algebra, or a Df2-algebra for short, if B is a
Boolean algebra, and ∃1, ∃2 are monadic operators on B satisfying the following
condition for all a ∈ B:

∃1∃2a = ∃2∃1a.

The variety of two-dimensional diagonal-free cylindric algebras is denoted by Df2.

Suppose X is a nonempty set, R is a binary relation on X , x ∈ X and A ⊆ X .
Let

• R(x) = {y ∈ X : xRy},
• R−1(x) = {y ∈ X : yRx},
• R(A) =

⋃
x∈A R(x),

• R−1(A) =
⋃

x∈A R−1(x).
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We call R(x) the R-saturation of x, and R(A) the R-saturation of A. Note that
if R is an equivalence relation, then R(x) = R−1(x) and R(A) = R−1(A).

Recall that a subset A of a topological space X is called a clopen subset of X if it
is simultaneously closed and open. Also recall that a topological space X is called
a Stone space if X is 0-dimensional (that is clopen subsets of X form a basis for the
topology), compact, and Hausdorff. Denote by CP (X) the Boolean algebra of all
clopen subsets of a Stone space X . A relation R on a Stone space X is said to be
a clopen relation if A ∈ CP (X) implies R−1(A) ∈ CP (X). We call R point-closed
if R(x) is a closed subset of X for every x ∈ X .

Definition 2.3 ([2, p.15]). A triple (X, E1, E2) is said to be a Df2-space if X is a
Stone space and E1 and E2 are point-closed and clopen equivalence relations on X

with E1E2(x) = E2E1(x) for every x ∈ X .

Given two Df2-spaces (X, E1, E2) and (X ′, E′
1, E

′
2), a function f : X → X ′ is said

to be a Df2-morphism if f is continuous and fEi(x) = E′
if(x) for every x ∈ X ,

i = 1, 2. We denote the category of Df2-spaces and Df2-morphisms by DS. Then
we have the following representation of Df2-algebras:

Theorem 2.4. [2, Theorem 2.4] Df2 is dual to DS. In particular, every Df2-
algebra can be represented as (CP (X), E1, E2) for the corresponding Df2-space (X,

E1, E2).

For a Df2-space (X, E1, E2), let E0 = E1 ∩ E2. It is routine to check that E0

is an equivalence relation on X . Call the Ei-equivalence classes, that is the sets
of the form Ei(x), Ei-clusters (i = 0, 1, 2). A subset A of X is called saturated if
E1E2(A) = A. A Df2-space (X, E1, E2) is called a component if E1E2(x) = X for
each x ∈ X . A partition R of X is called correct if

(1) From ¬(xRy) it follows that there exists an R-saturated clopen A such that
x ∈ A and y /∈ A,

(2) REi(x) ⊆ EiR(x) for every x ∈ X and i = 1, 2.

Then we have the following dual characterization of congruences and subalgebras
of Df2-algebras, as well as subdirectly irreducible and simple Df2-algebras.

Theorem 2.5. [2, Theorems 2.3, 2.5, 2.8]

(1) The lattice of congruences of a Df2-algebra (B, ∃1, ∃2) is isomorphic to the
lattice of open saturated subsets of its dual (X, E1, E2).

(2) The lattice of subalgebras of (B, ∃1, ∃2) ∈ Df2 is dually isomorphic to the lattice
of correct partitions of its dual (X, E1, E2).

(3) (B, ∃1, ∃2) ∈ Df2 is subdirectly irreducible iff (B, ∃1, ∃2) is simple iff its dual
(X, E1, E2) is a component.
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2.2. CA2.

Definition 2.6 ([8, Definition 1.1.1]). A quadruple B = (B, ∃1, ∃2, d) is said to
be a two-dimensional cylindric algebra, or a CA2-algebra for short, if (B, ∃1, ∃2) is
a Df2-algebra and d ∈ B is a constant satisfying the following conditions for all
a ∈ B and i = 1, 2.

(1) ∃i(d) = 1;
(2) ∃i(d ∧ a) = −∃i(d ∧ −a).

Denote the variety of all two-dimensional cylindric algebras by CA2.

Since in this paper we only deal with two-dimensional cylindric algebras, we
will simply call them cylindric algebras. Below we will generalize the duality for
Df2-algebras to CA2-algebras.

Definition 2.7. A quadruple (X, E1, E2, D) is said to be a cylindric space if the
triple (X, E1, E2) is a Df2-space and D is a clopen subset of X such that every
Ei-cluster of X contains a unique point from D for i = 1, 2.

A routine consequence of this definition is the following proposition.

Proposition 2.8 (For an algebraic version see [8, Theorem 1.5.3]). Suppose X is
a cylindric space. Then the cardinality of the set of all E1-clusters of X is equal to
the cardinality of the set of all E2-clusters of X .

Proof. Let E1 and E2 denote the sets of all E1 and E2-clusters of X , respectively.
Define f : E1 → E2 by putting f(C) = E2(C ∩ D). Suppose C1, C2 ∈ E1, C1 	= C2,
C1 ∩ D = {x}, and C2 ∩ D = {y}. Since every Ei-cluster of X contains a unique
point from D, it follows that f(C1) = E2(x) 	= E2(y) = f(C2). Therefore, f is
an injection. Now suppose C′ ∈ E2 and C′ ∩ D = {x}. If we let C = E1(x),
then f(C) = E2(x) = C′. Thus, f is a surjection. Hence, we obtain that f is a
bijection. �

Given two cylindric spaces (X, E1, E2, D) and (X ′, E′
1, E

′
2, D

′), a function
f : X → X ′ is said to be a cylindric morphism if f is a Df2-morphism and
f−1(D′) = D. We denote the category of cylindric spaces and cylindric morphisms
by CS. Then we have the following representation of cylindric algebras:1

Theorem 2.9. CA2 is dual to CS. In particular, every cylindric algebra B =
(B, ∃1, ∃2, d) can be represented as (CP (X), E1, E2, D) for the corresponding cylin-
dric space X = (X, E1, E2, D).

Proof. A routine adaptation of Theorem 2.4 to cylindric algebras. �
1With regard to the extent of this being a true representation theorem see the discussion in

[8, Remarks 2.7.45, 2.7.46].
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Remark 2.10. We would like to point out a close connection between cylindric
spaces and cylindric atom structures defined in [8]. We recall from [8, Definition
2.7.32] that if B = (B, ∃1, ∃2, d) is a cylindric algebra, where B is a complete
and atomic Boolean algebra, then the cylindric atom structure of B is defined as
the quadruple At(B) = (At(B), E1, E2, D), where At(B) is the set of all atoms of
B; Ei is defined by putting xEiy iff ∃ix = ∃iy, for x, y ∈ At(B), i = 1, 2; and
D = {x ∈ At(B) : x ≤ d}.

Suppose B = (B, ∃1, ∃2, d) is a cylindric algebra, B+ = (B+, ∃+
1 , ∃+

2 , d+) is the
canonical extension of B, and i : B → B+ is the canonical embedding, [8, Definition
2.7.4]. Then it is well known that B+ is complete and atomic. Let At(B+) be the
cylindric atom structure of B+. For a ∈ B let Oa = {x ∈ At(B+) : x ≤ i(a)}.
We make At(B+) into a topological space by letting {Oa}a∈B to be a bases for the
topology τ . Then it can be shown that (At(B+), τ) is a cylindric space, and that
(At(B+), τ) is isomorphic to the dual cylindric space of B.

As an easy corollary of Theorem 2.9 we obtain that the category FinCA2 of finite
cylindric algebras is dual to the category FinCS of finite cylindric spaces with the
discrete topology. In particular, every finite cylindric algebra is represented as the
algebra (P (X), E1, E2, D) for the corresponding finite cylindric space (X, E1, E2, D)
(see, e.g., [8, Theorem 2.7.34]).

To obtain the dual description of homomorphic images and subalgebras of cylin-
dric algebras, as well as subdirectly irreducible and simple cylindric algebras, we
need the following two definitions. Suppose X is a cylindric space. A correct par-
tition R of X is called a cylindric partition if R(D) = D. A cylindric space X is
called a quasi-square if E1E2(x) = X for every x ∈ X .

Theorem 2.11. (1) The lattice of congruences of a cylindric algebra B is iso-
morphic to the lattice of open saturated subsets of its dual X .

(2) The lattice of subalgebras of a cylindric algebra B is dually isomorphic to the
lattice of cylindric partitions of its dual X .

(3) A cylindric algebra B is subdirectly irreducible iff it is simple iff its dual X is
a quasi-square.

Proof. A routine adaptation of Theorem 2.5 to cylindric algebras. For (3) also see
[8, Theorems 2.4.43, 2.4.14]. �

Then we have the following corollary of Theorem 2.11.

Corollary 2.12. (1) CA2 is semi-simple.
(2) CA2 is congruence-distributive.
(3) CA2 has the congruence extension property.

Proof. Follows immediately from Theorem 2.11. �
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Figure 1. Some cylindric spaces and their reducts

Now define the reduct functor F : CA2 → Df2 by putting

F(B, ∃1, ∃2, d) = (B, ∃1, ∃2).

Thus, F forgets the diagonal element d from the signature of cylindric algebras.

Remark 2.13. Note that it follows from Theorems 2.5(1) and 2.11(1) that for any
cylindric algebra B, the lattice of congruences of B is isomorphic to the lattice of
congruences of F(B).

Now we show that F is not onto. In fact, the set Df2 − F(CA2) is infinite. For
this, define the reduct functor R : CS → DS by putting

R(X, E1, E2, D) = (X, E1, E2).

Suppose (Y, E1, E2) ∈ DS is a component. Call (Y, E1, E2) a quasi-square if the
cardinality of the sets of all E1 and E2-clusters coincide with each other. It follows
immediately from Proposition 2.8 that a component (Y, E1, E2) is a reduct of some
cylindric space iff it is a quasi-square. Note that not every component from DS is
a quasi-square. The simplest examples of components which are not quasi-squares
are finite rectangle Df2-spaces.2 Since there are infinitely many finite rectangle
Df2-spaces, the set DS − R(CS) is infinite.

Now call a Df2-algebra a quasi-square algebra if its dual space is a quasi-square.
As follows from the above and Theorem 2.11, for every simple cylindric algebra B,
its Df2-reduct is a quasi-square algebra. Therefore, the set Df2−F(CA2) is infinite.
Moreover, one Df2-algebra can be the reduct of many non-isomorphic cylindric
algebras. For instance, a Df2-algebra whose dual space is shown in Figure 1(a)
is the reduct of the cylindric algebras whose dual cylindric spaces are shown in
Figures 1(b) and 1(c), where dots represent points of the spaces, while big dots
represent the points belonging to the (diagonal) set D.

2We recall from [2, Definition 3.1] that a finite Df2-space (n × m, E1, E2) is called a rectangle
if n, m < ω and E1 and E2 are defined in the following way: (i1, i2)E1(j1, j2) iff i2 = j2, and
(i1, i2)E2(j1, j2) iff i1 = j1, for i1, i2 < n and j1, j2 < m. Note that the concept of a “rectangle
Df2-space” is different from the one of a “rectangular element” defined in [8, Definition 1.10.6].
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3. Representable cylindric algebras

For any cardinal κ, define on the cartesian square κ×κ two equivalence relations
E1 and E2 by putting

(i1, i2)E1(j1, j2) iff i2 = j2,

(i1, i2)E2(j1, j2) iff i1 = j1,

for i1, i2, j1, j2 ∈ κ. Let also D = {(i, i) : i ∈ κ} and call (κ × κ, E1, E2, D) a
square. Obviously (P (κ × κ), E1, E2, D) is a cylindric algebra, which we call a
square algebra.3 Denote the class of all square algebras by Sq.

Definition 3.1 ([8, Remark 1.1.13, Definition 3.1.1(vii)]). A cylindric algebra B is
called representable if B ∈ SP(Sq), where S and P denote the operations of taking
subalgebras and direct products, respectively.4

It is known that the class of representable cylindric algebras is also closed under
homomorphic images, and so forms a variety which is usually denoted by RCA2.
It is known that RCA2 is a proper subvariety of CA2, that RCA2 is generated by
finite square algebras, and that RCA2 can be axiomatized by adding the following
Henkin axioms to the axiom system of CA2 (see [8, Theorem 3.2.65(ii)]):

(H) ∃i(a ∧ −b ∧ ∃j(a ∧ b)) ≤ ∃j(−d ∧ ∃ia), i 	= j, i, j = 1, 2.

In [12, §3.5.2] Venema has simplified these equations to the following ones:

(V) d ∧ ∃i(−a ∧ ∃ja) ≤ ∃j(−d ∧ ∃ia), i 	= j, i, j = 1, 2.

Below we will recall the dual characterization of representable cylindric algebras,
and construct rather simple finite non-representable cylindric algebras.

Suppose (X, E1, E2, D) is a cylindric space. Call x ∈ D a diagonal point, and
x ∈ X − D a non-diagonal point. Also call an E0-cluster C a diagonal E0-cluster
if it contains a diagonal point. Otherwise call C a non-diagonal E0-cluster.

Lemma 3.2 (For an algebraic version of Lemma 3.2 we refer to [8, Theorem
1.10.13(ii)]). Let X be a cylindric space. If a diagonal point x ∈ D is not an
isolated point, then E0(x) 	= {x}.
Proof. Suppose x ∈ D is not an isolated point. Then x is a limit point, and so there
exists a net {xi}i∈I converging to x.5 Since D is a clopen, we can assume that each

3The square algebras are defined in [8, Definition 1.1.5(iv)], where they are called “full cylindric
set algebras of dimension 2 with base κ”. However, since we work only with two-dimensional
cylindric algebras the term “square algebra” is more convenient.

4The definition of representability is not quite the same as the original one from [8] but is
equivalent to it.

5Recall that a net is a map from a directed set (I,≤) to X. If X is a Hausdorff space, then
every converging net has a unique limit (see, e.g., [6, §1.6] for details).
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xi belongs to D. Moreover, since {xi}i∈I converges to x, without loss of generality
we can assume that E1(xi) ∩ E2(x) 	= ∅ for every xi. Let yi ∈ E1(xi) ∩ E2(x).
Since X is compact, {yi}i∈I converges to some point y ∈ X . Moreover, y ∈ E2(x)
because {yi}i∈I ⊆ E2(x) and E2(x) is closed. Since D contains a unique point from
every Ei-cluster, we have that {yi}i∈I ⊆ −D. But then y ∈ −D because −D is a
clopen. Therefore, y 	= x. Let E1(y) ∩ D = {z}. If z 	= x, then z is not a limit of
{xi}i∈I , hence there exists a clopen A ⊆ D such that z ∈ A and for every j ∈ I

there is j′ ≥ j with xj′ /∈ A. But then yj′ /∈ E1(A), which is impossible since E1(A)
is a clopen, y ∈ E1(A) and y is a limit of {yi}i∈I . Thus, z = x, implying that yE1x.
Therefore, y ∈ E0(x), and so E0(x) 	= {x}. �

Definition 3.3. A cylindric space X is said to satisfy (∗) if there exists a diagonal
point x0 ∈ D such that E0(x0) = {x0} and there exists a non-singleton E0-cluster
C which is either E1 or E2-related to x0.

In the terminology of [8] a cylindric space satisfies the condition (∗) of Defini-
tion 3.3 iff the corresponding cylindric algebra has at least one defective atom (for
details see [8, Lemma 3.2.59]).

Now we will give a dual characterization of representable cylindric algebras. A
similar characterization can also be found in [8, Lemma 3.2.59, Theorem 3.2.65].
However, our characterization uses Venema’s axioms, while the one in [8] uses
Henkin’s axioms. Moreover, our proof below appears to be simpler than the original
one in [8].

Theorem 3.4. A cylindric algebra B is representable iff its dual cylindric space
X does not satisfy (∗).
Proof. Suppose X satisfies (∗). We show that (V) does not hold in B, implying
that B is not representable. Let x0 be a diagonal point with E0(x0) = {x0} and C

be a non-singleton E0-cluster say E1-related to x0 (the case when C is E2-related
to x0 is proved similarly). It follows from Lemma 3.2 that x0 is an isolated point.
Therefore, E1(x0) is a clopen. Choose two different points y and z from C, and
consider an open set E1(x0) − {x0, y}. Let A ⊆ E1(x0) − {x0, y} be a clopen
containing z. Then y ∈ −A ∩ E2(A), and so x0 ∈ D ∩ E1(−A ∩ E2(A)). On the
other hand, E1(A) = E1(x0). Therefore, x0 /∈ E2(−D ∩E1(A)), implying that (V)
does not hold in B. Thus, B is not representable.

Conversely, suppose B is not representable. We show that (∗) holds in X . We
know that (V) does not hold in B. Therefore, there exist a point x ∈ X and a
clopen A ⊆ X such that x ∈ D ∩ Ei(−A ∩ Ej(A)) but x /∈ Ej(−D ∩ Ei(A)) for
i, j = 1, 2 and i 	= j. Since x ∈ D ∩ Ei(−A ∩ Ej(A)), then x ∈ D and there exist
points y, z ∈ X such that xEiy, yEjz, y /∈ A and z ∈ A. From y /∈ A and z ∈ A

it follows that y and z are different. Also xEiy and yEjz imply that there exists a
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point u ∈ X such that xEju and uEiz. If u 	= x, then u is a non-diagonal point,
and so u ∈ −D ∩ Ei(A). But then x ∈ Ej(−D ∩ Ei(A)), which contradicts our
assumption. Thus, u = x and xEiz. Therefore, yE0z and both y and z are Ei-
related to x. Moreover, if E0(x) 	= {x}, then by choosing a point u ∈ E0(x) different
from x we obtain again that u ∈ −D ∩ Ei(A), and so x ∈ Ej(−D ∩ Ei(A)), which
is impossible. Therefore, E0(x) = {x} and E0(y) is a non-singleton E0-cluster
Ei-related to x0. Thus, (∗) holds in X . �

Using this criterion it is easy to see that the cylindric algebras corresponding to
the cylindric spaces shown in Figure 1(c) are representable, while the cylindric alge-
bras corresponding to the cylindric spaces shown in Figure 1(b) are not. Moreover,
the smallest non-representable cylindric algebra is the algebra corresponding to the
cylindric space shown in Figure 1(b), where the non-singleton E0-cluster contains
only two points.

4. Cardinality of Λ(CA2)

Denote the lattice of subvarieties of CA2 by Λ(CA2) and the lattice of subvari-
eties of RCA2 by Λ(RCA2). We want to show that the cardinality of Λ(RCA2) as
well as the cardinality of Λ(CA2)−Λ(RCA2) is that of continuum. For this define
a partial order on the class of all non-isomorphic finite simple cylindric algebras by
putting

A ≤ B iff A ∈ S(B).

Lemma 4.1. Every two non-isomorphic finite square algebras are ≤-incomparable.

Proof. Let A and B be two non-isomorphic finite square algebras and let XA and
XB be their dual spaces. Then XA is isomorphic to (n × n, E1, E2, D) and XB

is isomorphic to (m × m, E′
1, E

′
2, D

′) where n 	= m. Without loss of generality
we can assume that n > m. Then obviously A can not be a subalgebra of B.
Suppose B is a proper subalgebra of A. Then there exists a cylindric partition R of
XA such that XA/R is isomorphic to XB. Therefore, R must identify points from
different E1 or E2-clusters of XA. Without loss of generality we can assume that R

identifies points from different E1-clusters C1 and C2. Let x1 ∈ C1 be the diagonal
point of C1 and x2 ∈ C2 be the diagonal point of C2. Since R(D) = D, we have
that x1Rx2. Let E1(x1) ∩ E2(x2) = {y1}. Since x2Rx1 and x1E1y1, there exists
y2 ∈ XA such that y1Ry2 and y2E1x2. Consider R(x1) and R(y1). It is obvious
that R(x1)E0R(y1). Also R(x1) 	= R(y1) since R(D) = D. Therefore, there exists
a non-singleton E0-cluster of XB, which is impossible since XB is a square. Thus,
B is not a proper subalgebra of A, and so every two non-isomorphic finite square
algebras are ≤-incomparable. �
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As an immediate consequence of Lemma 4.1 we obtain the following theorem.

Theorem 4.2. The cardinality of Λ(RCA2) is that of continuum.

Proof. Let Xn be the square (n × n, E1, E2, D) and Bn be the square algebra
(P (n × n), E1, E2, D). Consider the family ∆ = {Bn}n∈ω. From Lemma 4.1
it follows that ∆ forms a ≤-anti-chain. For any subset Γ of ∆, let VΓ denote
the variety generated by Γ, that is, VΓ = HSP(Γ). Using the standard splitting
technique, we can easily show that VΓ 	= VΓ′ whenever Γ 	= Γ′ (the fact we use here
is that every finite simple cylindric algebra is a splitting algebra; see, e.g., Kracht
[9, Corollary 7.3.12]). Therefore, there exist 2ℵ0-many subvarieties of RCA2. �

For n > 1 let Yn denote the finite cylindric space obtained from the n×n square
by substituting a singleton non-diagonal E0-cluster by a two-element E0-cluster.
For example, Y2 is shown in Figure 1(b), where the non-diagonal E0-cluster contains
two points. Denote by An the cylindric algebra corresponding to Yn. Obviously Yn

satisfies (∗), and so An is not representable. Similarly to Lemma 4.1, we can prove
the following lemma.

Lemma 4.3. The family {An}n∈ω forms a ≤-anti-chain.

As an immediate consequence of Lemma 4.3 and the fact that {An}n∈ω ⊆ CA2−
RCA2 we obtain the following theorem.

Theorem 4.4. The cardinality of Λ(CA2) − Λ(RCA2) is that of continuum.

Finally, for Γ, Γ′ ⊆ {An}n∈ω it is obvious that Γ 	= Γ′ implies RCA ∨ VΓ 	=
RCA ∨ VΓ′ . Therefore, we obtain the following corollary.

Corollary 4.5. There exist continuum many varieties in between RCA2 and CA2.

5. Locally finite subvarieties of CA2

Recall that a variety V of universal algebras is said to be locally finite if every
finitely generated V-algebra is finite. It is called pre locally finite if it is not locally
finite but all its proper subvarieties are. It is known (see, e.g., [8, Theorem 2.1.11])
that RCA2, and hence any variety in the interval [RCA2,CA2], is not locally
finite. In this section, we present a criterion for a variety of cylindric algebras to
be locally finite, and show that there exists exactly one pre locally finite subvariety
of CA2.

Let B be a cylindric algebra and X be its corresponding dual cylindric space.
We have that B is simple iff X is a quasi-square. We also have that the cardinalities
of the sets of E1 and E2-clusters of X coincide.



Vol. 51, 2004 Varieties of two-dimensional cylindric algebras II 187

E1 = E2
E2

E1

E1

E2

Figure 2. Uniform quasi-squares

Definition 5.1. (1) A quasi-square X is said to be of depth n (0 < n < ω) if the
cardinality of the set of E1-clusters (E2-clusters) of X is equal to n.

(2) A quasi-square X is said to be of an infinite depth if the cardinality of the set
of E1-clusters (E2-clusters) of X is infinite.

(3) A simple cylindric algebra B is said to be of depth n if its dual quasi-square
X is of depth n.

(4) A simple cylindric algebra B is said to be of an infinite depth if its dual quasi-
square X is of an infinite depth.

(5) A variety V of cylindric algebras is said to be of depth n if there is a simple
V-algebra of depth n and the depth of every other simple V-algebra is less
than or equal to n.

(6) A variety V is said to be of depth ω if the depth of simple members of V is
not bounded by any natural number.

We note that there exists a formula measuring the depth of a variety of cylindric
algebras (see [2, Theorem 4.2]). Let d(V) denote the depth of the variety V. Our
goal is to show that a variety V of cylindric algebras is locally finite iff d(V) < ω.
For this we need the following definition.

Definition 5.2. (1) Call a quasi-square X uniform if every non-diagonal E0-
cluster of X is a singleton set, and every diagonal E0-cluster of X contains
only two points.

(2) Call a simple cylindric algebra B uniform if its dual quasi-square X is uniform.

Finite uniform quasi-squares are shown in Figure 2, where big dots denote the
diagonal points. Denote by Xn the uniform quasi-square of depth n. Also let Bn

denote the uniform cylindric algebra of depth n. It is obvious that Xn is (isomorphic
to) the dual cylindric space of Bn. Let U denote the variety generated by all finite
uniform cylindric algebras, that is U = HSP({Bn}n∈ω).
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Proposition 5.3. U ⊆ RCA2.

Proof. Since none of the diagonal E0-clusters of Xn is a singleton set, Xn does not
satisfy (∗). Therefore, each Bn is representable by Theorem 3.4. Thus, {Bn}n∈ω ⊆
RCA2, implying that U ⊆ RCA2. �

Lemma 5.4. (1) If B is a simple cylindric algebra of an infinite depth, then each
Bn is a subalgebra of B.

(2) If B is a simple cylindric algebra of depth 2n, then Bn is a subalgebra of B.

Proof. (1) Suppose B is a simple cylindric algebra of an infinite depth and X is
its dual cylindric space. Then X is a quasi-square with infinitely many E1 and
E2-clusters. In the same way as in the proof of Claim 4.7 of [2], for every n we
can divide X into n-many E1-saturated disjoint clopen sets G1, . . . , Gn. We let
Di = D∩Gi and Fi = E2(Di) for i = 1, . . . , n. Obviously each of the Di’s and Fi’s
is clopen. Define a partition R of X by putting

• xRy if x, y ∈ D and there exists i = 1, . . . , n such that x, y ∈ Di;
• xRy if x, y ∈ X − D and there exist 1 ≤ j, k ≤ n such that x, y ∈ Gj ∩ Fk.

It is easy to check, either directly or by transforming the proof of Claim 4.7 of [2],
that R is a cylindric partition of X , and that X/R is isomorphic to Xn. Therefore,
by Theorem 2.11(2), each Bn is a subalgebra of B.

(2) Suppose B is a simple cylindric algebra of depth 2n and X is its dual cylindric
space. Then X is a quasi-square. Moreover, there are exactly 2n-many E1 and E2-
clusters of X . Obviously all of them are clopens. Let C1, . . . , C2n be E1-clusters of
X and let Gi = C2i−1 ∪ C2i for i = 1, . . . , n. Obviously every Gi is E1-saturated
clopen. Now applying the same technique as in (1) shows that Bn is a subalgebra
of B. �

Theorem 5.5. For a variety V of cylindric algebras, d(V) = ω iff U ⊆ V.

Proof. It is obvious that d(U) = ω. So, if U ⊆ V, then obviously d(V) = ω.
Conversely, suppose d(V) = ω. We want to show that every finite uniform cylindric
algebra belongs to V. Since d(V) = ω, the depth of simple members of V is not
restricted to any natural number. So, either there exists a family of simple V-
algebras of increasing finite depth, or there exists a simple V-algebra of an infinite
depth. In either case, it follows from Lemma 5.4 that {Bn}n∈ω ⊆ V. Therefore,
U ⊆ V since {Bn}n∈ω generates U. �

Our next task is to show that U is not a locally finite variety. For this we will
need the following lemma.

Lemma 5.6. (1) Every finite square algebra is 1-generated.
(2) Every finite uniform algebra is 1-generated.
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Figure 3. Generators of square and uniform quasi-square algebras

Proof. (1) For a finite square X = (n×n, E1, E2, D), consider the set g = {(k, m) :
k < m}. It is well known (see e.g., [8, p.253] or [2, p.24]) that a cylindric algebra
generated by g contains all singleton subsets of n×n. Hence, (P (n×n), E1, E2, D)
is generated by g.

(2) is proved analogously to (1). If B is a finite uniform algebra and X is its
dual cylindric space, then X is obtained from a finite square by replacing every
diagonal point by the two point E0-cluster containing one diagonal point. The
same arguments as above show that every E0-cluster of X belongs to the algebra
generated by the lower triangle g′ (see Figure 3, where big dots represent the
diagonal points and points in circles represent the points belonging to g and g′,
respectively). Hence it is left to be shown that for every diagonal E0-cluster C and
x ∈ C, the singleton set {x} belongs to the algebra generated by g′. But for any
x ∈ C, either x ∈ D and hence {x} = C ∩ D or x /∈ D and {x} = C ∩ −D. Hence
every singleton set belongs to the cylindric algebra generated by g′ and therefore
g′ generates B. �

Remark 5.7. Note that the Df2-reducts of finite uniform algebras are not gener-
ated by g′. Indeed, the Df2-algebra generated by g′ does not contain the singleton
sets from non-singleton E0-clusters. We point out here that no finite uniform al-
gebra is a 1-generated Df2-algebra since we can show that the following theorem
holds true: A quasi-square Df2-algebra is 1-generated iff either it is a square alge-
bra, or every E0-cluster of its dual space is a singleton set except one E0-cluster
that contains exactly two points. Since this fact is not important from the point of
view of this paper we skip the details.

Now in order to conclude that U is not locally finite all we need is to remember
the following characterization of locally finite varieties from G. Bezhanishvili [1].
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Theorem 5.8. A variety V of a finite signature is locally finite iff for every natural
number n there exists a natural number M(n) such that the cardinality of every n-
generated subdirectly irreducible V-algebra is less than or equal to M(n).

Corollary 5.9. U is not locally finite.

Proof. Follows from Lemma 5.6 and Theorem 5.8. �

Next we show that if a variety of cylindric algebras is of finite depth, then it is
locally finite.

Theorem 5.10. If d(V) < ω, then V is locally finite.

Proof. The proof is analogous to that for the diagonal-free case (see [2, Lemma 4.4]):
To show V is locally finite, by Theorem 5.8, it is sufficient to prove that the cardi-
nality of every n-generated simple V-algebra is bounded by some natural number
M(n). Let B be an n-generated simple V-algebra. Let also Bi = {∃ib : b ∈ B},
for i = 1, 2. Since d(V) < ω, we have |B1| = |B2| < ω. Suppose B is generated by
G = {g1, . . . , gn}. Then as a Boolean algebra B is generated by G∪B1 ∪B2 ∪ {d}.
Since the variety of Boolean algebras is locally finite, there exists M(n) < ω such
that |B| ≤ M(n) (in fact |B| ≤ 22n+2|B1|+1

). Hence V is locally finite. �

Finally, combining Theorem 5.5 with Corollary 5.9 and Theorem 5.10 we obtain
the following characterization of locally finite varieties of cylindric algebras.

Theorem 5.11. (1) For V ⊆ CA2 the following conditions are equivalent:
(a) V is locally finite;
(b) d(V) < ω;
(c) U 	⊆ V.

(2) U is the only pre locally finite subvariety of CA2.

Therefore, in contrast to the diagonal-free case, there exist uncountably many
subvarieties of CA2 (RCA2) which are not locally finite. Since every locally finite
variety is obviously generated by its finite members, we obtain from Theorem 5.11
that every subvariety of CA2 of a finite depth is generated by its finite members. We
conjecture that every subvariety of CA2 is in fact generated by its finite members.

6. Finitely generated and pre finitely generated subvarieties of CA2

Recall that a variety of universal algebras is said to be finitely generated if it is
generated by a finite universal algebra. We call a variety pre finitely generated if
it is not finitely generated but all its proper subvarieties are. It was shown in [2,
Theorem 5.4] that there exist exactly six pre finitely generated varieties in Λ(Df2).
The situation is more complex in Λ(CA2). In this section, we show that there exist
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exactly fifteen pre finitely generated varieties in Λ(CA2), and that six of them
belong to Λ(RCA2). It trivially implies a characterization of finitely generated
subvarieties of Λ(CA2).

Consider the finite quasi-squares X i
n shown in Figure 4, where i = 1, . . . , 15

and n ≥ 2. Again big dots represent the diagonal points. The pattern according
to which the quasi-squares are depicted is the following: First come the spaces
with depth 1, then the spaces with depth 2, and finally the spaces with depth 3;
quasi-squares with more clusters come later in the list; the first and last quasi-
squares (of the same depth) do not satisfy (∗), i.e., the corresponding algebras are
representable. As it can be seen from the figure, each E0-cluster of X i

n consists
of either one, two or n points. Let Bi

n denote the cylindric algebra corresponding
to X i

n. For fixed i = 1, . . . , 15 let Vi denote the variety generated by the family
{Bi

n : n ≥ 2}. From Theorem 3.4 it follows that only B1
n B2

n, B3
n, B7

n, B14
n and

B15
n are representable algebras, and so only V1, V2, V3, V7, V14 and V15 belong

to Λ(RCA2).
Now we are in a position to prove that V1 − V15 are the only pre finitely

generated subvarieties of CA2. For this we need to show that V1 − V15 are not
finitely generated, which follows from their definition, and that every variety of
cylindric algebras which is not finitely generated contains exactly one of V1 −V15.

Lemma 6.1. V3 ⊂ U.

Proof. Suppose Bn is the finite uniform algebra of depth n. We show that B3
n is

a subalgebra of Bn. Consider the uniform square Xn of depth n, fix a diagonal
E0-cluster, say C, and let D ∩ C = {x0}. Define an equivalence relation R on X

by putting

• xRy if x = y for all x, y ∈ C;

• xRy for all x, y ∈ E1(C) − C;

• xRy for all x, y ∈ E2(C) − C;

• xRy for all x, y ∈ D − {x0};
• Let each of the remaining n − 1 R-equivalence classes consist of n − 1 points

chosen so that each class contains exactly one point from each Ei-cluster of
X − (E1(C) ∪ E2(C) ∪ D) for i = 1, 2.

It is a matter of routine verification that R is a cylindric partition, and that Xn/R

is isomorphic to X 3
n . Therefore, B3

n is a subalgebra of Bn for every n, implying
that V3 ⊂ U. �

Therefore, we obtain that if d(V) = ω, then V3 ⊆ V. Suppose d(V) < ω.
Then V is locally finite by Theorem 5.11. Let FinVS denote the class of all finite
simple V-algebras. Since V is locally finite, V is generated by FinVS . Suppose
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B ∈ FinVS and X is its dual cylindric space. Then X is a finite quasi-square. Fix
x ∈ X .

Definition 6.2. (1) Call the number of elements of E0(x) the girth of x.
(2) The maximum of the girths of all x ∈ E0(D) is called the diagonal girth of X .
(3) The maximum of the girths of all x ∈ X − E0(D) is called the non-diagonal

girth of X .
(4) The diagonal girth of B is the diagonal girth of X .
(5) The non-diagonal girth of B is the non-diagonal girth of X .
(6) The diagonal girth of V is said to be n if there is B ∈ FinVS whose diagonal

girth is n, and the diagonal girth of every other member of FinVS is less than
or equal to n.

(7) The diagonal girth of V is said to be ω if the diagonal girths of the members
of FinVS are not bounded by any integer.

(8) The non-diagonal girth of V is said to be n if there is B ∈ FinVS whose
non-diagonal girth is n, and the non-diagonal girth of every other member of
FinVS is less than or equal to n.

(9) The non-diagonal girth of V is said to be ω if the non-diagonal girths of the
members of FinVS are not bounded by any integer.

Lemma 6.3. If V is a variety of cylindric algebras of finite depth whose diagonal
and non-diagonal girths are bounded by some integer, then V is a finitely generated
variety.

Proof. There exist only finitely many non-isomorphic finite simple cylindric alge-
bras whose depth, the diagonal girth and the non-diagonal girth are bounded by
some integer. Therefore, there are only finitely many non-isomorphic finite simple
V-algebras, implying that V is finitely generated. �

It follows that if a variety V of a finite depth is not finitely generated, then either
the diagonal girth or the non-diagonal girth of V must be ω.

Lemma 6.4. If V is a variety of finite depth whose diagonal girth is ω, then one
of V1 − V3 is contained in V.

Proof. Since the diagonal girth of V is ω, for each n there is B ∈ FinVS whose
diagonal girth is n. Let X be the dual cylindric space of B. Then X is a quasi-
square. Denote by C the diagonal E0-cluster of X containing n points. Then two
cases are possible. Either d(X ) = 1 or d(X ) ≥ 2 for infinitely many n. In the
former case, it is obvious that X is isomorphic to X 1

n , and so V1 ⊆ V. In the latter
case, define an equivalence relation R on X by putting

• xRy if x = y for any x, y ∈ C ∪ D;
• xRy if xE0y for any x, y ∈ X − (C ∪ D).
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Clearly R is a cylindric partition. Denote X/R by Y. Then every non-diagonal
E0-cluster of Y is a singleton set and every diagonal E0-cluster different from C

contains either one or two points. Again there are two cases possible. Either
d(Y) = 2 or d(Y) > 2 for infinitely many n. In the former case, Y is isomorphic to
either X 2

n or X 3
n for infinitely many n. Therefore, either V2 ⊂ V or V3 ⊂ V. And

in the latter case, define an equivalence relation Q on Y by putting

• xQy if x = y for any x, y ∈ C;
• xQy for any x, y ∈ E1(C) − C;
• xQy for any x, y ∈ E2(C) − C;
• xQy for any x, y ∈ D − C;
• xQy for any x, y ∈ Y − (E1(C) ∪ E2(C) ∪ D).

It is a matter of routine verification that Q is a cylindric partition, and that Y/Q

is isomorphic to X 3
n . Thus, V3 ⊂ V. �

Lemma 6.5. If V is a variety of finite depth whose non-diagonal girth is ω, then
one of V4 − V15 is contained in V.

Proof. Since the non-diagonal girth of V is ω, for each n there is B ∈ FinVS whose
non-diagonal girth is n. Let X be the dual cylindric space of B. Then X is a
quasi-square. Denote by C the non-diagonal E0-cluster of X containing n points.
Since the non-diagonal E0-clusters exist only in cylindric spaces of depth > 1, we
have d(X ) > 1. Define an equivalence relation R on X by putting

• xRy if x = y for any x, y ∈ C ∪ D;
• xRy if xE0y for any x, y ∈ X − (C ∪ D).

Clearly R is a cylindric partition. Since d(X ) > 1, there are three cases possible.
Either d(X ) = 2, d(X ) = 3, or d(X ) > 3 for infinitely many n.

If d(X ) = 2 for infinitely many n, then X/R is isomorphic to one of X 4
n −X 7

n for
infinitely many n, implying that one of V4 − V7 is contained in V.

If d(X ) = 3 for infinitely many n, then X/R is isomorphic to one of X 8
n − X 15

n

for infinitely many n, implying that one of V8 − V15 is contained in V.
Finally, let 3 < d(X ) < ω for infinitely many n. Denote by C′ the diagonal

E0-cluster E1-related to C, and by C′′ - the diagonal E0-cluster E2-related to C.
Define an equivalence relation R on X by putting

• xRy if x = y for any x, y ∈ C ∪ ((C′ ∪ C′′) ∩ D);
• xRy for any x, y ∈ D − (C′ ∪ C′′);
• xRy for any x, y ∈ X − (D ∪ E1(C′) ∪ E2(C′) ∪ E1(C′′) ∪ E2(C′′));
• xRy if xE0y for any x, y ∈ (E2(C′) ∩ E1(C′′)) ∪ ((C′ ∪ C′′) − D);
• xRy for any x, y ∈ E2(C) − (C ∪ C′′);
• xRy for any x, y ∈ E1(C) − (C ∪ C′);
• xRy for any x, y ∈ E2(C′) − (E1(C′′) ∪ C′);
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• xRy for any x, y ∈ E1(C′′) − (E2(C′) ∪ C′′).

It is a matter of routine verification that R is a cylindric partition. Moreover,
there are four cases possible. Either both C′ and C′′ are singleton sets, C′ is a
singleton set and C′′ is not, C′′ is a singleton set and C′ is not, or neither C′ nor C′′

are singleton sets, for infinitely many n. In the first case X/R is isomorphic to X 11
n ,

in the second case X/R is isomorphic to X 13
n , in the third case X/R is isomorphic

to X 12
n , and finally in the fourth case X/R is isomorphic to X 15

n . Therefore, one of
V12 − V15 is contained in V.

Thus, going through all the cases we obtain that one of V4 − V15 is contained
in V. �

Corollary 6.6. (1) The only pre finitely generated varieties in Λ(CA2) are
V1–V15.

(2) The only pre finitely generated varieties in Λ(RCA2) are V1,V2,V3, V7, V14

and V15.

Proof. This is an immediate consequence of Lemmas 6.1, 6.3 – 6.5, and the fact
that all the fifteen varieties are non-comparable. �

7. Lattice structure of Λ(CA2)

In order to obtain a rough picture of the lattice structure of subvarieties of CA2,
we need the following notation:

• FG = {V ∈ Λ(CA2) : V is finitely generated};
• DF = {V ∈ Λ(CA2) : d(V) < ω and V /∈ FG};
• Dω = {V ∈ Λ(CA2) : d(V) = ω}.
Let also V⊥ denote the trivial variety.

Theorem 7.1. (1) {FG,DF ,Dω} is a partition of Λ(CA2).
(2) V⊥ is a least element of FG.
(3) FG does not have maximal elements.
(4) DF has precisely fifteen minimal elements.
(5) DF does not have maximal elements.
(6) U and CA2 are the least and the greatest elements of Dω, respectively.

Proof. This follows immediately from Theorem 5.5 and Corollary 6.6. �

The lattice Λ(CA2) can be roughly depicted as shown in Figure 5. Now we will
investigate the lower part of Λ(CA2) in a greater detail. It follows from Corol-
lary 6.6 that a variety V ⊆ CA2 (RCA2) is finitely generated iff V does not
contain one of the fifteen (six) pre finitely generated varieties. Another criterion is
given by the following theorem.
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V⊥

CA2

U

finitely generated varieties

RCA2

varieties of infinite depth

non-finitely generated varieties
of finite depth

pre finitely generated varieties

Figure 5. Rough picture of Λ(CA2)

Theorem 7.2. For a variety V ⊆ CA2 the following conditions are equivalent:

(1) V is finitely generated.
(2) V has only finitely many subvarieties.
(3) V contains only finitely many non-isomorphic simple algebras (and all of them

are finite).

Proof. (1) ⇒ (2) is straightforward since CA2 is congruence-distributive.
(2) ⇒ (3). First note that if V contains an infinite simple algebra, then it

contains infinitely many non-isomorphic finite simple algebras. To see this, let B

be an infinite simple V-algebra. If d(B) ≥ ω, then by Lemma 5.4 B has infinitely
many non-isomorphic simple subalgebras. If d(B) < ω, then either the diagonal
or non-diagonal girth of B is infinite and the same arguments as in the proofs of
Lemmas 6.4 and 6.5 show that there are infinitely many non-isomorphic simple
subalgebras of B. Now suppose that V contains an infinite family {Bi}i∈I of non-
isomorphic simple algebras. Then V contains an infinite family {B′

i}i∈I of finite
non-isomorphic simple algebras. By Jónsson’s Lemma {HSP(B′

i)}i∈I is an infinite
family of distinct subvarieties of V, which is a contradiction.

(3) ⇒ (1). Let {Bi}n
i=1 be the family of all simple non-isomorphic V-algebras.

It follows from the above that they are all finite. Then
∏n

i=1 Bi generates V and
therefore V is finitely generated. �
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By an immediate successor of a variety V ⊆ CA2 we mean an immediate suc-
cessor in the lattice Λ(CA2).

Corollary 7.3. (1) Every immediate successor of a finitely generated variety of
cylindric algebras is finitely generated.

(2) A finitely generated variety of cylindric algebras has only finitely many imme-
diate successors.

Proof. (1) Let V′ be an immediate successor of a finitely generated variety V. Since
V is finitely generated V = HSP(B) for a finite cylindric algebra B. Since V ⊂ V′,
there is a simple cylindric algebra B′ ∈ V′ with B′ /∈ V. Then V ⊂ HSP(B×B′)
and because V′ is an immediate successor of V we have that V′ = HSP(B×B′).
Moreover, if B′ is infinite, then the same arguments as in the proof of Theorem 7.2
show that B′ has infinitely many non-isomorphic subalgebras, which is impossible
since V′ is an immediate successor of V and V is finitely generated. Hence B′ is
finite and therefore V′ is finitely generated.

(2) The proof is analogous to the standard proof that a finitely generated variety
of interior algebras has only finitely many immediate successors (see, e.g., Blok [4,
Theorem 7.5]). �

7.1. Varieties of cylindric algebras of depth one. In this subsection we give
a complete characterization of the lattice structure of the varieties of cylindric
algebras of depth one. In the diagonal free case, the lattice of varieties of Df2-
algebras of E1 and E2-depth one is relatively simple. It is isomorphic to the lattice
of varieties of monadic algebras and is an (ω + 1)-chain (see [10, Theorem 4] and
[8, Theorem 4.1.22]). As we will see below, the structure of the lattice of varieties
of cylindric algebras of depth one is more complex.

Let 2n denote the 2n-element Df2-algebra, where n ≥ 1 and

∃i(a) =
{

0 if a=0,
1 otherwise,

for i = 1, 2. Let also d be an atom of 2n. Then (2n, d) is a cylindric algebra. It is
obvious that (2n, d) is simple and has depth one. Observe that the dual space of
(2n, d) is isomorphic to X 1

n defined in Section 6. Hence (2n, d) ∈ RCA2 for every
n ∈ ω. It is also clear that up to isomorphism X 1

n , n ∈ ω, are the only finite quasi-
squares of depth one. Thus (2n, d) are the only finite simple cylindric algebras of
depth one.

We recall that in the diagonal-free case the two-element Df2-algebra 2 is a sub-
algebra of every non-trivial Df2-algebra. For CA2 the situation is different.

Proposition 7.4. Suppose B is a non-trivial simple cylindric algebra.

(1) (2, 1) is a subalgebra of B iff B is isomorphic to (2, 1).
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(22, d) (23, d) (24, d)

(2, 1)

Figure 6. The poset of simple cylindric algebras of depth one

(2) If B is not isomorphic to (2, 1), then (22, d) is a subalgebra of B.

Proof. (1) If (2, 1) is a subalgebra of B = (B, d), then d = 1. Suppose there is an
element a ∈ B with 0 < a < 1. Then, by Definition 2.6(2), ∃i − a ≤ −a for i = 1, 2.
Hence the ideal (−a] corresponds to a non-trivial proper congruence, i.e., B/(−a]

is a proper non-trivial homomorphic image of B, which is impossible since B is
simple. Therefore, B = 2 and B is isomorphic to (2, 1).

(2) It is known that ∃1∃2−d = ∃1−d = ∃2−d (see, e.g., [8, Theorem 1.3.18(ii)]).
Since B is not isomorphic to (2, 1), we have d 	= 1. Hence, −d 	= 0. So, ∃1∃2−d = 1
since B is simple. Thus, {1, 0, d,−d} is a cylindric subalgebra of B.

�

Let Var(2, 1) and Var(22, d) denote the varieties generated by (2, 1) and (22, d),
respectively.

Corollary 7.5. (1) The varieties Var(2, 1) and Var(22, d) are the only atoms in
Λ(CA2).

(2) If a variety V of cylindric algebras contains the two-element cylindric algebra
(2, 1), then V is generated by a simple algebra iff V = Var(2, 1).

Proof. (1) It follows from Proposition 7.4(1) that Var(2, 1) and Var(22, d) are
incomparable. Now let V be a non-trivial subvariety of CA2, and B a simple
V-algebra. By Proposition 7.4 either (2, 1) or (22, d) is a subalgebra of B. Thus
Var(2, 1) ⊆ V or Var(22, d) ⊆ V.

(2) Suppose (2, 1) ∈ V and V is generated by a simple V-algebra B. Using
the standard splitting technique (see, e.g., Kracht [9, §7.3]) we obtain that (2, 1) ∈
S(B), and applying Proposition 7.4 we get that B is isomorphic to (2, 1).

�

Let V1 ⊆ CA2 be the variety of all cylindric algebras of depth one. It is known
from [2, Theorem 4.2] that

V1 = CA2 + (∃2∃1a = ∃1a) = RCA2 + (∃2∃1a = ∃1a).
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V1

V1V(2,1) V(2,1)×(23,d)

V(23,d)V(22,d)V⊥

V(2,1)×(22,d)

Figure 7. The lattice of varieties of cylindric algebras of depth one

Let (F ,≤) denote the partially ordered set of all non-isomorphic finite cylindric
algebras of depth one. We recall from Section 3 that ≤ is defined on F by putting
B ≤ B′ iff B ∈ S(B′). As we pointed out above, F = {(2n, d) : n ∈ ω}. It follows
from Proposition 7.4 that (F ,≤) is isomorphic to the disjoint union of the set of
natural numbers (N,≤) with the set consisting of one reflexive point (see Figure 6).

Recall that G ⊆ F is called a downset of F if A ∈ G and B ≤ A imply B ∈ G.
Since every variety of cylindric algebras of finite depth is locally finite, applying
[5, Theorem 3.3] we obtain the following representation of the lattice of varieties of
cylindric algebras of depth one.

Theorem 7.6. The lattice of varieties of cylindric algebras of depth one is isomor-
phic to the lattice of downsets of (F ,≤).

The lattice of varieties of cylindric algebras of depth one is shown in Figure 7. To
explain the labeling, with each downset of (F ,≤) of the form ↓(2n, d) = {(2k, d) :
1 < k < n} we associated the variety V(2n,d) generated by (2n, d); and with
each downset of the form ↓(2n, d) ∪ {(2, 1)} we associated the variety V(2,1)×(2n,d)

generated by (2, 1) × (2n, d); furthermore, V1 = HSP({(2n, d) : n > 1}).
Theorem 7.7. Every subvariety of V1 is finitely axiomatizable.

Proof. A proof similar to the one in Scroggs [10, p.119] shows that the inequality

(Sn)
n+1∧
k=1

∃1ak ≤
∨

1≤k,j≤n+1
k �=j

∃1(ak ∧ aj)

holds true in a simple cylindric algebra of depth one iff the corresponding quasi-
square contains ≤ n points. Therefore, the varieties V(2,1)×(2n,d) are axiomatized
by the identities of V1 plus (Sn). On the other hand, the identity ∃1 − d = 1
holds true in (2n, d) iff n > 1. Therefore, the variety V1 is axiomatized by the
identities of V1 plus ∃1 − d = 1, while the varieties V(2n,d) are axiomatized by
adding ∃1 − d = 1 to the identities of V(2,1)×(2n,d). �
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Remark 7.8. In fact, using the Jankov-Fine type formulas, the technique analo-
gous to [3] shows that every subvariety of CA2 of finite depth is finitely axiomati-
zable. (Note that the proof of this fact is much simpler than the original one from
[3] for the diagonal free case since, in contrast with Df2-algebras, every cylindric
algebra has the same E1 and E2-depth.) Nevertheless, the cardinality of Λ(CA2)
is that of continuum, which means that there exist uncountably many non-finitely
axiomatizable subvarieties of CA2 of infinite depth.

7.2. Reduct functors. Suppose B = (B, ∃1, ∃2, d) is a cylindric algebra. In
Section 2 we denoted its Df2-reduct by F(B) = (B, ∃1, ∃2) ∈ Df2. If K is a
subclass of CA2, let F(K) = {F(B) : B ∈ K}. Also if M is a subclass of Df2, let
F−1(M) = {B ∈ CA2 : F(B) ∈ M}.
Lemma 7.9. Suppose K ⊆ CA2 and M ⊆ Df2. Then the following hold.

(1) HF(K) = FH(K).
(2) SF(K) ⊃ FS(K).
(3) PF(K) = FP(K).
(4) HF−1(M) ⊂ F−1H(M).
(5) SF

−1(M) ⊂ F
−1S(M).

(6) PF
−1(M) = F

−1P(M).

Proof. (1) This claim follows immediately from Theorems 2.5(1) and 2.11(1) (see
Remark 2.13).

(2) It is obvious that if B is a cylindric subalgebra of A, then F(B) is a Df2-
subalgebra of F(A). Hence, FS(K) ⊆ SF(K). To see that the converse inclusion
does not hold, let d(K) ≥ 2 and consider B ∈ K with d(B) ≥ 2. Denote by
X = (X, E1, E2, D) the dual cylindric space of B. Define a partition R on X by
putting xRy if xE2y. Then R is a correct Df2-partition and the Df2-algebra A
corresponding to the Df2-space X/R belongs to SF(K). On the other hand, the
E1-depth of X/R is 1 and the E2-depth of X/R is ≥ 2. Therefore, X/R has different
E1 and E2 depths, which by Proposition 2.8 implies that A can not be the reduct
of any cylindric algebra. Thus, SF(K) 	⊆ FS(K).

(3) Follows from the fact that for any family {Bi}i∈I of cylindric algebras we
have F(

∏
i∈I Bi) =

∏
i∈I F(Bi).

(4) That HF−1(M) ⊆ F−1H(M) follows from the fact that every cylindric ho-
momorphism is a also a Df2-homomorphism. To show that this inclusion is proper,
consider a cylindric algebra B and let A be a Df2-algebra such that d1(A) 	= d2(A).
Then F(B) is a homomorphic image of F(B)×A, but since d1(A) 	= d2(A), F(B)×A
is not the reduct of any cylindric algebra. Hence, B ∈ F−1H({F(B) × A}), but
HF

−1({F(B) ×A}) is empty.
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(5) That SF−1(M) ⊆ F−1S(M) follows from the fact that if B is a cylindric
subalgebra of A, then F(B) is a Df2-subalgebra of F(A). To see that this inclusion
is proper, suppose the two-element Df2-algebra 2 does not belong to M . Then the
two-element cylindric algebra, (2, 1) does not belong to F−1(M). By Proposition 7.4
(2, 1) /∈ SF−1(M). On the other hand, 2 is a Df2-subalgebra of every Df2-algebra.
Therefore, 2 ∈ S(M) and (2, 1) ∈ F−1(S(M)).

(6) That PF−1(M) ⊆ F−1P(M) follows from the definition of the product of
cylindric algebras. To see the converse, suppose B ∈ F

−1P(M). Then B = (B, d),
where B =

∏
i∈I Bi for some Df2-algebras Bi ∈ M . Let (Bi, di) be the i-th projec-

tion of B. Since the i-th projection is an onto Df2-homomorphism, by Remark 2.13
it is also a cylindric homomorphism. Hence each (Bi, di) is a cylindric algebra and
d = 〈di〉i∈I . Then B is isomorphic to

∏
i∈I(Bi, di). Now every (Bi, di) belongs to

F−1(M). Hence, F−1P(M) ⊆ PF−1(M). �

Theorem 7.10. (1) If K is a subvariety of Df2, then F−1(K) is a subvariety of
CA2.

(2) For a non-trivial subvariety V of CA2, F(V) is a subvariety of Df2 iff V =
V(2,1)×(2n,d) for some n ∈ ω.

Proof. (1) By Lemma 7.9 we have HSPF−1(K) ⊆ F−1(HSP(K)) = F−1(K).
Hence, F−1(K) is a variety of cylindric algebras.

(2) Suppose V is a subvariety of CA2. If d(V) > 1, then it follows from the
proof of Lemma 7.9(2) that F(V) is not closed under subalgebras, hence is not a
variety. Thus, if F(V) is a variety, then V ⊆ V1. If (2, 1) 	∈ V, then F(2, 1) /∈
F(V) and again F(V) is not a variety since every nontrivial variety of diagonal-free
cylindric algebras contains 2 = F(2, 1). We now show that F(V1) is not a variety.
Let C denote the Cantor space. Then X = (C, E1, E2) is a Df2-space, where
E1(c) = E2(c) = C for any c ∈ C. If X were the reduct of a cylindric space, then X
would contain an isolated point. Since C is dense in itself, it follows that X is not
the reduct of any cylindric space. Let {y} be a singleton topological space. Then
Y = (C⊕{y}, E1, E2, {y}) is a cylindric space, where E1(x) = E2(x) = C⊕{y} for
any x ∈ C⊕{y}. Moreover, B = (CP (Y), E1, E2, {y}) is an infinite simple cylindric
algebra of depth 1, and so B ∈ V1. Now consider R(Y) = (C ⊕ {y}, E1, E2). Fix
any point c ∈ C and let R be the smallest equivalence relation which identifies y

and c. It is easy to check that R is a correct Df2-partition, and that R(Y)/R is
isomorphic to X . So, A = (CP (X ), E1, E2) is isomorphic to a Df2-subalgebra of
F(B), but it is not the reduct of any cylindric algebra. Hence, A does not belong
to F(V1), and so F(V1) is not a variety. Therefore, if V 	= V(2,1)×(2n,d) for any
n ∈ ω, then F(V) is not a variety. Finally, one can easily verify that for any n ∈ ω,
HS({(2, 1) × (2n, d)}) = {(2m, d) : m ≤ n}. This implies that F(V(2,1)×(2n,d)) =
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V2n , where 2n = F((2n, d)). Therefore, we obtained that F(V(2,1)×(2n,d)) is a
variety for any n ∈ ω, which finishes the proof of the theorem. �

We define a map Φ: Λ(CA2) → Λ(Df2) from the lattice Λ(CA2) of subvarieties
of CA2 to the lattice Λ(Df2) of subvarieties of Df2 by putting Φ(V) = S(F(V)).
It follows from Lemma 7.9 that Φ is well defined. The following theorem establishes
basic properties of Φ.

Theorem 7.11. (1) Φ is order preserving.
(2) For K ∈ Λ(Df2), if d1(K) 	= d2(K), then Φ−1(K) = ∅.
(3) Φ−1(Df2) = [U,CA2].
(4) Φ is neither onto nor 1–1 and does not preserve ∧.
(5) Φ preserves top, bottom, and ∨.

Proof. (1) directly follows from the definition of Φ.
(2) First we show that

(D) d(V) = d1(Φ(V)) = d2(Φ(V))

for every V ∈ Λ(CA2). It is obvious that d(V) ≤ d1(Φ(V)), d2(Φ(V)). Con-
versely, for each finite simple algebra A ∈ Φ(V), there exists B ∈ F(V) such
that A is a subalgebra of B. Hence, di(A) ≤ di(B) ≤ d(V), and therefore,
d(V) ≥ d1(Φ(V)), d2(Φ(V)). Now suppose K ∈ Λ(Df2) and d1(K) 	= d2(K).
If there exists V ∈ Φ−1(K), then it follows from (D) that d(V) = d1(K) = d2(K),
which is a contradiction.

(3) First we show that Φ(U) = Df2. Let Bn be a finite uniform cylindric algebra
and Xn its dual uniform space. Then the quotient-space R(Xn)/E0 is isomorphic
to n× n. Hence, every finite square Df2-algebra is a subalgebra of F(Bn) for some
n ∈ ω. Therefore, every finite square Df2-algebra belongs to Φ(U). Since Df2 is
generated by its finite square algebras (see, e.g., [11] or [2, p.23]), then Φ(U) = Df2.
Now since Φ is order preserving, we get that Φ−1(Df2) = [U,CA2].

(4) That Φ is not onto follows from (2). To see that it is not 1–1 consider the
varieties VB2

2
and VB4

2
, where B2

2 and B4
2 denote the cylindric algebras of the

power sets of the cylindric spaces X 2
2 and X 4

2 shown in Figure 4 above (see Section
6). Since B2

2 is representable and B4
2 is not, B2

2 is not isomorphic to B4
2. Therefore,

VB2
2
	= VB4

2
. However, F(B2

2) is isomorphic to F(B4
2). Hence, Φ(VB2

2
) = Φ(VB4

2
),

and so Φ: Λ(CA2) → Λ(Df2) is not 1–1.
To show that Φ does not preserve ∧ we consider again the varieties VB2

2
and

VB4
2
. It is easy to check that (22, d) is the only simple member of the variety

VB2
2
∩VB4

2
. Therefore, VB2

2
∩VB4

2
= V(22,d). However, since F(B2

2) is isomorphic
to F(B4

2), F(B2
2) belongs to both Φ(VB2

2
) and Φ(VB4

2
). Hence, it also belongs to

their intersection. By (D) we know that d1(Φ(V(22,d))) = d2(Φ(V(22,d))) = 1. On
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the other hand, di(Φ(VB2
2
) ∩ Φ(VB4

2
)) = 2 for i = 1, 2. Therefore, Φ(V(22,d)) 	=

Φ(VB2
2
) ∩ Φ(VB4

2
), and so Φ does not preserve ∧.

(5) That Φ(CA2) = Df2 follows from (3). Hence, Φ preserves top. Obviously
the Φ-reduct of the trivial variety of cylindric algebras is the trivial variety of Df2-
algebras. Therefore, Φ preserves bottom. Finally, we show that Φ preserves ∨, that
is Φ(V1 ∨ V2) = Φ(V1) ∨ Φ(V2). Indeed,

Φ(V1 ∨ V2) = HSP({F(B) : B ∈ V1 ∨V2})
= HSP({F(B) : B ∈ (V1 ∨ V2)S}).

By Jónsson’s lemma (V1 ∨ V2)S = (V1)S ∪ (V2)S . Also recall that for arbitrary
classes of universal algebras Γ and ∆, we have HSP(Γ ∪ ∆) = HSP(HSP(Γ) ∪
HSP(∆)). Hence,

Φ(V1 ∨ V2) = HSP
({F(B) : B ∈ (V1)S ∪ (V2)S}

)
= HSP

({F(B) : B ∈ (V1)S} ∪ {F(B) : B ∈ (V2)S}
)

= HSP
(
HSP({F(B) : B ∈ (V1)S}) ∪ HSP({F(B) : B ∈ (V2)S})

)
= HSP(Φ(V1) ∪ Φ(V2))

= Φ(V1) ∨ Φ(V2). �

Note that there are subvarieties K of Df2 such that d1(K) = d2(K) and still
Φ−1(K) = ∅. For example, let K be a proper subvariety of Df2 with d1(K) =
d2(K) = ω. We know from [2, Theorem 4.10] that such varieties exist. If Φ−1(K) 	=
∅, then there exists V ∈ Λ(CA2) such that Φ(V) = K. It follows from the equation
(D) that d(V) = ω. Therefore, V ∈ [U,CA2]. But then by Theorem 7.11(3)
Φ(V) = Df2 	= K, which is a contradiction. Thus, Φ−1(K) = ∅ even though
d1(K) = d2(K).

Suppose V ∈ Λ(CA2) and K ∈ Λ(Df2). For a property P of varieties of
universal algebras, we say that Φ preserves P if Φ(V) has P whenever V does; and
we say that Φ reflects P if every variety in Φ−1(K) has P whenever K does.

Theorem 7.12. (1) P is preserved by Φ if P is one of the following properties:
(a) being finitely approximable; (b) being of finite depth; (c) being locally finite;
(d) being pre locally finite; (e) being finitely generated.

(2) P is not preserved by Φ if P is the property of being pre finitely generated.
(3) P is reflected by Φ if P is one of the following properties: (a) being of finite

depth; (b) being locally finite; (c) being finitely generated;
(4) P is not reflected by Φ if P is the property of (a) being pre locally finite;

(b) being pre finitely generated.

Proof. 1. (a) is obvious since every subvariety of Df2 is finitely approximable (see
[2, Corollary 4.9.(2)]). (b) follows from the equation (D). (c) Suppose V ⊆ CA2
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is locally finite. Then V has finite depth. By (b) Φ(V) also has finite depth.
Hence, Φ(V) is a proper subvariety of Df2. But every proper subvariety of Df2 is
locally finite (see [2, Corollary 4.9.(1)]). Therefore, Φ(V) is locally finite. (d) The
only pre locally finite subvarieties of CA2 and Df2 are U and Df2, respectively;
and Φ(U) = Df2 by Theorem 7.11. (e) Suppose V ⊆ CA2 is finitely generated.
Then FinVS is finite by Theorem 7.2. Hence, F(FinVS) is also finite. Since Φ(V) is
generated by F(FinVS) and every finite simple Df2-algebra has finitely many simple
subalgebras, Φ(V) contains finitely many finite simple Df2-algebras. Therefore, by
the Df2-version of Theorem 7.2 (see [2, p. 33]), Φ(V) is finitely generated.

2. Observe that the Φ-images of pre finitely generated subvarieties of CA2 of
depth 3 are varieties of Df2-algebras of both E1 and E2-depth 3. Also observe
that subvarieties of Df2 of depth 3 are not pre finitely generated varieties (see [2,
Theorem 5.4]). The result follows.

3. (a) directly follows from the equation (D). (b) The only non-locally finite
subvariety of Df2 is Df2 itself. By Theorem 7.11 Φ−1(Df2) = [U,CA2]. Hence,
Theorem 5.5 implies that if K ∈ Λ(Df2) is locally finite, then Φ−1(K) is either
empty or contains varieties of cylindric algebras of finite depth. Since every subva-
riety of CA2 of finite depth is locally finite, Φ reflects the property of being locally
finite. (c) follows from Theorem 7.2, its Df2-version and the fact that the reduct
of a simple cylindric algebra is a simple Df2-algebra.

4. (a) Let V ⊆ CA2 be such that U ⊂ V. Then by Corollary 5.11(2) V is not pre
locally finite. However, Φ(V) = Df2 and Df2 is pre locally finite. Therefore, Φ does
not reflect the property of being pre locally finite. (b) As follows from [2, Theorem
5.4], the variety Φ(V1) is pre finitely generated. Since Φ−1(Φ(V1)) = {V1,V1}
and V1 is not pre finitely generated (see Section 6), we obtain that the property of
being pre finitely generated is not reflected by Φ. �

We conclude by mentioning that it is an open problem whether Φ reflects finite
approximability. If every variety of cylindric algebras were finitely approximable,
which we conjectured at the end of Section 5, then the answer to this problem
would be positive.
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